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Abstract
Visual localization is critical to many applications in computer vision and robotics. To address single-image RGB localization,
state-of-the-art feature-based methods match local descriptors between a query image and a pre-built 3D model. Recently,
deep neural networks have been exploited to regress the mapping between raw pixels and 3D coordinates in the scene, and
thus the matching is implicitly performed by the forward pass through the network. However, in a large and ambiguous
environment, learning such a regression task directly can be difficult for a single network. In this work, we present a new
hierarchical scene coordinate network to predict pixel scene coordinates in a coarse-to-fine manner from a single RGB image.
The proposed method, which is an extension of HSCNet, allows us to train compact models which scale robustly to large
environments. It sets a new state-of-the-art for single-image localization on the 7-Scenes, 12-Scenes, Cambridge Landmarks
datasets, and the combined indoor scenes.

Keywords Scene coordinate regression · Hierarchical classification · Visual localization · Transformers

1 Introduction

Estimating the six degrees-of-freedom (6-DoF) camera pose
from a given RGB image is a key component in many com-
puter vision systems such as augmented reality, autonomous
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driving, and robotics. Classical methods (Sattler et al., 2011,
2012, 2016a; Taira et al., 2018; Sarlin et al., 2019) establish
2D-2D(-3D) correspondences between query and database
local descriptors, followed by PnP-based camera pose esti-
mation. Although powerful, these methods are memory and
computationally inefficient requiring to keep an immense
amount of local image descriptors and to perform hierarchi-
cal descriptor matching in a RANSAC loop to infer camera
pose.

On the other hand, end-to-end pose regression methods
that directly regress the camera pose parameters are much
faster and scalable (Kendall et al., 2015; Balntas et al.,
2018; Chen et al., 2021; Shavit & Keller, 2022). However,
such methods are significantly less accurate than the ones
based on local descriptors. A better trade-off between accu-
racy and computational efficiency is offered by structured
localization approaches (Brachmann et al., 2017; Brach-
mann & Rother, 2018, 2021; Shotton et al., 2013; Li et al.,
2020; Wang et al., 2021). Structured methods are trained
to learn an implicit representation of the 3D environment
by directly regressing 3D scene coordinates correspond-
ing to a 2D pixel location in a given input image. This
directly provides 2D-3D correspondences and avoids storing
and explicitly matching database local descriptors with the
query. For small-scale scenes, the scene-coordinate regres-
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sion methods work on par (Brachmann et al., 2021) or
outperform (Brachmann & Rother, 2018, 2021) local image
descriptors-based approaches. Nevertheless, the storage and
computational benefits of structured-basedmethods are supe-
rior to their classical counterparts.

Existing scene-coordinate regression approaches (Brach-
mann et al., 2017; Brachmann & Rother, 2018, 2021) are
designed to predict scene coordinates from a small local
image patch that provides robustness to viewpoint changes.
However, such methods are limited in applicability to larger
scenes where ambiguity from visually similar local image
patches cannot be resolved with a limited receptive field.
Using larger receptive field sizes, up to the full image, to
regress the coordinates can mitigate the issues from ambi-
guities by encoding more context. This, however, has been
shown to be prone to overfitting the larger input patterns in
the case of limited training data, even if data augmentation
alleviates this problem to some extent (Li et al., 2018; Brach-
mann & Rother, 2021).

Increasing context by enlarging the receptive field while
maintaining the distinctiveness of local descriptors or not
overfitting is a challenging problem. We address this using a
special network architecture, calledHSCNet (Li et al., 2020),
which hierarchically encodes scene context using a series
of classification layers before making the final coordinate
prediction. The overall pipeline is illustrated in Fig. 1. Specif-
ically, the network predicts scene coordinates progressively
in a coarse-to-fine manner, where predictions correspond
to a region in the scene at the coarse level and coordinate
residuals at the finest level. The predictions at each level are
conditioned on both descriptors and predictions from the pre-
ceding level which is the key component in large scenes as
we experimentally demonstrate in this work. This condition-

ing leverages FiLM (Perez et al., 2018) layers that allow to
gradually increase the receptive field. The HSCNet approach
utilizes CNNs to encode the descriptors and predictions. In
this work, we extend this idea and propose the transformer-
based (Vaswani et al., 2017) conditioningmechanism, named
HSCNet++, which is more efficient in capturing global con-
text into local representations through attention and does
not require heavy conventional layers to enlarge the recep-
tive field. The architecture manages to improve coordinate
prediction at all levels, both coarse and fine. We integrate
dynamic position information in the form of predicted coarse
positional encoding, without the need to learn or construct
explicitly position embeddings and show promising results
on several camera relocalization benchmarks.

We further extend HSCNet++ by removing the depen-
dency on dense ground truth scene coordinates. Dense
coordinates limit the applicability of HSCNet to outdoor
scenes. Similar to Brachmann and Rother (2018), HSCNet
addressed the issue of sparse data on Cambridge dataset
(Kendall et al., 2015) by using MVS-based densification
(Schönberger et al., 2016). However, these methods either
introduce additional noise and are costly to obtain. Directly
training HSCNet with sparse supervision leads to a signifi-
cant performance drop. In HSCNet++, we propose a simple
yet effective pseudo-labelling method, where ground-truth
labels at each pixel location are propagated to a fixed spa-
tial neighbourhood. This is based on the assumption that
nearby pixels share similar statistics. Toprovide robustness to
pseudo-label noise, symmetric objective functions based on
cross-entropy and re-projection loss are proposed. While the
symmetric cross-entropy cost function provides robustness
to the classification layers of HSCNet, the re-projection loss
rectifies the noise in pseudo-labelled 3D scene coordinates.

Fig. 1 HSCNet architecture. The ground-truth scene 3Dcoordinates are
hierarchically quantized into regions and sub-regions. Direct branches
of the network sequentially predict discrete regions and sub-regions, and
continuous 3D coordinates, with the processing of each branch being

conditioned on the result of the previous one. Given an input image,
HSCNet predicts 3D coordinates for 2D image pixels, which then form
the input to PnP-RANSAC for 6DoF pose estimation
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Thiswork is a summary and extension ofHSCNet.Weval-
idate our approach on three datasets used in previous works:
7-Scenes (Shotton et al., 2013), 12-Scenes (Valentin et al.,
2016), and Cambridge Landmarks (Kendall et al., 2015).
Our approach demonstrates consistently better performance
and achieves state-of-the-art results for single-image cam-
era relocalization. In addition, by compiling the 7-Scenes
and 12-Scenes datasets into single large scenes we show that
our approach scales more robustly to larger environments. In
summary, our contributions are as follows:

1. Compared to HSCNet, we utilize an improved trans-
former based conditioning mechanism that efficiently
and effectively encodes global spatial information to
scene coordinate prediction pipeline, resulting in a sig-
nificant performance improvement from 84.8% to 88.7%
on indoor localization while requiring only 57% of the
memory footprint;

2. We extend HSCNet to optionally leverage the sparse
ground truth only in the training procedure by introducing
pseudo ground truth labels and angle-based re-projection
errors. When using sparse supervision for training, the
proposed approach achieves better performance on the
Cambridge outdoor camera relocalization dataset com-
pared to the MVS-based densified training data;

3. We show that the classical pixel-based positional encod-
ing in our conditioning mechanism suffers from a sig-
nificant performance drop, especially in scenes exhibit-
ing substantial repetitive patterns. Our spatial positional
encoding inspired by the FiLM layer eliminates this
problem and achieves SoTA performance on several
image-based localization benchmarks.

2 RelatedWork

Existingmethods for visual localization are revieweddepend-
ing on the category they belong to.
Classical visual localization methods assume that a scene
is represented by a 3D model, which is a result of process-
ing a set of database images. Each 3D point of the model
is associated with one or several database local descriptors.
Given a query image, a sparse set of keypoints and their local
descriptors are obtained using traditional (Calonder et al.,
2010; Lowe, 2004; Rublee et al., 2011; Bay et al., 2006) or
learnedCNN-based (DeTone et al., 2018;Revaud et al., 2019;
Dusmanu et al., 2019; Melekhov et al., 2021, 2020; Luo et
al., 2019; Wang et al., 2020; Tian et al., 2017; Balntas et
al., 2016; Zagoruyko & Komodakis, 2015; Han et al., 2015;
Melekhov et al., 2017; Simo-Serra et al., 2015; Mishchuk
et al., 2017) approaches. The query local descriptors are
then matched with local descriptors extracted from database
images to establish tentative 2D-3D matches. These tenta-

tive matches are then geometrically verified using RANSAC
(Fischler & Bolles, 1981) and the camera pose is estimated
via PnP. Although these methods produce a very accurate
pose estimate, the computational cost of sparse keypoint
matching becomes a limitation, especially for large-scale
environments. The large computational cost is addressed by
image retrieval-based methods (Arandjelović et al., 2016;
Radenović et al., 2016) restricting matching query descrip-
tors to local descriptors extracted from top-ranked database
images only. Moreover, despite the recent advancements of
learned keypoint detectors and descriptors (Wang et al., 2020;
Dusmanu et al., 2019;Melekhov et al., 2020, 2021; Sun et al.,
2021; Zhou et al., 2021; Revaud et al., 2019; Tyszkiewicz et
al., 2020), extracting discriminative local descriptors which
are robust to different viewpoint and illumination changes is
still an open problem.
Absolute camera pose regression (APR)methods aim to alle-
viate the limitations of structure-based methods by using a
neural network that directly regresses the camera pose of a
query image (Kendall et al., 2015; Brahmbhatt et al., 2018;
Kendall&Cipolla, 2016, 2017;Melekhov et al., 2017;Walch
et al., 2017; Chen et al., 2021, 2022) that is given as input to
the network. The network is trained on database images with
ground-truth poses by optimizing a weighted combination
of orientation and translation L2 losses (Kendall et al., 2015;
Melekhov et al., 2017), leveraging uncertainty (Kendall et
al., 2018), utilizing temporal consistency of the sequential
images (Walch et al., 2017; Radwan et al., 2018; Valada et
al., 2018; Xue et al., 2019) or using GNNs (Xue et al., 2020)
and Transformers (Shavit et al., 2021). The APRmethods are
scalable, fast, and memory efficient since they do not require
storing a 3D model. However, their accuracy is an order of
magnitude lower compared to the one obtained by structure-
based localization approaches and comparable with image
retrieval methods (Sattler et al., 2019). Moreover, the APR
approaches require a different network to be trained and eval-
uated per scene when the scenes are registered to different
coordinate frames.
Relative camera pose regression (RPR)methods, in contrast
to APR, train a network to predict relative pose between the
query image and each of the top-ranked database images
(Ding et al., 2019; Laskar et al., 2017; Balntas et al., 2018),
obtained by image retrieval (Arandjelović et al., 2016; Rade-
nović et al., 2016). The camera location is then obtained
via triangulation from two relative translation estimations
verified by RANSAC. This leads to better generalization per-
formancewithout using scene-specific training.However, the
RPRmethods suffer from low localization accuracy similarly
to APR.
Scene coordinate regression (SCR) methods learn the first
stage of the pipeline in the structure-based approaches.
Namely, either a random forest (Brachmann et al., 2016;
Cavallari et al., 2020, 2017; Guzmán-Rivera et al., 2014;
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Massiceti et al., 2017;Meng et al., 2017, 2018; Shotton et al.,
2013; Valentin et al., 2015) or a neural network (Brachmann
et al., 2017; Brachmann & Rother, 2018, 2019a, c, 2021;
Budvytis et al., 2019; Bui et al., 2018; Cavallari et al., 2019;
Li et al., 2018; Massiceti et al., 2017) is trained to directly
predict 3D scene coordinates for the pixels and thus the 2D-
3D correspondences are established. These methods do not
explicitly rely on feature detection, description, and match-
ing, and are able to provide correspondences densely. They
are more accurate than traditional feature-based methods at
small and medium scales, but usually do not scale well to
larger scenes (Brachmann & Rother, 2018, 2019a). In order
to generalize well to novel viewpoints, these methods typi-
cally rely on only local image patches to produce the scene
coordinate predictions. However, this may introduce ambi-
guities due to similar local appearances, especially when the
scale of the scene is large. To resolve local appearance ambi-
guities, we introduce element-wise conditioning layers to
modulate the intermediate feature maps of the network using
coarse discrete location information. We show this leads to
better localization performance, and we can robustly scale to
larger environments.
Joint classification-regression frameworks have been proven
effective in solving various vision tasks. For example, Rogez
et al. (2017, 2019) proposed a classification-regression
approach for human pose estimation from single images.
In Brachmann et al. (2016), a joint classification-regression
forest is trained to predict scene identifiers and scene coordi-
nates. In Weinzaepfel et al. (2019), a CNN is used to detect
and segment a predefined set of planar Objects-of-Interest
(OOIs), and then, to regress dense matches to their reference
images. InBudvytis et al. (2019), scene coordinate regression
is formulated as two separate tasks of object instance recog-
nition and local coordinate regression. In Brachmann and
Rother (2019a), multiple scene coordinate regression net-
works are trained as a mixture of experts along with a gating
network which assesses the relevance of each expert for a
given input, and the final pose estimate is obtained using a
novel RANSAC framework, i.e. Expert Sample Consensus
(ESAC). In contrast to existing approaches, in our work, we
use spatially dense discrete location labels defined for all pix-
els, and propose FiLM-like (Perez et al., 2018) conditioning
layers to propagate information in the hierarchy. We show
that our novel framework allows us to achieve high localiza-
tion accuracy with one single compact model.
Transformer has already shown a positive impact on the
problem of visual localization. Shavit et al. (2021) show
that multi-headed transformer architectures can be used to
improve end-to-end absolute camera pose localization in
multiple sceneswith a single trainedmodel. Similarly, Super-
Glue, LoFTR and COTR (Sarlin et al., 2020; Sun et al.,
2021; Jiang et al., 2021) demonstrate the usefulness of trans-
former architectures in learning local descriptor models.

Inspired by the above success, the paper proposes methods to
extend transformer architecture to the structured localization
method.

3 Problem Formulation and Notation

The goal of camera pose estimation is to predict the 6-DoF
pose p(x) ∈ R

6 for an RGB image x . We adopt a standard
two-step approach. As a first step, 3D coordinates are pre-
dicted for each pixel, or some of the pixels, of an image.
Those are the coordinates from a known 3D scene. Such
predictions result in a set of 2D-3D correspondences. As a
second and final step, these correspondences are fed into the
PnP algorithm that estimates the camera pose. In this work,
we focus on the 3D coordinate prediction task.

We rely on a function f : [0, 1]W×H×3 → R
w×h×3,

w = W/8 and h = H/81 that provides such coordinate
predictions given an input image x of resolution equal to
W × H pixels; the predicted coordinates for image x are
given by ŷ(x) = f (x).

The known 3D environment is represented by a set of
training images, with known ground-truth labels per pixel in
the form of 3D coordinates. The training set comprises pairs
of the form (x, y(x)) for image x and ground-truth 3D coor-
dinates y(x). In case ground-truth is available only sparsely,
i.e. on small part of the image pixels, a corresponding binary
mask m(x) ∈ {0, 1}w×h denotes which are the valid pixels.
The value of ground-truth or prediction at a particular pixel is
denoted by subscript i , e.g. y(x)i for the ground-truth coor-
dinate of pixel i .

4 HSCNet++: Hierarchical Scene Coordinate
Prediction with Transformers

4.1 Overview

A baseline conventional approach for this task is to use a
fully convolutional network (FCN) that maps input images
to 3D coordinate predictions and is trained with a regres-
sion loss. The proposed architecture extends this scheme
by constructing a hierarchy of labels, from coarse-level to
fine-level, and by adding extra layers to predict those labels.
Hierarchical discrete labels are defined by partitioning the
ground-truth 3D points of the scene with hierarchical k-
means. The number of levels in the hierarchy is fixed to 2
in this work. In this way, in addition to the ground-truth 3D

1 The spatial resolution of the prediction is smaller, by a factor of 8,
than that of the input image. The coordinate predictions are provided
for a down-sampled version of the image, which is aligned with the use
of deep CNNs that inherently perform such down-sampling.
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scene coordinates, each pixel in a training image is also asso-
ciatedwith two discrete labels, namely region and sub-region
labels, obtained at different levels of the clustering hierar-
chy. Region and sub-region labels are denoted by one-hot
encodings yr (x) ∈ {0, 1}w×h×k1 and ys(x) ∈ {0, 1}w×h×k2 ,
respectively. The fine-level information is given by the resid-
ual between the ground-truth 3D point and the corresponding
sub-region center, which we denote by y3D(x) ∈ R

w×h×3.
Ground-truth 3D pixel coordinates y(x) are replaced by
yr (x), ys(x), and y3D(x). Sub-region centers and residuals,
when combined by addition, compose the pixel 3D coordi-
nates, i.e. y(x) = c(yr (x) × k2 + ys(x)) + y3D(x), where c
is a function providing the sub-region center.

The proposed architecture includes two classification
branches for regions and sub-regions,which provide the label
predictions in the form of the k-dimensional probability dis-
tributions, and a regression branch for the residual prediction.
Regions, sub-region and residual predictions are denoted by
ŷr (x), ŷs(x), and ŷ3D(x), respectively. A key ingredient is
to propagate coarse region information to inform the predic-
tions at finer levels, which is achieved by conditioning layers
before the classification/regression layers.

4.2 Preliminaries

We describe FiLM layers and transformer blocks, which we
use in the proposed architecture.
The FiLM Perez et al. (2018) conditioning layer represents a
block whose processing is conditioned on an auxiliary input.
Conditioning relies on parameter generators γ, β to generate
a set of scaling and shifting parameters γ (l) and β(l), the
auxiliary input l ∈ Rw×h×d is the (sub-)region label encod-
ing. The conditioning is processed by

φ(F, l) = γ (l) � F + β(l), (1)

where � is the Hadamard product, F ∈ R
w×h×d is the main

input. Therefore, the parameters of the FiLM layer are con-
ditioned on the auxiliary. The FiLM-based processing is a
way to jointly encode the main and the auxiliary input. In the
following, it is used to encode the predicted (sub-)regions
information together with the image features.
TransformerWeview a 3D activation tensor of sizew×h×d
as a set of w × h vectors/tokens and provide them as input
to transformer blocks. The vanilla transformer has the com-
putational complexity that is quadratic in the cardinality
n = w × h of input set, which is computationally unafford-
able in our case. Inspired by prior work (Sun et al., 2021),
we apply the linear transformer (Katharopoulos et al., 2020)
that reduces the complexity from O(N 2) to O(N ) by using
the associativity property of matrix products and replacing
the exponential similarity kernel with a linear dot-product
kernel.

Consequently, the transformermodules that are part of our
architecture do not have a significant impact on run time.

4.3 HSCNet++ Architecture

This section presents the model architecture for HSCNet++
and discusses the difference compared to the original HSC-
Net architecture.
Overview of the model architecture The overall architecture
of HSCNet++ is summarized in Fig. 2. We first present the
model as it operates during inference and then clarify the
differences between training and inference. An FCN back-
bone is used for dense feature encoding and is denoted by
F(x) ∈ R

w×h×d . This is a mapping of the input image to a
dense feature tensor which represents the appearance of the
input image.

Prediction of region labels is performed first. A module
gr : R

w×h×d → R
w×h×d is used that consists of convo-

lutional layers and a transformer block. Its input is feature
map F(x) and the output is given by xr = gr (F(x)).
Feature map processing is performed within the local con-
text of the receptive field with convolutions and within a
global context with the transformer. The region predictor
hr : Rw×h×d → R

w×h×k1 comprises a 1 × 1 convolutional
layer and is used to obtain the region prediction denoted by
ŷr (x) = hr (xr ).

Then, sub-region prediction is performed. A module gs :
R

w×h×d × R
w×h×k2 → R

w×h×d is used, which consists
of convolutional layers and transformer blocks, but also
FiLM layers, therefore the two inputs. The main input is
the feature map F(x), while the auxiliary input is the region
prediction ŷr (x) from the earlier stage. In practice, ŷr (x)
is passed through a series of convolutional layers before
inputted to the FiLM layer as shown in Fig. 3 (c, middle
block). Conditioning on region predictions is a way to jointly
encode appearance and geometry which comes in the form
of region prediction. Therefore, conditioning on region pre-
dictions is used to improve sub-region predictions. Then,
xs = gs(F(x), ŷr (x)) is fed into the sub-region predictor
hs : Rw×h×d → R

w×h×k2 comprising a 1 × 1 convolution
layer, whose output is denoted by ŷs(x) = hs(xs) and con-
stitutes the sub-region prediction.

Now, residual prediction is performed. Similar to the ear-
lier stage, feature map F(x) is processed by conditioning
on the concatenation of region and sub-region predictions,
i.e. ŷr (x) and ŷs(x). This is denoted by module g3D :
R

w×h×d ×R
w×h×(k1+k2) → R

w×h×d and consists of convo-
lutional and FiLM layers and transformer blocks. Similarly,
as before, concatenated region and sub-region predictions are
passed through a series of convolutional layers before being
inputted to the FiLM layer as an auxiliary input (c.f.Fig. 3
(c, right block)). Then, x3D = g3D(F(x), ŷs(x)) is fed into
the residual predictor to obtain ŷ3D(x) = h3D(x3D), where
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Fig. 2 An overview of the proposed HSCNet++. The figure shows the
network architecture of the proposed HSCNet++. The depicted losses
correspond to the case of learning with dense ground-truth. Note that

the switch is applied during inference when the predicted labels are
encoded instead of the ground-truth labels

h3D : Rw×h×d → R
w×h×3 consists of a 1 × 1 convolution.

The detailed architecture for HSCNet++ and the different
modules is shown in Fig. 3.
Synergy between FiLM and transformers Modules gs and
g3D include the use of FiLM layers followed by transformer
blocks. Transformers typically rely on the use of 2D posi-
tional encodings (Vaswani et al., 2017) in order to take the
position of activations into account. Discarding those posi-
tions is not an appropriate choice for our task. Nevertheless,
our architecture design dispenses with the need for those
classical positional encodings. This is due to the fact that
FiLM layers jointly encode appearance with 3D coordinate
predictions, instead of the 2D positions within the image. To
the best of our knowledge, such form of geometry encoding
for transformers has not appeared in the computer vision or
machine literature before. We experimentally show that this
is an effective design choice.

Compared to HSCNet, the proposed HSCNet++ incorpo-
rates the use of transformers. The design choice of placing
them right after FiLM layers supports their synergy due to
the mentioned case of encoding positions.

4.4 Training

When training with dense supervision, the following losses
are adopted. Classification loss �c is applied to the output of
the two classification branches,

�c = �ce(ŷr (x), yr (x)) + �ce(ŷs(x), ys(x)) (2)

Where �ce is the cross-entropy loss. Additionally, regression
loss �r , in particularmean squared error, is applied on ŷ3D(x)
and y3D(x). The total loss L is a weighted sum of the two
classification losses and the regression loss.

L = λ1�c + λ2�r (3)

Where λ1 and λ2 are the weights for each term. We observe
that the regression prediction is more sensitive to localization
performance. Thus, a larger weight is assigned to the �r .

4.5 Inference

During inference, the predicted 3D coordinates ŷ(x) and
their corresponding 2D pixels are fed into the PnP-RANSAC
loop to estimate the 6-DoF camera pose. These predicted 3D
coordinates are obtained by simply summing the center of
predicted sub-regions c(yr (x) × k2 + ys(x)) and predicted
residuals ŷ3D(x).

We differentiate on how conditioning is conducted dur-
ing training and inference as shown in Fig. 2. At training
time, conditioning is performed using the ground truth (sub-
)region labels, i.e. yr (x) and ys(x) are the second inputs of
the conditioning blocks. At test time, conditioning is imple-
mented using predicted (sub-)region labels. Specifically, the
one-hot encodings of the argmax operationof ŷr (x) and ŷs(x)
are the second inputs of the conditioning blocks.
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Fig. 3 HSCNet++ detailed architecture. The figure shows the detailed
network architecture of the main pipeline and the FiLM conditioning
network. For experiments on the combined scenes we added two more
layers in the first conditioning generator, gs that are marked in (dotted)

red. We also roughly doubled the channel counts that are highlighted in
red, cyan and violet for i7-Scenes, i12-Scenes and i19-Scenes, respec-
tively (Color figure online)

4.6 Training with Sparse Supervision

When only sparse ground truth of 3D coordinates, indicated
by mask m(x) for image x , is available, the straightforward
approach is to apply the loss only on pixels where the mask
value is 1, which we refer to as valid pixel. Instead, we pro-
pose to perform propagation of the available labels to nearby
pixels and use two additional losses that are appropriately

handling the scarcity of the labels.We refer to theHSCNet++
model trainedwith such sparse supervision asHSCNet++(S).
Label propagation (LP) We rely on a smoothness assump-
tion: labels do not change much in a small pixel neighbor-
hood. Consequently, we propagate the labels in a local neigh-
borhood around each pixel. The neighborhood is defined by
a square area of size z × z. All neighbors of a valid pixel are
marked as valid too and ground-truth maps, namely yr (x),
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ys(x), and y3D(x), are updated by replicating the label of the
original pixel to the neighboring pixels. Then, the classifica-
tion and regression losses are applied to the newly obtained
valid pixels after propagation. This is seen as some form of
pseudo-labeling that increases the density of the available
labels.
Symmetric cross-entropy loss (SCE)Pseudo-labels are expected
to include noise. This noise will typically be larger if propa-
gation reaches background pixels starting from a foreground-
object valid pixel. We quantitatively analyze the percentage
of noisy labels with the increasing of neighbor radius in
Sect. 5.4. Thus, we face a challenging task which is learning
correct classification with noisy labels. The traditional cross-
entropy loss is not reliable in such a scenario as it exhibits
overfitting to noisy labels on some "easy" classes and suffers
from under learning on some “hard” classes (Wang et al.,
2019).

Following (Wang et al., 2019), we increase the robustness
of the classification with minimal cost by introducing the
symmetric cross-entropy loss. The additional reverse cross
entropy loss in SCE is a noise-tolerant term that exhibits the
property of overestimating and underestimating the target
value resulting in the same loss. This property makes it more
adaptive to noisy labels and allows the model to cope bet-
ter with label noise. The SCE loss is defined as a weighted
summation of the following terms:

lsce = λcelce + λscelrce (4)

Where lrce is the reverse cross-entropy loss. For a valid pixel
i ∈ I , the lrce is:

�rce(x, i) = ŷr (x)i log yr (x)i , (5)

compared to the conventional one defined as follows:

�ce(x, i) = yr (x)i log ŷr (x)i , (6)

Re-projection error loss (Rep) Besides the SCE Loss to
predict the correct labels from noise, we also adopt the re-
projection loss as a semi-supervised term to further enhance
both the labels and distance residual prediction. The loss term
is especially efficient in sceneswith a large amount of texture-
less or repeating patterns. However, the vanilla re-projection
loss requires careful initialization to avoid the impact of
unstable gradients from degenerate 3D predictions (e.g. too
far or behind the camera). Training with vanilla re-projection
loss requires extra geometric constraints and a long conver-
gence time (Brachmann&Rother, 2021). Inspired by Li et al.
(2018), we employ the angle-based re-projection loss which
aims to minimize the angle θ between two rays that share the
camera center. This strategy forces predictions to lie in front
of the camera, ensuring smoother gradients during training.

Consequently, it eliminates the need for a time-consuming
initialization step and mitigates the burden of related geo-
metric constraints.

Given ground-truth camera pose P , the loss for pixel i of
image x , whose 2D coordinates in the image are denoted by
pi , is given by

�rep(x, i) = ||γi P−1 ŷi (x) − f C−1 pi ||, (7)

where γi = || f C−1 pi ||/||P−1 ŷ(x)i ||, f is the focal length,
and C is the intrinsic matrix. The angle-based re-projection
loss is computed in the camera coordinate system between
two points on a 3D sphere centered at the camera center and
touching the image plane at the ground-truth pixel location,
i.e. radius of the sphere is || f C−1 pi ||. The two points on
the sphere correspond to the locations where the vector from
the camera center to the predicted 3D point and ground-truth
pixel location (both in camera coordinate system) intersect
the 3D sphere represented by first and second terms in Eq. 7
respectively.

Note that the re-projection loss is not added to the total
loss in the beginning epochs for a fast training convergence.
Similar to our dense setting, the total loss for sparse supervi-
sion is theweighted summation of regression loss, symmetric
classification loss, and re-projection loss, �sparse = �sce +
λ2�r + λ3�rep.

5 Experiments

In this section, we discuss the experimental setup and
employed datasets, present our results, and compare our
approach to state-of-the-art localization methods.

5.1 Experimental Setup

Datasets We use three standard benchmarks for the eval-
uation; namely, 7-Scenes (Shotton et al., 2013), 12-Scenes
(Valentin et al., 2016), and Cambridge Landmarks (Kendall
et al., 2015), The 7-Scenes dataset covers a volume of∼ 6m3

for each individual scene. The 3D models and ground truth
poses are included in the dataset. 12-Scenes is another indoor
RGB-D dataset that contains 4 large scenes with a total of 12
rooms, the volume ranges 14–79m3 for each room. The union
of these twodatasets forms the 19-Scenes dataset. Cambridge
Landmarks dataset is a standard benchmark for evaluating
scene coordinate methods in outdoor scenes. It is a small-
scale outdoor dataset consisting of 6 individual scenes, and
the ground truth pose is provided by structure-from-motion.

Following prior work (Brachmann & Rother, 2019a), we
conduct experiments per scene, i.e. the individual scenes set-
ting, but also by training a single model on all scenes of a
corresponding dataset, i.e. the combined scenes setting. The
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Table 2 Indoor localization: individual scene setting (12-Scenes)

Scenes Methods

Reg-only
Li et al. (2020)

DSAC*(3D) Brachmann
and Rother (2021)

HSCNet
Li et al. (2020)

HSCNet++

t , cm r , ◦ Acc t , cm r , ◦ Acc t , cm r , ◦ Acc t , cm r , ◦ Acc

Kitchen-1 0.8 0.4 100 – – – 0.8 0.4 100 0.7 0.4 100

Living-1 1.1 0.4 100 – – – 1.1 0.4 100 1.0 0.4 100

Bed 1.3 0.6 100 – – – 0.9 0.4 100 1.0 0.4 100

Kitchen-2 0.8 0.4 100 – – – 0.7 0.3 100 0.8 0.4 100

Living-2 1.4 0.6 100 – – – 1.0 0.4 100 1.0 0.4 100

Luke 2.0 0.9 93.8 – – – 1.2 0.5 96.3 1.3 0.6 98.1

Gate362 1.1 0.5 100 – – – 1.0 0.4 100 1.0 0.5 100

Gate381 1.6 0.7 98.8 – – – 1.2 0.6 99.1 1.1 0.5 98.6

Lounge 1.5 0.5 99.4 – – – 1.4 0.5 100 1.3 0.4 100

Manolis 1.4 0.7 97.2 – – – 1.1 0.5 100 1.2 0.5 100

Floor. 5a 1.6 0.7 97.0 – – – 1.2 0.5 98.8 1.3 0.5 96

Floor. 5b 1.9 0.6 93.3 – – – 1.5 0.5 97.3 1.4 0.4 99.5

Accuracy 96.4 99.1 99.1 99.4

Similar to the 7-Scenes localization benchmark, we provide the median translation (t , cm), orientation (r , ◦) error, and accuracy with the error
threshold of 5 cm and 5◦. The best accuracy results are in bold

combined settings of the given indoor localization bench-
marks are denoted by i7-Scenes, i12-Scenes, and i19-Scenes,
respectively.
Competing methods In this work, we compare the proposed
approach with the following methods: (1) pose regression
methods that directly regress absolute or relative camera pose
parameters: MapNet (Brahmbhatt et al., 2018), Geometric
PoseNet (Kendall & Cipolla, 2017), AttTxf (Shavit et al.,
2021), LSTM-Pose (Walch et al., 2017), AnchorNet (Saha et
al., 2018) and LENS (Moreau et al., 2021); (2) local feature
based pipelines based on SIFT such as Active Search (AS)
(Sattler et al., 2016a) and HLoc (Sarlin et al., 2019) based
on CNN descriptors; (3)DSAC�(3D) (Brachmann &Rother,
2021): the latest scene coordinate regression approach with
3D model; (4) VS-Net (Huang et al., 2021): scene-specific
segmentation and voting; (5) PixLoc (Sarlin et al., 2021):
scene-agnostic network; (6) SFT-CR (Guan et al., 2021):
scene coordinate regression with global context-guidance.
In addition, we also compare with (7) ESAC (Brachmann &
Rother, 2019a) on the combined scenes. We also consider a
baseline called Reg-only without the hierarchical classifica-
tion layers.
Evaluation metricsWe report the median translation and ori-
entation error (cm,◦) as well as the accuracy of test images
under the threshold of (5cm, 5◦) on indoor scenes. On Out-
door Cambridge Landmarks (Kendall et al., 2015), we report
only the median pose error as in previous methods (Brach-
mann & Rother, 2021; Brachmann et al., 2017; Li et al.,
2020).

Training detailsWegenerate the region labels by hierarchical
K-means. For 7-Scenes, 12-Scenes, and Cambridge land-
marks, we adopt 2-level ground truth labels with a branching
factor of 25 for all the levels. Furthermore, for combined
scenes, i7-Scenes, i12-Scenes, and i19-Scenes, the first level
branching factor is set to 7×25, 12×25, and 19×25, respec-
tively. For the individual scene setting, training is performed
for 300K iterations with Adam optimizer. For the combined
scenes the number of iterations is set to 900K. Throughout all
experiments, we use a batch size of 1 with the initial learning
rate of 10−4.

The classification lossweightsλ1 is set to 1 for all datasets,
while regression lossweightλ2 is 10 for single scenes and105

for combined scenes. In the sparse supervision setting, λce
and λrce are set to 0.1 and 1, respectively, while λ2 follows
the dense setting, and λ3 is increased from 0 to 0.1 after
first 10 epochs. We initialize the network by training with lr
using pseudo-label coordinates and later also add lrep after
10 epochs. When training with sparse supervision, we select
the neighborhood size z = 11 to propagate labels, and use
the cluster centers obtained from dense scene coordinates for
a direct comparison.

Data augmentation is also effective in increasing the final
accuracy. Thus, similar to HSCNet (Li et al., 2020), we
randomly augment training images using translation, rota-
tion, scaling and shearing by uniform sampling from [−20%,
20%], [−30◦, 30◦], [0.7, 1.5], [−10◦, 10◦] respectively. In
addition, images are augmented with additive brightness uni-
formly sampled from [−20, 20].
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Table 3 Indoor localization:
combined scene setting

Method Localization Accuracy (%)

i7-Scenes i12-Scenes i19-Scenes

Reg-only (Li et al., 2020) 37.9 5.0 5.7

ESAC (Brachmann & Rother, 2019a) 70.3 97.1 88.1

HSCNet (Li et al., 2020) 83.3 99.3 92.5

HSCNet++ 88.3 99.5 93.6

The table presents average localization accuracy under 5cm/5◦ of baseline models and proposed methods on
i7-Scenes, i12-Scenes, and i19-Scenes datasets

Pose estimationWe follow the same PnP-RANSAC pipeline
and parameters setting as in Brachmann and Rother (2018).
The inlier threshold and the softness factor are set to τ = 10
and β = 0.5, respectively. We randomly select 4 correspon-
dences to formulate a minimal set for a PnP algorithm to
generate a camera pose hypothesis, and a set of 256 initial
hypotheses are sampled. Similar to Brachmann and Rother
(2018, 2021), a pose refinement process is performed until
convergence for a maximum of 100 iterations.
Architecture details The detailed architecture of HSCNet++
is shown in Fig. 3; we also visualize the block details of the
FiLM conditioning network and the transformer modules.
By removing the transformer layers, we derive the archi-
tecture of HSCNet. Additionally, the number of channels in
the last branch, g3D of HSCNet is 4096, while it is 2048
for HSCNet++ that reduces memory cost (c.f.Sect. 5.6). For
experiments on the combined scenes we added two more
layers in the first conditioning generator, gs that are marked
in (dotted) red. We also roughly doubled the channel counts
that are highlighted in red, cyan and violet for i7-Scenes, i12-
Scenes and i19-Scenes, respectively. For individual scenes,
we add 2 multi-head attention layers (MHA) to both clas-
sification and regression conditioning blocks, while in the
combined setting, the number of MHA is set to 5.

5.2 Results for HSCNet and HSCNet++

Individual scenes setting. We present results on 7-Scenes
and 12-Scenes in Table 1 and Table 2, accordingly. All mod-
els are trained and evaluated individually on each scene of
the corresponding dataset. Results show that HSCNet is still
competitive with respect tomethods published later.With the
addition of transformers, HSCNet++ further boosts the aver-
age performance by 4% on 7-Scenes and obtains the best
accuracy on 7-Scenes among the competitors.
Combined scenes setting To test the scalability of scene-
coordinate regression methods, we go beyond small-scale
environments such as individual scenes in 7-Scenes and
12-Scenes and use the combined scenes, i.e. i7-Scenes, i12-
Scenes, and i19-Scenes by combining the former datasets.

Results on the combined scenes setting presented in Table
3 including comparison with the regression-only baseline

and ESAC. Results show that our method scales well with
increase in number of scenes compared to Reg-only baseline.
It is to be noted that ESAC requires training and storing mul-
tiple networks specializing in local parts of the environment,
whereas our approach requires only a single model. Results
show that our approach outperforms ESAC on i7-Scenes
and i12-Scenes, while performing comparably on i19-Scenes
(87.9% vs.88.1%). ESAC and our approach could be com-
bined for very large-scale scenes, but we do not explore this
option in this work. HSCNet++ advances the state-of-the-art
on all datasets, demonstrating the utility of transformers for
this task.
Cambridge Landmarks Table 4 reports the results of three
types of visual localization methods on Cambridge land-
marks. AS (Sattler et al., 2016a) and HLoc (Sarlin et al.,
2019) estimate the camera poses with sparse SfM ground
truth. DSAC++, DSAC* and our approaches train a scene-
coordinate regression model with MVS-densified depth
maps, VS-Net leverages the hybrid of the two. Both HSCNet
and HSCNet++ perform better than other scene coordinate
methods DSAC++ and DSAC*. The performance is com-
parable to more recent approaches. However, we observe
that the models trained with MVS-densified pseudo ground
truth show a slightly worse performance compared to the
approaches that use the sparse SfM 3D map. HSCNet++
shows even worse performance by adding the transformer
modules. Such results motivated us to extend the HSCNet++
to train with sparse supervision and our hypothesis is that
the MVS densification introduces more noise to the dense
supervision. The performance of HSCNet++(S) trained with
sparse supervision on Cambridge landmarks in Sect. 5.5 ver-
ified our hypothesis.

5.3 Ablations: HSCNet

Data augmentationUsing geometric and color data augmen-
tation provides robustness to lighting and viewpoint changes
(DeTone et al., 2018; Melekhov et al., 2021). We investi-
gate the impact of data augmentation and summarize the
obtained results in Table 5a. Applying data augmentations
leads to better localization accuracy. Note that without data
augmentation, the proposed approach still provides compara-
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Table 4 Outdoor localization: individual scene setting (Cambridge)

Method Cambridge

Kings College Great Court Old Hospital Shop Facade St Mary Church

t , cm r , ◦ t , cm r , ◦ t , cm r , ◦ t , cm r , ◦ t , cm r , ◦

AS (Sattler et al., 2016a) 24 0.13 13 0.22 20 0.36 4 0.21 8 0.25

HLoc (Sarlin et al., 2019) 16 0.11 12 0.20 15 0.30 4 0.20 7 0.21

PixLoc (Sarlin et al., 2021) 14 0.24 30 0.14 16 0.32 5 0.23 10 0.34

VS-Net (Huang et al., 2021) 16 0.20 22 0.10 16 0.30 6 0.30 8 0.30

DSAC++ (Brachmann & Rother, 2018) 13 0.40 40 0.20 20 0.30 6 0.30 13 0.40

DSAC�(3D) (Brachmann & Rother, 2021) 15 0.30 49 0.30 21 0.40 5 0.30 13 0.40

HSCNet (Li et al., 2020) 18 0.30 28 0.20 19 0.30 6 0.30 9 0.30

HSCNet++ 19 0.34 39 0.23 20 0.31 6 0.24 9 0.27

For each scene of the dataset we report the median translation (t , cm) and orientation (r , ◦) error. The best results are in bold

ble results to state of the art methods (c.f.ESAC (Brachmann
& Rother, 2019a) in Table 3 vs.row 3 of Table 5a).
Conditioning mechanism The two key components of HSC-
Net are the coarse-to-fine joint classification-regressionmod-
ule and its combination with the conditioning mechanism.
Their impact is evaluated and results are shown in Table 5a.
We train a variant of our network without the conditioning
mechanism, i.e. we remove all the conditioning generators
and layers. The network still estimates scene coordinates
in a coarse-to-fine manner by using the predicted location
labels, but there is no coarse location information that is
fed to influence the network activations at the finer levels.
Results indicate the importance of the conditioning mecha-
nism for accurate scene coordinate prediction. Compared to
single scene setting in Tables 1 and 3, the performance of
regression only baseline drops significantly in the combined
scene setting as shown in Table 5a.
Hierarchy and partition granularity The robustness of HSC-
Net to the label hierarchy hyperparameter by varying depth
and width are reported in Table 5. The results show that
the performance of our approach is robust w.r.t. the choice
of these hyperparameters, with a significant drop in perfor-
mance observed only for the smallest 2-level label hierarchy.
Increasing the number of classification layers from 2 is not
always beneficial and only brings marginal improvement
in 7-Scenes, while increasing the computational costs. We
observe the best trade-off for the partition of 25 × 25 for
both 7-Scenes and 175 × 25 for i7-Scenes (175 = 7 × 25
due to 7 scenes combined).

5.4 Ablations: HSCNet++

Impact of internal transformer encoder layers. In this abla-
tion, we remove transformers encoders tr and ts , while only
t3D remains. This variant is denoted by HSCNet++† and
Table 6a shows a small to noticeable drop in all cases.

To factor out the impact of multi-headed attention (MHA)
layers, we report results in Table 6a, which shows that
increasing the number of MHA layers in HSCNet++† does
not lead to performance improvement. It is worth mention-
ing that HSCNet++† with 8 MHA layers has 2 million more
parameters than HSCNet++. Our intuition is that this hap-
pens due to the improvement of predictions at coarse levels
of the network. To test the above hypothesis, we compute the
accuracy of the sub-region predictions. For each valid pixel
in a query image, thismetric evaluateswhether the valid pixel
is correctly classified. Results in Table 6c show that adding
transformers at classification branches helps to improve the
label classification accuracy.However, the sub-region predic-
tion accuracy does not always correlate with the localization
performance. This can be attributed toRANSAC-basedfilter-
ing of final 3D scene coordinates for camera pose estimation.
That is, incorrect 3D scene predictions due to erroneous sub-
region predictions can be detected as outliers by RANSAC.
Impact of positional encoding.Wecompare the proposedway
of providing region (position) information to the transformer
blocks with the classical positional encoding used in trans-
formers. As label encoding is an inherent part of HSCNet, for
a direct comparison with positional encoding, we addition-
ally add the positional encoding right before the transformer
block and perform experiments on i7-Scenes. Results pre-
sented in Table 6b show that with the additional position
encoding the results noticeably drop.

5.5 Results for HSCNet++(S)

We now present results for HSCNet++(S) with sparse
supervision and study the pseudo-labeling and loss functions
in detail. For indoor scenes, we synthetically sparsify dense
coordinates using sparse SIFT-based SfM reconstruction.
That is, we select the subset of dense 3D coordinates whose
2D re-projections (pixel locations) are also registered in the
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Table 5 Ablation for HSCNet

(a) Data augmentation and conditioning mechanism
Method Localization Accuracy (%)

i7-Scenes i12-Scenes i19-Scenes

HSCNet (Li et al., 2020) 83.3 99.3 92.5

w/o conditioning 70.3 97.1 88.1

w/o augmentation 71.5 98.7 87.9

Reg-only 37.9 5.0 5.7

(b) Label hierarchy: 7-Scenes dataset
Label hierarchy Accuracy, %

9×9 82.9

49×49 85.0

10×100×100 85.9

10×100×100×100 85.5

625 85.3

25×25 84.8

(c) Label hierarchy: i7-Scenes dataset
Label hierarchy Accuracy, %

63×9 80.6

343×49 83.7

70×100×100 83.0

70×100×100×100 82.1

7×25×25 83.0

175×25 83.3

Average pose accuracy obtained with different hierarchy settings. The models with 4-level label hierarchy are classification-only, i.e. the final
regression layer is omitted

Table 6 Ablations for HSCNet++. We analyze the influence of different design choices of the proposed approach on i7-Scenes

Bold values highlight the architecture that gives the best results
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Fig. 4 Scene coordiantes visualization on i7-Scenes. We visualize
the scene coordinate predictions for three test images with HSCNet,
HSCNet++, and HSCNet++(S) on i7-Scenes. The XYZ coordinates are

mapped to the heatmap, and the ground truth scene coordinates are com-
puted from the depthmaps. For each image, the left column is the correct
predicted label and the right column is the predicted scene coordinates

Fig. 5 Median Error for HSCNet++(S). We show the frames with median pose estimation error in each scene and visualize the accuracy by
overlaying the query image (right) with a rendered image (left, grayscale) using the estimated pose and the ground truth 3D model
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Table 7 HSCNet++(S) results

Method Localization

Accuracy (%) ↑ Error (cm/◦) ↓
7-Scenes i7-Scenes Cambridge

HSCNet 84.8 83.3 16.0 / 0.28

HSCNet++ 88.7 88.3 18.6 / 0.28

HSCNet++(S) 85.2 78.5 12.4 / 0.24

The table presents average localization accuracy (%) under 5cm/5◦ and
average median pose error (cm/◦) of HSCNet++(S) and dense counter-
parts on 7-Scenes, i7-Scenes and Cambridge

Fig. 6 Impact of neighborhood size z. The percentage of accurate labels
and valid pixels change with the increasing of neighborhood window
size z

SfM reconstruction. For the outdoor Cambridge dataset, we
directly obtain the keypoints of training images from the pro-
vided SfM models.

The localization performance on 7-Scenes, i7-Scenes,
and Cambridge datasets is provided in Fig. 5 and Table 7.
Results show that even with sparse coordinate supervision,
HSCNet++(S) achieves competitive results on 7-Scenes with
respect to the dense counterpart, even outperforming HSC-
Net. On the more challenging combined scene setup of

Table 9 Impact of z on pose estimation

Methods Scenes

Red Kitchen GreatCourt

t , cm r , ◦ Accuracy, % t , cm r , ◦

z = 0 6 1.37 65.5 32 0.28

z = 7 4 1.14 70.3 18 0.11

z = 11 4 1.15 72.9 18 0.11

z = 15 4 1.12 71.7 21 0.14

z = 19 3 1.12 73.0 35 0.20

We report the pose estimation results (median errors and accuracy) on
Red Kitchen and Great Court with different neighborhood window size

i7-Scenes, HSCNet++(S) lacks by 10% indicating a further
requirement for future research in this direction. However,
on the outdoor dataset Cambridge Landmarks, where only
sparse coordinate data is available in most cases, HSC-
Net++(S) outperforms HSCNet and HSCNet++, which are
trained on MVS-densified (Brachmann & Rother, 2018;
Schönberger et al., 2016; Li et al., 2020) data, by a large mar-
gin. It demonstrates the effectiveness of our label propagation
and supports our hypothesis that noisy dense ground truth
from MVS harms the training process. The largest improve-
ment is observed on Kings College, Great Court and Old
Hospitalwithmedian pose errors (cm/◦) of 15/0.24, 18/0.11
and 15/0.30 respectively (c.f.Table 4). On average median
pose error, HSCNet++ (S) outperforms PixLoc (15/0.25),
VSNet (13.6/0.24) and DSAC* (20.6/0.34).
Component ablationsWe formulate ablations on 7-Scenes to
examine the components in the proposed HSCNet++(S). We
first train the model without the proposed label propagation,
i.e. only with sparse keypoint pixels only as the baseline.
Then, for the HSCNet++(S), we present three variants by
removing each component - transformers, symmetric cross-
entropy and re-projection loss in HSCNet++(S) as shown

Table 8 Ablations for HSCNet++(S)

Method Chess Fire Heads Office Pumpkin Kitchen Stairs Average

Error HSCNet++(S) 2 / 0.70 2 / 0.72 1 / 0.8 2 / 0.69 4 / 1.00 4 / 1.15 3 / 1.02 –

w/o LP 3 / 0.86 3 / 0.91 3 / 1.47 5 / 1.15 6 / 1.37 5 / 1.39 7 / 1.91 –

w/o Txf 2 / 0.70 2 / 0.94 1 / 0.76 3 / 0.78 4 / 1.12 4 / 1.2 3 / 1.01 –

w/o SCE 2 / 0.75 2 / 0.77 1 / 0.85 3 / 0.71 4 / 1.04 4 / 1.14 4 / 1.03 –

w/o Rep 2 / 0.70 2 / 0.80 1 / 0.93 3 / 0.81 4 / 1.09 4 / 1.35 5 / 1.32 –

Accuracy HSCNet++(S) 98.1 97.0 98.8 88.2 65.1 72.9 76.6 85.2

w/o LP 86.0 81.1 85.4 56.0 39.4 49.6 36.2 62.0

w/o Txf 97.3 98.8 99.6 85.6 59.4 64.4 80.5 83.7

w/o SCE 97.6 96.2 96.5 84.2 64.1 70.1 73.2 83.1

w/o Rep 97.5 98.2 96.8 80.2 62.8 64.8 55.0 79.3

The results of HSCNet++(S) and various variants are presented, the table shows the median translation and rotation errors (Error) and localization
accuracy (Accuracy) under 5cm/5◦
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Table 10 Comparison of the
model capacity and runtime

Dataset 7-Scenes i7-Scenes

HSCNet HSCNet++ HSCNet HSCNet++

Model Size, Mb 147.9 84.5 163 113.5

Training time, ms/iter ∼125 ∼89 ∼135 ∼133

Inference time, ms/query ∼85–130 ∼85-130 ∼85-130 ∼85-130

We compare the statistics of themodel of HSCNet andHSCNet++, we provide the results on the same software
and hardware setting

in Table 8. The baseline achieves only 62.0% on average
accuracywhich is significantlyworse thanour result (85.2%).
Variants without the use of transformer layers (w/o Txf),
SCE and Rep models show worse performance compared
to HSCNet++(S) on average. Results demonstrate that the
synergy of individual components leads the superior results.
Impact of LP neighborhood size. In this section, we analyze
the impact of the LP neighborhood window size, z. We vary
the neighborhood size z range from 0 → 19 on RedKitchen
as ablation, and the results are reported in Fig. 6 and Table 9.
Figure6 shows that increasing the size of z, also increases
pseudo-label noise shown by a decrease in the percentage of
accurate labels. For e.g. when z = 11 the fraction of noisy
labels is 15%.Results in Table 9 shows that there is a trade-off
between increasing z, and camera localization accuracy. This
effect is more pronounced in the outdoor scene, Great Court
from theCambridgedataset,where increasing z from0 → 11
reduces median pose error (t/r) from 32/0.28 → 18/0.11.
But increasing z further from 11 → 19 increases median
pose error from 18/0.11 → 35/0.2. Limiting the spatial
proximity of pseudo-labels to initial sparse labels seems a
suitable choice.

5.6 Model Capacity and Efficiency

Model capacity As mentioned in Sect. 4.3, we prune some
heavy convolution layers compared to HSCNet. To demon-
strate the efficiency of this setting, Table 10 reports themodel
size of HSCNet and HSCNet++ on 7-Scenes and i7-Scenes.
Our method has a memory footprint reduction of 43% com-
pared to HSCNet on the individual scene training and 30%
reduction on the combined scenes.
Runtime For a fair comparison of the running time, we run all
the experiments onNVIDIAGeForce RTX 2080 Ti GPU and
AMD Ryzen Threadripper 2950x CPU. It takes ∼7.4 h for
300k iterations on individual scene training for HSCNet++
and ∼10.4 h on HSCNet with the same setting. We show
the approximate training time for one iteration in Table 10.
It is clear that HSCNet++ has a smaller memory footprint
and faster training time while offering higher accuracy. We
also notice that the training time grows with the number of
multi-head attention layers increases.

We have not observed a clear difference between the two
methods in the inference running time. The running time

varies from around 85 ms to 130 ms to localize one image.
This ismainly dependent on the accuracy of predicted 2D-3D
correspondences fed into the RANSAC-PnP loop.

6 Conclusion

Wehaveproposed anovel hierarchical coarse-to-fine approach
for scene coordinate prediction. The network benefits from
FiLM-like conditioning of coarse region predictions for bet-
ter scene coordinate prediction. Experimentally we demon-
strate that both hierarchical and prediction conditioning are
required for improvement. The method is extended to handle
sparse labels using the proposed pseudo-labeling approach.
Adaptation of symmetric cross-entropy and re-projection
losses provides robustness to pseudo-label noise. We also
show that the synergy of each component proposed in this
work is needed for the best performance.

Results show that the proposed hierarchical scene coor-
dinate network is more accurate than previous regression
only approaches for single-imageRGB localization. The pro-
posed method is also more scalable as shown by results on
three indoor datasets. In addition, the proposed method is
extended to handle sparse labels using less costly methods
than existingmethods and obtaining better results on outdoor
scenes.
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Appendix

We detail our experiments on Aachen dataset (Sattler et al.,
2018). Following the earlier HSCNet work (Li et al., 2020)
wemodify the architecture for this experiment, and therefore
present it separately in this appendix.

HSCNet++ Architecture for Aachen

For large-scale datasets such asAachenDay-Night, the scene
coordinate network is underperforming due to the challenge
of extracting reliable features in the end-to-end training pro-
cedure. Thus, instead of training a feature extractor from
scratch as in the HSCNet dense setting, we leverage the pre-
trained SuperPoint network (DeTone et al., 2018) to extract

more reliable image features as input.Wemodify our network
to consider the SuperPoint features as input. Therefore, the
dense set of local features is replaced by a sparse set of fea-
tures. As a consequence, in the follow-up processing we are
using convolutional layers with 1 × 1 convolutions. FiLM
conditioning layers together with transformer modules are
integrated in a similar way.

Due to the large scale of the scene, a retrieval process is
used during inference to provide contextual evidence. Pre-
dictions are conditioned on the retrieved image id. During
training, the image id of each training image is used as addi-
tional input, in the same spirit as the region labels. It is seen as
the coarsest piece of localization informationwithin the large
scale scene; next coarsest is the discretized region labels.Dur-
ing inference, the image id of the retrieved image is provided
as additional input. The retrieval method used is NetVLAD
(Arandjelović et al., 2016) and the search is performed with
the test image as query and the training images as database.
We use multiple top retrieved images, perform the process
for each of them, and maintain the predicted camera pose
associated with the largest number of inliers. The detailed
architecture of HSCNet++ for Aachen is shown in Fig. 7 and
denoted by HSCNet++(A). This variant only relies on clas-
sification branches and no regression branch is used, which
means that the final predictions are quantized 3Dcoordinates.
There are four classification branches in total. K-means with
a branching factor of 100 is used, which results in 685k valid

Fig. 7 An overview of the proposed HSCNet++(A) onAachen. The figure shows the network architecture of themodifiedHSCNet++ for large-scale
Aachen dataset. Here, y0, y1, y2, y3 are coarse-to-fine label predictions
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Table 11 Accuracy on the Aachen dataset

Method Aachen day Aachen night
0.25m, 2° / 0.5m, 5° / 5m, 10° 0.5m, 2° / 1m, 5° / 5m, 10°

AS (Sattler et al., 2016b) 57.3 / 83.7 / 96.6 28.6 / 37.8 / 51.0

HLoc (Sarlin et al., 2020) 89.6 / 95.4 / 98.8 86.7 / 93.9 / 100.0

PixLoc (Sarlin et al., 2021) 64.3 / 69.3 / 77.4 51.0 / 55.1 / 67.3

ESAC (50 experts) (Brachmann & Rother, 2019b) 42.6 / 59.6 / 75.5 6.1 / 10.2 / 18.4

HSCNet++(A) 72.7 / 81.6 / 91.4 43.9 / 57.1 / 76.5

HSCNet(A) top-10 71.1 / 81.9 / 91.7 40.8 / 56.1 / 76.5

HSCNet(A) top-1 64.0 / 76.1 / 85.4 28.6 / 38.8 / 59.2

HSCNet(A) top-1 (regression) 47.8 / 61.8 / 79.9 11.2 / 17.3 / 39.8

HSCNet(A) w/o retrieval 50.6 / 56.3 / 70.1 12.2 / 12.2 / 22.4

We report localization performance as a percentage (%) of correctly localized query images for 3 different thresholds. The best results are highlighted
in bold

clusters at the finest level. Removing transformer modules
from this architecture results in the HSCNet(A) architecture.

The network is trained for 900K iterations with a batch
size of 1 and a learning rate of 10−4. We use Adam (Kingma
& Ba, 2014) optimizer and halve the learning rate every 50K
iterations for the last 200K iterations. During training, only
those Superpoint keypoints are kept that are triangulated in
the sparse 3D model. At test time, top 2K Superpoint key-
points are kept per image based on keypoint scores after
non-maximum suppression (NMS).

Results are presented in Table 11. Using more neighbors
provides a good performance boost, while not conditioning
on the image ids, therefore not using retrieval at all during
inference, results in a large drop in performance. Chang-
ing the large branch into regression instead of classification
compromises performance as well. The transformer mod-
ules noticeably boost the performance in this experiment
as well. We compare with ESAC (Brachmann & Rother,
2019a), PixLoc (Sarlin et al., 2021) and local feature-based
methods AS (Sattler et al., 2016b) and HLoc (Sarlin et
al., 2020). The results indicate HSCNet++ surpasses end-
to-end methods, ESAC and PixLoc across most thresholds.
The proposed approach, alongside other end-to-endmethods,
falls short compared to local feature-based methods such as
HLoc (Sarlin et al., 2020). The performance gap becomes
more evident in night-time settings showing the limited
robustness of end-to-end methods to illumination variations.
However, HLoc’s reliance on maintaining 3D maps can be
quite challenging for large-scale environments, especially
on mobile devices constrained by storage and communi-
cation bandwidth limitations. Therefore, the consideration
of the memory-accuracy trade-off is imperative. While our
model only requires 0.24GB, local featuremethods likeHLoc
demand 7.8GB for their local descriptor database. Neverthe-
less, the accuracy of the proposed method is susceptible to
a notable decline when faced with a substantial increase in

scene scale for a fixed model size. This limitation could be
addressed by deploying different models for distinct parts of
a large scene by maintaining the memory-accuracy trade-off.
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