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Abstract
The global consumption of �sh products is increasing on the scale of millions of tonnes every year. This
makes the aquaculture industry as one of the leading sectors to provide food, employment, and ensuring
a sustainable livelihood. The implication of rapid growth in global �sh production and massive
consumption is causing productivity burden on the �sheries management to meet the market demands.
This eventually leads to aggravated competition within the �shing networked community. For surviving
the competition and increased pressure, few people from �shing community often indulge in various
kinds of illegal �shing activities. Illegal, Unreported and Unregulated (IUU) �shing happens to be a major
problem plaguing the �sh production. Our research proposes a solution based on o�cial transhipment
station that solves the problems of illegal transhipment activities, thereby allowing transhipment to
continue in a legal and safe manner. We have proposed Cost Optimisation Based Adaptive clustering
(COBAC) algorithm that takes into consideration various operational cost and provides the location of
establishment of the wirelessly operating transhipment stations in the ocean. The performance of the
proposed transhipment was compared with random, greedy and heuristic approaches. Also, the
experimentation results show that our proposed COBAC algorithm consumes one-tenth execution time
as compared to Brute force clustering and produced result with 0.1% relative error.

1. Introduction
The consumption of �shes has increased substantially all around the globe during the past few decades.
The annual population growth rate of the world stood at 1.6 per cent while the annual �sh food
consumption growth rate is recorded as 3.1 per cent for the period 1961-2017 (FAO, 2020). Per capita
�sh consumption has increased from 9.0 Kg in 1961 to a record breaking of 20.5 kg in 2018 (FAO, 2020).
The increased demand has put enormous pressure on the �shing community. As a consequence of
which cases of involvement of �shing boats operating outside the permitted region and resorting to
tactics to avoid reporting �sh catch has become rampant these days. In the light of increased demand
on �sh production, Illegal, Unreported and Unregulated (IUU) �shing happens to be one of the major
stumbling blocks in the process (Berveridge et al, 2013).

1.1 IUU Fishing & Its Adverse Implications
Illegal(I) �shing refers to the practice of catching �shes in disregard to �shery regulation and violating
norms of Exclusive Economic Zones (EEZ)(Camilleri). Unreported(U) �shing is the practice of hiding or
misreporting actual amount of �sh landing by a �shing vessel. Unregulated (U) �shing refers to the act of
operating in the region of a Regional Fisheries Management Organisation (RFMO), to which the country
of the concerned �shing vessel does not belong, in non-conformance with the management and
conservation norms of RFMO. IUU �shing accounts for 26 million tonnes of �shes being caught, and
consequently is responsible for a global loss of 10 billion to 23 billion USD per year (Agnew et al., 2009).
There are several other terrible consequences of IUU �shing such as over-exploitation of marine
resources and heightened threat to endangered species.
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Transhipment refers to the process of transferring the �shes from wirelessly operating �shing vessels to
reefer cargo ships. During this phenomena, the �shing vessels often requires refuelling tanks and storing
the catches. This allows the �shing vessels to stay longer in the ocean without frequently returning to the
home port. Though, the transhipment of �shing vessels seems to be a great strategy to allow
economical operation, however, it often gets indulged in hiding and smuggling illegal catches, thus
leading to IUU �shing in seas and ocean (Ewell et al., 2017). Sometimes, �shing vessel also trap crew
members forcefully on board, thereby violating labour and human rights. The situation is particularly
worse in the countries where law enforcement is weak. For instance, incompetent monitoring of waters
by countries of West Africa makes it a breeding ground for drugs and weapons smuggling (Bondaroff et
al., 2015). The oceans areas susceptible to illegal transhipment activities include Indian Ocean, waters
around Southeast Asia (Yea, 2016), Atlantic off West Africa (EJF, 2010) and Western Paci�c. Fish
species like tuna, Russian pollock, salmon along with crab and wild shrimp are specially threatened by
unregulated transhipment (Ewell et al., 2017). Further, not only the monetary aspect of the problem is
colossal, but also the disincentive to the small �shermen is huge as the amount of legal catch is cut
short by the illegal entrants. If such issues are left untouched or improperly handled they could lead to
provoking those who follow rules aptly to indulge into the same. Therefore counteractive measures
against IUU �shing is the need of the hour (Azzi et al, 2019, Sunny et al., 2020).

1.2 Related work
A lot of work has been done to tackle IUU �shing. Initially most of the work was in form of policies and
laws stipulated by national, international �sheries management bodies. One of the most widely used
methods is to decrease the incentive of IUU �shing using trade and market-related policies (Latun et al,
2013; Hosch, 2016). Higher prices are paid for �shes that have proper documentation according to Catch
Documentation Scheme of �shery management body. Secondly, �shes caught in the country supporting
IUU �shing, are imposed with high tariffs so as to make them unattractive to customers (Le Gallic et al.,
2006). Adoption of measure on regional as well as national level along with strict compliance with
international regulatory framework could also go long way in reducing the incidents of IUU �shing (Vince
et al., 2007; Johns, 2013). In 2009 the United Nations Food and Agriculture Organization (FAO) released
Port State Measure Agreement (PSMA), under which the port states have to deny services to �shing
vessels involved in IUU �shing (Flothmann et al., 2010). Port measures were effective but suffered from
lack of universal implementation. Another way to force the �shing vessels to not involve in IUU �shing is
to make amendments to insurance policy. Fishing vessels with history of illegal �shing should be denied
liability insurance (Soyer et al., 2018). The problem of IUU �shing could also be seen from the lens of
criminology. Rational choice theory and Situation crime prevention theory allow reducing the case of IUU
�shing in a systematic and scienti�c manner. These theories try to �nd a pattern in the crime and
investigate the environmental facts that promoted the crime. Finding patterns in the crime allows
coming up with prevention measures. A few broad ways of prevention could be to reduce the access to
resource, to increase the risk of being caught (Petrossian, 2015). On the similar lines crime script
analysis could be used for response generation (Petrossian et al., 2018). Using crime script analysis, IUU
�shing is treated as a crime and it is divided into various stages like Preparation, Entry, Target selection,
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Doing, Exit. Subsequently various responses in the form of policies are devised corresponding to each
stage of the crime.

Game theory also �nds its application in reducing IUU �shing. The problem is modelled using Green
Security Games (GSGs) approach which provides defender strategy to provide response to attacker
(Fang, 2015). Algorithms could be developed for resource allocation and scheduling like patrol boat
scheduling. Reinforcement learning is also used to provide solution (Akinbulire, 2017). It is used to
model the problem as pursuer-evader game. Using various episodes of training, autonomous agent is
able to learn strategies to chase the absconding �shing vessel. Reinforcement learning could be used to
provide autonomous patrol boats which could be used in response to an event of illegal �shing. Data is
considered the new gold, therefore, information sharing using tools like common database could help
the countries cooperate. Regional Fishing Vessel Record database was created so that Association of
Southeast Asian Nations (ASEAN) member states could access and provide information regarding
�shing vessels that are operating in the EEZ of another country or engaging in IUU �shing (Matsumoto et
al., 2012; Saraphaivanich et al, 2016). Since, it is not feasible to comprehensively span across the ocean
with patrolling boats for tracking the illegal practices, hence, computational techniques are employed to
classify and track the �shing activities through wireless communication.

Classi�cation algorithms are used to track and categorize a particular �shing vessels activity as illegal or
legal based on certain oceanographic parameters. These oceanographic variables include sea surface
temperature, chlorophyll, and seascape (Woodill et al., 2020). Detection of �shing gear of the vessel
could help in deciding whether a �shing vessel is exhibiting unexpected behaviour at sea. Detection of
�shing gear also helps in verifying whether a �shing vessel is operating by registering wrong credentials.
Such suspicious vessels are likely to be involved in IUU �shing. Vessel Monitoring System (VMS)
trajectories are used to predict the �shing gear with the help of classi�ers like Support Vector Machine
(SVM) and Random Forrest (RF) (Marzuki et al, 2015, 2017). A wireless distributed Automatic
Identi�cation System (AIS) is used by vessels for the purpose of navigating and avoiding collision in sea.
It can be used to provide vital information about the vessel. Global Fishing Watch used AIS messages to
develop a classi�cation model that predict when and where a �shing vessel is engaged in �shing and for
how long. This allowed the regulatory agencies to know when a �shing vessel is operating in a prohibited
area or if it is involved in over�shing (Merten et al, 2016). Most robust detection of illegal �shing could be
accomplished by combing AIS, VMS and Synthetic Aperture Radar (SAR) imagery. Vessels without VMS
or with turned off AIS transceiver could be detected using SAR imagery (Longépé et al., 2018). The
detection of illegal activity using SAR and Multi Spectral Imager (MSI) data from satellite in conjunction
with AIS and VMS has provided a complete solution for surveillance (Kurekin et al., 2019). AIS messages
could also be used to detect potential transhipment events at sea (Chuaysi et al., 2020). AIS messages
allow us to measure speed of the vessels as well as duration for which the vessel is travelling at that
speed. Using certain threshold for speed of the vessel and duration of the event, transhipment events
could be identi�ed (Miller et al, 2018).

1.3 Proposed Solution Approach
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According to the literature survey, most of the methods are employed to tackle IUU �shing for
strengthening the wireless surveillance. A lot of work has been done using AIS and VMS data to detect
illegal activity. Transhipment events can be detected using machine learning algorithms on AIS
messages. Vessels identi�ed as part of transhipment event could be marked as being involved in illegal
activities and face the necessary action from the regulatory authority. But there is a caveat to the above
approach. Transhipment is a necessary evil. Transhipment is useful as it allows �shing vessels to make
their operation economically e�cient and at the same time save time. Therefore, a safe way out of this
situation is to establish Transhipment station in high seas and ocean. Transhipment stations will work as
the authorized station only where transfer of �shes from one vessel to another vessel is allowed. If the
transhipment happens at any other location by the very de�nition of this approach, such transhipment is
illegal. We propose Cost Optimisation-Based Adaptive Clustering (COBAC) technique to �nd the optimal
locations for setting up the wireless transhipment stations by clustering the �shing events.

1.4 Research Highlights

The global consumption of �sh products is increasing on the scale of millions of tonnes annually.

For surviving aggravated competition, �shing community people often indulge in IUU �shing.

We have proposed Cost Optimisation-Based Adaptive Clustering (COBAC) to address the issue.

COBAC considers operational cost to compute the optimal location of wireless transhipment
stations in the ocean.

Our algorithm addresses IUU �shing problems for sustainable �sheries management.

2. Methods & Models
Two obvious questions arise because of this approach: 1)Where will the Transhipment stations be
established? 2) Is the operation cost of Transhipment stations feasible? The answer to the above
question can be found using a machine learning optimization algorithm that will provide as output the
number and location of Transhipment stations. The algorithm will take as input various cost that will be
incurred due to this solution. First is the economic cost of setting up stations, and then comes the
annual cost of operation, followed by the cost of extra fuel required by �shing vessel to travel to the
Transhipment stations. The algorithm provides a complete solution.

2.1 Solution Formulation
The solution involves using a clustering algorithm. The algorithm needs data regarding the �shing
activity in seas and ocean. It is provided by Global Fishing Watch’s �shing effort data (Kroodsma et al,
2018). The dataset contains information about 2.83 million �shing events in a single year. In order to �nd
location for Transhipment stations, there is a requirement of organising the �shing events into grids
based upon the latitude and longitude of �shing event. The coordinates of a grid’s centre will be the
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location of Transhipment station, if that grid is selected for setting up Transhipment station. Further

there is a requirement of minimizing cost function F nst  along with clustering (Eq. 1).

minF nst = Cves × Dtotal + nst × Csts. tnmin ≤ nst ≤ nmax(1)

Cves is the cost of covering unit distance in ocean by a �shing vessel. Dtotalis the sum of distance
travelled by all �shing vessels to reach to transhipment station. Cst is the annual cost of operating a

transhipment stations. nst is the number of transhipment stations. nmin and nmax is the minimum and
maximum number of transhipment stations allowed respectively. If nst is increased then annual cost of

operating transhipment stations ( nst × Cst) is increased and if nst is decreased, cost of fuel (
Cves × Dtotal) increases. Therefore the trade-off between both the costs is non-trivial.

2.2 Proposed COBAC & Other Algorithms
In order to reduce the time complexity of the clustering algorithm the world map is divided into 2 ∘ × 2 ∘

grids. Consequently 16200 (360/2 × 180/2) grids were generated using Cluster grid generation algorithm
(Algorithm 1). Since approximately 70% of earth surface is covered by ocean and not all places on ocean
witness �shing activity, we �nally get nmax = 2360 grids for clustering. The rfmo() function takes a
grid as input and returns the RFMO that should be responsible for the grid based upon country �ag of
ships in that grid. The location() function provides the coordinates of the centre of the grid. The
ship_count() function provides the count of �shing ships active in the grid in Algorithm 1. After creation
of grids, information regarding the grid centre coordinate is available. Using grid centre location, clusters
of grids could be formed. Now the important task is to determine the number of clusters. There are
several ways to determine the number of clusters. One way is to try every number of clusters from 1 to
nmax, which, however, is quite time consuming. Therefore, proposed Cost Optimization-Based Adaptive
clustering (COBAC) algorithm (Algorithm 5) was proposed to determine the optimal number of clusters
in less number of iterations (Eq. 2-8). For each cluster of grids formed by the algorithm, there is a
transhipment station. Here, nst(t) refers to the number of transhipment stations attth iteration of

proposed COBAC algorithm.

( )
( )
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Algorithm 1: Cluster Grid Generation

proceduregrid_generation(data, dim)

sort data in ascending order according to latitude

divide data into binsof dim degree according to latitude

for each b ∈ bins:

sort b in ascending order according to longitude

divide b into gridsof dim degree according to longitude

for each g ∈ grids :

grids[g]['rfmo'] = rmfo(g)

grids[g]['location'] = location(g)

grids[g]['ship_count] = ship_count(g)

end for

end for

returngrids

Table 1
Symbols used in Proposed COBAC algorithm

Symbols De�nition

nst(t) Number of transhipment station at tth iteration of proposed COBAC algorithm

F nst(t) Total cost of setting up and operating nst(t) transhipment stations

Δ(t) Fractional change in number of transhipment station at tth iteration

δ(t) Fractional change in cost function (Eq. 1) at tth iteration

θ(t) Ratio of fractional change in cost function and fractional change in number of
transhipment station at tth iteration

σ(t) Sign of θ(t) tth iteration

π(t) Change in number of transhipment station at tth iteration

ρ(t) Momentum factor for change in number of transhipment stations at tth iteration

( )
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Δ(t) =
nst(t) − nst(t − 1)

nst(t − 1) (2)

δ(t) =
F nst(t) − F nst(t − 1)

F nst(t − 1)
(3)

θ(t) =
δ( t )
Δ( t ) (4) σ(t) =

θ( t )
|θ ( t ) | (5)

ρ(t) =
σ(t) + σ(t − 1)

2 × ρ(t) + |σ(t) − σ(t − 1)| × (0.5 + |θ(t)|)(6)

π(t) = π(t − 1) − σ(t) × ρ(t)(7)

nst(t) = min max transform(π(t)) + nst(t − 1), nmin , nmax (8)

transform(x) =
−1, − 1 < x < 0

1, 0 ≤ x < 1
floor(π(t)), otherwise

(9)

floor(x) = ⌊x⌋(10)

The COBAC algorithm after the initial iteration will provide a guess for the number of transhipment
stations. The only thing preventing us from using K-means is that we did not know the number of
clusters. Now that number of clusters is known, we should be able to use K-means. However, usually the
clustering algorithms use commutative distance measure (Eq. 11), but because of grids the distance
measure is no longer commutative (Eq. 12). Therefore, we need a clustering algorithm that works on a
distance measure that follows Eq. 12, to minimize the cumulative cost of clustering, Dtotal (Eq. 13).

Distance(u, v) = Distance(v, u)(11)

Distance(u, v) = α × Distance(v, u), α ∈ R − {0}(12)

Dtotal =
ngrids

∑
i=1

min
C

DistEarth center Gi , center Ci (13)

Here, ngrids is the total number of grids with �shing activity. Gi (Fig. 1 blue blocks) refers to the ithgrid

and Ci (Fig. 1, yellow blocks) refers to the grid that is the centre of the cluster of grids.

Further, centre(x) returns the latitude and longitude of a centre of the gridx. DistEarth(u, v) refers to
distance in kilometres between two locations, u and v according to the Geographic Coordinate System

( ) ( )
( )

( )

( ( ) )

{

( ( ) ( ))
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(GCS) (Eqs. 14-17). ulat and ulon represents the latitude and longitude of the location u. Δlat is the
difference between the latitude and Δlon is the difference between longitude of the two locations, u and

v.

DistEarth(u, v) = 6373 × 2 × atan2 √a, √1 − a (14)

a = sin
Δlat

2
2

+ cos ulat × cos vlat × sin
Δlon

2
2
(15)

Δlat = ulat − vlat(16)

Δlon = ulon − vlon(17)

The proposed COBAC algorithm is given as Algorithm 5. It takes as input various costs associated with
clustering (Cves, Cst), data regarding grids, initial estimate of number of transhipment stations and

number of iterations to search for optimal number of transhipment stations. The Algorithm 5 outputs
optimal number of transhipment station, complete information (in charge RFMO, location) regarding
transhipment station and total optimal cost of operation (Eq. 1). The algorithm also returns the
transhipment station responsible for a particular grid. The algorithm uses station_generation()
method given as Algorithm 2 to �nd the best transhipment stations corresponding to the number of
transhipment stations allowed. Algorithm 3 also �nds transhipment station by selecting �rst the grids
with most �shing vessel as transhipment station in a greedy fashion. Algorithm 4 �nds transhipment
station by random selection of grids as transhipment station. However, the best performance is achieved
with Algorithm 2.

( )

( ) ( ) ( ) ( )
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Algorithm 2: Heuristic Transhipment Station Generation

Procedure station_generation Hval, nst(t), ngrids

stations = { } // list of transhipment stations

non_stations = { }

forvalue ∈ Hval :

if (value. station ∉ non_stations) :

non_stations = non_stations ∪  {value.station}

end if

if (non_stations. length = ngrids − nst(t)) :

stations = stations ∪  {value.station}

end if

if (stations. length = nst(t)) :

break

end if

end for

return stations

( )
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Algorithm 3: Greedy Transhipment Station Generation

Procedurestation_generation2 all_stations, nst(t)

all_stations = sort(all_stations,  descending ) // ship count-wise sorted

stations = { } // list of transhipment stations

forvalue ∈ all_stations:

if ( value ∉ stations ) :

stations = stations ∪  { value }

end if

if (stations. length = nst(t)) :

break

end if

end for

return stations

Algorithm 4: Random Transhipment Station Generation

Procedurestation_generation3 nst(t), ngrids

stations = { } // list of transhipment stations

while (stations. length ≠ nst(t)) :

index = random(0,ngrids)

if (index ∉ stations):

stations = stations ∪  { index }

end if

end while

return stations

( )

( )
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Algorithm 5: Proposed Cost Optimization-Based Adaptive Clustering (COBAC) Algorithm

Procedureadaptive_search_clustering(Cves, Cst, grids, π(0), nst(0), niter)

t = 0

station_count =nst(0)

fori ∈ 0,1⋯ngrids − 1 :

forj ∈ 0,1⋯ngrids − 1 :

distance[i][j] = DistEarth(grids[i].location ,grids[j].location )

distance_2[i][j]= distance[i][j]

end for

distance[i] = sort(distance[i], ascending)

end for

fori ∈ 0,1⋯ngrids − 1 :

forj ∈ 1⋯ngrids − 1 :

Hval= Hval ∪ {count : distance[i][j] – distance[i][j − 1]) × grids[i].ship_count,

station : i}

end for

Hval = sort (Hval, ascending)// ascending according to count

while (t ≠ niter) :

stations = station_generation(Hval, nst(t))

fori ∈ 0,1⋯ngrids − 1 :

cluster[i] = min(distance_2[i][j ∈ stations]). station

Dtotal = Dtotal + min(distance_2[i][j ∈ stations]). value

end for

F nst(t) = Cves × Dtotal + nst(t) × Cst

{ }
{ }

{ }
{ }

{ }

( )
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Algorithm 5: Proposed Cost Optimization-Based Adaptive Clustering (COBAC) Algorithm

if ( F nst(t) < min_loss) :

�nal_cluster = cluster

min_loss =F nst(t)

station_count =nst(t)

end if

nst(t + 1) = update()

t = t + 1

end while

return station_count ,�nal_cluster, min_loss

The update() function used in the Algorithm 5 uses Eq. 2-8 in sequential manner to get the next value of
number of stations. The update() function is inspired from Gradient Descent algorithm used for
optimization in machine learning problems. θ(t) in Eq. 4 calculates the rate of fractional change of cost
with respect to fractional change in number of stations. ρ(t) in Eq. 6 is used as a momentum factor.
π(t) denotes the change in the number of stations,nst(t) at tth iteration. If the value of θ(t) is either

positive or negative for a number of consecutive iteration, ρ(t) is used to have compounded effect on
the change in the number of stations,π(t). In short, momentum factor ρ(t) is used to accelerate
increase or decrease in the number of stations. The �nal update takes place using Eq. 8. transform() is
used to ensure effective change in the number of station is always a non-zero integer. In the expression
for ρ(t) in Eq. 6, an arbitrary value of 0.5 is used to prevent ρ(t) from becoming zero and stalling the
algorithm.

( )

( )
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Algorithm 6: Brute Force Clustering Algorithm

Procedurebrute_force_clustering(Cves, Cst, grids)

t = 0

nst(0) = 1

station_count =nst(0)

// distance, distance_2 matrices are created as in Algorithm 5

// Hval list is created in the same way as Algorithm 5

while (t ≠ ngrids ) : // Algorithm 6 uses ngrids instead of niter in Algorithm 5

stations = station_generation(Hval, nst(t))

// Dtotal, cluster variables are created as in Algorithm 5

F nst(t) = Cves × Dtotal + nst(t) × Cst

if ( F nst(t) < min_loss) :

�nal_cluster = cluster

min_loss =F nst(t)

station_count =nst(t)

end if

nst(t + 1) = nst(t) + 1//Algorithm 6 uses naïve update instead of COBAC update

t = t + 1

end while

return station_count, �nal _cluster, min_loss

The Brute force clustering (Algorithm 6) could also be used instead of proposed COBAC (Algorithm 5). It
�nds transhipment stations by iterating through all permissible value of number of transhipment stations
allowed. Algorithm 6 runs for ngrids iterations while proposed COBAC executes for niter iterations. Here,

niter is a user provided parameter that should not be greater than ngrids in order for COBAC to be more
e�cient than brute force clustering in terms execution time.

2.3 Dataset Description & Collection

( )
( )

( )



Page 15/30

One of the most important datasets used in the study is "Daily Fishing Effort at 10th Degree Resolution
by MMSI, version 1.0 (2012-2016)” (Dataset A) (Kroodsma et al, 2018)27. This dataset provides
information regarding daily �shing activity all around the global. It provides the number of �shing hours
spent by a �shing vessel identi�ed with Maritime Mobile Service Identity (MMSI) at a particular latitude
and longitude. For the purpose of developing clustering algorithm, only data for the year 2012 was taken.
“Fishing vessels, version 1.0 (2012-2016)” (Dataset B) (Kroodsma et al, 2018)27 dataset provided
information pertaining to MMSI of �shing vessel and the ISO 3166-1 alpha-3 code of country to which
the vessel is registered. In order to get comprehensive data regarding MMSI and the country it is
associated with, several other datasets were used. “Identifying Global Patterns of Transhipment
Behavior” (Dataset C) (Miller et al., 2018). The Global View of Transhipment: Revised Preliminary
Findings (Dataset D) (Kroodsma et al., 2017) also provided MMSI and country �ag information. In few of
the datasets complete name of the country in place of ISO code of the country corresponding to an
MMSI is present. Therefore a dataset from Github repository is downloaded to get the mapping from
complete country name to ISO code of the country (Dataset E) (https://github.com/lukes/ISO-3166-
Countries-with-Regional-Codes/tree/master/slim-3). The �nal dataset prepared is called FishTank
(Fig. 2).

[IMAGE-C:\Workspace\ACDC\ImageHandler\d3

Initially, dataset of �shing activity with all required attributes is generated by adding standard dataset.
The �nal dataset, has the following attributes: latitude, longitude, �shing hours, MMSI, ISO code. ISO
code of the country with which MMSI is associated with, will help in deciding which RFMO is responsible
for a particular transhipment station. The size of dataset required to get the location of transhipment
station such that Eq. (1) is minimized, is huge.

Fig 3: Flow diagram of proposed COBAC algorithm

Therefore, there was a requirement to divide the entire world map into grids of dimension2 ∘ × 2 ∘ . For
this purpose, Cluster grid generation algorithm (Algorithm 1) was used that the dataset FishTank as
input with dimension, dim = 2 (�g. 3). The cluster grid generation algorithm returned 2 ∘ × 2 ∘  grids and
information regarding the grids. Information regarding the grids includes the RFMO responsible for the
grid, total number of unique MMSI (�shing vessels) present in the grid and coordinates of the centre of
the grid. Fig. 5 shows the area of jurisdiction for a limited set of RFMOs for the sake of clarity. Fig. 4
plots the 2 ∘ × 2 ∘  grids and intensity of colour denotes the number of �shing vessels present. Further
proposed COBAC algorithm (Algorithm 5) is invoked. The input parameters include, Distance cost (Cves),
Annual operation cost (Cst), Information regarding grids, initial change in number of transhipment

station (π(0)), initial number of transhipment station(nst(0))and number of iterations (niter) to execute
our proposed COBAC algorithm. The proposed COBAC algorithm (Algorithm 5) returns as output the
minimized cost of implementing well-localized transhipment station strategy. It also returns the optimal
number of transhipment Fig 4: Distribution of 2 ∘ × 2 ∘  grids & density of �shing vesselsstations and
assignment of all the 2 ∘ × 2 ∘  grids to a transhipment station.
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PICESICESIATTCICCATCCAMLRCACFishIOTCFig 5: Distribution of RFMOs on world map

3. Experimental Results
The proposed COBAC algorithm performs well in terms of time complexity when compared with other
clustering algorithm (section 3.1). Its performance is also compared with the Brute force clustering
algorithm. In order to arrive at the best version of proposed COBAC algorithm, several version of wireless
transhipment station generation algorithms are also explored.

3.1 Time Complexity Analysis
There are various clustering algorithms available which can be used to cluster the �shing events.
Disadvantage with a lot of clustering algorithms is their large time complexity (Table 1) (Xu et al.,
2015)28. Algorithms with large time complexity take a lot of time to generate clusters.

Table 1
Clustering algorithms and their time complexity

Algorithm Time Complexity Comment

K-medoids O k(n − k)2 k is the number of clusters

GMM O n2kt k is the number of clusters, t is number of iterations

DBSCAN O(nlogn) n is the size of input points

CLARANS O n2 n is the size of input points

Fortunately there are some clustering algorithms with low time complexities as illustrated in Table 2 (Xu
et al., 2015)28. However, there is a signi�cant shortcoming even with algorithms with low time
complexities. These algorithms either take as input the number of cluster or �nd the number of clusters
without minimizing objective function (Eq. 1).

Table 2
Clustering algorithms with low time complexity

Algorithm Time Complexity Comment

K-means O(knt) k is the number of clusters,

t is the number of iterations

BIRCH O(n) n is the size of input points

Wavecluster O(n) n is the size of input points

( )
( )

( )
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Therefore, there was a requirement for a clustering algorithm with low time complexity as well as one
that can minimize the objective function (Eq. 1). The time complexity of the most e�cient clustering

algorithm available till now is O nac , where nac is the total count of recorded �shing events by

vessels.

Our procedure has a time complexity of O ngrids
2 × niter . The maximum value of niter could be

ngrids. Therefore effective time complexity is O ngrids
3 . ngrids is a constant value (Eq. 18).

Hence, the algorithm works in O(1) time complexity (Eq. 19) and at the same time optimizes objective
function (Eq. 1).

ngrids ≈
360
dim ×

180
dim , dim ∈ {1,2⋯180}(18)

O ngrids
2 × niter → O ngrids

3 → O(1)(19)

3.2 Performance of Proposed COBAC Algorithm
Proposed COBAC algorithm minimizes Eq. 1 without iterating for all the values of

niter niter ∈ 1,2⋯ngrids , where nmin = 10 andnmax = 2360. Table 3 shows the performance of

COBAC algorithm (Algorithm 5) versus the Brute force clustering algorithm (Algorithm 6). Brute force
clustering also provides equally e�cient output as COBAC but takes 10 times the execution time of
COBAC (Table 3). Our proposed COBAC (Algorithm 5) produces results with a relative error of 0.1%
compared to Brute force clustering (Algorithm 6) and the execution time of Algorithm 5 is one-tenth of
execution time of Algorithm 6. The total cost obtained in various iterations by COBAC and Brute force
clustering is given in Fig. 6 and Fig. 7 respectively. Fig. 8 explicitly shows the different number of
transhipment stations explored for obtaining total cost in various iterations by COBAC. Our proposed
COBAC algorithm takes 23 iterations to �rst come across the best solution, while the existing approach
takes 425 iterations to attain the best solution.

( )

(( ) )
(( ) )

( ) ( )
(( ) ) (( ) )

( { })
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Table 3
Performance of Proposed COBAC & Brute Force Search Clustering Algorithm

Method Parameters Performance Evaluation

Execution
Time(seconds)

Min Loss (USD)

COBAC
(Algorithm 5)

Cves = 200

Cst = 1000000

π(0) = 5

nst(0) = 200
niter = 200

248 1490379796.44102

COBAC
(Algorithm 5)

π(0) = 7

nst(0) = 250
niter = 200

255 1492878960.10300

Brute force
search
clustering
(Algorithm 6)

  2784 1489871291.54837

COBAC
(Algorithm 5)

Cves = 100

Cst = 5000000

π(0) = 10

nst(0) = 250

niter = 100

78 2889928747.02890

COBAC
(Algorithm 5)

π(0) = 5

nst(0) = 150

niter = 200

131 2902123802.58631

Brute force
search
clustering
(Algorithm 6)

  2828 2886381606.48139

Fig 6: Optimal total cost of proposed COBAC

Fig 7: Optimal cost and number of transhipment stations of Brute-force search clustering

Fig 8: Optimal number of transhipment stations of proposed COBAC

Proposed COBAC algorithm is tested with different versions of transhipment station generation
algorithms (Algorithm 2, 3, 4). Performance based on various parameters is given in Table 4. Algorithm 2
outperforms all the other algorithms (Algorithm 3, 4) used to get the best transhipment stations
corresponding to a particular value of nst(t) (Table 4). Fig. 9 shows the �nal distribution of transhipment
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station along with the 2 ∘ × 2 ∘  grids on map of world, where blue dots represent transhipment stations
and feeble reds dots represents grids.

Table 4
Performance of different station generation algorithms

Method Parameters Performance

Execution Time(seconds) Min Loss (USD)

Heuristic station generation

(Algorithm 2)

Cves = 200

Cst = 5000000

π(0) = 10

nst(0) = 100

niter = 100

92 3972562272.54781

Greedy station generation

(Algorithm 3)

93 4742851566.48398

Random station generation

(Algorithm 4)

80 5071757330.48577

Heuristic station generation

(Algorithm 2)

Cves = 200

Cst = 5000000

π(0) = 5

nst(0) = 100

niter = 200

143 3970113641.90638

Greedy station generation

(Algorithm 3)

167 4736114266.7288

Random station generation

(Algorithm 4)

172 5177855664.14666

4. Discussions
Our research attempts to address the issue of IUU �shing by focusing on the problem of illicit usage of
transhipment in oceans. Though, transhipment solves several problems encountered by �shing vessels
functioning in the oceans and seas, however falls under the grasp of illegal activities. Our study offers a
solution by proposing to organize the transhipment activity being carried out in oceans. O�cial wireless
transhipment stations could be set up at appropriate locations in oceans and will be responsible to
arrange interaction between cargo vessels and �shing vessels. The interaction will be monitored by
appropriate regulatory authority and consequently this will put a check on all the illegal activities being
carried out in lieu of necessary activities. This approach will also make it easier to detect illegal
transhipment in oceans. Several methods have already been developed to detect transhipment activity in
ocean. Since, the transhipments will only be allowed on o�cial stations, all the rest of the transhipment
activity apart from that on o�cial station, could easily be termed as illegal. Automatically, there is a
requirement of a system that could provide the location for establishing o�cial transhipment station, so
that their operation is economically e�cient.
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5. Conclusion
Our proposed COBAC algorithm provided by this study delivers the locations of the wireless
transhipment stations keeping in consideration the cost of operation of stations as well as the extra cost
incurred by �shing vessels to reach the stations. The stations could be managed by appropriate RFMO.
Therefore, the algorithm also assigns a RFMO to a transhipment station depending upon the location of
transhipment station and country �ag of active �shing vessels. COBAC algorithm takes one-tenth
execution time as compared to Brute force clustering algorithm and produces result with 0.1% relative
error. Our COBAC algorithm was capable to locate optimal number of stations in one-eighteenth number
of iterations as compared to Brute force clustering. The algorithm also enjoys a time complexity of O(1)
because of using grid structure. For our experimentation, �shing activity of only year 2012 was
considered. The algorithm could be made more e�cient by using �shing activity data for more than one
year. Further, information regarding the routes followed by cargo vessels could also be incorporated to
make the whole arrangement more economic for cargo vessels as well. Moreover, the data regarding
anchorage points could also be used for deciding whether station should be set up in ocean-bed or on-
land.
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Figure 1

Organisation of clusters and grids
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Figure 2

FishTank dataset construction scheme

Figure 3
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Flow diagram of proposed COBAC algorithm

Figure 4

Distribution of   grids & density of �shing vessels
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Figure 5

Distribution of RFMOs on world map
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Figure 6

Optimal total cost of proposed COBAC
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Figure 7

Optimal cost and number of transhipment stations of Brute-force search clustering
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Figure 8

Optimal number of transhipment stations of proposed COBAC


