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Abstract — Quadratic permutation polynomials (QPPs) have bewlely studied and used as
interleavers in turbo codes. However, less attentims been given to cubic permutation
polynomials (CPPs). This paper proves a theorenchwstiates sufficient and necessary conditions
for a cubic permutation polynomial to be a null rpatation polynomial. The result is used to
reduce the search complexity of CPP interleavarstort lengths (multiples of 8, between 40 and
352), by improving the distance spectrum over tteo$ polynomials with the largest spreading
factor. The comparison with QPP interleavers is enadterms of search complexity and upper
bounds of the bit error rate (BER) and frame erete (FER) for AWGN and for independent
fading Rayleigh channels. Cubic permutation polyi@snleading to better performance than

guadratic permutation polynomials are found for edemgths.
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1. Introduction

The permutation polynomial (PP) based interleaeesthe most recent
published in the literature and they are charazgdriby [1]: complete algebraic
structure, efficient implementation (high speed &md memory requirements)
and very good performances concerning bit erroesrdBER) and frame error
rates (FER).

The most studied PP based interleavers are thosedban quadratic
permutation polynomials (QPPs) [1-6]. They are usetie Long Term Evolution
(LTE) standard [7].

Necessary and sufficient conditions for equivalerafe QPP based
interleavers have been established in [8-9]. Inddeetly, equivalence
conditions, but just for sufficiency, were given [h0]. These conditions are
useful to reduce the complexity of search QPP bastedeavers, when used in
turbo codes.

Less attention was paid to cubic permutation patyiads (CPPs) [11-12].
In this paper we want to find equivalence condgidor CPP based interleavers.
They are given by means of the null permutatiorypainial (NPP) [9], i.e. a
permutation polynomial equal to zero for all theménts to be permuted. In
addition, we want to look for CPPs appropriate dt@ssic turbo codes with the
global coding rate of 1/3 and the generator matibh the component code G =
[1, 15/13] (octal form), as in the LTE standard.

The paper is structured as follows. The secondmegives some basic
definitions as well as the conditions on QPP edaivee. The third section states
sufficient and necessary conditions for a CPP tocbbkic null permutation
polynomials (CNPP) and makes an analysis in tefnsgarch complexity of QPP
and CPP based interleavers. Section 4 proposeshadn® obtain QPP and CPP
based interleavers leading to the largest spreddhenbest distance spectrum for
lengths between 40 and 352, multiples of 8. Se&ipresents simulations for two
interleaver lengths and the above mentioned compooede of memory 3.
Section 6 concludes the paper.

2. Basic definitions and previous results on QPP

equivalence

A permutation polynomial of degrae is defined as [1]:

ﬂ(x)sz:(;q(%modL, x=0,1,..,L-1 (1)

where the coefficientsy,, k=1...,n are chosen so thaw(x) in (1) permutes
0,1...,L-1and g, only determines a shift of the permutation elemseitthe
permutation function ist %, — Z, , whereZ_ ={0,1... L-}.

A QPP based interleaver of lendtmesults from (1) fom=2.
In the following we only consider QPPs with theefrerm @ = 0, as for
the QPP interleavers in the LTE standard.
A CPP based interleaver of lendgthiesults from (1) fom =3.
The conditions that coefficients of a CPP have ubilf so that they
generate a permutation polynomial were given in]2]L
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A NPP is characterized by:
77(x) =0 modlL, x=0,1,..,L-1 )

A NPP is useful because by adding it to a givermpéation polynomial
we obtain another polynomial leading to an idemtmarmutation (excepting the
NPP with all null coefficients). This avoids re-callating the parameters imposed
by the search.

Null permutation polynomials have been studieddhgnd the necessary
and sufficient conditions for a QPP to be NPP wiasrgin [8]. The sufficiency
condition has been independently given and it leenkdemonstrated in [10] in
two ways, one of them being different from the slane in [8]. Therefore, a
QPP is a null permutation polynomial (QNPP), diéferfrom the polynomial with
all coefficients 0, if and only if the lengthis an even number and

0, =0andqg =qg,=L/2 3)

These conditions reduce the search time, avoidiegctlculation of the
distance spectrum for turbo codes for identicahpeation polynomials. In this
paper we intend to find the necessary and suffice@mditions for a CPP to be
NPP. The QPP and CPP based interleavers are optirnansidering the distance
spectrum and they are searched in a reduced spblghomials (those with
maximum spreading factor).

The spreading factor or parameter D of an intede&vdefined by [1]

D:igjqin{JL(pi,pj )} (4)

i,joz,

where 3 (p.p,) is the Lee metric between the points =(i,7z(i)) and
P, =(drr(1)):
, (5)

S (b py)=]i= il +[m(i) - (i)

L

where
i~ i, =min{(i =i )(mod. ) {j = )( mot )} ®)

The QPP based interleavers which lead to the largesading factor D
for some lengths are given in [1]. An algorithm for fastemputation of D by
means of representatives of orbits in the representafitime interleaver-code is
also presented. The interleaver-code is a graphic gept&tion of an interleaver

with a point for each pai(i,n(i)), i=0,1... L — 1. An orbit is a set of points,
equivalent under the action of an isometry group.

3. Necessary and sufficient conditions for CNPP

Firstly we state a lemma which helps to prove the treeorem.
Lemma.The sum of the firsh natural numbers is:



n(n+1)

5 =3m, if n=3p orn=3p+2, with m, pUN ()
or
n(r12+1) =3m+1, if n=3p+1, with m, pON (8)
Proof.

If n=3p, we have

n(n+1) _ 3p(3p+1]
2 2

=3m, mON 9

becausep(3p+1) is an even number.
If n=3p+2, we have

n(n+1) _ 3(p+3)(3p+ 3

=3m, mON (10)
2 2
becausg p+1)(3p+ 2) is an even number.
If n=3p+1, we have
n(n+l) 9 +
( )= p(p ])+1:3m+1, mON (12)
2 2
becausep( p+1) is an even number. o

The following theorem specifies the conditions be interleaver length
and on the coefficient values of a CPP, so thatatCNPP.

TheoremA CPP of lengthL defined by the permutation
m(x)=q+qx+ g X+ gxmod L, x=0,1,..,L-1 (12)

with ¢, =0 is a CNPP (with at least one nonzero coefficieiitqnd only if its

coefficients are as in the following ten cases X)--under three conditions on the
interleaver length (a-c):

a)if 2|L and 3 L

L L

) &=7 %=0,¢4=7

L L

) 4=0.0=7. 6=,
b)if 3L and 2/ L

2L L
|||) ql:?’ g, :O, q3:§



L 2L
|V) qlzg, 0, :O, q3:_,

3
c) if 6|L
cases (I-IV) or

5L
V) Gﬂ:?’ qZ:O, 0, =

V|) Q==,0,==,0=

"2 %76
where the notatiora|b means that dividesb, the notationa | b means thaa
does not divided .

Proof.

The proof of the theorem is based on the idea]ing8d for QNPP.
For a CNPP withg, =0, we must have

g+ g+ gn=0modL, n=12,..,L-1 (13)
Summing the relations in (13) for the finstnatural numbers, we have:
&Y K+ K+ qd k=Omod L, n=12,..,L-1 (14)
= k=1 p=r]
Relation (14) can be equivalently written as:
2
q{@} L n+1)6(2n+ UL r; ) omodL. n=1.2,.. L-1(15)

or

+1 +1
n(nz )[q3 n(r12 )+q22n;1+0& =0modL, n=1,2,...,L-1 (16)

In the following we prove the sufficiency for eachthe cases | to X.

a) Cases | and Il follow directly, because of thetieles below:

—(x*+x)=0modL, x=0,1,.. ,L-
;3 OmodL 0,1...,L-1 (17)



%(x3+x2):OmOdL,x:O,l,...,L—] (18)

They are true, due to the fact that the numbe(m2 +1) and x*(x+1) are even,
LxON.

b) For the cases lll and IV, ai}L , we consider. =3r, r ON. We have to check

the condition in (16).
For the case llI:
- if condition (7) is fulfilled, the sum in (16) bemes

3m(rBm+ 2r) = 3rm( 3m+ 2i( 3) (19)

- if condition (8) is fulfilled, the sum in (16) bemes

(3m+D)[ r{am+ 1+ 2r]= F(m+ I( 3+ L( 3) (20)

The notation (:)in the right hand of (19) and (20) means that thens are

divisible by 3r , that is, byL and, therefore, the condition in (16) is fulfilled
For the case IV:
- if condition (7) is fulfilled, the sum in (16) bemes

3m(2rBm+ r) = 3m( 6m+ 3i( 3) (21)

- if condition (8) is fulfilled, the sum in (16) bemes

(3m+D)[ 2rifam+ Y+ r]= F( m+ ) 3+ Ji( I (22)
Thus, in this case the condition in (16) is aldéilfed.

c) For cases V-X, becauféL, we considelL =6r, r ON . We have to check the

condition in (16). We note that if condition (8)fidfilled, thenn=3p+1.

For the case V:
- if condition (7) is fulfilled, the sum in (16) bemes

3m(rBm+ 5r) = Irm( 3m+ §:( &), (23)

becausem(3m+5) is even.
- if condition (8) is fulfilled, the sum in (16) bemes

(3m+1)[ rifam+ )+ &)= am( an+ )+ &( 3+ Ji( 6), (24)

becausem(3m+1) is even.

For the case VI:
- if condition (7) is fulfilled, the sum in (16) bemes

3m[ r@m+ r(2n+ 1)+ 2r[= am(m+ )+ amni( 6), (25)



becaused|9 andm(m+1) is even.
- if condition (8) is fulfilled, the sum in (16) bemes

(3m+1)[ rifam+ D+ r( n+ 3+ 2= 6mn+ 3m( 3+ 5+ 6( pr J( § (26)

becausem(3m+5) is even.

For the case VII:
- if condition (7) is fulfilled, the sum in (16) bemes

3m[ 2rBm+ r(2n+ )+ r|= &( 3+ mn+ n)i( 6), 27)

- if condition (8) is fulfilled, the sum in (16) bemes
(3m+1)[ 2rifam+J+ r( 0+ J+r]|= 6] mn+ 3m( m+ I+ pr E( 6 (28)
For the case VIII:
- if condition (7) is fulfilled, the sum in (16) bemes

3m[ 4rBm+ r(2n+ )+ 5= 6( &+ mn+ Ai( 6), (29)

- if condition (8) is fulfilled, the sum in (16) bemes
(3m+D)[ 4arfan+ I+ r( 2+ }+ 5]= 6 mn+ n{ &m J+ p Z( 6, (30)
For the case IX:
- if condition (7) is fulfilled, the sum in (16) bemes
3m(5rBm+ r) = Im( 15m+ }i( &), (31)
becausem(15m+ 1) is even.
- if condition (8) is fulfilled, the sum in (16) bemes

(3m+1)[ srifam+ + r|= 15m( 3+ L+ 6( 3+ Ji( ), (32)

becaused|15 and m(3m+1) is even.

For the case X:
- if condition (7) is fulfilled, the sum in (16) bemes

3m[ 5rBm+ r( 2n+ 3+ 4 ]= @mn+ 15m( 3n+ Ji( 6), (33)

becaused|15 and m(3m+1) is even.
- if condition (8) is fulfilled, the sum in (16) bemes

(3m+1)[5rifam+ J+ r( 2+ A+ 4]= émn+ 45m( m+ Y+ & pr 2( 4@,
(34)

becaused|45 and m( m+1) is even.



In this way the sufficiency of the theorem is prdve
In order to prove the necessity of the theorem waite relation (16) for
n=1, n=2 andn=3, obtaining

g;+0,+¢=0modL, (35)
9q, + 50, + 3¢, = OmodL, (36)
364, +14g, + 60 = OmodL, (37)

Considering (35), relations (36) and (37) become:
60, + 20, = OmodL, (38)

300, + 8, = OmodL, (39)

Multiplying (38) by 4 and subtracting it from (3%yge get:
60, = 0modL (40)

Equation (40) haged(L,§ distinct solutions moduld. [13]. They are of the

form:

0, = L i=0,1,..,gcdl ,6) , (41)

~ ged(,6)
where ,gcd” stands for greatest common divisor.
Considering (41), (38) becomes

2¢, = OmodL, (42)
whose solutions are
L )
=——— —i=0,1...,gcdl ,2) 43
%= 3ol 2) ged( . 2) (43)

The solutions forg, are obtained from (35), taking into account (4&yl £43).
The fact thatg, =0 results from (1) and (2) fok=0. As gcd(L, 6)can take the

values 1, 2, 3 or 6, andcd(L,2)can take the values 1 or 2, we see immediately

that all solutions (different from zero) are thageen in the theorem statement.
Thus, the theorem is proven. i

The theorem allows us to evaluate the search codiypleof CPP
interleavers. Assuming that all the coefficientbnmen 0 andL —1 are taken into
account and neglecting the constant term of thetf complexity is of order

O(LS). Given the equivalence conditions between the GieRtsd by the theorem

and considering those for QPPs (relation (3)),stberch complexity is reduced to
3

’ 3
O(LZJ when2|L and 3 L, to O(%j when3|L and 2 L, and too[liz}

when 6|L, respectively.



The search complexity of QPPs is of or@sz). Under the equivalence

2
condition (3), the search complexity is reduce@{ol‘?j, if 2|L.

Comparing the search complexities of CPPs and QRE<PP searching

L

is approximately%, 3’ and% times, respectively, more complex than QPP

searching in each of the three cases. The complexiters are summarized in
Table 1.

Table 1 Orders of complexity for CPP and QPP search

Conditions Order of Order of The ratio between the order
onL complexity for | complexity for of search complexity for
CPPs QPPs CPPs and QPPs
2L and 3 2 L
| of L ol L L
3/ L 4 2 2
3 2

3L and ol L o(|_ ) L
2] L 3 3
6/L 3 2 L
| ol ol L
12 2 6

4. QPP and CPP interleavers of small length and

improved distance spectrum

In this section we look for QPP and CPP interleaveptimized for
additive white Gaussian noise (AWGN) and for Rapefading channels, and
compare their performances. For a quick search estricted the interleaver
lengths to multiples of 8, between 40 and 352 (tte¢ 40 lengths of the LTE
standard). The turbo code is composed from thellphi@ncatenation of two
recursive systematic convolutional codes, withgbeerator matrix G = [1, 15/13]
(in octal form). The trellis termination of the har code is as for the LTE standard
(i.,e. as in [14], transmitting the termination biké the second trellis). The
searches exclude polynomials reducible to lineampéation polynomials. The
search method is that in [10], i.e. from the setpofynomials with the largest
parameter D, those with the best distance spectreetained. The truncated upper
bounds (TUB) of BER and FER are used. For AWGN aegnthe formulas are
[15], [16]

TUB(BER = 0.5&% Derf,/ d0RD SN, (44)
TUB(FER) = 0.5Di N erfd./ d0 RO SNF (45)

For independent Rayleigh fading channel the formale [17]



TUB(BEQ:O.SDi%EE;R), (46)

=L (1+R BN

TUB(FER =0.5(), NEE#EBNRJ : (47)

whereM is the number of terms from the distance spectakan into accounty

is the distance in the spectrumy; is the total information weight corresponding
to distancd, N; is the number of code words with distameR. is the encoding
rate and SNR is the signal to noise ratio.

We minimized TUB(BER) for the AWGN channel and TWER) for the
Rayleigh fading channel, as this channel type idelyi encountered in wireless
communications, for which FER presents more intefidse obtained polynomials
are denoted by LS-QPP-TUB(BER)min, LS-CPP-TUB(BER)MLS-QPP-
TUB(FER)min and LS-CPP-TUB(FER)miIn, respectively5(ktands for "largest
spread”). To calculate the distance spectrum we liaed Garello's method [18],
[19]. The value of the parameter wu_max is equdldpas recommended in [19].
To reduce the computing time, the number of termshe spectrum is firstly
reduced when the length is greater than or equi2@p then when it is greater or
equal to 296.

The considered SNR values were decreased in (487} when the
interleaver length increased, in order not to deiee too small values for
TUB(BER) or TUB(FER), as in [10]. Since the turbade uses a component code
with memory 3, the coding rate is calculated with telation:

L
3L +12

R = (48)

Table 2 gives the QPPs and CPPs found out by aptigiithe distance
spectrum for AWGN channel. The search for CPPudedl QPPs in order not to
result in a weaker interleaver than that based ORP Qin terms of
TUB(BER)/TUB(FER) performances. This is why in ttebles we indicate LS-
CPP-TUB(BER)min or LS-QPP-TUB(BER)miIn. For the sfied SNR values
and the considered number of distances, the vdldes TUB(BER) and 10 x
TUB(FER) are given. The value of the parameter Ddach interleaver is also
given, as well as the number of QPPs and CPPs viitto the highest value of
D and the minimum TUB(BER) for that length. The C&Rint also includes the
QPPs to which the CPPs are reducible, when thedamgarameter D is the same
for QPPs and CPPs. The table only presents thenpaiials with the lowestqq
then with the lowest gfor QPP) and then with the lowess (@or CPPs). In the
last column the ratio between the TUB(BER) for Q&tel CPP interleavers is
given. We observe values greater than or equalftw 80me lengths (40, 48, 64,
72, 120), expecting better performance for thesgtles.

For CPP interleavers the maximum value of the patanD can be higher
than that for QPP ones, but the performance isnegessarily better (eg. for
lengths of 200, 256 and 304). For a proper companmsore extensive searches of
CPPs have been made, imposing a minimum parameg¢guBl to the maximum
one resulted for QPP interleavers, i.e. for lendt?@, 200, 240, 256, 304 and 336
(although in the case of the lengths 120 and 38étter performance resulted).
The obtained polynomials are denoted byinhposed-Ls-opeFCPP-TUB(BER)min
when g, # 0. Otherwise, a LS-QPP-TUB(BER)min polynomial result

10



G=[1, 15/13]

Table 2LS- QPP- TUB(BER)min and LS-CPP- TUB(BER)min imtavers for AWGN channel

LS-QPP- TUB(BER)miIn Interleavers LS-CPP- TUB(BERN or
LS-QPP- TUB(BER)min Interleavers
L [SNR|num (X) D| TuB | TUB | No. (X) D| TUB | TUB [No.|BER_QPP
[dB] | dist (BER) | (FER) | pol. (BER) | (FER) |pol.| BER_CPP
*10° | *10° | QPP *10° | *10°

40| 5| 9] 13+104 | 4]0.933§0.1918 4 | 3+ 8¢ +16¢ | 4 | 0.39700.0432 4 2.35

48] 5| 9| ®+36¢ |6]0.17490.0264] 2 | 5x+ 6 +12¢ | 6 | 0.08040.0156 24| 2.16

56| 5| 9] 3+42¢ |6[0.71770.2062 4 5x+§;§<2 6 [0.69230.1822 8 1.04
+4

64| 5] 9| %+16¢ |8]0.22940.0739 4 Bx+ ;ﬁslxz 810.01830.0062 8 | 12.56
+4

721 45| 9| 5+60¢ | 8]1.38810.4780 4 Ix+ &C 810.05940.0169 12| 23.21

80| 45| 9| 1%+ 20¢ [10[/0.01310.0034 4 11x+ 20¢ |10]/0.0131/0.0034] 8 1.00

88| 4| 9| =+22¢ |8]0.32510.1557] 4 2%+ 22¢ | 80.25440.1122 8 1.28
+66x°

96| 4| 9| 13+72¢ [12|0.1441/0.0612 4 O+ é?(z 12[0.1014/0.0612 24| 1.42
+5

104[3.75] 9 | 7x+78¢ | 80.172710.0959 4 3%+ 78 | 8]0.15620.0600 8 1.11

112 35| 9| 4%+ 28¢ [14]0.4836/0.2701 4 41x+ 2&¢  |14]0.3701/0.2172 8 1.31

120/ 35| 7| 1%+ 90¢ [10]/0.3141/0.1568 4 5+ 48¢ | 12/0.0832/0.0390| 12| 3.78

128/ 35| 7 | 1%+ 32¢ [16]/0.07040.0463 4 1%+ 32¢ |16/0.0704/0.0463] 8 1.00

136) 3.5| 7 | 1%+ 102¢ [10]0.28750.1703 4 1%+ 34¢ [10]/0.2246/0.1329 8 1.28

144|3.25] 7 | 19+ 36¢ [16]0.04720.0318 4 1%+ 36¢ [16]/0.0472/0.0318/ 24| 1.00

152(3.25] 7 | 5%+ 38¢ [12]0.49730.3280 4 | 5%+ 114¢ [12]0.4103/0.2711] 8 1.21

160(3.25] 7 | 19+ 1204 [ 16]0.0521/0.0498 4 19+ &0(2 16/0.04690.0385 8 1.11
+4

168 3 | 7 | 6X+ 126 [12]0.78350.6563 4 X+ 42¢ [12]0.4852/0.3567| 24| 1.61
+154¢

176] 3 | 7 | 65+ 44¢ [16]/0.09630.0931 4 | 2ix+ 132¢ |[16/0.0953/0.0861 4 1.01

184 3 | 7 | 25+ 46¢ [14]0.05450.0479 4 25¢+ 46¢ | 14]0.0545/0.0479 8 1.00

192 3 | 7 | 2%+ 144¢ [16]0.02650.0247 4 x+ 48¢ |16]/0.0265/0.0247| 24| 1.00
+64¢°

200 3 | 7 | 1%+ 1504 [14]0.0709 0.0568 4 41x+ggx2 20/0.07690.0808 8 0.92
+18

208[2.75] 7 | 2m+52¢ [16/0.0528 0.0838 4 85+ 26 |16/0.03430.0292 8 1.54
+52¢

216[2.75| 7 | 23+ 144¢ [18]/0.0322/0.0359 4 1x+ 36¢ [18]/0.0322/0.0359| 24| 1.00
+144¢

224]2.75| 7 | 2%+ 168¢ | 16]0.8377/0.9411] 4 27%+56¢ |16]0.8377/0.9411] 8 1.00
+112¢

232[2.75] 7 | 85+ 58¢ |16]/0.0082/0.0105 4 85+ 58¢ |16]0.00820.0105 8 1.00

240(2.75| 7 | 91x+ 60¢ |16]/0.0326/0.0704 4 2%+ 30¢  [18[0.0279/0.0371] 24 1.17

+20¢
248[2.75( 7 | 3%+ 186¢ [18[0.0119/0.0142] 4 | 33+ 2(33(2 18(0.0119/0.0142] 8 | 1.00
+12
256| 25| 7 | 3%+ 64¢ [16[0.01440.0139 4 | 1%+ 929(2 18(0.3217/0.4015 8 | 0.04
+19
264 25| 7 | 1%+66¢ [18]0.0387[0.0521] 4 | 17%+66¢ |18]0.0387/0.0521 24| 1.00
272[ 25| 7 | 10k+204¢[16]0.00590.0069 2 | 10%+204¢ [16]0.00590.0069 4 | 1.00
280[ 2.5[ 7 [ 1%+210¢[20]1.8347/2.5452 4 | 1%+210¢ [20[1.8347/2.5452 8 | 1.00
288[ 25| 7 | 5%+ 72¢ [18]0.0216/0.0198 4 | 55¢72¢ [18]0.0216/0.0198 24| 1.00
296| 2.5| 5 [ 108+ 74¢ [20[0.0150/0.0266 4 | 10%+74<¢ |20[0.0150[0.0266 8 | 1.00
304 25| 5| 113+ 76¢ [16[0.0031/0.0027] 4 | 4%+ 6:)3(3&8 18[0.1371/0.2009 8 | 0.02
+7
312[ 25| 5[ 1%+ 78¢ [22]0.0244/0.0415 4 | 1%+ 78 [22]0.0244[0.0415 24| 1.00
320[2.25] 5 [ 2Ix+ 80¢ [20[0.0111/0.0152 4 [ 21x+80¢ |[20[0.0111]0.0152 8 | 1.00
328]2.25] 5 [ 3%+ 246¢ [22[0.0084/0.0131] 4 [ 3%+ 246¢ |22[0.0084/0.0131 8 [ 1.00
336[2.25) 5 125¢+ [16[0.0425(0.0661 2 | 3Ix+ 126¢ [18/0.0404/0.0714 24| 1.05
252¢ +28
344]2.25] 5 [ 2Ix+ 258¢ [24]0.0084]0.0165 21x+ 258¢ [24[0.0084[0.0165 8 | 1.00

N|(&

352|2.25| 5 15%+ 22|0.0104,0.0132 153+ 264¢ |22]0.0104/0.0132 4 1.00

264¢
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Extended search results are given in Table 3 forGNVchannel. As
shown, for the lengths 120, 240 and 336, the sashgpmials have resulted. For
the length 200 a slightly better polynomial resdjtand for the lengths 256 and
304, we obtained even the LS-QPP-TUB(BER)min. Hamvevthe search
complexity increased.

Table 3LS-QPP- TUB(BER)min and Ryosed-Ls-opeFCPP- TUB(BER) min interleavers for AWGN

channel (more extensive search)

LS-QPP- TUB(BER)min Interleavers Drmin-imposed-Ls-opeCPP- TUB(BER) miror
LS-QPP- TUB(BER)min Interleavers

L [SNR[num (X) D[ TUB | TUB | No. (X) D] TUB | TUB [No.|BER_QPP
[dB] | dist (BER) | (FER) | pol. (BER) | (FER) | pol.| BER_CPP
*10° | *10° | QPP *10° | *10°

120 35| 7 | 1%+90¢ [10]0.31410.1568 4 B¢+ 48¢C 12(0.0832/0.0390] 12| 3.78

200, 3 1%+ 150¢ |14/ 0.0709 0.0568 4 3+ 80¢ 14/0.0459 0.0434 8 154

~

240[2.75| 7 | 91x+ 60¢ [16[0.0326/0.0704 4 2%+ 30¢ [18[0.02790.0371 24| 1.17
+20¢

256| 25| 7 | 3%+ 64¢ |[16/0.0144/0.0139 3Ix+ 64¢ | 16]0.0144/0.0139 8 1.00

[&)]

4
304 2.5 113+ 76¢ |16/ 0.00310.0027 4 113+ 76¢ | 16/0.0031/0.0027 8 1.00
336/2.25| 5 125+ |16]0.04250.0661] 2 31x+ 126¢ [18]0.0404/0.0714/ 24| 1.05
252¢ +28¢

The remaining lengths lead to a TUB(BER) ratio beld, i.e. similar
performance. For lengths 80, 128, 144, 184, 195, 224, 232, and those greater
than 256, excepting 336, the TUB(BER) is equal tee,othat is, identical
interleavers from the point of view of equivalen¢rmutation polynomial or
distance spectrum.

For lengths higer than 256, excepting 336, CPRladeers equivalent to
QPP ones resulted.

However, it should be noted that for each QPP agtl@ equivalent CPPs

exist (more precisely, two equivalent CPPs, wharll and 3 L and ten

equivalent CPPs, Wheﬁl\L). Therefore, one cannot say that a CPP is inféoiar

QPP one for the specified lengths, and for the @RPQPP classes in which the
search was made, unless CPPs are irreducible ts.@®Plonger lengths it is not
important for the parameter D to be the largestt bather the metric

Q'=Z'E]h(D) to be the largest{{is the refined nonlinearity degree and it

contributes to reducing the codeword multiplicitjes shown in [1]. As a result,
CPPs superior to QPPs may result, but the searchplesity increases
considerably for large lengths.

Table 4 presents the QPPs and CPPs obtained byipipty the distance
spectrum for Rayleigh fading channel. In the lasiumn of Table 4 the ratio
between the TUB(FER) for QPP and CPP interleavergiven. We observe
values greater than or equal to 2 for four lengdts 64, 72, 120), the same as for
the AWGN channel, excepting length 48. Identicéileavers from the point of
view of equivalent permutation polynomial or distanspectrum result for the
same lengths as for AWGN channel.

Table 5 provides the results when extensive seansieee made, imposing
the parameter D of the CPPs to be equal to or grehaan that of the LS-QPP.
The same polynomials as in the initial search @l& 4) resulted for the lengths
120 and 240. For the length 200 a slightly bet@ymomial resulted. LS-QPP-
TUB(FER)min interleavers resulted for the length§,2304 and 336.

12



G=[1, 15/13]

Table 4LS- QPP- TUB(FER)min and LS-CPP- TUB(FER)mIn itearers for Rayleigh fading

channel
LS-QPP- TUB(FER)min Interleavers LS-CPP- TUB(FHEfRnN or
LS-QPP- TUB(BER)min Interleavers
L |SNR|num n(X) D| TuB TUB No. n(X) D| TUuB TUB No. | FER_QPP.
[dB] | dist (BER) | (FER) | pol. (BER) | (FER) |pol.| FER_CPP|
*107 *10° QPP *107 *10°

40| 75| 9] 18+30¢ | 4|4.0451 0.6539| 4 2+ 8¢ |4]1.5681 0.1706| 4 3.83
+16¢

48| 75| 9| %+36¢ | 6]0.7589 0.1150] 2 5+ 6 | 6]0.3504 0.0676| 24 1.70
+12¢

56| 75| 9| 3+42¢ |6(3.3169 0.9523| 4 5+ %:3;(2 6 [ 3.2002 0.8424| 8 1.13
+4

64| 75] 9| e+48¢ |81.1004 0.3456| 4 %+ 22¢ | 8]0.1217 0.0233| 8| 14.83
+60¢

72| 75| 9| s+60¢ |8|1.6174 0.5677| 4 ¥+ 4 | 8]0.0399 0.0121| 12| 46.92

80| 6.5 9| 1%+ 20¢ [10[0.1369 0.0344]| 4| 1%+20¢ [10]/0.1369 0.0344| 8 1.00

88| 65| 9| &+22¢ | 805231 0.2584] 4| 2%+22¢ | 8]0.3775 0.1798| 8 1.44
+66¢

96| 6.5] 9| 18+72¢ [12[0.2173 0.0042| 4 5+ 8¢ |12]0.1705 0.0771| 24/ 1.22

104 6 | 9| 3%+ 26¢ | 8]0.4179 0.2028] 4| 3%+78C | 8]0.3063 0.1203| 8 1.69

112] 6 | 9 | 4x+28¢ [14]/0.3613 0.2200] 4| 4%+28¢ [14]/0.2812 0.1825| 8 1.21

120 6 | 7 | 1%+ 90¢ [10]/0.3045 0.1609| 4| &+48¢ [12]0.0632 0.0302| 12| 5.33

128/ 55| 7 | 1%+ 327 [16]/0.2189 0.1446| 4| 1%+32¢ [16]/0.2189 0.1446| 8 1.00

136) 55| 7 | 1%+ 102¢ [10]0.9306] 0.5515| 4| 19+ 34¢ [10]0.7229 0.4296| 8 1.28

144 5 | 7 | 19+ 36¢ [16]/0.2131) 0.1431| 4| 19+36¢ [16]0.2131] 0.1431| 24/ 1.00

152 5 | 7 | 5%+ 38¢ [12][2.2269 1.4680| 4| 5%+ 114C [12]1.8411] 1.2146] 8 1.21

160 5 | 7 | 1%+ 1204 [16]0.2383 0.2274] 4| 19+ (;1(3&2 16/0.2148 0.1761| 8 1.29
+4

168 5 | 7 | 6+ 126¢ [12]1.4998 1.2596| 4 %+ 42¢ [12]0.8970 0.6758| 24 1.86
+154¢

176] 5 | 7 | 2x+ 44¢ [16]/0.2018 0.1691| 2| 2%+44¢ [16]/0.2018 0.1691| 4 1.00

184 5 | 7 | 25+ 46¢ [14]/0.1083 0.0959| 4| 3%+ g?(% 14[0.1760 0.0909| 4 1.06
13

192| 45| 7 | 23+ 144¢ [16]0.1878 0.1735| 4 | 28+ 144¢ [16]0.1878 0.1735| 24/ 1.00

200 45| 7 | 1%+ 1504 [14]0.4798 0.3839| 4| 4%+40¢ [20]/0.5130 0.5381| 8 0.71
+180¢

208 45| 7 | 25+52¢ [16/0.1889 0.1546| 4| 8%+ 26 |16]/0.0983 0.0841| 8 1.84
+52¢

216| 4.5.] 7 | 23+ 144¢ [18]0.0925) 0.1038| 4 | 28+ 144¢ [18]0.0925 0.1038| 24| 1.00

224] 45| 7 | 2%+ 168 [16]2.5039 2.8129| 4 | 2%+ 168¢ |16]2.5039 2.8129| 8 1.00

232| 45| 7 | 1%+ 174 [16]0.0252 0.0295| 4| 1%+ 174¢ |16]/0.0252 0.0295| 8 1.00

240 45| 7 | 8%+ 60¢ |[16]/0.0897 0.0807| 4| 1%+ (;)(30(2 18]0.1245 0.0794| 12| 1.02
+6

248 45| 7 | 3%+ 186¢ [18]0.0336 0.0406| 4 | 33+ 186¢ |18]/0.0336 0.0406| 8 1.00

256| 45| 7 | 3%+ 192¢ [16]/0.0131] 0.0122| 4| 12+32C |18]/0.4588 0.5702| 8 0.02
+64°

264] 4 | 7 | 3x+66¢ [18/0.1758 0.1813] 4| 3%+66¢ |18/0.1758 0.1813] 24| 1.00

272| 4 | 7 | 10x+204¢|16]0.0265 0.0310| 2 | 10%+204¢ |16|0.0265 0.0310| 4 1.00

280 4 | 7 | 1%+ 2104 [20]8.2333/11.4211 4 | 1%+ 2104 |20[8.2333/11.4211 8 1.00

288] 4 | 7 | 55+ 72¢ [18/0.0977 0.0895] 4| 5%+ 72¢ [18]/0.0977 0.0895| 24| 1.00

296| 4 | 5 10%+ |20[0.0861] 0.1186| 4 | 108+ 222¢|20[0.0861 0.1186| 8 1.00

222¢

304] 4 | 5 | 113+ 76¢ [16]/0.0141] 0.0122| 4| 4%+38¢ [18/0.6171 0.9044| 8 0.01
+76¢

312] 4 | 5 | 19+ 78¢ [22/0.1109 0.1883] 4| 19+ 78¢ [22]/0.1109 0.1883] 24| 1.00

320 4 | 5 | 2x+80¢ [20[0.0209 0.0283| 4| 2%+80¢ |20]/0.0209 0.0283| 8 1.00

328 4 | 5 | 39+ 246¢ [22[0.0150[ 0.0236] 4| 39+ 246¢ [22[0.0150 0.0236| 8 1.00

336| 3.5| 5 | 125%+252¢|16{0.3215 0.5000| 2| 3%+ ?6(2 18/0.3042 0.5351| 24| 0.93
+2

344] 35| 5 | 2k+ 258¢ [24]0.0605 0.1181| 4 | 2%+ 258¢ |24]/0.0605 0.1181| 8 1.00

352| 35| 5 | 153+264¢[22[0.0291] 0.0381] 2| 15%+264¢ |22]0.0291] 0.0381| 4 1.00
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Table 5LS-QPP- TUB(FER)mMIin andiResed-Ls-opPFCPP- TUB(FER) min Interleavers for fading

Rayleigh channel (more extensive search)

LS-QPP- TUB(FER)mIn Interleavers |  Dyin.imposed-Ls-orrCPP- TUB(FER) miror
LS-QPP- TUB(FER)miIn Interleavers

L [SNR|[num (X) D] TUB | TUB [ No. (X) D[] TUB | TUB [No.|BER_QPP
[dB] | dist (BER) | (FER) | pol. (BER) | (FER) | pol.| BER_CPP
*10° | *10° |QPP *10° | *10°
120| 6 7 1%+ 90¢ |10]0.3045/0.1609 4 5x+ 48¢ 12]0.0632/0.0302 12 5.33

~

200| 4.5 13+ 150¢ [ 14]0.4798/0.3839 4 X+ 80¢ |14]/0.3141]0.2943] 8 1.31
2400 45| 7 | 8%+ 60¢ |16]/0.0897/0.0807 4 11x+ 90¢ |18]0.12450.0794 12| 1.02
+60¢C
256| 45| 7 | 3%+ 192¢ [16]/0.0131/0.0122] 4 3+ 192¢ [16/0.0131/0.0122] 8 1.00
304| 4 113+ 76¢ [ 16]0.0141/0.0122] 4 | 113+ 76¢ [16]/0.0141]0.0122 8 1.00
336| 3.5| 5 | 125+252¢[16]0.32150.50000 2 | 125+252¢ |[16]0.3215/0.5000 12| 1.00

[&)]

Regarding the number of resulted polynomials, wertate the following:
- for QPP interleavers the number of polynomial$ & 2;

- for CPP interleavers the number of polynomiald isr 8, whenZ\L and 3/ L
and 12 or 24, whe®|L .

The situation when two polynomials result for QRfPsl four or twelve
polynomials result for CPPs is related to the numdfeequivalent permutation
polynomials, according to conditions given in (3)dathe theorem in Section 3.
Doubling these numbers in each case can be exglaimdollows: the inverse of
both QPPs and CPPs may differ from the originalsomed also have the same
number of equivalent polynomials. The distance spet results identical for the
inverse polynomial because of the construction sgtmyrof turbo codes (parallel
concatenation of two recursive systematic convohal codes).

Imposing the parameter D influences the number eterthined
polynomials. Figure 1.a shows the number of difiémolynomials, including LS-
CPP (and LS-QPP, when the parameter D is the sameSFQPP and LS-CPP
interleavers) and LS-QPP interleavers, respectivély which the distance
spectrum is calculated with the parameter D showifables 2 and 4 (i.e. the
largest possible). Figure 1.b shows the ratio betwt#ne number of mentioned
polynomials (LS-CPPs or LS-CPPs and LS-QPPs) aachtimber of LS-QPPs,
depending on their length. We note that, exceptireglengths 120, 256 and 304,
when the parameter D differs for interleavers based.S-CPPs and LS-QPPs,
the number of polynomials for which the distancectpum was calculated for
LS-CPPs or LS-CPPs and LS-QPPs is greater thamthla¢ LS-QPPs ones (as it
was expected, when the parameter D is the sameSi&EPP and LS-QPP based
interleavers).

The reasons for which for the lengths 120, 256 304 the number of
CPPs gets lower than the number of QPPs are:

1) the largest parameter D of CPPs is higher thah df QPPs (and thus
the class of CPPs with the largest parameter D doesiclude the class of QPPs
with the largest parameter D);

2) the total number of CPPs for which the distasyectrum is calculated
is reduced 2 or 6 times, respectively, comparethéototal number of QPPs (as
shown in Table 1).

As shown in Figure 1.b the complexity of calculgtithe distance
spectrum for LS-CPP (or LS-CPP and LS-QPP) intedesris at most 2 to 4
times higher than for LS-QPP interleavers (withxBeptions from the 40 lengths)
for the set with maximum parameter D, which is bssantial reduction compared
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to the exhaustive search (see analysis in Sec)ioH@vever, for larger lengths,
the search complexity increases and also the mdjuime, because too many
polynomials with maximum parameter D result and tifistance spectrum
computation is more time consuming for larger lésgt

Fig. 1a) Number of LS-CPPs (or LS-CPPs and LS-QPPs).8a@PPs with the largest parameter
D (given in Tables 1 and 3) for which the distaspectrum has been calculated considering the
proposed optimization, b) The ratio between the Imens of LS-CPPs (or LS-CPPs and LS-QPPs)
and LS-QPPs, depending on the interleaver length

Figure 2a shows the number of polynomials (Dminesgd-LS-QPP-CPP
and LS-QPP) for the 6 lengths (120, 200, 240, 388, and 336) for which the
extended searches in Tables 3 and 5 were made.

Figure 2b shows the ratio between the number ofath@ve mentioned
polynomials and that of LS-QPP polynomials. Thidiorareaches up to
approximately 13 for the lengths 200 and 256, shgwie increasing complexity
of the search, compared to the previous case.

a)

==

700 = : : == ——
-©~ Number of Dmm—lmpuseerSrQPF’-cpp and LS-QPP

== Number of LS-QPP

T T

77777777 — gy . e
120 140 160 180 200 220 240 260 280 300 320

15

10 - — =

| | |
[ =9~ NumberofD n-imposed-Ls-opp CF P and LS-QPP/Number of LS-QPP
T T T T T T T

Fig. 2a) Number of Rin-imposed-Ls-opeFCPPS and LS-QPPs and the one of LS-QPPs (givéaliles
3 and 5) for which the distance spectrum has bealoulated considering the proposed
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optimization, b) The ratio between the number @fi.[posed-Ls-0rfCPPs and LS-QPPs and the
number of LS-QPPs, depending on the interleavegtien

5. Simulation results

Simulations were performed for interleaver lengtigsial to 64 and 120.
The component code we considered is the one memution Section 4, i.e. that
corresponding to the generator matrix G = [1, 1p/TBe decoding algorithm is
the MAP (Maximum-Aposteriori) criterion and the raéion stop criterion based
on the LLR (Logarithm Likelihood Ratio) module. Theaximum number of
iterations is 12, and the LLR threshold is 10. Vdgéhsimulated the same number
of blocks of bits for each SNR value. Obviouslye ttequired number of blocks
increases with the SNR value. The simulated chanmete AWGN and Rayleigh
fading, respectively, and the used modulation BPBidary Phase Shift Keying).

For both lengths we have simulated LS-CPP-TUB(BER)amd LS-QPP-
TUB(BER)min interleavers for AWGN channel, and L& TUB(FER)min and
LS-QPP-TUB(FER)min interleavers for Rayleigh fadottannel, respectively.

Since for the length 64 for Rayleigh fading chanrleé LS-CPP-
TUB(FER)Min and LS-QPP-TUB(FER)min interleaversdéa similar BER/FER
performances, LS-CPP-TUB(BER)min and LS-QPP-TUB(REBR were also
determined and the corresponding interleavers wienalated.

Figure 3 shows BER and FER curves for length 64.n&te, for AWGN
channel, an additional coding gain for the LS-CRIBIBER)min interleaver
compared to LS-QPP-TUB(BER)min interleaver of apprately 0.25 dB in the
BER domain (at BER = 1Y), and of approximately 0.5 dB in FER domain (at
FER = 10).

BER (solid), FER (dashed)

=0~ (5x+24x+48x°)mod 64 (LS-CPP-TUB(BER)min for AWGN channel)

10'8 || =+ (7x+16x2)mod 64 (LS-QPP-TUB(BER)min for AWGN channel)

-~ (7x+22x2+60x3)m0d 64 (LS-CPP-TUB(FER)min for fading Rayleigh channel)
-4 (5x+24x2+48x3)m0d 64 (LS-CPP-TUB(BER)min for fading Rayleigh channel)
B (9x+48x2)mod 64 (LS-QPP-TUB(FER)min for fading Rayleigh channel)

10™°H =& (7x+16x")mod 64 (LS-QPP-TUB(BER)mIn for fading Rayleigh channel)
I I I I I I

0 1 2 3 4 5 6 7
SNR [dB]
Fig. 3BER and FER curves for LS-CPP-TUB(BER)min and LBRTUB(BER)min interleavers
for AWGN channel, and for LS-CPP-TUB(FER)min, LS{&FUB(BER)mIin, LS-QPP-
TUB(FER)min and LS-QPP-TUB(BER)miIn interleavers Rayleigh fading channel, for length
64
16



As we have already mentioned above, for Rayleigintachannel the LS-
CPP-TUB(FER)mMin and the LS-QPP-TUB(FER)min intevkya lead to similar
BER/FER performances. To realize why this happ#res first 20 terms of their
distance spectra have been determined. The firgt distances with the
corresponding multiplicities for the LS-CPP-TUB(BJERnN interleaver are 15/1/1
and 16/2/4. The remaining distances up to 34 aee shme for the two
interleavers, with higher multiplicities for the «&PP-TUB(FER)min interleaver
(except the distance 21, when the multiplicitiese &6/172 for the LS-CPP-
TUB(BER)min interleaver compared to 37/137, for ttf& CPP-TUB(FER) min
interleaver).

The minimum distance resulted with the LS-CPP-TUBRFMIn
interleaver is greater than 16. From the distamectsa calculated for the LS-
CPP-TUB(FER)mMin and LS-CPP-TUB(BER)miIn interleavérsvas found that
for weights greater than 16 up to 34, there areentodewords of these weights
for the LS-CPP-TUB(FER)min interleaver than for th8-CPP-TUB(BER)min
interleaver (i.e., higher multiplicities). For wéig less than or equal to 16, there
are only three codewords of the LS-CPP-TUB(BER)miarleaver (a code word
of weight 15 and two codewords of weight 16, aswshdy the previously
specified multiplicities: 1/1 and 2/4). The thremde words have minor influence
on the TUB(BER) and TUB(FER) for LS-CPP-TUB(FER)minterleaver.
Considering the simulation results, we can say thate are codewords of
weights greater than 34 for which the multiplictiior this interleaver are higher
than those corresponding to LS-CPP-TUB(BER)min oriEhe higher
multiplicities for weights greater than 34 lead targer TUB(BER) and
TUB(FER) for a large number of terms in distancecsfum for the LS-CPP-
TUB(FER)min interleaver than for the LS-CPP-TUB(Bfai one, showing the
BER/FER performances difference.

For Rayleigh fading channel the LS-CPP-TUB(BER)initerleaver leads
to an additional coding gain of approximately 0.1d5 in the BER domain (at
BER=10°%) and of approximately 0.3 dB in the FER domain R&R = 10°),
compared to the other two interleavers. The LS-QRBB{BER)min interleaver
leads to slightly weaker performance than LS-CPB{RER)min and LS-QPP-
TUB(FER)miIn interleavers. These gains are lower garad to those for AWGN
channel. The Rayleigh fading channel requires alitiadal SNR about 2 dB for
the same error rate compared to AWGN channel.

BER and FER curves are given in Figure 4 for tmgtle 120. For AWGN
channel, we note an additional coding gain for tf®CPP-TUB(BER)mIn
interleaver compared to the LS-QPP-TUB(BER)minrietver of approximately
0.255 dB, both in BER domain (at BER =9%and in the FER domain (at FER =
107).

For Rayleigh fading channel we note an additiowaling gain for the LS-
CPP-TUB(FER)min interleaver compared to LS-QPP-TERER)min interleaver
of approximately 0.15 dB in the BER domain (at BER 106) and of
approximately 0.5 dB in the FER domain (at FER Z)1@e also note a lower
gain for the BER and higher gain for the FER coragaio those for AWGN
channel, due to the fact that the interleaver waarched by minimizing
TUB(FER). Rayleigh fading channel again requiregdditional SNR about 2 dB
for the same error rate.
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BER (solid), FER (dashed)

-©- (5x+48x3)mod 120 (LS-CPP-TUB(BER)min for AWGN channel)
078 -+ (17x+90x2)mod 120 (LS-QPP-TUB(BER)min for AWGN channel)

107 - (5x+48x3)mod 120 (LS-CPP-TUB(FER)min for fading Rayleigh channel)
-8 (17x+9?x2)mod 120 (L‘S-QPP-TUB(FE‘R)min forfadinq Rayleigh chanr?el)

0 1 2 3 4 5
SNR [dB]

Fig. 4 BER and FER curves for LS-CPP-TUB(BER)min and LBFJTUB(BER)min interleavers
for AWGN channel, and for LS-CPP-TUB(FER)min andQ®P-TUB(FER)min interleavers for
Rayleigh fading channel, for length 120

6. Conclusions

The paper states and proves the necessary andiesufffconditions to be
met by the coefficients of a cubic permutation polyial to be a null permutation
polynomial. The result can be used to reduce ttercbhecomplexity of CPP
interleavers, avoiding the distance spectrum catmrn for an interleaver identical
to a previous one. On the basis of this result mparison is made in terms of
searching complexity for CPP and QPP interleaviérss shown that for CPP

interleavers the complexity increases for lengtnsa¢to L, of approximately%
times compared to that for QPP interleavers, wﬁﬁm and 3 L, of % times,

when3|L and 2] L, and of% times, wherg|L .

QPPs and CPPs of short lengths (multiples of 8véet 40 and 352) are
searched over the restricted set of polynomialk #ie largest spreading factor or
parameter D, by optimizing the distance spectrumA@/GN and independent
Rayleigh fading channel, respectively. This redutessearch complexity, being
mostly 2 to 4 times higher for CPPs than for QPE®Ps lead to better
performance for several lengths. The simulationSention 5 confirm this.
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