
J Sign Process Syst (2010) 61:329–345
DOI 10.1007/s11265-010-0456-y

A Split-Decoding Message Passing Algorithm
for Low Density Parity Check Decoders

Tinoosh Mohsenin · Bevan M. Baas

Received: 30 November 2009 / Revised: 25 January 2010 / Accepted: 25 January 2010 / Published online: 26 February 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract A Split decoding algorithm is proposed which
divides each row of the parity check matrix into two or
multiple nearly-independent simplified partitions. The
proposed method significantly reduces the wire inter-
connect and decoder complexity and therefore results
in fast, small, and high energy efficiency circuits. Three
full-parallel decoder chips for a (2048, 1723) LDPC
code compliant with the 10GBASE-T standard using
MinSum normalized, MinSum Split-2, and MinSum
Split-4 methods are designed in 65 nm, seven metal
layer CMOS. The Split-4 decoder occupies 6.1 mm2,
operates at 146 MHz, delivers 19.9 Gbps throughput,
with 15 decoding iterations. At 0.79 V, it operates at
47 MHz, delivers 6.4 Gbps and dissipates 226 mW.
Compared to MinSum normalized, the Split-4 decoder
chip is 3.3 times smaller, has a clock rate and through-
put 2.5 times higher, is 2.5 times more energy efficient,
and has an error performance degradation of 0.55 dB
with 15 iterations.

Keywords Low density parity check · LDPC ·
Iterative decoder · Split-Row · CMOS · 65 nm ·
10GBASE-T · VLSI

1 Introduction

Low density parity check (LDPC) codes first intro-
duced by Gallager [1] have recently received significant
attention due to their error correction performance

T. Mohsenin (B) · B. M. Baas
Department of Electrical and Computer Engineering,
University of California, Davis 95616 Davis CA, USA
e-mail: tmohsenin@ucdavis.edu

near the Shannon limit and their inherently par-
allelizable decoder architectures. Many recent com-
munication standards such as 10 Gigabit Ethernet
(10GBASE-T) [2], digital video broadcasting (DVB-
S2) [3], and WiMAX (IEEE 802.16e) [4] have adopted
LDPC codes. Implementing high throughput and en-
ergy efficient LDPC decoders remains a challenge
largely due to the high interconnect complexity and
high memory bandwidth requirements of existing de-
coding algorithms stemming from the irregular and
global communication inherent in the codes.

This paper overviews Split-Row and the more
general Multi-Split, two reduced complexity decod-
ing methods which partition each row of the parity
check matrix into two or multiple nearly-independent
simplified partitions. These two methods reduce the
wire interconnect complexity between row and column
processors, and simplify row processors leading to an
overall smaller, faster, and more energy efficient de-
coder. Full-parallel decoders, which are not efficient
to build due to their high routing congesting and large
circuit area, take the greatest benefit of Split decoding
method. In this paper, we present the first complete
overview of the Split decoding algorithm, architecture
and VLSI implementation.

The paper is organized as follows: Section 2 re-
views LDPC codes and the message passing algo-
rithm. In Section 3, LDPC decoder architectures are
explained. Sections 4 and 5 introduce Split-Row and
Multi-Split decoding methods, respectively, for regu-
lar permutation-based LDPC codes. The error per-
formance comparisons for different codes with the
multiple splitting method are shown in Section 6. The
mapping architecture of the multiple splitting method is
presented in Section 7. In Section 8 the results of three

330 J Sign Process Syst (2010) 61:329–345

full-parallel decoders implemented with the proposed
and standard decoding techniques are presented and
compared.

2 LDPC Codes and Message Passing Decoding
Algorithm

LDPC codes are defined by an M × N binary ma-
trix called the parity check matrix H. The number of
columns, N, defines the code length. The number of
rows in H, M, defines the number of parity check
constraints for the code. The information length K is
K = N − M for full-rank matrices, otherwise K = N −
rank. Column weight Wc is the number of ones per
column and row weight Wr is the number of ones per
row.

LDPC codes can also be described by a bipartite
graph or Tanner graph [5]. The parity check matrix and
the corresponding Tanner graph of a (Wc = 2, Wr = 4)

(N = 12, K = 7) LDPC code are shown in Fig. 1. The
rank of the matrix is 5, therefore the information length
K is 7. In the graph, there are two sets of nodes in the
Tanner graph: check nodes and variable nodes. Each
column of the parity check matrix corresponds to a vari-
able node in the graph represented by V. Each row of
the parity check matrix corresponds to a check node in
the graph represented by C. There is an edge between
a check node Ci and a variable node V j if the position
(i, j) in the parity check matrix is 1, or H(i, j) = 1.
For example, the first row of the matrix corresponds
to C1 in the Tanner graph which is connected to V3,
V5, V8 and V10 variable nodes. A variable node which
is connected to a check node is called the neighbor
variable node. Similarly, a check node that is connected
to a variable node is called the neighbor check node.

C1 C2 C3 C4 C5 C6

V1 V2 V3 V4 V5 V6 V7 V8 V9

100001010

010100001

001001100

001100010

100010001

10001100

H =

0 0 1 0 1 0 0 1 0 C1

V3 V4 V8V1 V2 V5 V6 V7 V9

C2

C3

C4

C5

C6

001
010

010

100

001

100

V11V10 V12

V10 V11 V12

Check nodes

Variable nodes

Figure 1 Parity check matrix (upper) and Tanner graph (lower)
representation of a 12 column (N), six row (M), column weight 2
(Wc), row weight 4 (Wr), LDPC code with information length 7
(K).

Total number of edges (connections) between variable
node and check nodes is N × Wc or M × Wr.

LDPC codes are commonly decoded by an itera-
tive message passing algorithm which consists of two
sequential operations: row processing or check node
update and column processing or variable node update.
In row processing, all check nodes receive messages
from neighboring variable nodes, perform parity check
operations and send the results back to neighboring
variable nodes. The variable nodes update soft informa-
tion associated with the decoded bits using information
from check nodes, then send the updates back to the
check nodes, and this process continues iteratively.

Sum-Product (SPA) [6] and MinSum (MS) [7] are
widely-used decoding algorithms which we refer to as
standard decoders in this paper. The following subsec-
tions describe these two algorithms in detail.

2.1 Sum Product Algorithm (SPA)

We assume a binary code word (x1, x2, ..., xN) is trans-
mitted using a binary phase-shift keying (BPSK) mod-
ulation. Then the sequence is transmitted over an
additive white Gaussian noise (AWGN) channel and
the received symbol is (y1, y2, ..., yN).

We define V(i)\ j as the set of variable nodes con-
nected to check node Ci excluding variable node j.
Similarly, we define the C(i)\ j as the set of check
nodes connected to variable node Vi excluding check
node j. For example in Fig. 1, V(1) = {V3, V5, V8, V10}
and V(1)\3 = {V5, V8, V10}. Also C(1) = {C2, C5} and
C(1)\2 = {C5}. Moreover, we define the following vari-
ables which are used throughout this paper.

λi is defined as the information derived from the log-
likelihood ratio of received symbol yi,

λi = ln

(
P
(
xi = 0

∣∣yi
)

P
(
xi = 1

∣∣yi
)
)

(1)

αij is the message from check node i to variable node
j. This is the row processing output.

βij is the message from variable node j to check node
i. This is the column processing output.

SPA decoding can be summarized in these four steps:

1) Initialization: For each i and j, initialize βij to the
value of the log-likelihood ratio of the received
symbol y j, which is λ j. During each iteration, α and
β messages are computed and exchanged between
variable nodes and check nodes through the graph
edges according to the following steps numbered
2–4.

J Sign Process Syst (2010) 61:329–345 331

2) Row processing or check node update: Compute αij

messages using β messages from all other variable
nodes connected to check node Ci, excluding the β

information from V j:

αijSPA =
∏

j′∈V(i)\ j

sign
(
βij′

) × φ

⎛
⎝ ∑

j′∈V(i)\ j

φ
(∣∣βij′

∣∣)
⎞
⎠ (2)

where the non-linear function φ(x) =
− log

(
tanh |x|

2

)
. The first product term in Eq. 2 is

the parity (sign) bit update and the second product
term is the reliability (magnitude) update.

3) Column processing or variable node update: Com-
pute βij messages using channel information (λ j)

and incoming α messages from all other check
nodes connected to variable node V j, excluding
check node Ci.

βij = λ j +
∑

i′∈C(j)\i

αi′ j (3)

4) Syndrome check and early termination: When col-
umn processing is finished, every bit in column j
is updated by adding the channel information (λ j)

and α messages from neighboring check nodes.

z j = λ j +
∑

i′∈C(j)

αi′ j (4)

From the updated vector, an estimated code vector
X̂ = {x̂1, x̂2, ..., x̂N} is calculated by:

x̂i =
{

1, if zi ≤ 0

0, if zi > 0
(5)

If H · X̂T = 0, then X̂ is a valid code word and there-
fore the iterative process has converged and decod-
ing stops. Otherwise the decoding repeats from step
2 until a valid code word is obtained or the number
of iterations reaches a maximum number, Imax, which
terminates the decoding process.

A block diagram of a standard serial decoder is
shown in Fig. 2 where row and column processors share
a memory to store α and β messages. For simplicity the
initialization and syndrome check stages are not shown.

2.2 MinSum Algorithm (MS)

The magnitude part of check node update in SPA
decoding can be simplified by approximating the mag-
nitude computation in the row processing step (Eq. 2),
with a minimum function. This algorithm is called

Figure 2 Standard two-phase
decoder block diagram.

Mem

ColRow

MinSum (MS) [7, 8], and the row processing output is
calculated by:

αijMinSum =
∏

j′∈V(i)\ j

sign
(
βij′

) × min
j′∈V(i)\ j

(∣∣βij′
∣∣) (6)

All other steps are the same as in SPA decoding.
The error performance loss of MS decoding can be
improved by normalizing the row processor outputs (α)

in Eq. 6 with a correction factor S ≤ 1 [9, 10], resulting
in the MinSum normalized algorithm.

αij = S ×
∏

j′∈V(i)\ j

sign
(
βij′

) × min
j′∈V(i)\ j

(∣∣βij′
∣∣) (7)

3 LDPC Decoding Architectures

The message passing algorithm is inherently parallel
because row processing operations are fully indepen-
dent with respect to each other, and the same is true for
column processing operations.

We define a metric called the parallelism fraction
(pfraction) which indicates the extent to which a hard-
ware implementation makes use of the available paral-
lelism as,

pfraction = numprocs
M + N

(8)

where numprocs is the sum of the number of row and
column processors in a particular decoder. Based on the
value of pfraction, LDPC decoders may be classified
into the three styles described in the following sections.

3.1 Serial Decoders

Serial decoders process one word at a time by using
one row and one column processor. Although they have
minimal hardware requirements, they also have a large
decoding latency and low throughput. A 4,096-bit serial
LDPC convolutional decoder [11] is implemented on
an Altera Stratix FPGA with pfraction = (

3
4,096+2,048

) =
0.00049. The decoder utilizes only 4K logic elements

332 J Sign Process Syst (2010) 61:329–345

and 776 Kbit memory, runs at 180 MHz, and delivers
9 Mbps throughput.

3.2 Partial-Parallel Decoders

Partial-parallel decoders [12–18] contain multiple
processing units and shared memories. A major chal-
lenge is efficiently handling simultaneous memory
accesses into the shared memories. Following are de-
tails of ten partial-parallel decoders containing 3–2,112
processors with pfraction from 0.001–0.87.

Two 2,048-bit partial-parallel decoders compliant
with 10GBASE-T standard are designed with a high
parallelism: The first one is a 47 Gbps decoder chip
designed with 2,048 column processors and 64 row
processors. It has a pfraction = (2,048+64

2,048+384

) = 0.87 and
occupies 5.35 mm2 in 65 nm CMOS. The second de-
coder is designed using a reduced routing complexity
decoding method, called Sliced-Message Passing. It uti-
lizes 512 column processor, 65 row processors, has a
pfraction = (

512+384
2,048+384

) = 0.37, occupies 14.5 mm2 and
delivers 5.3 Gbps in 90 nm.

A multi-rate 2,048-bit programmable partial-parallel
decoder chip [19] has a pfraction = (

64
2,048+1,024

) = 0.02,
utilizes about 50 Kbit memory, occupies 14.3 mm2

and delivers 640 Mbps in 0.18 μm technology. An
FPGA implementation of a 8,176-bit decoder [20] has
a pfraction = (

36
8,176+1,024

) = 0.004 and achieves source
decoding of 172 Mbps. A 1,536-bit memory-bank based
decoder [13] utilizes about 540 Kbit memory and has
pfraction = (

3
1,536+768

) = 0.001. A Virtex-II FPGA im-
plementation of the decoder runs at 125 MHz and
delivers 98.7 Mbps. A 64,800-bit DVB-S2 decoder chip
in 65 nm CMOS utilizes 180 processors and 3.1 Mb
of memory, attains a throughput of 135 Mbps [21],
occupies 6.07 mm2, handles 21 different codes, and thus
its pfraction ranges from 0.01–0.001. A 600-bit LDPC-
COFDM chip [22] employs 50 row processors and 150
column processors, has pfraction = (

200
600+450

) = 0.19,
delivers 480 Mbps, and occupies 21.45 mm2 in 0.18 μm
CMOS. A 6,912-bit decoder [23] implemented on a
Virtex-4 FPGA utilizes 64 processors with 46 Block-
RAMs, runs at 181 MHz, has 3.86–4.31 Gbps through-
put, and has pfraction from 0.005–0.007. A 32-processor
32-memory decoder [24] supports both IEEE 802.11n
and IEEE 802.16e codes, occupies 3.88 mm2, deliv-
ers 31.2–64.4 Mbps in 0.13 μm technology, and has
pfraction of 0.003–0.1. A multi-rate, multi-length de-
coder [25] has 18 processors, pfraction 0.005–0.01, and
runs at 100 MHz and delivers 60 Mbps on a Virtex-II
FPGA.

3.3 Full-Parallel Decoders

Full-parallel decoders directly map each node in the
Tanner graph to a different processing unit and thus
pfraction = 1. They provide the highest throughputs
and require no memory to store intermediate messages.
The greatest challenges in their implementation are
large circuit area and routing congestion which are
caused by the large number of processing units and the
very large number of wires between them.

A 1,024-bit full-parallel decoder chip [26] occupies
52.5 mm2, runs at 64 MHz and delivers 1 Gbps through-
put in 0.16 μm technology. Two full-parallel decoders
designed for 1,536-bit and 2,048-bit LDPC codes [27,
28] occupy 16.8 and 43.9 mm2 and deliver 5.4 and
7.1 Gbps, respectively in 0.18 μm technology. A 660-bit
decoder chip [29] occupies 9 mm2, runs at 300 MHz and
obtains 3.3 Gbps throughput in 0.13 μm technology. A
full-parallel decoder designed for a family of codes with
different rates and code lengths up to 1,024 bits, attains
2.4 Gbps decoding throughput [30].

Previous studies for reducing wire interconnect com-
plexity are based on reformulating the message passing
algorithm. The SPA decoder can be reformulated so
that instead of sending different α values, each check
node sends only the summation value in Eq. 2 to its
variable nodes. Then the α messages are recovered by
post-processing in the variable nodes. This results in a
26% reduction in total global wire length [31]. More
reformulation was performed so that both check nodes
and variable nodes send the summation values in Eqs. 2
and 3, respectively to each other [32]. MinSum was
reformulated so that the check node sends only the
minimum values to its variable nodes which results in
90% outgoing wire reduction from check nodes [33].
These architectures require more processing in row
and column processors with additional storage units to
recover α and β messages and therefore unfortunately
result in larger decoder areas.

4 Proposed Split-Row Decoding Method

The Split-Row decoding method is proposed to fa-
cilitate hardware implementations capable of: high-
throughput, high hardware efficiency, and high energy
efficiency.

In the Split-Row algorithm, row processing is par-
titioned into two blocks, where the row processing in
each partition is performed using only the input mes-
sages contained within its own partition, plus one cross-
partition sign bit. This stands in contrast to standard

J Sign Process Syst (2010) 61:329–345 333

H

HSplit-sp0 HSplit-sp1

100001010

010100001

001001100

001100010

100010001

10010100 001

010

010

100

001

100

0

C1sp0

V3 V5 V8 V10

C1sp1

100001010

010100001

001001100

001100010

100010001

10010100

H

001

010

010

100

001

100

0

C1

V3 V5

(a) (b)

V8 V10

Figure 3 The parity check matrix example highlighting the first
row processing step using a standard decoding (SPA or MinSum)
and b Split-Row decoding. The check node C1 and its connected
variable nodes are shown for each method.

decoding where row processing requires the passing of
all row processor input data across the entire row of the
parity check matrix. As an illustration, Fig. 3a shows a
parity check matrix highlighting the processing of the
first row using a standard decoding (SPA or MinSum)
method. The check node C1 is shown at the bottom and
connects to four variable nodes. The Split-Row method
is shown in Fig. 3b where the row processing is divided
into two parallel row processing blocks and the check
nodes connect to only two variable nodes within each
partition.

In the simplest possible split implementation of
not passing any information between partitions, a sig-
nificant error performance loss results. Thus, a sign bit
is passed between row processor halves with a single
wire. These are the only wires between partitions. A
block diagram of the Split-Row decoder with sign wires
between the two halves is shown in Fig. 4.

This architecture has two major benefits: 1) it de-
creases the number of inputs and outputs per row
processor, resulting in many fewer wires between
row and column processors, and 2) it makes each
row processor much simpler because the outputs are
a function of fewer inputs. These two factors make
the decoder smaller, faster, and more energy efficient.
In the following subsections, we show that Split-Row
introduces some error into the magnitude calculation
of the row processing outputs, and that the error can be
largely compensated with a correction factor.

4.1 SPA Split

From a mathematical point of view, all steps are similar
to the SPA decoder except the row processing step.
In each half of the Split-Row decoder’s row operation,
the parity (sign) bit update is the same as in the SPA

decoder, because the sign is passed between halves. The
magnitude part (the second product term) is updated
using half of the messages in each row of the parity
check matrix and this leads to an accuracy loss. We
denote the parity check matrix H divided into half
column wise by HSplit. VSplit(i)\ j denotes the set of
variable nodes in each half of the parity check matrix
connected to check node Ci, excluding variable node j.
For example, in Fig. 3b in the left half matrix, HSplit−sp0,
VSplit(1) = {V3, V5} and VSplit(1)\3 = {V5}. Therefore,
modifying Eq. 2 using half of the messages yields:

αijSPASplit =
∏

j′∈V(i)\ j

sign
(
βij′

) × φ

⎛
⎝ ∑

j′∈VSplit(i)\ j

φ
(∣∣βij′

∣∣)
⎞
⎠ (9)

If the β input messages for a Split-Row decoder and
an SPA decoder are the same in a particular decoding
step, then,

1. αijSPASplit and αijSPA have the same sign, and
2. |αijSPASplit| ≥ |αijSPA|.
Since the sign values are passed between each half, the
proof of the first assertion is straightforward. The proof
of the second assertion comes from the fact that φ is a
positive function and therefore the sum of half of the
positive values is less than or equal to the sum of all:∑
j′∈VSplit(i)\ j

φ
(∣∣βij′

∣∣) ≤
∑

j′∈V(i)\ j

φ
(∣∣βij′

∣∣) (10)

Also φ(x) is a decreasing function, therefore the follow-
ing inequality holds:

φ

⎛
⎝ ∑

j′∈VSplit(i)\ j

φ
(∣∣βij′

∣∣)
⎞
⎠ ≥ φ

⎛
⎝ ∑

j′∈V(i)\ j

φ
(∣∣βij′

∣∣)
⎞
⎠ (11)

And we obtain:∣∣αijSPASplit
∣∣ ≥ ∣∣αijSPA

∣∣ (12)

Col

Mem

Col

Mem

Row Row

SignSp1_0
SignSp0_1

split

Sp0 Sp1

split

Figure 4 Block diagram of the proposed Split-Row decoder.

334 J Sign Process Syst (2010) 61:329–345

To reduce the difference between αSPASplit and αSPA,
αSPASplit values are multiplied by a correction factor S
less than one according to:

αijSPASplit = S ×
∏

j′∈V(i)\ j

sign
(
βij′

) × φ

⎛
⎝ ∑

j′∈VSplit(i)\ j

φ
(∣∣βij′

∣∣)
⎞
⎠
(13)

4.2 MinSum Split

Similarly, in the MinSum Split decoder the sign bit is
computed using the sign bit of all messages across the
whole row of the parity check matrix. The magnitude of
a message in each half is computed using the minimum
of the messages in each half.

αijMinSumSplit =
∏

j′∈V(i)\ j

sign
(
βij′

) × min
j′∈Vsplit(i)\ j

(∣∣βij′
∣∣) (14)

It is clear that the minimum value among half of the
messages is equal to or larger than the minimum value
of all messages. Therefore, we obtain:∣∣αijMinSumSplit

∣∣ ≥ ∣∣αijMinSum
∣∣. (15)

To reduce the difference between αMinSumSplit and
αMinSum, αMinSumSplit values are multiplied by a correc-
tion factor S less than one according to:

αijMinSumSplit = S×
∏

j′∈V(i)\ j

sign
(
βij′

)× min
j′∈Vsplit(i)\ j

(∣∣βij′
∣∣) (16)

The correction factor S is relatively easily obtained
empirically through simulations and examples are given
in Section 6.

5 Multi-Split Decoding Method

To further reduce interconnect and decoder com-
plexity, the Multi-Split method partitions matrix rows
into Spn multiple blocks (called Split-Spn). This re-
quires new circuits to correctly process sign bits among
multiple blocks and is especially beneficial for regu-
lar permutation-based high row-weight (Wr ≥ 16) de-
coders. A Multi-Split parity check matrix highlighting
the row processing operation is shown in Fig. 5. We
denote each partition of the parity check H which is di-
vided into Spn partitions column wise by HSplit-Spk, k =
0, ..., n. As shown in the figure, in row processing
(check-node update) there are only Wr/Spn nodes to be
processed in each partition, resulting in even less com-
plex processing and wire interconnect in each partition.

In each partitioned Multi-Split row operation, the
parity (sign) bit update is the same as in the SPA

M
 r

o
w

s
co

l w
ei

g
h

t
=W

c

H =

1
1

1
1

1
1

1
1

1
1

1

1

1

1

1
1

1
1

1
1

1
1

1

1

1
1

1 1

1

1

1

1

1

1

1
1

1

1

1

1
1 1

1

1

1
1

1

1
1

1

1

N/Spn columns
row weight=Wr/Spn

N/Spn columns
row weight=Wr/Spn

HSplit-Sp0 HSplit-Sp1 HSplit-Spn-1

N/Spn columns
row weight=Wr/Spn

Figure 5 The parity check matrix of a (Wc, Wr) (N, K)

permutation-based LDPC code highlighting the first row process-
ing operation with Spn-way splitting (Multi-Split) method.

decoder, since it uses sign bits from across the row of
the matrix. The magnitude part is updated using the
messages of its own partition of the parity check matrix.
Similar to the Split-Row method, the magnitude part
of the row processor output, α, is larger than that of
the SPA decoder. Therefore the error performance can
be improved by multiplying the αSplit-Spk values with a
correction factor S less than one. Modifying Eq. 2 using
the messages in each partition yields:

αijSPASplit-Spk = S ×
∏

j′∈V(i)\ j

sign
(
βij′

)×φ

⎛
⎝ ∑

j′∈VSplit-Spk(i)\ j

φ
(∣∣βij′

∣∣)
⎞
⎠

(17)

VSplit-Spk(i)\ j denotes the set of variable nodes in each
partition of the parity check matrix (HSplit-Spk) which
connects to check node Ci, excluding variable node j.

Similarly, in MinSum Multi-Split, row processor out-
puts are normalized with a correction factor S:

αijMinSumSplit-Spk = S ×
∏

j′∈V(i)\ j

sign
(
βij′

)× min
j′∈VSplit-Spk(i)\ j

(∣∣βij′
∣∣)

(18)

Figure 6 shows how the sign bits are calculated ac-
cording to Eq. 17 or Eq. 18. The top half of the figure
shows a block diagram of a decoder using an Spn-way
splitting method. A small number of sign wires pass
between decoder partitions. The bottom half shows the
sign logic inside each row processor. Local sign bits are
generated inside each block simultaneously, resulting in
lower latencies. The final local sign bits are calculated
using 1 or 2 bits from adjacent blocks and are used to
generate sign bits for output messages.

J Sign Process Syst (2010) 61:329–345 335

Sp1Sp0 Spn-1

SignSp0_1

SignSp1_0

SignSp1_2

SignSp2_1

SignSpn-2_n-1

SignSpn-1_n-2

final Local
sign

 local signs local signs local signs

final Local
sign

final Local
sign

MemMem

Col Col

Mem

ColRowRowRow

SignSp0_1

SignSp1_0

SignSp1_2

SignSp2_1

SignSpn-2_n-1

SignSpn-1_n-2

Figure 6 Multi-Split decoder with Spn-way splitting method,
highlighting inter-partition sign wires and the simplified logic for
implementation of the sign bit in each row processor.

6 Correction Factor and Error Performance
Simulation Results

6.1 Split-Row Correction Factors

Finding the optimal correction factor for the Split-Row
algorithm that results in the best error performance re-
quires complex analysis such as density evolution [34].
For simplicity and to account for realistic hardware
effects, the correction factors presented in this paper
are determined empirically based on bit error rate
(BER) results for various SNR values and numbers of
decoding iterations.

As the number of partitions increases, a smaller
correction factor should be used to normalize the error
magnitude of row processing outputs in each partition.
This is because for SPA Multi-Split, as the number of
partitions increases, the summation on the left side of
Eq. 10 decreases in each partition and since φ(x) is a
decreasing function, the summation on the left side of
Eq. 11 becomes larger which results in larger magnitude
row processing outputs in each partition. For MS Multi-
Split, except for the partition which has the global
minimum, the difference between local minimums in
most other partitions and the global minimum becomes
larger as the number of partitions increases. Thus, the
average row processor output magnitude gets larger as
the number of partitions increases and a smaller correc-
tion factor is required to normalize the row processing
outputs in each partition.

Achieving an absolute minimum error performance
would require a different correction factor for each
row processor output—but this is impractical because
it would require knowledge of unavailable informa-
tion such as row processor inputs in other partitions.
Since significant benefit comes from the minimization
of communication between partitions, we assume a con-
stant correction factor for all row processing outputs.
This is the primary cause of the error performance loss
and slower convergence rate of Split-Row.

Figure 7 plots the error performance of a (6,32)
(2048, 1723) RS-based LDPC code [35] when decoded
with (a) MinSum Split-2 and (b) MinSum Split-4 meth-
ods versus correction factors for various SNR values
with a maximum of 15 decoding iterations. As shown
in the figures, there is a strong dependence of the error
performance on the correction factor magnitudes. The
optimum correction factors are different for different
SNR values, although the variations are very small.
In MinSum Split-2 the optimum correction factors for

Figure 7 Determination of
correction factor for a (6,32)
(2048, 1723) RS-based LDPC
code using a MinSum Split-2
and b MinSum Split-4
decoders. The optimal
correction factor variations
with the SNR values are very
small with the average value
of 0.3 for Split-2 and 0.19 of
Split-4.

0 0.2 0.4 0.6 0.8 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Correction Factor (S)

 (b)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

0 0.2 0.4 0.6 0.8 1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Correction Factor (S)

 (a)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SNR=3.0
SNR=3.2
SNR=3.4
SNR=3.6
SNR=3.8
SNR=4.0
SNR=4.2
SNR=4.4
SNR=4.6

SNR=3.0
SNR=3.2
SNR=3.4
SNR=3.6
SNR=3.8
SNR=4.0
SNR=4.2
SNR=4.4

Optimal correction factor
 at 4.4 dB=0.3 Optimal correction factor

at 4.6 dB=0.22

336 J Sign Process Syst (2010) 61:329–345

Table 1 Average optimal correction factor S for different con-
structed regular codes.

(N, K) (Wc, Wr) Average optimal correction factor S

SP-2 SP-4 SP-6 SP-8 SP-12

(1536, 770) (3, 6) 0.45 + − + +
(1008, 507) (4, 8) 0.35 − + − +
(1536, 1155) (4, 16) 0.4 0.25 + − +
(8088, 6743) (4, 24) 0.4 0.27 0.22 − −
(2048, 1723) (6, 32) 0.3 0.19 + 0.15 +
(16352, 14329) (6, 32) 0.4 0.25 + 0.17 +
(8176, 7156) (4, 32) 0.4 0.24 + 0.17 +
(5248, 4842) (5, 64) 0.35 0.25 + 0.2 +
(5256, 4823) (6, 72) 0.35 0.2 0.18 0.15 0.14

+ indicates that the row weight of the code is not evenly divisible
by that level of splitting, − indicates that the row weight for
that level of splitting is very small and error performance loss is
therefore significant (≥0.7 dB).

SNR ranges of 3.4–4.4 dB are between 0.28–0.32 with
an average of 0.3 and a variation from the mean of
±0.016 (±5%). In MinSum Split-4 the optimum cor-
rection factor is in the range 0.16–0.22 with an aver-
age of 0.19 and a variation of ±0.02 (±11%). Similar
analysis was performed for various maximum numbers
of decoding iterations and simulation results indicate
the optimum correction factors remain the same as the
values shown in Fig. 7.

Since the error performance improvements are small
(≤0.07 dB) if a decoder used multiple correction factors
for different SNR values, we use the average value as
the correction factor for the error performance simula-
tions in this paper.

Table 1 summarizes the average optimal correction
factors for different regular constructed permutation-
based codes with various levels of splitting. Multi-Split
is specially beneficial for regular high row weight codes.
Correction factors decrease in magnitude as the level of
splitting increases; but the correction factor varies little
across the wide variety of codes for the same level of
splitting.

6.2 Error Performance Results

All simulations assume an additive white Gaussian
noise channel with BPSK modulation. BER results
presented here were made using simulation runs with
more than 100 error blocks each and with a maximum
of 15 iterations (Imax = 15) or were terminated early
when a zero syndrome was detected for the decoded
codeword.

Figure 8 shows the bit error rate (BER) for the same
code using standard, Split-2 and Split-4 decoding with
SPA and MinSum algorithms. The error performance

2 2.5 3 3.5 4 4.5 5
10

10

10

10

10

10

10

10

Eb/N0 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SPA
MinSum Normalized

Figure 8 BER performance of the (6, 32) (2048, 1723) code
using the Multi-Split method in SPA and MinSum decoders with
optimal correction factors.

of SPA Split-2 is approximately 0.35 dB away from
SPA and SPA Split-4 is 0.2 dB away from SPA Split-
2 at BER = 10−7. The BER curves show that when
using the same level of splitting in SPA and MinSum
decoders, the error performance of MinSum Split is
about 0.05 dB away from the SPA Split decoder.

Figure 9 shows the error performance of the (4,32)
(8176, 7156) Euclidean geometry-based QC-LDPC
code [36] using standard and Split-2 decoding in SPA
and MinSum algorithms. Also shown are reduced com-
plexity hard decision algorithms: Bit-Flipping (BF) [1],
weighted Bit-Flipping (WBF) [37], and improved
WBF [38]. Split-2 performs approximately 0.5 dB away

0 1 2 3 4 5 6 7
10

10

10

10

10

10

10

Eb/N0(dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

SPA
MinSum Normalized

Improved WBF
WBF
BF

Figure 9 Error performance comparison with different decoding
algorithms for a (4, 32) (8176, 7156) QC-LDPC code.

J Sign Process Syst (2010) 61:329–345 337

3.5 4 4.5 5 5.5
10

10

10

10

10

10

10

10

Eb/N0(dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y

MinSum Norm

Figure 10 BER performance of a (6, 72) (5256, 4823) QC-LDPC
code using various MinSum decoders with different levels of
splitting and near-optimal correction factors.

from the SPA and MS decoders and attains around
1.7 dB gain over improved WBF at BER = 2 × 10−7.

With high row-weight codes, the H matrix can be
split into more blocks reducing the decoder complexity
even further. As an example, Fig. 10 shows the error
performance for a (6,72) (5256, 4823) code with row
weight 72 using MinSum normalized algorithm with
different levels of splitting and with near-optimal cor-
rection factors. Changing from MinSum to Split-2 loses
about 0.25 dB. Then, from Split-2 through Split-4, 6, 8,
and all the way to Split-12 results in small degradations
of less than 0.1 dB in each step, and the total from
Split-2 to Split-12 is only 0.3 dB loss at BER = 10−7.

7 Full-Parallel MinSum Multi-Split Decoders

Figure 11 shows the top level block diagram of a
full-parallel decoder for an N-bit and M-parity check
code using the Multi-Split method. The decoder uses
a two-phase row and column processing method. The

Min

Sign (1)

Min1

Min2

1

wr /Spn
| 1|

SignSpk+1 SignSpk

Sign(wr/Spn)

| 1|

| wr/Spn |

Sign (wr/Spn)

| wr/Spn |

Sign(1)

SignSpk-1

Index Min1 Comp

Index 1

Index Min1 Comp

Index wr/Spn

Sign Logic for
Multi-Split

Figure 12 Row processor block diagram of MinSum Multi-Split
for partition Spk, with sign logic on top and magnitude calcula-
tion of α at the bottom.

pipelined decoder is partitioned into Spn sub-blocks
where the row processors are interconnected by 2M
sign wires (each row processor sends its sign bit and
receives a sign bit from the row processor in the neigh-
boring partition). Each partition consists of M row
processors and N/Spn column processors. The α mes-
sages from each row processor are routed to column
processors according to the parity check matrix struc-
ture. Similarly, β messages are sent to corresponding
row processors after syndrome check and after being
synchronized by the global clock signal.

The row processor block diagram for the MinSum
Multi-Split decoder in partition Spk is shown in Fig. 12.
Each row processor has Wr/Spn inputs (β) and Wr/Spn
outputs (α) (instead of the Wr inputs and outputs in
MinSum and SPA). The inputs arrive in sign-magnitude
format in parallel. The XOR circuits on top gener-
ate the sign bit for each αi message and the output

Figure 11 Top level block
diagram of a full-parallel
decoder corresponding to an
M × N parity check matrix,
using Split-Row with Spn
partitions. The inter-partition
Sign signals are highlighted.
J = N/Spn, where N is the
code length.

Row
1

Row
2

Row
M

Sign Sp0

Sign Sp1

Sign Spn-2

Sign Spn-1

Sign Sp1

Sign Sp2

Sp0 Spn-1

Col
(Spn-1)J+1

Col
N-1

Col
(Spn-1)J

Col
1

Col
J-1

Col
0

Sp1

Col
J+1

Col
2J-1

Col
J

Syndrome Check

2 M sign
wires

Row
1

Row
2

Row
M

Row
1

Row
2

Row
M

338 J Sign Process Syst (2010) 61:329–345

Figure 13 Column processing unit block diagram.

sign (SignSpk) to the nearest neighbors. In partition
Spk, sign bits from partitions Spk − 1 and Spk + 1
are received, XORed with the local sign bit result-
ing SignSpn, which is sent to partition Spk + 1 and
Spk − 1. The sign bit for αi is the 1-bit multiplication
of all neighboring sign bits and the sign bit of local
β messages, excluding βi. The Min block finds the
smallest magnitude (Min1) and the second smallest
magnitude (Min2) among all β messages in the row of
the partition. It also outputs the location of Min1 (In-
dexMin1). For each output (αi), the Mux selects Min2 if
(IndexMin1=Indexαi), otherwise it selects Min1 [39].

Figure 13 shows the block diagram of the column
processor. Similar to MinSum normalized, the messages
from row processors (check nodes) are multiplied by
the correction factor S. This correction scheme can
be implemented with shift registers if the correction
factor is a power of 2, or can be implemented using
lookup tables—both have small circuit area and com-
plexity. The number of inputs and outputs to each
column processor (Wc, which is the column weight
of parity check matrix) and their processing are the
same as standard decoding (SPA or MS). After being
converted from sign-magnitude to 2’s complement, α

and λ are added together to generate β according to
column processing equation Eq. 3. β messages are then
converted to sign-magnitude for use in row processing
in the next iteration.

8 Decoder Implementation Example and Results

To precisely quantify the benefits of the Split-Row and
Multi-Split algorithms when built into hardware, we
have implemented three MinSum full-parallel decoders
for the (2048, 1723) 10GBASE-T code using MinSum
normalized, Split-2 and Split-4 methods. The decoders
were developed using Verilog to describe the architec-
ture and hardware, synthesized with Synopsys Design
Compiler, and placed and routed using Cadence SOC
Encounter. All designs were created in ST Microelec-
tronics’ 65 nm, 1.3 V low-leakage, seven-metal layer
CMOS.

Table 2 Summary of the key parameters of the implemented
(6,32) (2048, 1723) 10GBASE-T LDPC code.

Code length, No. of columns (N) 2,048
Information length (K) 1,723
Parity check equations, No. of rows (M) 384
Row weight (Wr) 32
Column weight (Wc) 6
Size of permutations 64

The parity check matrix of the (2048, 1723) code has
384 rows and is composed of 6 × 32 sub-matrices. Each
sub-matrix is a 64 × 64 permutation. Table 2 summa-
rizes the code parameters that specify all three decoder
implementations.

The full-parallel decoder maps each variable node
to one column processor and each check node to one
row processor. Figure 14 shows the mapping block
diagrams for full-parallel decoders using (a) MinSum
normalized, (b) Split-2 and (c) Split-4 architectures.
The MinSum normalized decoder has 384 row and
2,048 column processors corresponding to the parity

Col

1

Col

16

Row

Sp0

Col

17

Col

32

Row

Sp1

SignSp1_0

SignSp0_1

Col

1

Col

2

Col

32

Row

Row

Sp1
Row

Sp2

Row+Col

Sp1

Row+Col

Sp2

Row+Col

Sp0

Col

9

Col

16

Col

17

Col

25Row

Sp0
Row

Sp3

Col

1

Col

8

Col

26

Col

32

Row+Col

Sp1

Row+Col

Row+Col

Sp0

Row+Col

Sp3

(a) (b)

(c)

Figure 14 Mapping a full-parallel decoder with a MinSum nor-
malized b Split-2 and c Split-4 decoding methods for the (6, 32)
(2,048, 1,723) code.

J Sign Process Syst (2010) 61:329–345 339

check matrix dimensions M and N, respectively. As
seen in Fig. 3 and further described in Section 7, the
split architectures reduce the number of interconnects
by reducing the number of columns per sub-block by a
factor of 1/Spn. Thus, in each Split-2 sub-block there
are again 384 row processors (though simplified), but
only 1,024 column processors. For Split-4 there are only
512 column processors in each sub-block. The area and
speed advantage of a Multi-Split decoder is significantly
higher than in a MinSum normalized version due to
the benefits of smaller and relatively lower complexity
partitions, each of which communicate using short and
structured sign passing wires.

8.1 Effects of Fixed-Point Number Representation

One of the major issues when realizing decoder archi-
tectures is the choice of number representation. Al-
though software simulations can show the trade-off in
error performance due to quantization noise, it does
not give any indication of the hardware costs. Figure 15
compares the error performance of floating-point and
5-bit fixed-point implementations of MinSum normal-
ized, MinSum Split-2 and MinSum Split-4 decoders.
The MinSum fixed-point is less than 0.1 dB away from
MinSum floating point. The error performance loss in
Split-2 and Split-4 fixed-point is about 0.15 dB com-
pared to their floating-point equivalents. Because of
this reasonable loss in error performance compared to
floating-point and its greatly reduced hardware costs,
we focus only on trade-offs of fixed-point word widths.

2.5 3 3.5 4 4.5 5
10

10

10

10

10

10

10

10

Eb/N0 (dB)

B
it
 E

rr
o
r

P
ro

b
a
b
ili

ty

MinSum Normalized Floatingpoint

Figure 15 Final layout of a MinSum normalized, b MinSum
Split-2 and c MinSum Split-4 decoder chips, shown approximately
to scale.

Although there have been several studies on the
quantization effects in LDPC decoders [10, 40], as a
base overview of the effects of word length in a de-
coder’s datapath we will uniformly change the word
widths of the λ, α and β messages. For a fixed-point
datapath width of q bits, the majority of the decoder’s
hardware complexity can be roughly estimated by the
wires going to and from column and row processors.
For M row processors, the total number of word
busses that pass α messages is M × Wr, while N col-
umn processors that pass β messages require N × Wc

messages. Therefore, the total number of global com-
munication wires is q × (M × Wr + N × Wc). Increas-
ing the word width of the datapath from a 5-bit to
6-bit fixed-point representation—4.1 and 4.2 formats,
respectively—increases the number of global wires by
M × Wr + N × Wc. However, the complexity caused
by additional wires is not a simple linear relationship.
When designed in a chip, every additional wire results
in a super-linear increase in circuit area and delay [26].

On the other hand, using wider fixed-point words im-
proves the error performance. BER simulations show
an approximate 0.07–0.09 dB improvement in all three
decoders when using 6-bit words (4.2) instead of 5-bit
words (4.1). To achieve this improved performance for
MinSum normalized with one additional bit, the num-
ber of wires increases by M × Wr + N × Wc, but for
Multi-Split the increase is only M×Wr +(N/Spn)×Wc

per block. Synthesis results for a 6-bit implementation
of Split-2 and Split-4 show that the row and column
processors have a 12% and 8% area increase respec-
tively, without any reduction in clock rate, compared
to a 5-bit implementation using the same constraints.
Thus, the error performance loss of the Split-2 and
Split-4 decoders can be reduced by using a larger fixed-
point word with a small area penalty.

8.2 Area, Throughput and Power Comparison

Figure 16 shows the final chip layouts of the (a)
MinSum normalized, (b) MinSum Split-2 and (c)
MinSum Split-4 decoders, and Table 3 summarizes
their post-layout results. In Split-2 and Split-4, although
the number of row processors increases with higher
splitting levels (they are replicated Spn times), Fig. 16
highlights the fact that total chip size is actually reduced
with these Split decoders.

To achieve a fair comparison between all three archi-
tectures, a common CAD tool design flow was adopted.
The synthesis, floorplan, and place and route stages
of the layout were automated with minimal designer
intervention.

340 J Sign Process Syst (2010) 61:329–345

Figure 16 BER performance
of a (6, 32) (2048, 1723)
LDPC code with
floating-point and fixed-point
5-bit 4.1 implementations of
MinSum normalized,
MinSum Split-2 and MinSum
Split-4 with optimal
correction factors.

(a) (b) (c)

Since Split-Row reduces row processor area and
eliminates significant communication between row and
column processors (causing them to operate as smaller
nearly-independent groups), layout becomes much
more compact and automatic place and route tools can
converge towards a better solution in a much shorter
period of time.

As shown in Table 3, Split-4 achieves a high area
utilization (the ratio of standard cell area to total chip
area) and a short average wire length compared to the
MinSum normalized decoder whose many global row
and column processor interconnections force the place
and route tool to spread standard cells apart to provide
sufficient space for routing.

As an additional illustration, Table 3 provides a
breakdown of the basic contributors of layout area,
which shows the dramatic decrease in % area without
standard cells (i.e., chip area with only wires) with an
increased level of splitting.

The critical path delay in Split-4 is about 2.3 times
shorter than that of MinSum normalized. Place and
route timing analysis and extracted delay/parasitic an-
notation files (i.e., SDF) show that the critical path
delay is composed primarily of a long series of buffers
and wire segments. Some buffers have long RC delays
due to large fanouts of their outputs. For the MinSum
decoder, the sums of interconnect delays caused by
buffers and wires (intrinsic gate delay and RC delay)
is 13.1 ns. In Split-2 and Split-4, the total interconnect
delays are 5.1 ns and 6.2 ns, respectively, which are 2.6
and six times smaller than that of MinSum. Thus, Split-
4’s speedup over MinSum normalized is due in part to
its simplified row processing, but the major contributor
is the significant reduction in column/row processor
interconnect delay.

To summarize Split-Row’s benefits, the Split-4 de-
coder occupies 6.1 mm2, which is 3.3 times smaller
than MinSum normalized. It runs at 146 MHz and with

Table 3 Comparison of the
three full-parallel decoders
implemented in 65 nm CMOS
for a (6, 32) (2048, 1723)
code.

All area values are for final
placed and routed layout.
Maximum number of
iterations Imax = 15.

MinSum Split-2 Split-4
normalized MinSum MinSum

CMOS fabrication process 65 nm CMOS, 1.3 V
Area utilization (%) 38% 50% 85%
Average wire length (μm) 175.2 115.5 73.8
Area per sub-block (mm2) 20 6.9 1.5
Total layout area (mm2) 20 13.8 6.1

% area for row processors 13.2% 19.2% 41.3%
% area for column processors 8.0% 11.6% 26.0%
% area for registers and clock tree 16.8% 19.2% 17.7%
% area without standard cells 62.0% 50.0% 15.0%

Maximum clock rate (MHz) 59 110 146
Power dissipation (mW) 1,941 2,179 1,889
Throughput @Imax = 15 (Gbps) 8.1 15.0 19.9
Energy per bit @Imax = 15 (pJ/bit) 241 145 95
Average iterations @ BER = 3 × 10−5, 3.8 4.8 4.9

Imax = 15 (Iavg)
Throughput @Iavg (Gbps) 31.8 46.9 61.0
Energy per bit @Iavg (pJ/bit) 61 46 31

J Sign Process Syst (2010) 61:329–345 341

15 iterations it attains 19.9 Gbps decoding throughput
which is 2.5 times higher, while dissipating 95 pJ/bit—a
factor of 2.5 times lower than MinSum normalized.

Although it is not possible to exactly quantify the
benefit of chip area reductions, chip silicon area is a
critical parameter in determining chip costs. For exam-
ple, reducing die area by a factor of 2 results in a die
cost reduction of more than two times when considering
the cost of the wafer and die yield [41]. Other chip
production costs such as packaging and testing are also
significantly reduced with smaller chip area.

At a supply voltage of 0.79 V, the Split-4 decoder
runs at 47 MHz and achieves the minimum 6.4 Gbps
throughput required by the 10GBASE-T standard [2].
Power dissipation is 226 mW at this operating point.
These estimates are based on measured data from a
chip that was recently fabricated on the exact same
process and operates correctly down to 0.675 V [42].

8.3 Wire Statistics

Figure 17 shows the wire length distribution of (a) Min-
Sum normalized, (b) MinSum Split-2, and (c) MinSum
Split-4 decoders. Compared to the MinSum decoder,
the longest wire in Split-2 and Split-4 is 1.9 times and
3.6 shorter, respectively. The average wire length in
Split-2 and Split-4 is about 1.5 and 2.4 times shorter,
respectively, than the MinSum decoder.

The total number of sign-passing wires between sub-
blocks in the Multi-Split methods is 2(Spn − 1)M. For
these decoders where M = 384, the sign wires in Split-
2 are only 0.12% of the total number of wires and in
Split-4 they are only 0.30% of the total.

0 2000 4000 6000 8000
1

100

10000

1000000

Wire Length (um)
(a) MinSum normalized

N
um

be
r

of
 W

ire
s

Longest wire
= 7909 um

0 2000 4000 6000 8000
1

100

10000

1000000

Wire Length (um)

N
um

be
r

of
 W

ire
s

Longest wire
= 4245 um

0 2000 4000 6000 8000
1

100

10000

1000000

Wire Length (um)

N
um

be
r

of
 W

ire
s

Longest wire
= 2208 um

(b)

(c)

Figure 17 Wire length distribution for a MinSum normalized,
b MinSum Split-2 and c MinSum Split-4 decoders.

The source of Multi-Split’s benefits are now clear:
the method breaks row processors into multiple blocks
whose internal wires are all relatively short. These
blocks are interconnected by a small number of sign
wires. This results in denser, faster and more energy
efficient circuits.

8.4 Analysis of Maximum and Average Numbers
of Decoding Iterations

The maximum number of decoding iterations strongly
affects the best case error performance, the maximum
achievable decoder throughput, and the worst case en-
ergy consumption. Fortunately, the majority of frames
require only a few decoding iterations to converge
(specially at high SNRs). By detecting early decoder
convergence, throughput and energy can potentially
improve significantly while maintaining the same error
performance. Early convergence detection is done by
a syndrome check circuit [14, 43] which checks the
decoded bits every cycle (see Fig. 11) and terminates
the decoding process when convergence is detected.
Decoding of a new frame can begin if one is available.

Post-layout results show that the syndrome check
block for a (2048, 1723) code occupies only approx-
imately 0.1 mm2 and its maximum delay is 2 ns. By
adding a pipeline stage for the syndrome check, the
block’s delay does not add at all to the critical path
delay of the decoder.

Figure 18 compares the BER of MinSum normal-
ized, MinSum Split-2, and MinSum Split-4 when decod-
ing the (2048, 1723) code with a maximum number of
decoding iterations (Imax). At every simulation point
the average number of iterations resulting in conver-
gence is also shown. At the same BER and with an
identical Imax setting, the average number of iterations
in Split-2 is 1.2 to 1.4 times larger than MinSum nor-
malized, and Split-4 is 1.3 to 1.5 times larger. Despite
requiring more decoding iterations per block, the Split-
2 and Split-4 decoders achieve a throughput 1.5 and 1.9
times higher and energy dissipations 1.3 and 2.0 times
lower, respectively, when compared to the MinSum
decoder at BER = 3 × 10−5. These data are detailed in
Table 3.

Figure 19 shows the (a) average throughput and
(b) average energy dissipation per bit for the same
group of decoders shown in Fig. 18 as a function of SNR
(at different Imax). The variance across SNR is caused
by a varying number of decoding iterations to achieve
convergence (see Fig. 18). For throughput results, we
assume that there is always a new frame to be decoded
upon request.

342 J Sign Process Syst (2010) 61:329–345

3.8 4 4.2 4.4

10

10

10

10

4.5

3.6

3.1

2.4

4.2

3.5

3.1

2.7

3

3

2.8

2.6

10.1

6.6 4.8

3.9

8.6

6.4

4.8

3.9

12.1

8.7

6.2

4.9

Eb/N0 (dB)

B
it

E
rr

or
 P

ro
ba

bi
lit

y
MS Imax=15
MS Imax=5
MS Imax=3

Figure 18 Error performance of the MinSum normalized,
MinSum Split-2 and MinSum Split-4 decoders for (2,048, 1,723)
code with various maximum number of iterations (Imax). The av-
erage number of decoding iterations is shown at every simulation
point.

It is interesting to compare decoders at the same
BER. From Fig. 18, Split-2 at Imax = 20 and MinSum
normalized at Imax = 5 both have nearly the same
BER. But the Split-2 implementation has 1.2 to 1.3
times higher throughput while consuming 1.1 times
lower energy for SNR values larger than 4.1 dB. Sim-
ilarly, Split-4 at Imax = 15 and MinSum normalized at
Imax = 3 have nearly equal BER, but Split-4 has 1.1 to
1.3 times greater throughput and 1.1 to 1.4 times lower
energy dissipation for SNR values larger than 4.1 dB.

In summary, with the same maximum number of
decoding iterations (Imax) and at the same BER, the
average number of decoding iterations (Iavg) of Split-
2 and Split-4 are larger than that of MinSum normal-
ized, but they still have larger throughput and energy
efficiency at high SNR values. The maximum num-
ber of decoding iterations for MinSum normalized can

be lowered until it obtains the same BER as Split-2
and Split-4. Even when MinSum normalized operates
with a much lower number of iterations, Split-2 and
Split-4 have higher throughput and energy efficiencies
for most SNR values. In addition, Split-2 and Split-4
require 1.4 times and 3.3 times smaller circuit area,
respectively, than the MinSum normalized decoder.

8.5 Comparison with Other Chips

The post-layout simulation results of the described
MinSum Split-4 decoder and two recently published
full-parallel LDPC decoder chips [26, 29] are summa-
rized in Table 4. Results for two supply voltages are
reported for the Split-4 decoder: a nominal 1.3 V and
0.79 V, which is the minimum voltage that can achieve
the 6.4 Gbps throughput required by the 10GBASE-T
standard.

The (3.25, 6.5) (1024, 512) full-parallel decoder by
Blanksby [26] (average row weight and column weight
numbers are given) uses hierarchy-based and hand-
placed design flow for routing and timing optimization.
The Bit-Serial (4, 15) (660, 480) full-parallel decoder by
Darabiha [29] uses a serial transfer of messages bet-
ween the processing units to reduce routing congestion.

Although we are comparing only full-parallel de-
coders with each other, it is still challenging to fairly
compare these decoders since they implement different
LDPC codes (including code length, row weight, and
column weight), different rates, and different CMOS
technologies. Basic metrics such as throughput, energy,
and circuit area are unfortunately complex functions of
these parameters.

Table 4 gives the No. of edges in LDPC code,
for each of the decoders. This value is a fraction of
the number of global wires in a full-parallel decoder
and it therefore gives a good first-order estimate of a

Figure 19 a Average
decoding throughput and
b average energy dissipation
per bit in MinSum
normalized, MinSum Split-2
and MinSum Split-4 decoders
as a function of SNR and the
average decoding iteration
for different maximum
numbers of iterations (Imax).

3.8 4 4.2 4.4
0

10

20

30

40

50

60

70

Eb/N0 (dB)

A
ve

ra
ge

 D
ec

od
in

g
T

hr
ou

gh
pu

t (
G

bp
s)

MS Imax=15
MS Imax=5
MS Imax=3

(a)

3.8 4 4.2 4.4
0

20

40

60

80

100

Eb/N0 (dB)

A
ve

ra
ge

 E
ne

rg
y

pe
r

B
it

(p
J/

bi
t)

MS Imax=15
MS Imax=5
MS Imax=3

(b)

J Sign Process Syst (2010) 61:329–345 343

Table 4 Comparison of the
Split-4 decoder with
published full-parallel LDPC
decoder Chips.

†The area of an IO pad ring
has been added to the Split-4
decoder.

Blanksby [26] Darabiha [29] This work

Code length, no. of columns (N) 1024 660 2048
Information length (K) 512 480 1723
Parity check eqns., no. of rows (M) 512 176 384
Bits per message (q) 4 4 5
Row weight (Wr) 6.5 15 32
Column weight (Wc) 3.25 4 6
No. of edges in LDPC code, MWrq = NWcq 13,312 10,560 61,440
Decoding algorithm SPA MinSum Split-4 MinSum
CMOS fabrication process (min. feature size) 160 nm 130 nm 65 nm
Total chip area (mm2) 52.5 9.0 6.4†

No. of decoding iterations 64 15 15
Supply voltage (V) 1.5 1.3 1.3 0.79
Clk speed (MHz) 64 300 146 47
Throughput (Gbps) 1.0 3.3 19.9 6.4
Throughput per area (Mbps/mm2) 19 367 3,109 1,000
Power (mW) 690 1,408 1,889 226
Energy per bit (pJ/bit) 690 427 95 35

full-parallel decoder’s complexity. Using this metric,
the estimated code complexity of the Split-4 decoder’s
code is 4.6, and 5.8 times higher compared to the other
decoders’ codes.

A rough area comparison can be made by lin-
early normalizing the Total chip area of decoders to
61,440/No. of edges in LDPC code and normalizing
quadratically with feature size, i.e., (65 nm/Min. feature
size)2. Scaling results in 40 mm2 for the (1024, 512) full-
parallel decoder [26] and 13.1 mm2 for the (660, 480)
full-parallel decoder [29]. It is important to note that
scaling linearly with the Total row/col processor input
bits factor favors simpler codes since decoder circuit
area grows faster than this factor due to the limited
routing resources in VLSI implementations. Neverthe-
less, the Split-4 decoder is 6.2 and two times smaller
than the scaled (1024, 512) and (660, 480) full-parallel
decoders respectively.

For energy comparisons, all decoders are scaled to
65 nm operating on a 1.3 V supply voltage. Scaling
linearly with feature size and quadratically with supply
voltage gives energy per bit of 210.5 pJ/bit for the
(1024, 512) full-parallel decoder [26] and 213.5 pJ/bit
for the (660, 480) full-parallel decoder [29]. The Split-4
decoder with its more complex code operates with an
energy per bit that is 2.2 times lower and has 0.55 dB
error performance degradation compared to the other
two decoders.

In addition, with early termination enabled, Split-4
delivers 61 Gbps throughput and dissipates 31 pJ/bit
at SNR=4.4 dB (see Table 3). When compared to the
state-of-the art 47.7 Gbps, 58.7 pJ/bit partial parallel
10GBASE-T decoder [17], which is built in 65 nm and
1.2 V, Split-4 has 1.3 times higher throughput is 1.9

times more energy efficient, and is 1.1 times larger with
error performance degradation of 0.60 dB.

9 Conclusion

The proposed Split-Row and Multi-Split algorithms
are viable approaches for high throughput, small area,
and low power LDPC decoders, with a small error
performance degradation that is acceptable for many
applications—especially in mobile designs that typically
have severe power and cost constraints. The method is
especially well suited for long-length regular codes and
codes with high row weights. Compared to standard
(MinSum and SPA) decoding, the error performance
loss of the method is about 0.35–0.65 dB for the imple-
mented (2,048, 1,723) code, depending on the level of
splitting.

The proposed algorithm and architecture break row
processors into multiple blocks whose internal wires are
all relatively short. These blocks are interconnected by
a small number of sign wires whose lengths are almost
zero. The result is decoders with denser, faster and
more energy efficient circuits.

We have demonstrated the significant benefits of the
splitting methods by implementing three decoders us-
ing MinSum normalized, MinSum Split-2, and MinSum
Split-4 for the 2,048-bit code used in the 10GBASE-T
10 Gigabit ethernet standard. Post-layout simulation
results show that the Split-4 decoder is 3.3 times
smaller, attains 2.5 times higher throughput, and dis-
sipates 2.5 times less energy per bit compared to a
MinSum normalized decoder while performing 0.55 dB
away from MinSum normalized at BER = 5 × 10−8

with 15 decoding iterations.

344 J Sign Process Syst (2010) 61:329–345

Using early termination circuits, the average number
of decoding iterations in the Split-4 decoder is about
1.3 times larger than that of the MinSum normalized
decoder. With early termination enabled, the Split-4
decoder’s throughput is 1.9 times higher and its energy
dissipation per bit is 2.0 times lower compared to the
MinSum decoder at BER = 3 × 10−5.

Increasing the number of decoding iterations and
increasing the fixed-point word width reduces the error
performance loss in the Split-2 and Split-4 decoders.
With a maximum of 20 decoding iterations, the error
performance loss of the Split-2 decoder is reduced to
0.25 dB compared to MinSum normalized while it still
achieves times higher throughput and occupies smaller
circuit area.

Acknowledgements The authors gratefully acknowledge sup-
port from ST Microelectronics, Intel, UC Micro, NSF Grant
0430090 and CAREER Award 0546907, SRC GRC Grant 1598
and CSR Grant 1659, Intellasys, Texas Instruments, IBM, SEM,
and a UCD Faculty Research Grant; LDPC codes and assis-
tance from Shu Lin and Lan Lan; and thank Zhengya Zhang,
Dean Truong, Aaron Stillmaker, Lucas Stillmaker, Jean-Pierre
Schoellkopf, Patrick Cogez, and Pascal Urard.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Gallager, R. G. (1962). Low-density parity check codes. IRE
Transactions on Information Theory, IT-8, 21–28.

2. IEEE P802.3an, 10GBASE-T task force. http://www.ieee802.
org/3/an.

3. T.T.S.I. digital video broadcasting (DVB) second genera-
tion framing structure for broadband satellite applications.
http://www.dvb.org.

4. IEEE 802.16e (2005). Air interface for fixed and mobile
broadband wireless access systems. IEEE p802.16e/d12 draft.

5. Tanner, R. M. (1981). A recursive approach to low com-
plexity codes. IEEE Transactions on Information Theory, 27,
533–547.

6. MacKay, D. J. (1999). Good error correcting codes based
on very sparse matrices. IEEE Transactions on Information
Theory, 45, 399–431.

7. Fossorier, M., Mihaljevic, M., & Imai, H. (1999). Reduced
complexity iterative decoding of low-density parity check
codes based on belief propagation. IEEE Transactions on
Communications, 47, 673–680.

8. Hagenauer, J., Offer, E., & Papke, L. (1996). Iterative decod-
ing of block and convolutional codes. IEEE Transactions on
Information Theory, 42, 429–445.

9. Chen, J., & Fossorier, M. (2002). Near optimum universal be-
lief propagation based decoding of low-density parity check
codes. IEEE Transactions on Communications, 50, 406–414.

10. Chen, J., Dholakia, A., Eleftheriou, E., & Fossorier, M.
(2005). Reduced-complexity decoding of LDPC codes. IEEE
Transactions on Communications, 53, 1288–1299.

11. Bates, S., Chen, Z., et al. (2008). A low-cost serial decoder ar-
chitecture for low-density parity-check convolutional codes.
IEEE Transactions on Circuits and Systems I, 55, 1967–1976.

12. Yang, L., Liu, H., & Shi, R. (2006). Code construction and
FPGA implementation of a low-error-floor multi-rate low-
density parity-check decoder. IEEE Transactions on Circuits
and Systems I, 53, 892.

13. Dai, Y., Chen, N., & Yan, Z. (2008). Memory efficient
decoder architectures for quasi-cyclic LDPC codes. IEEE
Transactions on Circuits and Systems I, 55, 2898–2911.

14. Shih, X., Zhan, C., Lin, C., & Wu, A. (2008). An 8.29 mm2

52 mW multi-mode LDPC decoder design for mobile
WiMAX system in 0.13 CMOS process. JSSC, 43, 672–683.

15. Liu, C. H., et al. (2008). An LDPC decoder chip based on
self-routing network for IEEE 802.16e applications. JSSC,
43, 684–694.

16. Liu, L., & Shi, R. (2008). Sliced message passing: High
throughput overlapped decoding of high-rate low density
parity-check codes. IEEE Transactions on Circuits and Sys-
tems I, 55, 3697–3710.

17. Zhang, Z., Dolecek, L., et al. (2009). A 47 Gb/s LDPC de-
coder with improved low error rate performance. In Sympo-
sium on VLSI circuits (pp. 22–23).

18. Wang, Z., Li, L., et al. (2009). Efficient shuffle network archi-
tecture and application for WiMAX LDPC decoders. IEEE
Transactions on Circuits and Systems II: Express Briefs, 56,
215–219.

19. Mansour, M., & Shanbhag, N. R. (2006). A 640-Mb/s 2048-bit
programmable LDPC decoder chip. JSSC, 41, 684–698.

20. Wang, Z., & Cui, Z. (2007). Low-complexity high-speed de-
coder design for quasi-cyclic LDPC codes. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 15,
104–114.

21. Urard, P., Paumier, L., et al. (2008). A 360mW 105Mb/s
DVB-S2 compliant codec based on 64800b LDPC and BCH
codes enabling satellite-transmission portable devices. In
ISSCC (pp. 310–311).

22. Liu, H., Lin, C., et al. (2005). A 480mb/s LDPC-COFDM-
based UWB baseband transceiver. In ISSCC (Vol. 1,
pp. 444–445).

23. Fewer, C., Flanagan, F., & Fagan, A. (2007). A versatile vari-
able rate LDPC codec architecture. IEEE Transactions on
Circuits and Systems I, 54, 2240–2251.

24. Masera, G., Quaglio, F., & Vacca, F. (2007). Implementation
of a flexible LDPC decoder. IEEE Transactions on Circuits
and Systems I, 54, 542–546.

25. Zhang, H., Zhu, J., Shi, H., & Wang, D. (2008). Lay-
ered approx-regular LDPC code construction and en-
coder/decoder design. IEEE Transactions on Circuits and
Systems I, 55, 572–585.

26. Blanksby, A., & Howland, C. J. (2002). A 690-mW 1-Gb/s
1024-b, rate 1/2 low-density parity-check code decoder. JSSC,
37(3), 404–412.

27. Mohsenin, T., & Baas, B. (2006). Split-Row: A reduced
complexity, high throughput LDPC decoder architecture. In
ICCD (pp. 13–16).

28. Mohsenin, T., & Baas, B. (2007). High-throughput LDPC de-
coders using a multiple split-row method. In ICASSP (Vol. 2,
pp. 13–16).

29. Darabiha, A., Carusone, A. C., & Kschischang, F. R. (2007).
A 3.3-Gbps bit-serial block-interlaced Min-Sum LDPC de-
coder in 0.13-um CMOS. In IEEE custom integrated circuits
conference (pp. 459–462).

http://www.ieee802.org/3/an
http://www.ieee802.org/3/an
http://www.dvb.org

J Sign Process Syst (2010) 61:329–345 345

30. Kim, E., Jayakumar, N., Bhagwat, P., & Khatri, S. P. (2006).
A high-speed fully-programmable VLSI decoder for regular
LDPC codes. In International conference on acoustics, speech,
and signal processing (Vol. 3, pp. 972–975).

31. Darabiha, A., Carusone, A. C., & Kschischang, F. R. (2008).
Block-interlaced LDPC decoders with reduced interconnect
complexity. IEEE Transactions on Circuits and Systems Part
II: Express Briefs, 55, 74–78.

32. Kang, S., & Park, I. (2006). Loosely coupled memory-based
decoding architecture for low density parity check codes.
IEEE Transactions on Circuits and Systems I, 53, 1045–1056.

33. Cui, Z., & Wang, Z. (2007). Efficient message passing ar-
chitecture for high throughput LDPC decoder. In ISCAS
(pp. 917–920).

34. Richardson, T., & Urbanke, R. (2001). The capacity of low-
density parity check codes under message-passing decoding.
IEEE Transactions on Information Theory, 47, 599–618.

35. Djurdjevic, I., Xu, J., Abdel-Ghaffar, K., & Lin, S. (2003). A
class of low-density parity-check codes constructed based on
Reed–Solomon codes with two information symbols. IEEE
Communications Letters, 7, 317–319.

36. Chen, L., Xu, J., Djurdjevic, I., & Lin, S. (2004). Near-
Shannon-limit quasi-cyclic low-density parity-check codes.
IEEE Transactions on Communications, 52, 1038–1042.

37. Kou, Y., Lin, S., & Fossorier, M. P. C. (2001). Low-density
parity-check codes based on finite geometries: A rediscovery
and new results. IEEE Transactions on Information Theory,
47(7), 2711–2736.

38. Zhang, J., Fossorier, M. P. C. (2004). A modified weighted
bit-flipping decoding of low-density parity-check codes.
IEEE Communications Letters, 8, 165–167.

39. Gunnam, K. K., et al. (2006). Decoding of quasi-cyclic LDPC
codes using an on-the-fly computation. In 40th asilomar con-
ference on signals, systems and computers (pp. 1192–1199).

40. Zhang, Z., Venkat, A., et al. (2007). Quantization effects in
low-density parity-check decoders. In ICC (pp. 6231–6237).

41. Rabaey, J., Chandrakasan, A., & Nikolic, B. (2003). Digital
integrated circuits (2nd ed.). Upper Saddle River: Prentice
Hall.

42. Truong, D. N., Cheng, W. H., et al. (2009). A 167-processor
computational platform in 65 nm CMOS. IEEE Journal of
Solid-State Circuits (JSSC), 44(4), 1130–1144.

43. Darabiha, A., Carusone, A. C., & Kschischang, F. R. (2008).
Power reduction techniques for LDPC decoders. JSSC, 43,
1835–1845.

Tinoosh Mohsenin received the B.S. degree in electrical
engineering from Sharif University, Tehran, Iran, and the
M.S. degree in electrical and computer engineering from Rice

University, Houston, TX. She is currently pursuing the Ph.D. de-
gree in electrical and computer engineering from the University
of California, Davis.

She is the designer of the Split-Row, Multi-Split, and Split-
Row Threshold decoding algorithms and architectures for Low
Density Parity Check (LDPC) codes. She was a key designer
of the 167-processor Asynchronous Array of simple Processors
(AsAP) chip. Her research interests include algorithms, architec-
tures and VLSI design for high performance and energy-efficient
computation in the areas of networking and communications,
digital signal processing (DSP), and error correction applications.

Bevan M. Baas received the B.S. degree in electronic engineering
from California Polytechnic State University, San Luis Obispo,
in 1987, and the M.S. and Ph.D. degrees in electrical engineer-
ing from Stanford University, Stanford, CA, in 1990 and 1999,
respectively.

From 1987 to 1989, he was with Hewlett-Packard, Cupertino,
CA, where he participated in the development of the processor
for a high-end minicomputer. In 1999, he joined Atheros Com-
munications, Santa Clara, CA, as an early employee and served
as a core member of the team which developed the first IEEE
802.11a (54 Mbps, 5 GHz) Wi-Fi wireless LAN solution.

In 2003 he joined the Department of Electrical and Computer
Engineering at the University of California, Davis where he is
now an Associate Professor. He leads projects in architecture,
hardware, software tools, and applications for VLSI computation
with an emphasis on DSP workloads. Recent projects include the
36-processor Asynchronous Array of simple Processors (AsAP)
chip, applications, and tools; a second generation 167-processor
chip; low density parity check (LDPC) decoders; FFT processors;
viterbi decoders; and H.264 video codecs. During the summer of
2006 he was a Visiting Professor in Intel’s Circuit Research Lab.

Dr. Baas was a National Science Foundation Fellow from
1990 to 1993 and a NASA Graduate Student Researcher Fellow
from 1993 to 1996. He was a recipient of the National Science
Foundation CAREER Award in 2006 and the Most Promising
Engineer/Scientist Award by AISES in 2006. Since 2007 he
has been an Associate Editor for the IEEE Journal of Solid-
State Circuits. He has served as a member of the Technical
Program Committees of the IEEE International Conference on
Computer Design, the IEEE International Symposium on Asyn-
chronous Circuits and Systems, and the Program Committee of
the HotChips Symposium on High Performance Chips. He also
serves as a member of the Technical Advisory Board of an early
stage technology company.

	A Split-Decoding Message Passing Algorithm for Low Density Parity Check Decoders
	Abstract
	Introduction
	LDPC Codes and Message Passing Decoding Algorithm
	Sum Product Algorithm (SPA)
	MinSum Algorithm (MS)

	LDPC Decoding Architectures
	Serial Decoders
	Partial-Parallel Decoders
	Full-Parallel Decoders

	Proposed Split-Row Decoding Method
	SPA Split
	MinSum Split

	Multi-Split Decoding Method
	Correction Factor and Error Performance Simulation Results
	Split-Row Correction Factors
	Error Performance Results

	Full-Parallel MinSum Multi-Split Decoders
	Decoder Implementation Example and Results
	Effects of Fixed-Point Number Representation
	Area, Throughput and Power Comparison
	Wire Statistics
	Analysis of Maximum and Average Numbers of Decoding Iterations
	Comparison with Other Chips

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

