
MINING DISCRIMINATIVE ITEMS IN MULTIPLE DATA

STREAMS

by

Zhenhua Lin

B.Sc., Fudan University, 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Zhenhua Lin 2010

SIMON FRASER UNIVERSITY

Spring 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

How can we maintain a dynamic profile capturing a user’s reading interest against the

common interest? What are the queries that have been asked 1, 000 times more frequently

to a search engine from users in Asia than in North America? What are the keywords (or

tags) that are 1, 000 times more frequent in the blog stream on computer games than in

the blog stream on Hollywood movies? To answer such interesting questions, we need to

find discriminative items in multiple data streams. Each data source, such as Web search

queries in a region and blog postings on a topic, can be modeled as a data stream due to the

fast growing volume of the source. Motivated by the extensive applications, in this thesis,

we study the problem of mining discriminative items in multiple data streams. We show

that, to exactly find all discriminative items in stream S1 against stream S2 by one scan, the

space lower bound is Ω(|Σ| log n1

|Σ|), where Σ is the alphabet of items and n1 is the current

size of S1. To tackle the space challenge, we develop three heuristic algorithms that can

achieve high precision and recall using sub-linear space and sub-linear processing time per

item with respect to |Σ|. The complexity of all algorithms are independent of the size of

the two streams. An extensive empirical study using both real data sets and synthetic data

sets verifies our design.

iii

To my parent,

and my girlfriend.

iv

“I have found a very great number of exceedingly beautiful theorems.”

— Pierre de Fermat(1601 - 1665)

v

Acknowledgments

It is difficult to overemphasize my gratitude to my senior supervisor Dr. Jian Pei. Without

his patience, his encouragement, and his suggestions, it is impossible for me to make this

thesis. During my journey of graduate study toward to Master degree, he guided me to

the right direction and provided lots of sound advice about research, study and life. As an

advisor, he taught me many skills that I will use in my future career.

I am grateful to my supervisor, Dr. Funda Ergun, for her insightful comments and helpful

suggestions helping me improve the quality of this thesis. I also thank Dr. Martin Ester

and Dr. Qianping Gu for serving on my examining committee and spending their precious

time on reviewing my work.

I wish to express my special thankfulness to Bin Jiang who worked closely with me,

taught me countless valuable research skills without reserve, kept an eye on the progress of

my work, and was always available when I needed his advise and help.

My deepest thanks go to Dr. Wei Wang and Dr. Weidong Yang at Fudan University for

inspiring me to conduct research in the realm of data mining, and encouraging me to pursue

further study abroad.

I specially thank some researchers important to me in Microsoft Research Asia. My

intern mentors, Lei Zhang and Jin Li provided me their great help and professional training

during my internship. Researcher Jiangming Yang taught me many useful skills which were

used in this thesis. Researcher Dr. Daxin Jiang contributed valuable discussion to this

thesis.

I would also like to acknowledge many people in our department, support staff and fac-

ulty, for always being helpful over the years. I thank my friends at Simon Fraser University

for their help. A particular acknowledgement goes to Jiyi Chen, Xu Cheng, Yi Cui, Ming

Hua, Luping Li, Junqiang Liu, Hossein Maserrat, Brittany Nielsen, Guanting Tang, Kate

vi

Tsoukalas, Feng Wang, Haiyang Wang, Zhengzheng Xing, Ji Xu, Geoffrey Zenger and Bin

Zhou. I also would like to express my sincere thanks to my dear friends Jie Cong, Wei Gao,

Linghui Gong, Lujun Fang, Yi Han, Jin Huang, Jiarong Jiang, Shanshan Li, Yi Shen, Jiajun

Wang, Jian Xu, Xiaojin Xu, Zhiting Xu, Danfeng Zhang and Zheng Zhu.

Last but not least, my dedicated thanks go to my parents, my sister, my brother and my

girlfriend Liu Yang for their support, encouragement and company through all these years.

I hope my achievement will make them proud of me, as I am proud of them.

vii

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents viii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Organization of the Thesis . 3

2 Problem Definition 4

2.1 Discriminative Items in Data Streams . 4

2.2 Space Lower Bound . 5

2.3 Summary of Results . 6

3 Related Work 8

3.1 Data Stream Model . 8

3.2 Finding Frequent Item in Data Stream . 10

3.3 Emerging Pattern Mining . 11

viii

4 Methods 13

4.1 A Frequent Item Based Method . 13

4.1.1 The Space-Saving Algorithm . 13

4.1.2 Finding Discriminative Items . 14

4.1.3 Complexity Analysis . 15

4.2 A Hash-Based Method . 16

4.2.1 Ideas . 16

4.2.2 Hierarchical Hashing . 17

4.2.3 Complexity analysis . 19

4.3 Hybrid Method . 20

4.3.1 The Method . 20

4.3.2 Complexity Analysis . 22

5 Empirical Studies 24

5.1 Synthetic Data . 24

5.1.1 Efficiency . 25

5.1.2 Accuracy . 26

5.2 Real Data . 26

6 Discussions and Conclusions 36

6.1 Summary of the Thesis . 36

6.2 Future Work . 37

Bibliography 38

ix

List of Tables

2.1 A running example. x and z are discriminative items when θ = 3 and φ = 0.1. 5

4.1 A running example of the hash-based method. 19

5.1 Topics in real data sets. 27

5.2 Size of the real data sets in words . 27

5.3 Top-5 most discriminative words in the Wikipedia data set 27

5.4 Results on the Wikipedia data set. 34

5.5 Results on the Newsgroups data set (random). 34

5.6 Results on the Newsgroups data set (ordered). 35

x

List of Figures

4.1 An illustration of the hierarchical hashing. 17

4.2 An illustration of the hybrid method. 20

5.1 Space on synthetic data sets. 29

5.2 Number of updates per ms on synthetic data sets. 30

5.3 Precision on synthetic data sets. 31

5.4 Recall on synthetic data sets. 32

5.5 The distribution of ratio on the Wikipedia data set. 33

5.6 The distribution of ratio on the Newsgroups data set. 33

xi

Chapter 1

Introduction

We want to build a personalized news delivery service. When a user joins the system, we

have no idea about the user’s profile, and thus we start to provide all news topics to the

user. As the user keeps reading some news articles, how can we maintain a dynamic profile

capturing the user’s reading interest? One meaningful approach is to find the keywords

that are much, say, 1, 000 times, more frequent in the articles read by the user than in the

collection of all articles. We can use the profile to search the news articles in the future

to achieve a dynamic personalized service. However, this problem is far from trivial since

the user’s reading interest is dynamic and may change from time to time. Moreover, news

articles as well as the articles read by the user keep arriving as data streams.

Problems of a similar nature can be found in many aspects of Web search. For example,

a search engine may want to monitor the search queries that are asked 1, 000 times more

frequently in a region, say Asia, than in another region, say North America. Such queries

are very useful for the search engine in query optimization, localization, and suggestion.

As another example, tagging and blogging are common exercises on the Web now. One

may wonder, comparing to the blog postings on Hollywood movies, which tags are 1, 000

times more frequent in the blog postings on computer games. Those tags provide a means

to characterize the ongoing topic of computer games and the differences from Hollywood

movies. Such information is also useful in analyzing a social network of bloggers.

If one wishes, the list of similar examples can easily continue. For example, one may

compare the tags on images taken by different user groups to understand the users’ interest.

Moreover, in Intranet, one may compare activities and documents in failed projects against

those in successful projects to obtain hints of problems in projects. To name one more, it is

1

CHAPTER 1. INTRODUCTION 2

interesting to monitor the advertisements that are clicked much more frequently by mobile

users than those by other users so that we can understand the differences in user preferences

for sponsored search.

The above examples motivate a problem of mining discriminative items in data streams.

Due to the large and fast growing volumes of those data sources such as Web search queries

in a region and blog postings and tags on a topic, each data source can be modeled as a data

stream, for which only one scan of data is allowed by the computation resource or application

requirements. We want to compare two data streams S1 and S2, and maintain the collection

of items such that their frequencies in S1 are θ times more than their frequencies in S2, where

θ is a user specified parameter.

The problem of mining discriminative items in data streams is also related to the condi-

tional topic model [7, 8, 51]. A topic can be modeled as a keyword distribution describing the

topic. Then, a conditional topic model of “computer games” against “Holleywood movies”

is the distribution of keywords in the documents related to “computer games” conditional

on the distribution of keywords in the documents related to “Hollywood movies”. The

discriminative keywords can be regarded as the points of high density in the conditional

distribution.

Although finding frequent items in a single stream is well studied (see Chapter 3 for a

brief review), little work has been done to find discriminative items over multiple streams,

mainly due to the difficulty of finding infrequent items in a stream [25].

In this thesis, we tackle the problem of mining discriminative items on multiple data

streams. We make the following contributions. First, we show that, to exactly find all

discriminative items in stream S1 against stream S2 by one scan, the space lower bound is

Ω(|Σ| log n1

|Σ|), where Σ is the alphabet of items and n1 is the current size of S1. The lower

bound clearly indicates that any exact one-pass method for mining discriminative items is

infeasible for online applications since a stream grows constantly in size and the alphabet

such as tags and queries often grows fast, too. To tackle the space challenge, we develop

three heuristic algorithms that can achieve high precision and recall using sub-linear space

and sub-linear processing time per item with respect to |Σ|. The complexity of all algorithms

are independent of the size of the two streams. We report an extensive empirical study using

both real data sets and synthetic data sets to verify our design.

CHAPTER 1. INTRODUCTION 3

1.1 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we formulate the problem of

mining discriminative items over data streams, and give a space lower bound. In Chapter 3

we review the related work. In Chapter 4, we develop three heuristic algorithms, namely

the frequent item based method in Section 4.1 which derives discriminative items from

frequent items in a single stream, the hash-based method in Section 4.2 and the hybrid

method in Section 4.3 combining the advantages of the frequent item based method and the

hash-based method, which consumes the least space to achieve high precision and recall.

Chapter 5 reports extensive experiments on real and synthetic data sets and shows that our

methods are efficient and scalable. Chapter 6 concludes the thesis.

Chapter 2

Problem Definition

In this chapter, we first formulate the problem of mining discriminative items from streams.

Then, we give a space lower bound and summarize the theoretical results.

2.1 Discriminative Items in Data Streams

Given an alphabet of items Σ, we consider two streams S1 and S2 which are composed of

occurrences of items in Σ. Denote by n1 and n2 the current sizes of S1 and S2, respectively.

We do not require that two streams are synchronized.

Let fi(e) (i = 1, 2) denote the frequency, or the number of occurrences, of an item e in

Si. We also define the frequency rate of e in Si (i = 1, 2) as ri(e) = fi(e)
ni

.

We are interested in discriminative items which are relatively frequent in S1 but relatively

infrequent in S2. Formally, an item e is a discriminative item if

R(e) =
r1(e)

r2(e)
=

f1(e)n2

f2(e)n1
≥ θ,

where θ > 1 is a user specified threshold. The larger the value of θ, the more discriminative

the item. In many applications, we favor a large θ, such as in the order of hundreds or

thousands.

To deal with the cases where f2(e) = 0, we introduce a user specified minimum threshold

0 < φ ≪ 1, and require that any discriminative item should have a frequency in S1 no

less than φθn1. The rationale is that infrequent items are not of significance in many

applications. For example, a query seldom asked is not very interesting to a search engine.

4

CHAPTER 2. PROBLEM DEFINITION 5

S1 y w y x x x w z x z

S2 x w w y w y y w y w

Table 2.1: A running example. x and z are discriminative items when θ = 3 and φ = 0.1.

Given two streams for mining discriminative items, at any query time, n1

n2
is the same

for all items. Without loss of generality, in the rest of the thesis, we assume n1 = n2 = n to

keep our discussion simple. Consequently, we use a simplified definition of the discriminative

item as follows.

Definition 1 (Discriminative items). Given an alphabet of items Σ, two streams S1 and

S2, whose current sizes are n, a minimum ratio parameter θ, and a minimum threshold φ,

an item e is discriminative if e ∈ Σ, f1(e) ≥ φθn and R(e) = f1(e)
f2(e) ≥ θ. The problem of

mining discriminative items in S1 against S2 is to find the set of discriminative items

E = {e ∈ Σ|f1(e) ≥ φθn ∧ R(e) ≥ θ}.

We note that, when n1 6= n2, we simply multiply the simplified R(e) with a constant n2

n1
.

The algorithms, proofs, and complexities presented in the rest of the thesis can be extended

in the same way in the cases where n1 6= n2.

Example 1 (Discriminative items). Table 2.1 shows our running example. The alphabet

Σ = {x, y, z, w}. Two streams S1 and S2 are of size 10 each. Items are shown from left to

right in the table in the arriving order. The frequencies of x, y, z, and w in S1 are 4, 2, 3,

and 1, respectively, and in S2 1, 4, 1, and 4, respectively. Let θ = 3 and φ = 0.1. Then, x

and z are the discriminative items.

2.2 Space Lower Bound

Let E denote the set of discriminative items, we establish the fact that any one-pass algo-

rithm that can compute the exact E must use Ω(|Σ| log n1

|Σ|) space in the worst case.

Theorem 1 (Space lower bound). Any one-pass algorithm that computes the exact set of

discriminative items E requires Ω(|Σ| log n1

|Σ|) space in the worst case, where |Σ| is the size

of the alphabet Σ.

Proof. We reduce the problem of computing the exact set of frequent items to the problem

of mining discriminative items. Given a stream S whose current size is n, let us consider

CHAPTER 2. PROBLEM DEFINITION 6

finding all items in S with a minimum frequency αn where 1
|Σ| < α < 1. We construct a

stream S′ such that S′ contains 1
φ

(φ < α) distinct items each of which appears once. This

can be done using 1
φ

space which is less than the complexity stated in the theorem. We

also set θ = α
φ
. Then, an item e is a discriminative item in S against S′ with ratio θ if

and only if e has a frequency αn in S. Therefore, any exact algorithm computing the set

of discriminative items between two streams can be used to find the exact set of frequent

items from one stream.

Karp et al. [30] (Proposition 2.1) showed that that any online algorithm that can find

the exact set of frequent items, whose frequencies are no less than αn, requires Ω(|Σ| log n
|Σ|)

space in the worst case. Thus, any one-scan algorithm that can compute the exact set of

discriminative items E must use Ω(|Σ| log n1

|Σ|) space in the worst case.

Note that this lower bound holds for any value of θ. Next, we give an upper bound on

the number of discriminative items.

Theorem 2 (The number of discriminative items). Given two streams S1 and S2, a ratio

threshold θ, and a minimum threshold φ, there are at most min{|Σ|, 1
φθ
} discriminative

items.

Proof. It is trivial that |E| ≤ |Σ|. We prove |E| ≤ 1
φθ

by contradiction. Suppose |E| > 1
φθ

.

Because for any e ∈ E, f1(e) ≥ φθn, we have
∑

e∈E f1(e) ≥ |E|φθn > n. This contradicts

that the current size of stream S1 is n. Thus, |E| ≤ 1
φθ

, and |E| ≤ min{|Σ|, 1
φθ
}.

For intended applications, we expect 1
φθ

≪ |Σ|, because φ is set to 10−7 and θ is set

to 100 or larger in general, while the alphabet of streams such as tags in Web and search

queries of a search engine are far larger than 10−5.

2.3 Summary of Results

The lower bound clearly indicates that any exact one-pass method for mining discriminative

items is infeasible for online applications since a stream grows constantly in size and the

alphabet of streams such as tags and queries often grows fast, too. However, for intended

applications, the number of discriminative items is far less than alphabet size. This provides

possibility of reducing space usage while achieving good effectiveness at the same time. In

CHAPTER 2. PROBLEM DEFINITION 7

this thesis, we develop heuristic algorithms to tackle the space limitation. Specifically, we

explore three approaches.

A frequent item based method (Section 4.1) has a precision of 100% and high recall,

and uses O(1
φ
) space and O(log 1

φ
) time to process each item.

A hash-based method (Section 4.2) favors large θ, and has the space complexity O(hb logb |Σ|
φθ

)

and per item time complexity O(hb logb |Σ|), where b is the number of buckets of a hash

function and h is the number of pairwisely independent hashes used in the algorithm.

The hash-based method uses less space than the frequent item-based method when θ

is large. The hash-based method also achieves a precision of 100% but the recall is

worse than the frequent item-based method.

A hybrid method (Section 4.3) boosts the recall of the hash-based method, and consumes

the least space among the three to achieve high precision and recall.

Chapter 3

Related Work

Our problem of finding discriminative items between two streams can provide solutions to

many Web mining applications such as tag suggestions [22, 28, 42, 53] summarizing web

documents [40, 59], emails [10], or Web search results [32], search engine query analysis [56],

social network analysis [49, 54], and so on. An essential issue inherent in those applications

is to find discriminative tags or keywords that can distinguish the targeting object from

many others. Statistically, we model such discrimination as frequency ratio. Due to the

large amount of data arriving or being generated in high speed on the Web, the streaming

model is preferred. In Section 3.1, we review different data stream models briefly. Since

our work highly related to finding frequent items in data stream, we dedicate Section 3.2 to

several algorithms on this problem. Finally, we review works on emerging pattern mining

and tell how our work is different.

3.1 Data Stream Model

A sequence, or stream, is an ordered list of objects. A data stream x1, x2, . . . drawing from

a discrete and ordered alphabet Σ arrives item by item. It describes an underlying signal F

which is a one dimensional function F : Σ 7→ Z when Z is the set of integers. Without loss

of generality, assume Σ = [1 . . .M]. There are three models varying on how items describe

the signal [46].

Turnstile Model In this model, xi = (j, Ii) updates signal Fi−1 by Fi[j] = Fi−1[j] + Ii,

where Ii ∈ Z and Fi denote the state of F after observing item xi. Item (j, Ii) can be viewed

8

CHAPTER 3. RELATED WORK 9

as inserting (when Ii > 0) or deleting (when Ii < 0) |Ii| instances of j from the sequence.

Note that Fi[j] may be negative. If we only allow that Fi[j] ≥ 0 for all j ∈ [1 . . .M] at

all times, then we get strict Turnstile model. Otherwise, it is termed non-strict Turnstile

model. To understand this model, image the following scenario. Suppose there is a bank

with M different accounts providing basic service like depositing and drawing cash. A

transaction ti = (j, Ii) records how much cash is deposited if Ii > 0 or drawn if Ii < 0

from account j. Also, as transaction ti is completed, balance Fi[j] of account j is updated

by Fi[j] = Fi−1[j] + Ii. As owners of accounts come without particular order to deposit

or draw cash, a sequence of transactions t1, t2, . . . , is generated. If the bank doesn’t allow

overdrawing, then the sequence of transactions follows strict Turnstile model. Otherwise, it

fits non-strict Turnstile model.

Cash Register Model If Ii ≥ 0 is required at all times in Turnstile model, then the new

model is called Cash Register model. Clearly, Cash Register model is the special case of the

Turnstile model. Use the scenario above. If the bank only provides deposit service, then the

sequence of transactions fits Cash Register model. In this case, the balance of each account

keeps growing as transactions commit.

Time Series Model This is the simplest one among three models and the special case

of the Turnstile model, in which each xi = (i, Ii) and items show up in the increasing order

of Σ. In the example of bank transaction, assume each owner of accounts comes only once

in the increasing order of account number, then the transaction stream follows the Time

Series model. A better example is that the bank records the total balance of all accounts

every day by the form ri = (i, Bi) where Bi is the total balance of all accounts in day i.

Among three models, the Turnstile model is the most general data stream model. The

Cash Register model and the Time Series model are the special cases of the Turnstile model.

Ideally, researchers would like to design algorithms for the Turnstile model. However, it’s

hard to develop efficient algorithms on this model. From a practical point of view, although

other models are weaker, they are more suitable for many applications. In this thesis, we

use the Cash Register model which is the popular data stream model. Gilbert et al. [26]

give a conventional description of this model.

CHAPTER 3. RELATED WORK 10

3.2 Finding Frequent Item in Data Stream

Items frequent in a data stream are generally more interesting. The problem of finding

frequent items which can date back to the 1980s is heavily studied in data stream research

due to its intuitive interest and value. In the literature there are plenty of works on this

problem with many different formulations, like finding top-k most frequent items [12, 45,

47], finding all items with frequency exceeding a user specific threshold [5, 30, 33], finding

frequent items over sliding windows [5, 18, 33, 47], and so on. In this section we only review

the most important algorithms in the framework of finding items whose frequencies are

larger than a threshold since this formulation is most related to our problem.

Formally, given a stream S of length n and a threshold φ, the goal is to return a set

of items E so that for each e ∈ E, the frequency f(e) ≥ φn. Unfortunately, any online

algorithm finding the exact set E must use Ω(|Σ| log n
|Σ|) space in the worst case (Karp et

al. [30]). To break down this lower bound, ǫ-approximate frequent items problem [43, 45] is

introduced, whose goal is to find a set of items E so that for each item e ∈ E, f(e) > (φ−ǫ)n.

Also note that if an algorithm of estimating the frequency of each item can make that for

each item e ∈ Σ, f̂(e) ≤ f(e) ≤ f̂(e) + ǫn where f̂(e) is the estimated frequency of e, then

it can be used to solve the ǫ-approximate frequent item problem by simply reporting those

e whose frequency is estimated above (φ − ǫ)n.

Recently, Cormode and Hadjieleftheriou [14] compared several algorithms on this sub-

ject, and divided them into three classes, namely counter-based algorithms [9, 19, 30, 43, 45],

quantile algorithms [27, 43], and randomized sketch algorithms [4, 16, 17]. Here we only

review counter-based algorithms since they are more specific on finding frequent items and

at the same time estimating frequent items’ frequencies and therefore more related to our

work. Algorithms in the other two classes solve more general problems like estimating fre-

quency for all items. Detailed description and comparison of these algorithms can be found

in [14].

The Frequent Algorithm was discovered independently by Karp et al. [30] and Demaine

et al. [19], which generalized Majority algorithm [24, 9] of finding the item whose frequency

exceeds n/2. The central idea of these algorithms is “Cancelation”. They maintains 1
φ
− 1

(item, counter) pairs. If the new item xi = (j, Ii) is among these pairs, increment the corre-

sponding counter by Ii. Else, allocate a counter of Ii for this item if there is some counter

with zero; otherwise, decrement all counters by Ii. It can be proved that any item with

CHAPTER 3. RELATED WORK 11

frequency exceeding φn must be kept in these pairs when the algorithms terminate. Besides

output of a super set of frequent items, the counter associated with each item is at most φn

below the true frequency. However, in practice, it’s not suitable to be used for frequency

estimation [14]. Space used by Frequent Algorithm is O(1/φ), which is independent from

the size of stream.

The Lossy Counting algorithm proposed by Manku and Motwani [43] stores tuples

(j, lj , δj) where j is the element from Σ, lj is the lower bound of j’s counter and δj sat-

isfies lj ≤ f(j) ≤ lj + δj . When an item xi = (j, Ii) arrives, if j is stored, then increment

its lower bound by Ii. Otherwise, create a new tuple (j, Ii, ⌊φi⌋). From time to time, the

algorithm deletes tuples with lj + δj < φi. Like the frequent algorithm, when the algorithm

terminates, all items with frequency larger than φn are stored and the error on frequency

estimation is within φn for any item. There is a nice property that highly frequent items, if

they appear early in the stream, have very accurate estimated frequency. In terms of space

usage, it requires O(1
φ

log φn) in the worst case.

The Space-Saving algorithm [45] employed in this thesis is also a one-pass counter-based

algorithm similar to Lossy Counting and shares the same nice property that the items stored

by the algorithm early in the stream and not removed later have very accurate estimated

frequencies. Experiments in [14] indicate that the space-saving algorithm outperforms other

algorithms in terms of precision, recall, and space usage. The more detailed description can

be found in Section 4.1.1.

3.3 Emerging Pattern Mining

Emerging patterns (EPs) were introduced in [20]. EPs are defined as itemsets whose sup-

ports in one dataset are significantly larger than their supports in another. Formally, let

suppi(X) denote the support of X in dataset i and define growth rate GR(X) of an item

set X as

GR(X) =

0, if supp1(X) = 0 and supp2(X) = 0

∞, if supp1(X) = 0 and supp2(X) 6= 0

supp1(X)
supp2(X) , otherwise

Given φ > 1, the goal is to find EPs with growth rate more than φ. These EPs are

called φ-EPs. In addition to introducing EPs, Dong and Li [20] proposed a border-based

method to mine EPs. The border is a structure to concisely represent a large collection

CHAPTER 3. RELATED WORK 12

of itemsets. An ordered pair 〈L, R〉 of two antichain collections (A collection of sets is

called antichain if for any two elements A and B in this collection, A * B and B * A)

of sets is called a border if each element in L is a subset of some element in R and each

element in R is a superset of some element in L. Then, a border 〈L, R〉 can represent a

collection {X|∃Y ∈ L,∃Z ∈ R : Y ⊆ X ⊆ Z}. Algorithms of mining EPs manipulate

borders representing EPs, instead of EPs themselves. The use of borders avoids handling

exponentially many candidates, which improves efficiency. Works by Zhang et al [58] was

also based on borders.

Two more efficient algorithms based on tree structure inspired by FP-tree [29] were

proposed by Bailey et al. [6] to discover Jumping Emerging Patterns (JEPs) which are EPs

with infinite growth rate, and by Fan and Ramamohanarao [23] to mine essential JEPs

(eJEPs) which are JEPs and whose subsets are not JEPs. Also, mining EPs in data streams

is studied in [13] recently, in which the EFI-Mine algorithm based on A priori algorithm [50]

was proposed to find EPs from a sliding window.

The applications of EPs include analyzing biological data [36, 39, 55] and building clas-

sifiers [21, 34, 35, 37, 38]. The central idea is to perform classification by leveraging the

power of EPs present in instances to be classified. Basically, classifiers using EPs first select

a set of EPs for each class. Then they aggregate the power of discriminativeness of EPs

from each testing tuple to make a classification decision. Li et al. [37] showed that classifiers

built in this way can outperform C5.0 [48] and Li et al. [36] and Yeoh et al. [55] showed that

it can beat Support Vector Machine [52] in some datasets.

Although our problem can be viewed as a special case of emerging pattern mining by

considering EPs containing only one item, the essential difference of item and itemset leads

to very different solutions and applications. Most effort is devoted to addressing problem of

compactly representing EPs and efficient manipulation of EPs when studying EP mining.

However, in our problem, we don’t have such combinatorical nature inherent in EP mining.

Furthermore, we focus on reducing space of use under the data stream setting. To the

best of our knowledge, we are the first to study the problem of finding discriminative items

between two data streams.

Chapter 4

Methods

4.1 A Frequent Item Based Method

Since a discriminative item must be frequent in S1 with respect to a threshold φθn, straight-

forwardly, we can employ any algorithms for finding frequent items on a single stream to

first retrieve frequent items in S1, and then remove false positives. Among numerous al-

gorithms in the literature for finding frequent items, the space-saving algorithm [45] is the

state-of-the-art method with low space complexity and high accuracy [14]. In this section,

we first briefly review the space-saving algorithm, and then show how to extend it to find

discriminative items.

4.1.1 The Space-Saving Algorithm

Given a stream S whose current size is n, and a minimum support φn, the space-saving

algorithm is a counter-based deterministic algorithm for finding items in S whose frequencies

are no less than φn. The algorithm maintains a summary of the stream consisting of at

most m = 1
φ

counters. The i-th counter (ei, c(ei), ε(ei)) (1 ≤ i ≤ m) records an item ei

being counted, the estimated count c(ei) of the frequency of ei, and the estimation error

ε(ei). The m counters are sorted in the descending order of the estimated frequency c.

At the beginning, the counters are not associated with any item. When an item e is

observed, if it is monitored in one of the m counters, the corresponding estimated count is

incremented by 1. Otherwise, if there is a counter not associated with any item yet, then

we assign the counter to e and initialize c(e) = 1 and ε(e) = 0. If all counters are associated

13

CHAPTER 4. METHODS 14

with some items other than e, then e replaces em, which is the one with the least estimated

frequency min, and sets em = e, c(em) = min + 1, and ε(em) = min.

Any item with a frequency exceeding φn must exist in the summary. Therefore, by

reporting all items in the summary, the algorithm achieves 100% recall. For any item ei

(1 ≤ i ≤ m) in the summary, its exact frequency f(ei) is bounded in the range [c(ei) −
εi(ei), c(ei)]. Thus, if c(ei) − ε(ei) ≥ φn, ei is guaranteed to have a frequency no less than

the minimum support. By reporting the set of such guaranteed items, the algorithm achieves

100% precision.

Example 2 (The space-saving algorithm [45]). Assuming φ = 0.3, let us find frequent items

in S1 in Table 2.1 with minimum frequency 10 × φ = 3. We set up 1
φ

= 3 counters.

After the first item y in the stream is read, counter C1 = (y, 1, 0) is set. After the first 6

items are read, i.e., ywyxxx, the content of the counters are C1 = (y, 2, 0), C2 = (w, 1, 0),

and C3 = (x, 3, 0).

When we read the first z from S1, C2 is updated to C2 = (z, 2, 1). As the stream

goes on, we sequentially update the counters as follows, C2 = (z, 3, 1), C3 = (x, 4, 0), and

C2 = (z, 4, 1) .

Finally, the content of the three counters are C1 = (y, 2, 0), C2 = (z, 4, 1), and C3 =

(x, 4, 0). By checking the value of c − ε in each counter against the minimum frequency

support, x and z are reported as frequent items.

The space-saving algorithm requires space O(1
φ
). With a simple heap implementation

of the stream summary, the algorithm processes every item in time O(log 1
φ
), and this can

be improved to O(1) by the Stream-Summary data structure [45].

4.1.2 Finding Discriminative Items

To find discriminative items in S1 against S2, we can run the space-saving algorithms on S1

and S2 separately and combine the information in the two summaries to discover discrimi-

native items.

To be specific, we run the space-saving algorithm on S1 to find items with frequency

in S1 no less than φθn. We also run the space-saving algorithm on S2 to find items with

frequency in S2 no less than φn. Let Ei (i = 1, 2) denote the set of items stored in the

summary of the space-saving algorithm running on stream Si.

CHAPTER 4. METHODS 15

If an item e is in the summary of Si (i = 1, 2), we denote the counter of e by (e, ci(e), εi(e)).

By the property of the space-saving algorithm, we have ci(e)− εi(e) ≤ fi(e) ≤ ci(e). Utiliz-

ing these upper and lower bounds of the frequencies of items in the summaries, we obtain

the lower bound of the ratio.

Considering an item e ∈ E1 such that c1(e) − ε1(e) ≥ φn, e is guaranteed to be a

discriminative item if it is in one of the following two cases.

Case 1 e /∈ E2. Because e is not in the summary of S2, so f2(e) < φn. We calculate the

ratio R(e) = f1(e)
f2(e) ≥ φθn

φn
= θ.

Case 2 e ∈ E2 and c1(e)−ε1(e)
c2(e) ≥ θ. Because f2(e) ≤ c2(e), so R(e) = f1(e)

f2(e) ≥
c1(e)−ε1(e)

c2(e)
≥ θ.

Clearly, by reporting the items in the above two cases, we achieve a precision of 100%.

However, the recall of the above algorithm highly depends on the accuracy of the frequency

bounds of the items. In general, in addition to the space-saving algorithm, any algorithm

for finding frequent items can be used here as long as the algorithm can provide a bounded

estimation of the frequencies of frequent items.

Example 3 (The frequent item based method). Consider the running example in Table 2.1.

Let θ = 3 and φ = 0.1. We run the space-saving algorithm on S1 to find items with minimum

frequency 10φθ = 3. As shown in Example 2, x and z are frequent items in S1 whose

frequency lower bounds are 4 and 3, respectively. Similarly, we also find frequent items in

S2 with minimum frequency 10φ = 1. By checking x and z with respect to the two cases, we

report that x and z are discriminative items.

4.1.3 Complexity Analysis

Running the space-saving algorithms on S1 and S2 requires O(1
φθ

) and O(1
φ
) space, re-

spectively. Hence, the frequent item based algorithm requires O(1
φθ

+ 1
φ
) = O(1

φ
) space.

Importantly, the space complexity of the frequent item based method is independent from

θ.

To update the summaries when a new item arrives, using a heap implementation, the

algorithm spends O(log 1
φθ

+ log 1
φ
) = O(log 1

φ
) time, while it can achieve O(1) update time

using the Stream-Summary data structure [45].

In many applications, we favor highly discriminative items and thus a large value of θ.

Theorem 2 indicates that the number of discriminative items decreases as θ increases. There

CHAPTER 4. METHODS 16

is potential to lower the space complexity when the value of θ is large. To take advantage of

a large value of θ, we develop a hash-based method in the next section using space O(log |Σ|
φθ

)

which is better than the frequent item based method in space cost.

4.2 A Hash-Based Method

In the frequent item based method, frequent items in S1 and S2 are computed independently.

The frequent items in the two streams are compared only after the frequent item finding

algorithm is completed on both streams. This late interaction of the two mining processes

on the two streams may lead to counting many non-discriminative items. If an item x is

frequent in S1 and also very frequent in S2, x will be counted in both streams. Can we try to

let the two mining processes on the two streams communicate early so that the information

that x is very frequent in S2 can help to save the effort of counting x in S1 and thus S2?

This is the motivation of the hash-based method.

4.2.1 Ideas

The following lemma helps us to identify a subset of items which may contain discriminative

items.

Lemma 1 (Discriminative sets). Let T ⊆ Σ be a set of items. If

∑

e∈T

f1(e) ≥ θ
∑

e∈T

f2(e), (4.1)

then T contains at least one item e such that f1(e) ≥ θf2(e).

Proof. We prove by contradiction. Suppose for every item e ∈ T , f1(e) < θf2(e). Then,
∑

e∈T f1(e) <
∑

e∈T θf2(e) < θ
∑

e∈T f2(e), resulting in a contradiction.

For an item e, it may not be a discriminative item even if f1(e) ≥ θf2(e), since we

constrain f1(e) ≥ θφn. However, Lemma 1 provides a necessary condition for finding dis-

criminative items.

To utilize Lemma 1, once a set T of items is found to satisfy Formula (4.1), we recursively

partition T into subsets until there is only one item e. Then, we check whether f1(e) ≥ θφn,

if so, e is identified to be a discriminative item. We develop a hierarchical hashing structure

to systematically manage the recursive partitioning.

CHAPTER 4. METHODS 17

Figure 4.1: An illustration of the hierarchical hashing.

4.2.2 Hierarchical Hashing

Figure 4.1 illustrates the structure of the hierarchical hashing. A uniform hashing function

with b ≪ |Σ| buckets on the alphabet Σ serves as the first level of the hierarchical hashing.

A bucket B will be selected to expand to the next level if it satisfies our expanding criteria,

which will be discussed in just a moment. Such a bucket is called a discriminative bucket.

For a discriminative bucket B, a different uniform hashing function is applied to the

items hashed in B to construct the second level hashing. Then, those sub-buckets of B

which are discriminative are recursively hashed into next level, forming the hierarchical

hashing structure. We note that all hashing functions are uniform and each has b buckets.

The number of distinct items hashed in every bucket is roughly equal. Thus, the hierarchical

hashing has at most logb |Σ| levels. On the logb |Σ|-th level, we directly put each item into

a separate bucket, so that no conflicts can happen. The number of buckets on the last level

may be slightly different from b.

A bucket B at a higher level is the ancestor of another bucket B′ at a lower level if

B ⊃ B′, that is, any item hashed into B′ is hashed into B first. If B and B′ are at two

adjacent levels, B is also called the parent of B′ and B′ is a child of B. We call a bucket a

leaf if it has no child. Please note that a leaf bucket may still have multiple items and may

be expanded at a later time of the stream.

Each bucket B is associated with two counters Ci(B) (i = 1, 2) recording the occurrences

of items from stream Si hashed into the bucket from the time B is created until it is expanded

into the next level child buckets. Therefore, the counters of a bucket are initialized to be

0 when the bucket is created, and are stopped being updated once the bucket is expanded.

CHAPTER 4. METHODS 18

For a leaf bucket B, we can bound the sum of the frequencies of all items in B as

Ci(B) ≤
∑

e∈B

fi(e) ≤ Ci(B) +
∑

B′∈Anc(B)

Ci(B
′),

where Anc(B) is the set of all ancestor buckets of B.

To process a new item from stream Si, the new item is hashed all the way down to

the currently lowest level of the hierarchical hashing into the corresponding bucket B. The

counter Ci(B) is incremented. We note again that the counters of the ancestor buckets of

B are not incremented. Only the bucket on the lowest level is updated.

Now, we present the expanding criteria that guides the hierarchical hashing to find

discriminative items.

Lemma 2 (Discriminative buckets). Given a bucket B, let Anc(B) be the set of ancestor

buckets of B. If

C1(B) ≥ θ(C2(B) +
∑

B′∈Anc(B)

C2(B
′)), (4.2)

then B contains at least one item e such that f1(e) ≥ θf2(e).

Proof. For all items e hashed into B,
∑

e∈B f1(e) ≥ C1(B) and
∑

e∈B f2(e) ≤ C2(B) +
∑

B′∈Anc(B) C2(B
′) due to the construction of the hierarchical hashing. Then,

∑

e∈B f1(e) ≥
θ
∑

e∈B f2(e). By Lemma 1, this lemma follows immediately.

Based on Lemma 2, we call a bucket B a discriminative bucket if B satisfies Formula (4.2)

and C1(B) ≥ θφn. The condition C1(B) ≥ θφn is to make sure that B is possible to contain

frequent item in S1.

A bucket which is used to be a discriminative bucket may be disqualified from Lemma 2

as the streams continue. Given a bucket B, if none of its child buckets is discriminative at

this moment, we delete all its child buckets and sum up their counters to B. In detail, let

Chi(B) denote the set of child buckets of B. The counter Ci(B) (i = 1, 2) of B is increased

by
∑

B′∈Chi(B) Ci(B
′). We note that the deleting procedure is always conducted bottom-up

from the lowest level.

At the end, for an item e at the logb |Σ|-th level discriminative bucket, if f1(e) ≥ θφn,

then, it is a discriminative item. By reporting all such items, the hash-based method has

100% precision.

CHAPTER 4. METHODS 19

B1,1 C1 0 1 1 2
{x, y} C2 1 1 1 1

B2,1 C1 1 1 1 2 3 3 3 3 4 4
{x} C2 0 0 0 0 0 0 0 0 0 0

B2,2 C1 0 0 0 0 0 0 0 0 0 0
{y} C2 0 1 1 2 3 3 3 3 4 4

B1,2 C1 0 0 1 1 1 1 1 1 1 2 3 3 3 4
{z, w} C2 0 1 1 1 2 2 3 3 3 3 3 4 4 5

Table 4.1: A running example of the hash-based method.

A bucket that does not satisfy Formula (4.2) is still possible to contain discriminative

items. To boost the recall, we adopt the common methedology of applying multiple inde-

pendent hierarchical hashings to process the streams. The number of hierarchical hashing

is determined empirically.

Example 4 (The hash-based method). Consider the running example in Table 2.1. Let

θ = 3, φ = 0.1, and b = 2. At level one of the hierarchical hashing, assume x and y are

hashed into bucket B1,1, and z and w are hashed into bucket B1,2. Table 4.1 shows the

sequential updates of the counters of each bucket in the item arriving order.

After we read the first x from S1, we detect that B1,1 is discriminative. So it is expanded

to buckets B2,1 and B2,2 at the second level, where x and y are hashed into B2,1 and B2,2,

respectively.

Finally, we find x to be a discriminative item since B2,1 satisfies Formula (4.2) and

C1(B2,1) is larger than the minimum frequency support 3. However, the hash-bashed method

does not report z as a discriminative item, because z is hashed into the same bucket with w

and unfortunately w is very frequent in S2. By a different hierarchical hashing, z might be

hashed together with x, then, it can be found as a discriminative item.

In summary, the hash-based method consists of three steps, hashing items, growing

hashing, and deleting buckets. Algorithm 1 presents the pseudo-code.

4.2.3 Complexity analysis

Since for a discriminative bucket B, C1(B) ≥ φθn, there are at most 1
φθ

discriminative

buckets at each level of the hierarchical hashing. So the number of buckets in a single

hashing structure is no more than b logb |Σ|
φθ

. Assume h hierarchical hashing structures are

CHAPTER 4. METHODS 20

Figure 4.2: An illustration of the hybrid method.

used concurrently. The hash-based method uses O(hb logb |Σ|
φθ

) space in the worst case. In

practice, the space is much smaller since the number of discriminative buckets is much less

than 1
φθ

.

To process an item in a single hierarchical hashing structure, the hashing procedure takes

time O(logb |Σ|). The deleting procedure spends at most O(b logb |Σ|) time from bottom up.

Therefore, the update time of the hash-based method is at most O(hb logb |Σ|). The hash-

based method also runs much faster in practice because the deleting procedure does not

happen often.

4.3 Hybrid Method

4.3.1 The Method

To discover the concealed discriminative items in a non-discriminative bucket B (i.e., a

bucket that does not satisfy Formula (4.2)), we need a more aggressive expanding criterion

to grow the hierarchical hashing to deal with non-discriminative buckets. Given a bucket,

the items hashed into this bucket can be viewed as the sub-streams of streams S1 and S2,

respectively. We build a space-saving summary on the sub-stream of S1 flowing through

B. Thus, by this hybrid structure, we can capture items in B which are frequent in S1.

Then, by expanding B, we have a good chance to discover discriminative items hidden in

the non-discriminative bucket. Figure 4.2 illustrates the idea.

To be concrete, for each leaf bucket B, the hybrid method maintains a space-saving

summary with k ≪ |Σ|
b

counters for items from S1 hashed into B. When B is selected to

be expanded to the next level in the hashing growing phase, the counter of an item e ∈ B

is forwarded to the corresponding child bucket of B where e is hashed into. Therefore,

CHAPTER 4. METHODS 21

the space-saving summaries are only kept in leaf buckets. Any intermediate bucket does

not keep such a summary. For an item e kept in the summary of S1, in addition to its

counter (e, c1(e), ε1(e)) of S1, we maintain another counter c2(e) to record the number of

occurrences of e in S2 once it is recorded by the summary of S1. By doing this, inequality

c1(e) − ε1(e) ≤ f1(e) ≤ c1(e) still holds.

Using the space-saving summary, we handle discriminative buckets in a slightly different

way from the process in the hash-based method. For a bucket B, according to the space-

saving algorithm introduced in Section 4.1.1, the k counters are initially filled with the

first k distinct items coming into B. In the hash-based method, a bucket B is expanded

immediately once it is found to be discriminative. However, the k counters of B already

record the top-k most frequent items in B. It is not necessary to expand B if the k counters

are not all occupied. Therefore, we delay expanding a discriminative bucket B until all k

counters are used. In the process of expanding a discriminative bucket, the existing counters

are simply forwarded to its child buckets.

To handle non-discriminative buckets, in the cases where all k counters of a bucket B are

used and B has not been found discriminative at the moment, we adopt a more aggressive

expanding criteria. When a new item comes in B and it is different from the k items in

the summary, let e be the item with the minimum estimated frequency in S1 among the k

items. We expand B to the next level if c1(e)−ε1(e) ≥ max{φθn, µ}. Here, µ is a controlling

parameter which is set to
√

θ empirically. The rationale behind this expanding criteria is

that the k items kept in the summary have high possibility to be discriminative items, as

they are frequent in S1. To utilize this advantage of frequent items in S1, we expand B to

the next level if all elements kept in the summary of B have frequency in S1 guaranteed to

satisfy minimum support in S1 required by discriminative items. However, at the beginning,

n is small so that we can expect too many buckets will be expanded. So we use µ to control

the number of expanding buckets in the early stage of HY algorithm. As n becomes large,

φθn will dominate µ.

Finally, to report discriminative items, we check every leaf bucket B in the hierarchical

hashing structure. For each counter (e, c1(e), ε(e)) kept in B, we report e as a discriminative

item if c1(e)−ε(e)
c2(e) ≥ θ. Although f1(e) ≥ c1(e)−ε(e), we cannot guarantee that f2(e) ≤ c2(e),

thus R(e) ≥ θ is not assured. However, the recall is improved. Essentially, the hybrid

method trades precision for recall. Our experiments in Chapter 5 verify that this trade-off

is beneficial.

CHAPTER 4. METHODS 22

In the same way as the hash-based method, multiple hierarchical hashing structures can

be applied.

Example 5 (The hybrid method). For the running example in Table 2.1, the hash-based

method shown in Example 4 cannot find z as a discriminate item, since z is concealed by

the effect of w. To tackle this problem, the hybrid method runs a space saving algorithm on

S1 with 1 counter. Then, it will find that z is frequent in S1 and expand bucket B1,2. At the

end, the space-saving counter of z is (z, 4, 1) and the additional counter of z on stream S2

is c2(z) = 1. Thus, z is found to be discriminative.

4.3.2 Complexity Analysis

In a single hierarchical hashing, to store the space-saving summaries, the hybrid method

requires at most O(bk
φθ

) space more than the hash-based method, since there are no more than

O(b
φθ

) leaf buckets. So the space complexity of the hybrid method is O(hb logb |Σ|
φθ

)+O(hbk
φθ

) =

O(hb(logb |Σ|+k)
φθ

), which is the same as the hash-based method. However, to achieve the same

recall, the hybrid method reduces the number of hierarchical hashing needed. Therefore, the

hybrid method is expected to outperform the hash-based method in terms of space usage.

The hybrid method needs to update both the hierarchical hashing and the space-saving

summaries. With a heap implementation for the space-saving summaries, its time com-

plexity is O(h(b logb |Σ| + log k)), and O(hb logb |Σ|) with the Stream-Summary data struc-

ture [45].

CHAPTER 4. METHODS 23

Algorithm 1 The hash-based method.

Input: two streams S1 and S2; parameters φ and θ;
Output: the set E of discriminative items;
Description:

1: construct h independent hierarchical hashing structures and initialize their first level
buckets;

2: for all item e ∈ Si (i = 1, 2) do

3: for all hierarchical hashing H do

4: /* hashing items */
let B be the bucket on the first level of H where e is hashed into;

5: while B is not a leaf bucket do

6: assume e is hashed into the child bucket B′ of B;
7: B = B′;
8: end while

9: Ci(B) = Ci(B) + 1;
/* growing hashing */

10: if B is discriminative (Lemma 2) and B is not on the logb |Σ|-th level then

11: apply a uniform hash with b buckets on the items of B to construct the next level
hashing;

12: end if

/* deleting buckets */
13: if e is from stream S2 then

14: let Bp be the parent of B;
15: while non of Bp’s child bucket is discriminative do

16: Ci(Bp) =
∑

Bc∈Chi(Bp) Ci(Bc);
17: delete all child buckets of Bp;
18: assign Bp the parent of Bp;
19: end while

20: end if

21: end for

22: end for

23: return all items in the discriminative buckets on the logb |Σ| level;

Chapter 5

Empirical Studies

We conducted experiments on real and synthetic data sets to evaluate the accuracy and effi-

ciency of our three methods, the frequent item based method (FE), the hash-based method

(HA), and the hybrid method (HY). The space-saving algorithm used in FE and HY was

implemented using heap rather than the Stream-Summary structure. The minimum thresh-

old is φ = 10−6 and does not change in the experiments. For HA and HY, the hash fanout

b is set to 32 all the time, and the number of counters used in each bucket in HY is k = 5.

The hash functions we use are pairwisely independent implemented by the method stated

in [11].

All methods were implemented in C++ and compiled by Microsoft Visual Studio 2008.

Experiments were conducted on a desktop computer with an Intel Core 2 Duo E8400 3GHz

CPU and 4GB main memory running 64bit Microsoft Windows XP.

5.1 Synthetic Data

We generated two streams in Zipfian distribution with skewness factor s varying from 0.8

to 2. The size of each stream is 1, 000, 000 drawn from the alphabet Σ whose size is 220 ≈
1, 000, 000. We also ensure that there are a set of frequent items in S1 also being frequent

in S2, so that the set of discriminative items is not trivially equivalent to the set of frequent

items in S1. To do this, we select items with frequencies over 100 from S1 and randomly

choose 25% of them so that their frequencies in S2 also exceeding 100. By default, the

ratio parameter θ = 500, the skewness factor s = 1, and the number of hashes are 35 and

18 for HA and HY, respectively, which are selected from our experiment results to balance

24

CHAPTER 5. EMPIRICAL STUDIES 25

accuracy and efficiency.

We conduct experiments to test the efficiency and accuracy of our three methods with

respect to the ratio parameter θ, the skewness factor s, the number of hashes h, the number

of distinct items in the two streams, and the value of n2

n1
.

5.1.1 Efficiency

Figure 5.1 compares the space usage in the three methods. FE uses the most space among

the three. It is only dependent from the minimum threshold φ and invariant to the ratio

parameter θ, the skewness factor s, the number of distinct items, and n2

n1
.

HA uses only about 1
5 space of FE. Although the space complexity of HA is O(hb logb |Σ|

φθ
),

Figure 5.1(a) shows that its space usage is not sensitive to θ, because the number of dis-

criminative buckets is far less than 1
φθ

. We also see that the space usage of HA is small on

data sets of large skewness factors, where the number of discriminative items is small. The

space usage of HA increases linearly with respect to the number of hierarchical hashing. It

also increases with respect to the number of distinct items, since more distinct items would

expand more buckets. But it decreases when n2

n1
increases, since the number of expanded

buckets decreases.

HY is the most space-efficient method which outperforms FE by tens of times. HY

also beats HA by several times. Figure 5.1(c) shows that even using the same number of

hierarchical hashing, HY uses less space than HA. Because expanding a discriminative bucket

in HY is delayed until all k counters are filled, HY may have less expanded discriminative

buckets than HA thus reduces space usage. The space usage of HY is not very sensitive to θ

and s, while it also has a linear increasing trend with respect to the number of hierarchical

hashing. HY has similar trends as HA with respect to the number of distinct items and n2

n1
,

since they share the hierarchical hashing structure.

The runtime is plotted in Figure 5.2. FE is the fastest method which can process more

than 6, 000 items per millisecond. It can even handle more than 60, 000 items on data sets

with skewness factor s = 2. In Figure 5.2(b), we see that FE runs faster in more skewed

data sets. This is due to the heap implementation of the space-saving algorithm. We can

expect a stable performance with the Stream-Summary implementation. FE also runs faster

when the number of distinct items is small, since in this case the summary does not change

often.

HA and HY can support around 1, 000 updates per millisecond. Figure 5.2(a) shows

CHAPTER 5. EMPIRICAL STUDIES 26

that HY is slightly faster than HA, since HY uses less hierarchical hashing than HA. When

using the same number of hashing, Figure 5.2(c) shows that HY is slower than HA, as HY

needs to maintain the space-saving summary.

5.1.2 Accuracy

Figure 5.3 compares the precision of the three methods. As stated in Sections 4.1 and 4.2,

FE and HA are guaranteed to have 100% precision. We see that the precision of HY is also

close to 100%, and there is no clear trend related to the number of distinct items and n2

n1
.

In terms of recall, Figure 5.4 shows that FE has a recall of almost 100%. The recalls of

HA and HY also increase to 100% as the skewness factor increases or using more hierarchical

hashing. HY has a better recall than HA in most cases, even when HY uses only a half num-

ber of hierarchical hashing. In Figure 5.4(a), the recall of HA increases slowly as θ increases,

however, the recall of HY decreases. When θ is large, there are less expanded buckets since

the expanding criteria of non-discriminative buckets is controlled by the parameter µ =
√

θ.

Figure 5.4(e) shows that the recall of HA decreases dramatically as n2

n1
increases over

1, since the number of expanded buckets decreases a lot because items from S2 flood the

buckets and make them difficult to expand. However, as a remedy, when n2

n1
is larger than

1, we could duplicate every item from S1
n2

n1
times it is observed it so that S1 has similar

size as S2. Then, we also scale θ to n2

n1
θ correspondingly. So, the set of discriminative does

not change while HA can work well on the duplicated streams.

5.2 Real Data

We use two real data sets, namely the Wikipedia data set and the 20 Newsgroups data set,

obtained from http://en.wikipedia.org/ and http://people.csail.mit.edu/jrennie/

20Newsgroups/, respectively. In the Wikipedia data set, we obtain 5, 000 articles on the

topic of mathematics and 4, 000 articles on the topic of law. Articles on the same topic are

merged into one stream.

The 20 Newsgroups data set consists of 18, 846 newsgroup documents, partitioned evenly

across 20 different newsgroups, each corresponding to a different topic shown in Table 5.1.

We divide the 20 newsgroups into to 2 partitions as shown in Table 5.1, such that the topics

in one partition are closely related to each other. Articles in the same partition then are

merged into a single stream. To test whether algorithms are sensitive to burst, we use two

CHAPTER 5. EMPIRICAL STUDIES 27

data set partition P1 partition P2

Wikipedia mathematics law

Newsgroups

comp.graphics alt.atheism
comp.sys.ibm.pc.hardware rec.autos
comp.sys.mac.hardware rec.motorcycles
comp.os.ms-windows.misc rec.sport.baseball
comp.windows.x rec.sport.hockey
misc.forsale soc.religion.christian
sci.crypt talk.politics.guns
sci.electronics talk.politics.mideast
sci.med talk.politics.misc
sci.space talk.religion.misc

Table 5.1: Topics in real data sets.

Wikipedia Newsgroups

P1 P2 P1 P2

3,676,073 3,851,345 2,637,816 2,914,446

Table 5.2: Size of the real data sets in words

mathematics against law law against mathematics

words ratio words ratio

polynomial 855.55 constitution 1010.25

algebra 761.14 jurisdiction 894.75

algebraic 703.65 justice 480.38

geometry 679.17 parliament 448.58

topology 645.50 defendant 442.86

Table 5.3: Top-5 most discriminative words in the Wikipedia data set

ways to merge articles: 1) merge articles randomly; 2) merge articles according to publishing

time order. We use “ 20 Newsgroup (random)” to refer to data streams generated by first

way, and “20 Newsgroup (ordered)” to refere to data streams generated by second way.

For all articles, we only conduct stemming but do not filter out stopping words. Table 5.2

lists the size of the two partitions of each data set.

Table 5.3 lists the top-5 high ratio words in the Wikipedia data set, which match our

common intuition. Figures 5.5 and 5.6 show the ratio distribution of all terms on the two

real data sets in log-log graph. We observe a power law distribution of the ratio. The sharp

tails are caused by the minimum threshold φ.

Tables 5.4, 5.5 and 5.6 show the space and time usage, the precision, and the recall

CHAPTER 5. EMPIRICAL STUDIES 28

of the three methods on the two real data sets. We fix the number of hierarchical hashing

used in HA and HY to 30 and 2, respectively. The trends are consistent with those on the

synthetic data sets.

FE always has a precision and a recall of 100% on both the Wikipedia data set and the

20 Newsgroup (random), and the fastest update time per item. However, the space usage

in FE is 2 orders of magnitude larger than the other two methods. HA has a low recall on

the real data sets. HY can achieve the comparable precision and recall to FE, at the same

time, use much smaller space.

In bursting data (20 Newsgroup (ordered)), in some cases FE may not achieve a recall

of 100%. This is because bursts of data streams will result in a relatively low precision

of frequency estimation for some frequent items by Space Saving algorithm. HA are rela-

tively sensitive to bursts since bursts from S2 will reduce the number of expanding buckets.

However, bursts have little impact on HY algorithm.

CHAPTER 5. EMPIRICAL STUDIES 29

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 200 300 400 500 600 700 800 900 1000

S
pa

ce
(K

B
)

FE HA HY

(a) Ratio θ.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 0.8 1 1.2 1.4 1.6 1.8 2

S
pa

ce
(K

B
)

FE HA HY

(b) Skewness factor s.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

 10 20 30 40 50 60

S
pa

ce
(K

B
)

FE HA HY

(c) # of hashes h.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000

213 214 215 216 217 218

S
pa

ce
(K

B
)

FE HA HY

(d) # of distinct items.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 0.2
 0.4

 0.6
 0.8

 1 2 4 6 8 10

S
pa

ce
(K

B
)

FE HA HY

(e) n2

n1

.

Figure 5.1: Space on synthetic data sets.

CHAPTER 5. EMPIRICAL STUDIES 30

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 200 300 400 500 600 700 800 900 1000

U
pd

at
es

/m
s

FE HA HY

(a) Ratio θ.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.8 1 1.2 1.4 1.6 1.8 2

U
pd

at
es

/m
s

FE HA HY

(b) Skewness factor s.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 20 30 40 50 60

U
pd

at
e/

m
s

FE HA HY

(c) # of hashes h.

 0

 2000

 4000

 6000

 8000

 10000

 12000

213 214 215 216 217 218

U
pd

at
es

/m
s

FE HA HY

(d) # of distinct items.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 0.2
 0.4

 0.6
 0.8

 1 2 4 6 8 10

U
pd

at
es

/m
s

FE HA HY

(e) n2

n1

.

Figure 5.2: Number of updates per ms on synthetic data sets.

CHAPTER 5. EMPIRICAL STUDIES 31

 90

 92

 94

 96

 98

 100

 200 300 400 500 600 700 800 900 1000

P
re

ci
si

on
(%

)

FE HA HY

(a) Ratio θ.

 90

 92

 94

 96

 98

 100

 0.8 1 1.2 1.4 1.6 1.8 2

P
re

ci
si

on
(%

)

FE HA HY

(b) Skewness factor s.

 90

 92

 94

 96

 98

 100

 10 20 30 40 50 60

P
re

ci
si

on
(%

)

FE HA HY

(c) # of hashes h.

 60
 65
 70
 75
 80
 85
 90
 95

 100

213 214 215 216 217 218

P
re

ci
si

on
(%

)
FE HA HY

(d) # of distinct items.

 90

 92

 94

 96

 98

 100

 0.2
 0.4

 0.6
 0.8

 1 2 4 6 8 10

P
re

ci
si

on
(%

)

FE HA HY

(e) n2

n1

.

Figure 5.3: Precision on synthetic data sets.

CHAPTER 5. EMPIRICAL STUDIES 32

 60
 65
 70
 75
 80
 85
 90
 95

 100

 200 300 400 500 600 700 800 900 1000

R
ec

al
l(%

)

FE HA HY

(a) Ratio θ.

 60
 65
 70
 75
 80
 85
 90
 95

 100

 0.8 1 1.2 1.4 1.6 1.8 2

R
ec

al
l(%

)

FE HA HY

(b) Skewness factor s.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60

R
ec

al
l(%

)

FE HA HY

(c) # of hashes h.

 60
 65
 70
 75
 80
 85
 90
 95

 100

213 214 215 216 217 218

R
ec

al
l(%

)
FE HA HY

(d) # of distinct items.

 0

 20

 40

 60

 80

 100

 0.2
 0.4

 0.6
 0.8

 1 2 4 6 8 10

R
ec

al
l(%

)

FE HA HY

(e) n2

n1

.

Figure 5.4: Recall on synthetic data sets.

CHAPTER 5. EMPIRICAL STUDIES 33

10-3

10-2

10-1

100

101

102

103

 1 10 100 1000 10000 100000

ra
tio

(a) S1 = P1 and S2 = P2.

10-3

10-2

10-1

100

101

102

103

 1 10 100 1000 10000 100000

ra
tio

(b) S1 = P2 and S2 = P1.

Figure 5.5: The distribution of ratio on the Wikipedia data set.

10-3

10-2

10-1

100

101

102

103

 1 10 100 1000 10000 100000 1e+06

ra
tio

(a) S1 = P1 and S2 = P2.

10-3

10-2

10-1

100

101

102

103

 1 10 100 1000 10000 100000

ra
tio

(b) S1 = P2 and S2 = P1.

Figure 5.6: The distribution of ratio on the Newsgroups data set.

CHAPTER 5. EMPIRICAL STUDIES 34

(a) S1 = P1 and S2 = P2

θ space(MB) updates/ms precision(%) recall(%)

100
FE 34.68 20967.74 100.00 100.00
HA 0.97 1068.17 100.00 56.64
HY 0.29 5803.71 100.00 89.51

300
FE 34.44 20967.74 100.00 100.00
HA 0.96 1063.50 100.00 61.11
HY 0.22 5803.71 100.00 83.33

(b) S1 = P2 and S2 = P1

θ space(MB) updates/ms precision(%) recall(%)

100
FE 34.68 20073.11 100.00 100.00
HA 1.72 1082.61 100.00 59.29
HY 0.50 5668.24 97.87 81.42

300
FE 34.44 19301.07 100.00 100.00
HA 1.71 1087.46 100.00 69.23
HY 0.51 5732.99 100.00 84.62

Table 5.4: Results on the Wikipedia data set.

(a) S1 = P1 and S2 = P2

θ space(MB) updates/ms precision(%) recall(%)

100
FE 34.68 17795.71 100.00 100.00
HA 3.24 981.49 100.00 59.57
HY 0.65 5470.21 91.67 93.62

200
FE 34.50 16927.63 100.00 100.00
HA 3.23 973.57 100.00 68.75
HY 0.36 5552.26 93.75 93.75

(b) S1 = P2 and S2 = P1

θ space(MB) updates/ms precision(%) recall(%)

100
FE 34.68 16876.18 100.00 100.00
HA 1.12 984.27 100.00 33.33
HY 0.48 5228.12 82.35 93.33

200
FE 34.50 16140.30 100.00 100.00
HA 1.11 989.71 100.00 42.86
HY 0.30 5464.82 77.78 100.00

Table 5.5: Results on the Newsgroups data set (random).

CHAPTER 5. EMPIRICAL STUDIES 35

(a) S1 = P1 and S2 = P2

θ space(MB) updates/ms precision(%) recall(%)

100
FE 34.68 17738.86 100.00 100.00
HA 0.98 1045.23 100.00 14.89
HY 0.53 5464.82 95.74 95.74

200
FE 34.50 16927.63 100.00 87.50
HA 0.98 1045.23 100.00 25.00
HY 0.31 5464.82 93.75 93.75

(b) S1 = P2 and S2 = P1

θ space(MB) updates/ms precision(%) recall(%)

100
FE 34.68 16927.63 100.00 100.00
HA 2.24 939.95 100 70.00
HY 0.45 5552.26 92.86 86.67

200
FE 34.50 16187.35 100.00 100.00
HA 2.25 937.57 100.00 85.71
HY 0.38 5636.81 100.00 100.00

Table 5.6: Results on the Newsgroups data set (ordered).

Chapter 6

Discussions and Conclusions

Motivated by a class of Web mining applications including tagging Web objects, summariz-

ing web documents, and analyzing search queries, we tackle the problem of finding discrim-

inative items between streams, which are frequent in one stream but infrequent in another.

In this chapter, we first summarize the thesis and then discuss future work.

6.1 Summary of the Thesis

First, we study the discriminative items mining problem. An item is discriminative if it is

frequent in one stream while relatively infrequent in another. We formulate this problem

as the ratio of frequency rates of an item in two streams. From minimum support point

of view, we introduce minimum threshold of frequency rate in S1 so that insignificant and

less interesting items are excluded. Under this definition, we show that at least space linear

to size of the alphabet is required for any exact online algorithm in the worst case. To cut

down space of use, we develop three heuristic algorithms which in practice can achieve good

performance in terms of precision, recall and space.

Second, we evaluate our algorithms in empirical setting. We conduct extensive exper-

iment on both synthetic data following Zipf distribution and real data extracting from 20

newsgroup dataset and Wikipedia. The experimental results on these dataset are encour-

aging.

36

CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 37

6.2 Future Work

Finding discriminative items from one stream against multiple Streams. In this thesis, we

only consider two streams. However, in practice, we may have more than two streams, say

k > 2 streams S1, S2, . . . , Sk, and we are interested in discriminative items whose frequency is

large in stream S1 but relatively small in all other streams. Straightforwardly, we can devise

algorithms proposed in this thesis to all pairs (S1, Si) (i 6= 1) of streams and then assemble

discriminative items found in each pair, for example, outputting items discriminative in all

pairs. However, this naive extension is not efficient since it has to maintain k − 1 running

copies of algorithms for S1 against others. Also, note that we can not simply combine

streams S2, . . . , Sk together as one stream S′ and then use algorithms presented in this

thesis on S1 and S′ to solve this problem, because an item x is discriminative in S1 against

S′ may not be a discriminative item in S1 against all other streams. For example, suppose

x has comparable frequencies in S1 and S2 so that x is not a discriminative item in S1

against S2, while it vanishes in other streams so that its frequency is small enough in S′

to make it become a discriminative item in S1 against S′. This case indicates the problem

of finding discriminative items from one stream against multiple streams is far from trivial.

As a future direction, we would like to explore efficient algorithms and data structures on

one stream against multiple streams problem.

Finding top-k discriminative items. Discovering all discriminative items given threshold

θ is meaningful, but sometimes is unnecessary. For example, users may be only interested

in top-k discriminative items in tag streams. Moreover, although we know that the number

of discriminative items is at most 1
θφ

, we can not predict the number of discriminative items

exactly. In some cases, for example, when the threshold θ is small, there are too many

discriminative items, while in some cases when θ is large, there are too few discriminative

items, even none. In these cases, instead of finding all discriminative items, outputting top-k

discriminative items is more suitable. Also, to specify how many items should be returned

(the k value) is easier than to set up an appropriate threshold θ for users without knowledge

of the domain and the streams in question.

Bibliography

[1] Morgan Kaufmann, 2002.

[2] Machine Learning, Proceedings of the Twenty-Third International Conference (ICML
2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, volume 148 of ACM Inter-
national Conference Proceeding Series. ACM, 2006.

[3] Computer Science - Theory and Applications, Third International Computer Science
Symposium in Russia, CSR 2008, Moscow, Russia, June 7-12, 2008, Proceedings, vol-
ume 5010 of Lecture Notes in Computer Science. Springer, 2008.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In Proceedings of the 28th Annual ACM Symposium on Theory
of Computing (STOC’96), pages 20–29, 1996.

[5] Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over
sliding windows. In Proceedings of 23th ACM SIGMOD Principles of Database Systems
(PODS’04), pages 286–296, 2004.

[6] James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. Fast algorithms for
mining emerging patterns. In Proceedings of 6th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD’02), pages 39–50, 2002.

[7] David M. Blei and John D. Lafferty. Dynamic topic models. In Proceedings of the 23rd
International Conference (ICML’06) [2], pages 113–120.

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[9] Robert S. Boyer and J. Strother Moore. Mjrty: A fast majority vote algorithm. In
Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.

[10] Giuseppe Carenini, Raymond T. Ng, and Xiaodong Zhou. Summarizing email con-
versations with clue words. In Proceedings of 16th International World Wide Web
Conference (WWW’07), pages 91–100, 2007.

38

BIBLIOGRAPHY 39

[11] Larry Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In Proceedings of the 9th Annual ACM Symposium on Theory of Computing
(STOC’77), pages 106–112, 1977.

[12] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Proceedings of 29th International Colloquium on Automata, Languages and
Programming (ICALP’02), pages 693–703, 2002.

[13] Chun-Jung Chu, Vincent S. Tseng, and Tyne Liang. Efficient mining of temporal
emerging itemsets from data streams. Expert Systems with Applications, 36(1):885–
893, 2009.

[14] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams.
Proceedings of the VLDB Endowment (PVLDB’08), 1(2):1530–1541, 2008.

[15] Graham Cormode and Marios Hadjieleftheriou. Finding the frequent items in streams
of data. Communications of the ACM, 52(10):97–105, 2009.

[16] Graham Cormode and S. Muthukrishnan. What’s new: Finding significant differences
in network data streams. In Proceedings of 23rd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM’04), 2004.

[17] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

[18] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows (extended abstract). In Proceedings of 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 635–644, 2002.

[19] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of
internet packet streams with limited space. In Proceedings of 10th European Symposium
on Algorithms (ESA’02), pages 348–360, 2002.

[20] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns: Discovering trends
and differences. In Proceedings of 5th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (SIGKDD’99), pages 43–52, 1999.

[21] Guozhu Dong, Xiuzhen Zhang, Limsoon Wong, and Jinyan Li. Caep: Classification
by aggregating emerging patterns. In Proceedings of 2nd International Conference on
Discovery Science (DS’99), pages 30–42, 1999.

[22] Micah Dubinko, Ravi Kumar, Joseph Magnani, Jasmine Novak, Prabhakar Raghavan,
and Andrew Tomkins. Visualizing tags over time. In Proceedings of 15th International
World Wide Web Conference (WWW’06), pages 193–202, 2006.

[23] Hongjian Fan and Kotagiri Ramamohanarao. An efficient single-scan algorithm for
mining essential jumping emerging patterns for classification. In Proceedings of 6th

BIBLIOGRAPHY 40

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’02), pages
456–462, 2002.

[24] Michael J. Fischer and Steven L. Salzberg. Finding a majority among n votes. In
Journal of Algorithms, volume 3, pages 376–379, 1982.

[25] Sumit Ganguly. Lower bounds on frequency estimation of data streams. In Proceedings
of 3rd International Computer Science Symposium in Russia (CSR’08) [3], pages 204–
215.

[26] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss. Surfing
wavelets on streams: One-pass summaries for approximate aggregate queries. In Pro-
ceedings of 27th International Conference on Very Large Data Bases (VLDB’01), pages
79–88, 2001.

[27] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile
summaries. In Proceedings of the 2001 ACM SIGMOD international conference on
Management of data (SIGMOD’01), pages 58–66, 2001.

[28] Harry Halpin, Valentin Robu, and Hana Shepherd. The complex dynamics of collab-
orative tagging. In Proceedings of 16th International World Wide Web Conference
(WWW’07), pages 211–220, 2007.

[29] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data (SIGMOD’00), pages 1–12, 2000.

[30] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm
for finding frequent elements in streams and bags. ACM Transaction of Database
Systems, 28:51–55, 2003.

[31] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey. SIGKDD
Explorations, 2(1):1–15, 2000.

[32] Byron Y.-L. Kuo, Thomas Hentrich, Benjamin M. Good, and Mark D. Wilkinson. Tag
clouds for summarizing web search results. In Proceedings of 16th International World
Wide Web Conference (WWW’07), pages 1203–1204, 2007.

[33] Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for
finding frequent items over sliding windows. In Proceedings of 25th ACM SIGMOD
Principles of Database Systems (PODS’06), pages 290–297, 2006.

[34] Jinyan Li, Guozhu Dong, and Kotagiri Ramamohanarao. Making use of the most
expressive jumping emerging patterns for classification. Knowledge and Information
Systems, 3(2):131–145, 2001.

BIBLIOGRAPHY 41

[35] Jinyan Li, Guozhu Dong, Kotagiri Ramamohanarao, and Limsoon Wong. Deeps: A new
instance-based lazy discovery and classification system. Machine Learning, 54(2):99–
124, 2004.

[36] Jinyan Li, Huiqing Liu, James R. Downing, Allen Eng-Juh Yeoh, and Limsoon Wong.
Simple rules underlying gene expression profiles of more than six subtypes of acute
lymphoblastic leukemia (all) patients. Bioinformatics, 19(1):71–78, 2003.

[37] Jinyan Li, Kotagiri Ramamohanarao, and Guozhu Dong. Combining the strength of
pattern frequency and distance for classification. In Proceedings of 5th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’01), pages 455–466,
2001.

[38] Jinyan Li and Limsoon Wong. Geography of differences between two classes of data.
In Proceedings of 6th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD’02), pages 325–337, 2002.

[39] Jinyan Li and Limsoon Wong. Identifying good diagnostic gene groups from gene
expression profiles using the concept of emerging patterns. Bioinformatics, 18(10):1406–
1407, 2002.

[40] Liangda Li, Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu. Enhancing diver-
sity, coverage and balance for summarization through structure learning. In Proceedings
of 18th International World Wide Web Conference (WWW’09), pages 71–80, 2009.

[41] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Data-
Centric Systems and Applications. Springer, 2007.

[42] Dong Liu, Xian-Sheng Hua, Linjun Yang, Meng Wang, and Hong-Jiang Zhang. Tag
ranking. In Proceedings of 18th International World Wide Web Conference (WWW’09),
pages 351–360, 2009.

[43] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. In Proceedings of 28th International Conference on Very Large Data Bases
(VLDB’02) [1], pages 346–357.

[44] Benjamin Markines, Ciro Cattuto, Filippo Menczer, Dominik Benz, Andreas Hotho,
and Gerd Stumme. Evaluating similarity measures for emergent semantics of social
tagging. In Proceedings of 18th International World Wide Web Conference (WWW’09),
pages 641–650, 2009.

[45] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proceedings of 10th International
Conference on Database Theory (ICDT’05), pages 398–412, 2005.

[46] S. Muthukrishnan. Data streams: algorithms and applications. Now Publishers Inc.,
2005.

BIBLIOGRAPHY 42

[47] Shu Pingda and Chen Huahui. A new method to find top k items in data streams at
arbitrary time granularities. In Proceedings of 2008 International Conference on Com-
puter Science and Software Engineering (CSSE’08), volume 4, pages 267–270, 2008.

[48] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[49] Shilad Sen, Jesse Vig, and John Riedl. Tagommenders: connecting users to items
through tags. In Proceedings of 18th International World Wide Web Conference
(WWW’09), pages 671–680, 2009.

[50] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative association rules
in large relational tables. In Proceedings of the 1996 ACM SIGMOD international
conference on Management of data (SIGMOD’96), pages 1–12, 1996.

[51] Mark Steyvers and Tom Griffiths. Probabilistic Topic Models. Lawrence Erlbaum
Associates, 2007.

[52] Vladimir Vapnik. Statistical Learning Theory. Wiley, 1998.

[53] Lei Wu, Linjun Yang, Nenghai Yu, and Xian-Sheng Hua. Learning to tag. In Proceedings
of 18th International World Wide Web Conference (WWW’09), pages 361–370, 2009.

[54] Xian Wu, Lei Zhang, and Yong Yu. Exploring social annotations for the semantic web.
In Proceedings of 15th International World Wide Web Conference (WWW’06), pages
417–426, 2006.

[55] Eng-Juh Yeoh, Mary E Ross, Sheila A Shurtleff, W.Kent Williams, Divyen Patel,
Rami Mahfouz, Fred G Behm, Susana C Raimondi, Mary V Relling, Anami Patel,
Cheng Cheng, Dario Campana, Dawn Wilkins, Xiaodong Zhou, Jinyan Li, Huiqing
Liu, Ching-Hon Pui, William E Evans, Clayton Naeve, Limsoon Wong, and James R
Downing. Classification, subtype discovery, and prediction of outcome in pediatric acute
lymphoblastic leukemia by gene expression profiling. Cancer Cell, pages 133–143, 2002.

[56] Jeonghee Yi, Farzin Maghoul, and Jan O. Pedersen. Deciphering mobile search pat-
terns: a study of yahoo! mobile search queries. In Proceedings of 17th International
World Wide Web Conference (WWW’08), pages 257–266, 2008.

[57] Qingyu Zhang and Richard S. Segall. Web mining: a survey of current research, tech-
niques, and software. International Journal of Information Technology and Decision
Making, 7(4):683–720, 2008.

[58] Xiuzhen Zhang, Guozhu Dong, and Kotagiri Ramamohanarao. Exploring constraints to
efficiently mine emerging patterns from large high-dimensional datasets. In Proceedings
of 6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (SIGKDD’00), pages 310–314, 2000.

BIBLIOGRAPHY 43

[59] Junyan Zhu, Can Wang, Xiaofei He, Jiajun Bu, Chun Chen, Shujie Shang, Mingcheng
Qu, and Gang Lu. Tag-oriented document summarization. In Proceedings of 18th
International World Wide Web Conference (WWW’09), pages 1195–1196, 2009.

