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Abstract
This work is concerned with the use of Gaussian surrogate models for Bayesian inverse problems associated with linear partial
differential equations. A particular focus is on the regime where only a small amount of training data is available. In this
regime the type of Gaussian prior used is of critical importance with respect to how well the surrogate model will perform
in terms of Bayesian inversion. We extend the framework of Raissi et. al. (2017) to construct PDE-informed Gaussian priors
that we then use to construct different approximate posteriors. A number of different numerical experiments illustrate the
superiority of the PDE-informed Gaussian priors over more traditional priors.

Keywords Bayesian inverse problem · Gaussian process regression · MCMC · Surrogate model

1 Introduction

Combining complex mathematical models with observa-
tional data is an extremely challenging yet ubiquitous prob-
lem in the fields of modern applied mathematics and data
science. Inverse problems, where one is interested in learning
inputs to a mathematical model such as physical parameters
and initial conditions given partial and noisy observations
of model outputs, are hence of frequent interest. Adopting
a Bayesian approach (Kaipio and Somersalo 2005; Stuart
2010), we incorporate our prior knowledge on the inputs into
a probability distribution, the prior distribution, and obtain a
more accurate representation of the model inputs in the pos-
terior distribution, which results from conditioning the prior
distribution on the observed data.

The posterior distribution contains all the necessary infor-
mation about the characteristics of our inputs. However, in
most cases the posterior is unfortunately intractable and one
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needs to resort to sampling methods such as Markov chain
Monte Carlo (MCMC) (Robert and Casella 2004; Brooks
et al. 2011) to explore it. Amajor challenge in the application
of MCMC methods to problems of practical interest is the
large computational cost associatedwith numerically solving
the mathematical model for a given set of the input param-
eters. Since the generation of each sample by an MCMC
method requires a solve of the governing equations, and often
millions of samples are required in practical applications, this
process can quickly become very costly.

One way to deal with the challenge of full Bayesian infer-
ence for complex models is the use of surrogate models, also
known as emulators, meta-models or reduced order models.
Instead of using the complex (and computationally expen-
sive) model, one uses a simpler and computationally more
efficient model to approximate the solution of the governing
equations, which in turn is used to approximate the data like-
lihood. Within the statistics literature, the most commonly
used type of surrogate model is a Gaussian process emula-
tor (Rasmussen and Williams 2006; Stein 1999; Sacks et al.
1989; Kennedy and O’Hagan 2000; O’Hagan 2006; Higdon
et al. 2004), but other types of surrogate models can also be
used including projection-based methods (Bui-Thanh et al.
2008), generalised Polynomial Chaos (Xiu and Karniadakis
2003;Marzouk et al. 2007), sparse grid collocation (Babuska
et al. 2007; Marzouk and Xiu 2009) and adaptive subspace
methods (Constantine 2015; Constantine et al. 2014).
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In this paper, we focus on the use of Gaussian process sur-
rogate models for approximating the posterior distribution in
inverse problems, where the forward model is related to the
solution of a linear partial differential equation (PDE). In
particular, we consider two different ways of using the sur-
rogate model, emulating either the parameter-to-observation
map or the negative log-likelihood. Convergence properties
of the corresponding posterior approximations, as the num-
ber of design points N used to construct the surrogate model
goes to infinity, have recently been studied in Stuart andTeck-
entrup (2018); Teckentrup (2020); Helin et al. (2023). These
results put themethodology on a firm theoretical footing, and
show that the error in the approximate posterior distribution
can be bounded by the corresponding error in the surrogate
model. Furthermore, the error in the approximate posteriors
tends to zero as N tends to infinity. However, when the for-
ward model of interest is given by a complex model such as
a PDE, one normally operates in a regime where only a very
limited number of design points N can be used due to con-
straints on computational cost. This setting is less understood
and is the main setting of interest in this paper.

With a small number of design points, different modelling
choices made in the derivation of the approximate posterior
can have a large effect on its accuracy. In particular, the choice
of Gaussian prior distribution in the emulator is crucial, as it
heavily influences its accuracy. Intuitively, we want to make
the Gaussian prior as informative as possible, by incorporat-
ing known information about the underlying forward model.
For example, such a Gaussian prior specially tailored to solv-
ing the forward problem in linear PDEs can be found inRaissi
et al. (2017). For incorporating more general constraints, we
refer the reader to the recent review (Swiler et al. 2021).
Other modelling choices that require careful consideration
are whether we build a surrogate model for the parameter-to-
observation map or the log-likelihood directly, and whether
we use the full distribution of the emulator or only the mean
(see e.g. Stuart and Teckentrup (2018); Lie et al. (2018)).

The focus of this paper is on computational aspects of the
use of Gaussian process surrogate models in PDE inverse
problems, with particular emphasis on the setting where
the number of design points is limited by computational
constraints. The main contributions of this paper are the fol-
lowing:

1. We extend the PDE-informed Gaussian process priors
from Raissi et al. (2017) to enable their use in inverse
problems, which requires a Gaussian process prior as a
function of both the spatial variable of the PDE and the
unknown parameter(s).

2. By showing that the required gradients can be com-
puted explicitly, we establish that gradient-based MCMC
samplers such as the Metropolis-adjusted Langevin algo-

rithm (MALA) can be used to efficiently sample from the
approximate posterior distributions.

3. Using a range of numerical examples, we demonstrate
the isolated effects of various modelling choices made,
and thus offer valuable insights and guidance for practi-
tioners. This includes choices of posterior approximation
in the inverse problem (e.g. emulating the parameter-
to-observation map or the log-likelihood) and on prior
distributions for the Gaussian process emulator (e.g.
black-box or PDE-constrained).

The rest of the paper is organised as follows. In Sect. 2 we set
up notation with respect to the inverse problems of interest
and discuss the different kinds of posterior approximations
that result fromusingGaussian surrogatemodels for the data-
likelihood. We then proceed in Sect. 3 to present our main
methodology, discussing how one can blend better-informed
Gaussian surrogate models with inverse problems as well as
presenting the MCMC algorithm that we use. A number of
different numerical experiments that illustrate the computa-
tional benefits of our approach are then presented in Sect. 4,
and finally Sect. 5 provides a summary and discussion of the
main results.

2 Preliminaries

We now give more details about the type of inverse prob-
lems considered in this paper and discuss different aspects
of Gaussian emulators, as well as the corresponding type of
approximate posteriors considered in this work. At the end
of this section, we summarise in Table 1 all the different
notations introduced in this section.

2.1 PDE inverse problems

Consider the linear PDE

Lθu(x) = f (x), x ∈ D, (1a)

Bu(x) = g(x), x ∈ ∂D, (1b)

posed on a domain D ⊆ R
dx , where Lθ denotes a linear

differential operator depending on parameters θ ∈ T ⊆ R
dθ

and the linear operator B incorporates boundary conditions.
The inverse problem of interest in this paper is to infer the
parameters θ from the noisy data y ∈ R

dy given by

y = GX (θ) + η, (2)

where X = {x1, · · · , xdy} ⊂ D are the spatial points
where we observe the solution u of our PDE, GX : T → R

dy

is the parameter-to-observation map defined by GX (θ) =
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Table 1 The list of symbols and
notations used in this paper

Symbol Description

θ Unknown parameter in PDE

T Space of unknown parameter

y Discrete observation of PDE solution

dθ , dy, dx Dimension of vector space

η, �η, σ 2
η Gaussian noise η with zero mean and covariance matrix �η = σ 2

η Idy
X = {x1, x2, · · · , xdy } Set of spatial points corresponding to the observation y

GX GX : T → R
dy parameter-to-observation map

π(θ |y) Posterior

L(y|θ) Likelihood

π0(θ) Prior

�(θ , y) Negative log-likelihood (or potential)

σ 2, l Hyperparameters in Gaussian covariance function

k(θ, θ ′) Scalar-valued covariance function

GX (�) Training data set of function values at � = {θ i }Ni=1 ∈ R
dθ ×N

GN
X (θ) Gaussian process conditioned on data GX (�)

mGX
N (θ), KN (θ , θ ′) Predictive mean and predictive covariance of GN

X (θ)

Lθ
x Differential operator of PDE with parameter θ

u, f PDE solution u and sourcing term f

π
N ,GX
mean , π

N ,GX
marginal Mean-based and marginal posterior with baseline

π
N ,GX ,s
mean , π

N ,GX ,s
marginal Mean-based and marginal posterior with spatial correlation

π
N ,GX ,PDE
mean , π

N ,GX ,PDE
marginal Mean-based and marginal posterior with PDE constrained emulator

�(�) Training data set of potential function values at �

�N (θ) Gaussian process conditioned on data �(�)

m�
N (θ), kN (θ , θ ′) Predictive mean and covariance of �N

π
N ,�
mean, π

N ,�
marginal Mean-based and marginal posterior with emulation of potential function

kp(θ , θ ′), ks(x, x′) Scalar-valued covariance function for parameter and spatial coordinate

Kp(θ , θ ′), Ks(x, x′) Matrix-valued covariance function for parameter and spatial coordinate

{u(x j ; θ)}dyj=1, and η ∼ N (0, �η) is an additive Gaussian

noise term with covariance matrix �η = σ 2
η Idy . Note that the

assumption of Gaussianity and diagonal noise covariance is
done for simplicity, but these assumptions can be relaxed (Lie
et al. 2018). Likewise, the methodology generalises straight-
forwardly to general bounded linear observation operators
applied to the PDE solution u (see the discussion in Sect. 3.1).

To solve the inverse problem we will adopt a Bayesian
approach (Stuart 2010). That is, prior to observing the data
y, θ is assumed to be distributed according to a prior density
π0(θ), and we are interested in the updated posterior den-
sity π(θ |y). From (2) we have y|θ ∼ N (GX (θ), �η), so the
likelihood is

L(y|θ) ∝ exp

(
−1

2
‖GX (θ) − y‖2�η

)

:= exp (−�(θ , y)), (3)

where the function � : T × R
dy → R is called the negative

log-likelihood or potential and ‖z‖�η := zT�−1
η z denotes the

norm weighted by �−1
η . Note that our notation of ‖z‖�η here

follows the convention introduced in Stuart (2010). Then by
Bayes’ formula we have

π(θ |y) ∝ L(y|θ)π0(θ).

The posterior distribution π(θ |y) is in general intractable,
and we need to resort to sampling methods such as MCMC
to extract information from it. However, generating a sam-
ple typically involves evaluating the likelihood and hence the
solution of the PDE (1), which can be prohibitively costly.
This motivates the use of surrogate models to emulate the
PDE solution, which in turn is used to approximate the pos-
terior and hence accelerate the sampling process.

2.2 Gaussian processes

Gaussian process regression (GPR) is a flexible non-
parametric model for Bayesian inference (Rasmussen and
Williams 2006).Our starting point for approximating an arbi-
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trary function g : T → R
d , for some d ∈ N is the Gaussian

process prior

g0(θ) ∼ GP(m(θ), K (θ , θ ′)), (4)

where m : T → R
d is a mean function and K (θ, θ ′) :

T ×T → R
d×d is thematrix-valued positive definite covari-

ance function which represents the covariance between the
different entries of g evaluated at θ and θ ′. Distinct from the
prior introduced earlier in solving the Bayesian inverse prob-
lem, this prior is built for Gaussian process regression.When
emulating the forward map the function g corresponds to the
PDE solution evaluated at dy different spatial points, and
hence d = dy. In contrast, d = 1 when directly emulating
the log-likelihood.

In the case where d > 1 there is a number of choices
that one can make for the matrix-valued covariance function
(Alvarez et al. 2012). In this section, for simplicity we will
assume that the matrix K (θ, θ ′) takes the form

K (θ, θ ′) = k(θ, θ ′)Id

for some scalar-valued covariance function k(θ , θ ′) : T ×
T → R, implying that the entries of g are independent.
We will refer to this as the baseline model. As we will see
later better emulators can be constructed by relaxing this
independence assumption.

The mean function and the covariance function fully char-
acterise our Gaussian prior. A typical choice form is to set it
to zero, while common choices for the covariance function
k(θ , θ ′) include the squared exponential covariance function
(Rasmussen and Williams 2006)

k(θ , θ ′) = σ 2 exp

(
−
∥∥θ − θ ′∥∥2

2l2

)
, (5)

and theMatérn covariance function (Rasmussen andWilliams
2006)

k(θ , θ ′) =
σ 2

�(ν)2ν−1

(√
2ν

∥∥θ − θ ′∥∥
l

)ν

Bν

(√
2ν

∥∥θ − θ ′∥∥
l

)
. (6)

For both kernels, the hyperparameter σ 2 > 0 governs the
magnitude of the covariance and the hyperparameter l > 0
governs the length-scale at which the entries of g0(θ) and
g0(θ ′) are correlated. For the Matérn covariance function
the smoothness of the entries of g0 depends on the hyperpa-
rameter ν > 0. In the limit ν → ∞ we obtain the squared
exponential covariance function,which gives rise to infinitely
differentiable sample paths for g0.

Now suppose that we are given data in the form of N dis-
tinct design points � = {θ i }Ni=1 ⊆ R

dθ with corresponding
function values

g(�) := [g(θ1); · · · ; g(θ N )] ∈ R
Ndy .

Since we have assumed that the multi-output function g0 is
a Gaussian process, the vector

[g0(θ1); · · · ; g0(θN ); g0(θ̃)] ∈ R
(N+1)dy ,

for any test point θ̃ , follows a multivariate Gaussian distri-
bution. The conditional distribution of g0(θ̃) given the set of
values g(�) is then again Gaussian with mean and covari-
ance given by the standard formulas for the conditioning of
Gaussian random variables (Rasmussen andWilliams 2006).
In particular, if we denote with gN the Gaussian process (4)
conditioned on the values g(�) we have

gN (θ) ∼ GP(mg
N (θ), KN (θ, θ ′)) (7)

where the predictive mean vector mg
N and the predictive

covariance matrix KN (θ, θ ′) are given by

mg
N (θ) = m(θ) + K (θ,�)K (�,�)−1 (g(�) − m(�))

(8)

KN (θ , θ ′) = K (θ, θ ′) − K (θ,�)K (�,�)−1K (θ ′,�)T ,

(9)

with

m(�) = [m(θ1); · · · ;m(θ N )] ∈ R
Ndy ,

K (θ,�) = [K (θ, θ1), . . . , K (θ , θ N )] ∈ R
dy×Ndy

and

K (�,�) =
⎡
⎢⎣
K (θ1, θ1) . . . K (θ1, θ N )

...
...

K (θN , θ1) . . . K (θN , θN )

⎤
⎥⎦ ∈ R

Ndy×Ndy

Wenote thatgN is theGaussian process posterior, but to avoid
confusionwith the posterior of theBayesian inverse problem,
we call it the predictive Gaussian process. In addition, for
clarity of notation, we use regular font for scalar values, bold
font for vector values, and capital font for matrices (details
in Table 1).

2.3 Gaussian emulators and approximate posteriors

We now discuss two different approaches for constructing a
Gaussian emulator and using it for approximating the poste-
rior of interest. The first approach constructs an emulator for
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the forward map GX , while the second approach is based on
constructing an emulator directly for the log-likelihood.

2.3.1 Emulating the forward map

Given the data set GX (�) = {GX (θ i )}Ni=1, we can now
proceed with building our Gaussian process emulator for
the forward map GX . Therefore, using similar notation to
(7), we denote the predictive Gaussian process by GN

X . One
then needs to decide how to incorporate the emulation for
the construction of an approximate posterior. In particular,
depending on what type of information we plan to utilize,
different approximations will be obtained. If we use its pre-
dictive mean mGX

N as a point estimator of the forward map
GX , we obtain

πN ,GX
mean (θ |y) ∝ exp

(
−1

2
‖mGX

N (θ) − y‖2�η

)
π0(θ). (10)

Alternatively, we can try to exploit the full information given
by the Gaussian process by incorporating its variance in the
posterior approximation. A natural way to do this is to con-
sider the following approximation1:

π
N ,GX
marginal(θ |y) ∝ E

(
exp

(
−1

2
‖GN

X (θ) − y‖2�η

)
π0(θ)

)

∝
⎛
⎝exp

(
− 1

2‖mGX
N (θ) − y‖2

(KN (θ ,θ)+�η)

)
√

(2π)dy det
(
KN (θ , θ) + �η

)
⎞
⎠π0(θ), (11)

where the expectation is taken over the probability space of
the Gaussian process posterior. A detailed derivation of (11)
can be found in Appendix A. Comparing (11) with (10), the
likelihood function in the marginal approximation is Gaus-
sian with additional uncertainty KN (θ , θ) from the emulator
included into its covariancematrix. Hence, for a fixed param-
eter θ , the likelihood function in (11)will be less concentrated
due to variance inflation. When the magnitude of KN (θ, θ)

is small compared to that of �η, the marginal approximation
will be similar to the mean-based approximation.

2.3.2 Emulating the log-likelihood

Another way of building the emulator is to model the poten-
tial function � directly. We can convert the data set GX (�)

into a data set of negative log-likelihood evaluations�(�) =
{�(θ i , y)}Ni=1, and obtain the predictive Gaussian process
�N (θ) ∼ GP(m�

N (θ), kN (θ , θ)). Again, if we only include

1 The derivation of (11) results from the fact that the convolution of
two Gaussian measures is Gaussian. A detailed derivation can be found
in Appendix A for completeness, the formula was also derived in Cock-
ayne et al. (2017); Calvetti et al. (2018).

the mean of the Gaussian process emulator the posterior
approximation becomes

πN ,�
mean(θ |y) ∝ exp

(−m�
N (θ)

)
π0(θ), (12)

while, in a similar fashion to the forward map emulation, we
can take into account the covariance of our emulator to obtain
the approximate posterior

π
N ,�
marginal(θ |y) ∝ E

(
(exp

(
−�N (θ)

)
)π0(θ)

)

∝ exp

(
−m�

N (θ) + 1

2
kN (θ , θ)

)
π0(θ). (13)

The derivation of (13) is similar to that of (11). Note that
in this case, the following relationship holds between the two
approximate posteriors

π
N ,�
marginal(θ |y) ∝ πN ,�

mean(θ |y) exp
(
1

2
kN (θ , θ)

)
,

which again illustrates a form of variance inflation for the
marginal posterior approximation.

In summary, we have two methods for approximating
the true posterior: the mean-based approximation and the
marginal approximation; andwehave two types of emulators:
the forward map emulator and the potential function emula-
tor; thus by combinationwe have four types of approximation
in total. The convergence properties of all these approximate
posteriors were the subject of study in Stuart and Teckentrup
(2018); Teckentrup (2020); Helin et al. (2023), where it was
proved under suitable assumptions that all of them converge
to the true posterior as N → ∞. However, in the case of
small N , the difference between the approximate posteriors
could be large and which one we choose is important. Fur-
thermore, the type of Gaussian process emulator used plays
an even bigger role in this case, and one would like to use a
Gaussian prior that is as informative as possible. We discuss
how to do this in the next section.

3 Methodology

Having described the different types of posterior approxima-
tions we will consider, in this section we discuss different
modelling approaches for the prior distribution used in our
Gaussian emulators. In doing this it is important to note that
the function that we are interested to emulate, in this case
the forward map GX (θ), depends not only on the parameters
θ of our PDE, but also on the locations of the spatial obser-
vations. Thus in terms of modelling, one would like to take
this into account and build spatial correlation explicitly into
the prior covariance. Note that when emulating the poten-
tial � instead of the forward map GX , we are emulating a
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scalar-valued function. Since � is a non-linear function of
GX , it is not possible to extend the ideas of spatial correlation
presented in this section to emulating �, and in particular, it
is not possible to construct a PDE-informed emulator in the
same way.

Introducing spatial correlation when emulatingGX (θ) can
be done in two different ways, the first by prescribing some
explicit form of spatial correlation, and the second by using
the fact that we know that our forward map is associated
with the solution of a linear PDE.We do this in Sect. 3.1. It is
important to note that in both cases it is possible to calculate
the gradients with respect to the parameters θ in a closed
form,which can then be used to sample from the approximate
posterior distributions using gradient-basedMCMCmethods
such as MALA. We discuss this in more detail in Sect. 3.2.

3.1 Correlated and PDE-informed priors

We now discuss two different approaches to incorporate spa-
tial correlation into our prior covariance function for the
forward map GX (θ). Even though this is a function from the
parameter space T to the observation space R

dy , for intro-
ducing more complicated spatial correlation it is useful to
think first about the PDE solution u(θ , x) as a function from
T × D to R. We introduce the prior covariance function
k((θ , x), (θ ′, x′)) for u(θ , x), and choose a separable model

k((θ , x), (θ ′, x′)) = kp(θ, θ ′)ks(x, x′), (14)

where kp and ks are the covariance functions for the param-
eters θ and the spatial points x respectively.

Using the fact that the forward map GX relates to the
point-wise evaluation of the function u(θ , x) for x ∈ X , and
assuming zero mean, we then obtain the Gaussian prior

GX (θ) ∼ GP(0, K (θ , θ ′)), (15)

with

K (θ, θ ′) = kp(θ , θ ′)Ks(X , X),

where Ks is the covariancematrixwith entries (Ks(X , X))i, j
= ks(xi , x j ), xi , x j ∈ X . This prior can then be conditioned
on training data GX (�), and due to the separable structure in
(14), the predictive mean mGX

N (θ) is in fact the same as for
the baseline model in Sect. 2.2. See Appendix B for details.

The second way of introducing spatial correlation is
explicitly taking into account that the forward map is related
to a PDE solution. Given the PDE system

Lθu(x) = f (x), x ∈ D,

Bu(x) = g(x), x ∈ ∂D,

as described in Sect. 2, we can build a joint prior between u,
f and g. In particular, if we take fixed points x, x f ∈ D and
xg ∈ ∂D we have that

⎡
⎣ u(θ , x)
g(θ, xg)
f (θ, x f )

⎤
⎦ ∼ GP

(
0, kp(θ , θ ′)

⎡
⎢⎣

ks(x, x) Bks(x, xg) Lθ ′
ks(x, x f )

Bks(xg, x) BBks(xg, xg) BLθ ′
ks(xg, x f )

Lθks(x f , x) LθBks(x f , xg) LθLθ ′
ks(x f , x f )

⎤
⎥⎦
⎞
⎟⎠ , (16)

where the above is a Gaussian process as a function of
θ , and we have used known properties of linear operators
applied to Gaussian processes (see e.g. (Matsumoto and
Sullivan 2023)) in the derivation. The idea of a joint prior
between u and f was also used in Raissi et al. (2017); Spi-
tieris and Steinsland (2023); Cockayne et al. (2017); Pförtner
et al. (2022), while (Chris J. Oates and Girolami 2019) uses
this explicitly in an inverse problem setting. The crucial dif-
ference is that in these works u and f were considered as
functions of the spatial variable x only, while here we instead
explicitly model the dependency of u on θ . We then have

⎡
⎣ GX (θ)

g(θ, Xg)

f (θ, X f )

⎤
⎦ ∼ GP

(
0, K (θ , θ ′)

)
, (17)

where

K (θ, θ ′) = kp(θ, θ ′)⎡
⎢⎣

Ks(X , X) BKs(X , Xg) Lθ ′
Ks(X , X f )

BKs(Xg, X) BBKs(Xg, Xg) BLθ ′
Ks(Xg, X f )

LθKs(X f , X) LθBKs(X f , Xg) LθLθ ′
Ks(X f , X f )

⎤
⎥⎦

and Xg ⊂ ∂D and X f ⊂ D are collections of dg and d f

points at which g and f have been evaluated, respectively.
Note that the marginal prior placed on GX is the same as in
(15).

The prior (17) can then again be conditioned on training
data as in Sect. 2.2, see Appendix B for details. Note that
in this case we are updating our prior on GX (θ) using the
observations g(�, Xg) and f (�, X f ) as well as GX (�),
essentially augmenting the space on which the emulator
GN
X (θ) is trained. Since g and f are assumed known, these

additional observations are cheap to obtain. It is also possible
to condition on training data g(�g, Xg) and f (� f , X f ), for
point sets �g and � f different to �, and this has been found
to be beneficial in some of the numerical experiments (see
Sect. 4 and Appendix D).
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3.2 MCMC algorithms

To extract information from the posterior, MCMC algo-
rithms are powerful and popular tools (Robert and Casella
2004; Brooks et al. 2011). In this work, we will consider the
Metropolis-AdjustedLangevinAlgorithm (MALA) (Roberts
and Tweedie 1996), which is a type ofMCMC algorithm that
uses gradient information to accelerate the convergence of
the sampling chain. Central to the idea of MALA is the over-
damped Langevin stochastic differential equation (SDE):

dθ = ∇ logπ(θ |y)dt + √
2dW , (18)

where W is a standard dθ -dimensional Brownian motion.
Undermild conditions on the posteriorπ (Robert andCasella
2004), (18) is ergodic and has π as its stationary distribution,
so that the probability density function of θ(t) tends to π as
t → ∞.

Algorithm 1 Metropolis-Adjusted Langevin Algorithm
Require: initial value θ0, initial acceptance rate α0 = 0, number of
samples N , initial time-step γ0, posterior π(θ |y), optimal acceptance
rate αopt
while n < N do

1. Generate ξn ∼ N (0, 1).

2. Generate a candidate

θ ′ = θn + γn∇ logπ(θn |y) + √
2γnξn .

3. Compute the acceptance probability

αn := max

(
1,

π(θ ′|y)q(θn |θ ′)
π(θn |y)q(θ ′|θn)

)
,

where q(θ |θ̃) ∝ exp
(
− 1

4γn
‖θ − θ̃

−γn∇ logπ(θ̃ |y)‖2
)

4. Generate r ∼ U [0, 1].
if r < αn then

θn+1 = θ ′
In = 1

else
θn+1 = θn .

In = 0
end if
5. Update the time-step γn+1 = γn(1 + In−αopt

n+1 )

end while

In practice (18) is discretised with a simple Euler-
Maruyama method with a time step γ :

θn+1 = θn + γ∇ logπ(θ |y) + √
2γ ξn, (19)

with ξn ∼ N (0, 1). Assuming that the dynamics of (19)
remain ergodic the corresponding numerical invariant mea-
sure would not necessarily coincide with the posterior. To

alleviate this bias, one needs to incorporate an accept-reject
mechanism (Sanz-Serna 2014). This gives rise to MALA as
described in Algorithm 1.

An advantage of using the Gaussian process emulator in
the posterior is that, assuming the prior is differentiable,
∇ logπN (θ |y) can be computed analytically for the mean-
based and marginal approximations introduced in Sect. 2.3,
which enables us to easily implement the MALA algorithm.
Note that in contrast since the true posterior involves the
(analytical or numerical) solution u to the PDE (1a)-(1b), it
is usually impossible to compute these gradients analytically
and one needs to resort to their numerical approximation. The
following Lemma gives the gradient of the different approx-
imate posteriors. The proof can be found in Appendix C.

Lemma 1 Given the Gaussian process GN
X ∼ GP(mGX

N (θ),

KN (θ , θ)) that emulates the forward map GX with data
GX (�), we have the gradient of the mean-based approxi-
mation of the posterior

∇ log(πN ,GX
mean (θ |y))

= − 1

σ 2
η

∇mGX
N (θ)T (mGX

N (θ) − y) + ∇ logπ0(θ),

and the gradient of the marginal approximation of the pos-
terior

∇ log(πN ,GX
marginal(θ |y))

= −∇mGX
N (θ)T (KN (θ , θ) + �η)

−1(mGX
N (θ) − y)

− 1

2
(mGX

N (θ) − y)T∇
(
(KN (θ , θ) + �η)

−1
)

(mGX
N (θ) − y)

− 1

2

(
Tr

(
(KN (θ, θ) + �η)

−1
)

∇(KN (θ , θ))
)

+ ∇ logπ0(θ),

where

∇
(
(KN (θ , θ) + �η)

−1
)

= −(KN (θ , θ) + �η)
−1∇ (KN (θ, θ)) (KN (θ , θ) + �η)

−1

and ∇KN (θ , θ) = 2∇K (θ ,�)K (�,�)−1K (�, θ).

4 Numerical experiments

Wenow discuss a number of different numerical experiments
related to inverse problems for the PDE (1a)-(1b) in various
set-ups2 in terms of the number of spatial and parameter
dimensions as well as for different types of forward models.
A common theme in all our experiments is that the number of

2 A number of additional numerical experiments can be found in
Appendix D
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Table 2 Symbols and notations
used in numerical experiments

Symbol Description

GX (�) Training data set: point-wise evaluation

of the PDE solution u(θ , x)

for x ∈ X = {xi }dyi=1, θ ∈ � = {θ i }Ni=1

g(�g, Xg) Additional training data for boundary condition

point-wise evaluation of the function g(θ , x)

for x ∈ Xg = {xi }dgi=1, θ ∈ � = {θ i }Ng
i=1

f (� f , X f ) Additional training data for the source function

point-wise evaluation of the function f (θ , x) for

x ∈ X = {xi }d f
i=1, θ ∈ � = {θ i }N f

i=1

N̄ We use Ng = N f = N̄

training points N is small, as this would be the case in large-
scale applications in practice where increasing the number of
training points is often either very costly or infeasible. The
number of training points N used will serve as a benchmark
for comparing different methodologies. Throughout all our
numerical experiments in Sects. 4.1-4.3 when comparing the
different approaches we keep N fixed. The value of N is
chosen in such a way to ensure that significant uncertainty
remains present in the emulator, which is typically the case
in applications. Alternatively, one could ask what number of
training points for each model is needed to reach a certain
accuracy, however as explained above, this is not the view-
point taken here. Precise timings for each of the approaches
are reported in Sect. 4.4.

In cases where the PDE solution is not available in closed
form, we use the finite element software Firedrake (Rathge-
ber et al. 2016) to obtain the "true" solution. Furthermore,
whenusingMALAweadaptively tune the step size to achieve
an average acceptance probability 0.573 (Brooks et al. 2011).
In all our numerical experiments, we replace the uniform
prior with a smooth approximation given by the λ−Moreau-
Yosida envelope (Bauschke et al. 2011) with λ = 10−3.

The selection of hyperparameters is crucial for the appli-
cation of Gaussian process regression. In this paper, we
optimize the hyperparameters by minimizing the negative
log marginal likelihood, which in general could be compu-
tationally intensive. We simplify this process by assuming
isotropy for the length-scale in the covariance function for
θ as in (5) and (6), so the optimization of the hyperparame-
ters becomes a two-dimensional problem.Additionally, since
we are operating in the small training data regime, the com-
putational cost of evaluating the log-likelihood is small. To
emphasise the improvement brought by the structure and also
for simplicity, in the case of the spatially correlated and the
PDE-constrained models, we use the same hyperparameters
for the covariance function of the unknown parameter θ as in
the baseline model and only optimise the hyperparameters of

the spatial covariance function. In principle, these assump-
tions can be relaxed to achieve potentially higher accuracy in
the regression. The computational timings for optimization
of the hyperparameters can be found in Appendix D.

To clarify the notation we use in our numerical experi-
ments, we recall some of it in Table 2.

4.1 Examples in one spatial dimension

4.1.1 Two-dimensional piece-wise constant diffusion
coefficient

We consider an elliptic equation with a 2-dimensional piece-
wise constant diffusion coefficient; we have the following
equation

− d

dx
(exp(κ(x, θ))

d

dx
u(x)) = 4x,

x ∈ (0, 1), θ ∈ [−1, 1]2,
u(0) = 0, u(1) = 2, (20)

where κ is defined as piece-wise constant over four equally
spaced intervals. More precisely, we consider

κ(x, θ) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x ∈ [0, 1
4 )

θ1, for x ∈ [ 14 , 1
2 )

θ2, for x ∈ [ 12 , 3
4 )

1 for x ∈ [ 34 , 1]
(21)

Since it is not possible to solve (20) explicitly, we use Fire-
drake to obtain its solution.

Throughout this numerical experiment, we take the prior
of the parameters to be the uniform distribution on [−1, 1]2,
and we generate our data y according to equation (2) for
θ† = [0.098, 0.430], dy = 6 (equally spaced points in [0,1])
and noise level σ 2

η = 10−4. For the covariance kernels, we
choose kp to be the squared exponential kernel and ks to be
the Matèrn kernel with ν = 5

2 .
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Fig. 1 Error between the predictive mean of PDE constrained emulator and the ground truth (θ = θ†) at the dy = 6 observation points for different
N̄ (d f = 20) (top plot) and different d f (N̄ = 10) (bottom plot) with dg = 2 fixed

For the PDE constrained model, we first test the effect of
additional training data g(�g, Xg) and f (� f , X f ) on the
accuracy of the emulator. In Fig. 1, we see that as d f and N̄
increase, the accuracy of emulators gradually increases.

We now use MALA to obtain samples for all our approx-
imate posteriors using 106 samples. For all models, we have
used N = 4 training points (chosen to be the first 4 points
in the Halton sequence), while additionally for the PDE-
constrained model, we have used N̄ = 10 (chosen to be
the next 10 points in the Halton sequence), d f = 20 and
dg = 2. Since we do not have access to the true posterior, we
consider the results obtained from a mean-based approxima-
tion with the baseline model for N = 102 training points as
the ground truth.

As we can see in Fig. 2, all the mean-based posteriors
fail to put significant posterior mass near the true parame-
ter value θ†. The situation improves when the uncertainty
of the emulator is taken into account as we can see for the
marginal approximations. Out of the three different models,
the PDE-constrained one seems to be performing best since
it is placing the most posterior mass around the true value θ†.
This is further illustrated in Fig. 3 where we plot the θ1 and
θ2 marginals for all themean-based posterior approximations
π
N ,GX
mean , π

N ,GX ,s
mean , π

N ,GX ,PDE
mean and the marginal-based poste-

rior approximationsπ
N ,GX
marginal,π

N ,GX ,s
marginal,π

N ,GX ,PDE
marginal . Note that

the marginal plot could be misleading regarding the overall
performance of the approximations, for example in Fig. 3
(top right) the baseline model seems to be better than the

PDE-constrained model, but from Fig. 2 we know that this
is not true. In other words, the marginal posteriors are better
approximations than the joint posterior.Whenwe increase d f

from 20 to 50, the accuracy of the approximation improves
as we can see in Fig. 4 where we compare PDE-constrained
approximations for the two different values of d f .

4.1.2 Parametric expansion for the diffusion coefficient

In this example, we study again (20), but this time instead of
working with a piece-wise constant diffusion coefficient we
assume that the diffusion coefficient satisfies the following
parametric expansion

κ(θ, x) =
dθ∑
n=1

√
anθnbn(x) (22)

where an = 8
ω2
n+16

, bn(x) = An(sin(ωnx) + ωn
4 cos(ωnx)),

ωn is the nth solution of the equation tan(ωn) = 8ωn
ω2
n−16

and

An is a normalisation constant whichmakes ‖bn‖L2(0,1) = 1.

This choice ismotivated by the fact that for {θn}dθ

n=1 i.i.d. stan-
dard normal random variables, this is a truncated Karhunen-
Loève expansion of log(κ(θ, x)) ∼ GP(0, exp(−‖x−x ′‖1))
(Ghanem and Spanos 1991).

In terms of the inverse problem setting, we are using the
same parameters as before (θ† = [0.098, 0.430], dy = 6,
noise level σ 2

η = 10−4). The number of training points for
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Fig. 2 Contour plots of the approximate mean-based and marginal-based posteriors: baseline model (top left plot), spatially correlated (top right
plot), PDE-constrained (bottom plot). The symbol " + " denotes θ†. GX is the discretised solution u in (20)

all the emulators has been set to N = 4 (chosen using the
Halton sequence), while in the case of the PDE-constrained
emulator we have used N̄ = 10 and d f = 8. Furthermore,
throughout this numerical experiment, we take the prior of
the parameters to be the uniform distribution on [−1, 1]2.
For the choices of kernels, we use the squared exponential
kernel for both kp and ks .

As in the previous experiments, we produce 106 samples
of the posteriors using MALA, and use the results obtained
by a mean-based approximation with the baseline model for
N = 102 training points as the ground truth.

We now plot in Fig. 5 the θ1 and θ2 marginals for the dif-
ferent Gaussian emulators both in the case of mean-based
and marginal posterior approximations. As we can see in
Fig. 5 for themean-based posterior approximations, the base-
line and spatially correlated model fail to capture the true
posterior while this is not the case for the PDE-constrained
model since the agreement with the true posterior is excel-
lent. When looking at the marginal approximations in Fig. 5
(bottom left and bottom right) we can see that the marginals
for the baseline and spatially correlated models move closer
towards the true value θ† and exhibit variance inflation. This
is, however, not the case for the PDE-constrained model

since again it is in excellent agreement with the true pos-
terior.

4.2 Two spatial dimensions

In this example, we increase the spatial dimension from
dx = 1 to dx = 2 and use a 2-dimensional piece-wise con-
stant as the diffusion coefficient. The values of the diffusion
coefficient are set in a similar way to the first example, but
depending only on the first dimension of x:

κ(x, θ) =

⎧⎪⎪⎨
⎪⎪⎩

0, for x1 ∈ [0, 1
4 ),

θ1, for x1 ∈ [ 14 , 1
2 ),

θ2, for x1 ∈ [ 12 , 3
4 ),

1, for x1 ∈ [ 34 , 1].
(23)

The boundary conditions are a mixture of Neumann and
Dirichlet conditions, given by

∂x1u(x1, 0) = ∂x1u(x1, 1) = 0, for x1 ∈ [0, 1],
u(0, x2) = 1, u(1, x2) = 0, for x2 ∈ [0, 1].
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Fig. 3 Comparison of different models’ marginal distribution when
N = 4, for PDE model d f = 20 and N̄ = 20: mean-based approx-
imation of the θ1 marginal (top left plot) and θ2 marginal (top right

plot), marginal approximation of the θ1 marginal (bottom left plot) and
θ2 marginal (bottom right plot). GX is the discretised solution u in (20)
with diffusion coefficient (21)

Fig. 4 Comparison of differentmodels’marginal distributionwhen N = 4:mean-based approximation (left plot) andmarginal-based approximation
(right plot)

These boundary conditions define a flow cell, with no flux at
the top and bottom boundary (x2 = 0, 1) and flow from left
to right induced by the higher value of u at x1 = 0.

For the observation, we generate our data y according to
equation (2) for θ† = [0.098, 0.430] with dy = 6 (chosen to
be the first 6 points in the Halton sequence) and a noise level
σ 2

η = 10−5. In addition, for the baseline and spatially corre-

lated models, we have used N = 4 training points (chosen to
be the first 4 points in the Halton sequence), while addition-
ally for the PDE-constrained model, we have used N̄ = 30,
d f = 30 and dg = 8, corresponding to 2 equally spaced
points on each boundary. For the covariance kernels, we let
kp be the squared exponential kernel and ks be the Matèrn
kernel with ν = 5

2 .
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Fig. 5 Comparison of different models’ marginal distribution when
N = 4, for PDE model N̄ = 10 and d f = 8: mean-based approxima-
tion of the θ1 marginal (top left plot) and θ2 marginal (top right plot),

marginal approximation of the θ1 marginal (bottom left plot) and θ2
marginal (bottom right plot). GX is the discretised solution u in (20)
with diffusion coefficient (22) and dθ = 2

We plot the mean-based approximate marginal posteri-
ors in Fig. 6 (top left and top right). We can see that in this
case, the PDE-constrained model significantly improves the
approximation accuracy, which is different from the previous
piece-wise constant diffusion coefficient example in one spa-
tial dimension. In Fig. 6 (bottom left and bottom right), we
compare the marginal approximation for the three models,
and we again see that the PDE-constrained model performs
best.

4.3 Emulating the negative log-likelihood

As discussed in Sect. 2.3.2, we can emulate the negative log-
likelihood directly with Gaussian process regression instead
of emulating the forward map. Since emulation of the log-
likelihood involves emulating a non-linear functional of the
PDE solution u, we are not able to incorporate spatial cor-
relation or PDE constraints in the same way. We test the
performance of the mean-based approximation (12) and the
marginal approximation (13) using the previous examples:

problem (20) with diffusion coefficient (21) with dx = 1 and
dx = 2. All parameters are kept the same as in Sect. 4.1.1
and Sect. 4.2.

In Fig. 7, we compare themean-based approximation with
the emulation of the log-likelihood � and the observation
operator GX using baseline model. We see that the results
are very different in both examples. For the dx = 1, emu-
lating the log-likelihood function performs better than the
emulation of the observation with the baseline model, the
approximated posterior is closer to the true posterior. For the
dx = 2, its performance ismuchworse. Hence, emulating the
log-likelihood with a small amount of data could be less reli-
able compared to emulating the forward map. If we increase
the number of training data to N = 10 for the dx = 2 case,
we can see an improvement of accuracy in Fig. 8, but it is
still worse than emulating the forward map with the baseline
model.

Similarly, we see in Fig. 9 that marginal approximations
of the posterior based emulation of the log-likelihood appear
to be less reliable, but including more training points can
again improve the performance.
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Fig. 6 Comparison of different models’ marginal distribution when
N = 4, for PDE model N̄ = 30 and d f = 30: mean-based approxi-
mation of the θ1 marginal (top left plot) and the θ2 marginal (top right

plot), and marginal approximation of the θ1 marginal (bottom left plot)
and the θ2 marginal (bottom right plot). GX is the discretised solution
u with dx = 2 and diffusion coefficient (23)

Fig. 7 Comparison of emulating log-likelihood function and emulating observations when N = 4. Both approximations are the mean-based
approximation. GX is the negative log-likelihood function in the problem (20) with the diffusion coefficient (21) with dx = 1 (left plot) and dx = 2
(right plot)

4.4 Computational timings

In this section, we discuss computational timings. We focus
on the computational gains resulting from using Gaussian
process emulators instead of the PDE solution in the posterior

(see Table 3) and the relative costs of sampling from the
various approximate posteriors (see Tables 4, 5, 6 and 7).

Table 3 gives average computational timings comparing
the evaluation of the solution of the PDEusing Firedrakewith
using the Gaussian process surrogate model. For the baseline
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Fig. 8 The accuracy of the emulator is improved when N increases
(N = 10). GX is the negative log-likelihood function in the problem
(20) with the diffusion coefficient (21) with dx = 2 and mean-based
approximation

surrogate model, the two primary costs are (i) computing
the coefficients α = K (�,�)−1GX (�), which is an offline
cost and only needs to be done once, and (ii) computing the
predictive mean m f

N (θ) = K (θ,�)α, which is the online
cost and needs to be done for every new test point θ . We
see that evaluating m f

N (θ) is orders of magnitude faster than
evaluating GX (θ).

In Tables 4, 5 and 6, we compare average computational
timings of drawing one sample from the approximate pos-
terior with different models. In Table 4, we see that the
mean-based approximation with the PDE-informed prior is
more expensive than the one with the baseline prior, by a fac-
tor of 2–4 depending on the setting. This is to be expected,
since the PDE-informed posterior mean mGX

N ,X f ,Xg
involves

matrices of larger dimensions than the baseline posterior
mean mGX

N .
Table 5 investigates the different marginal approxima-

tions. Compared to the mean-based approximations in Table

4, we see that the marginal approximations are more expen-
sive by a factor of around 2 for the baselinemodel and around
3–10 for the PDE-constrained model. Within the different
marginal approximations, the spatially correlated model is
not much more expensive than the baseline model, whereas,
depending on the setting, the PDE-constrainedmodel is 2–30
times more expensive.

In Table 6, we can see that emulating the log-likelihood
significantly reduces the cost of sampling from the mean-
based and marginal approximations, by around a factor of 20
compared to the baseline model for emulating the observa-
tions.

Finally, Table 7 shows the effective sample sizes (ESSs)
obtained for the different posterior approximations with
MALA.We can see that the ESSs are all comparable, imply-
ing that it is meaningful to look at the cost per sample to
compare the different approximate posteriors in terms of
computational cost.

5 Conclusions, discussion and actionable
advice

Bayesian inverse problems for PDEs pose significant com-
putational challenges. The application of state-of-the-art
sampling methods, including MCMC methods, is typically
computationally infeasible due to the large computational
cost of simulating the underlying mathematical model for a
given value of the unknown parameters. A solution to allevi-
ate this problem is to use a surrogate model to approximate
the PDE solution within the Bayesian posterior distribution.
In this work we considered the use of Gaussian process sur-
rogate models, which are frequently used in engineering and
geo-statistics applications and offer the benefit of built-in
uncertainty quantification in the variance of the emulator.

Fig. 9 Marginal approximation with N = 4 (left plot) and marginal approximation with N = 10 (right plot). GX is the negative log-likelihood
function in the problem (20) with the diffusion coefficient (21) with dx = 1
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Table 3 Timings of PDE
solution versus baseline
Gaussian process emulator

Set-up GX (θ) mGX
N (θ) α

dθ = 2, dy = 6, D = (0, 1), N = 4 3.2 × 10−1s 1.0 × 10−4s 2.5 × 10−4s

dθ = 2, dy = 6, D = (0, 1), N = 20 3.2 × 10−1s 1.3 × 10−4s 6.8 × 10−4s

dθ = 10, dy = 18, D = (0, 1), N = 4 3.2 × 10−1s 1.6 × 10−4s 4.5 × 10−4s

dθ = 2, dy = 6, D = (0, 1)2, N = 4 7.6 × 100s 1.0 × 10−4s 5.3 × 10−4s

Table 4 Timings of different
mean-based approximations
(baseline and PDE-constrained)

Set-up π
N ,GX
mean π

N ,GX ,PDE
mean

dθ = 2, dy = 6, D = (0, 1), N = 4 8.5 × 10−4s 1.2 × 10−3s (N̄ = 10, d f = 20)

dθ = 2, dy = 6, D = (0, 1), N = 20 9.3 × 10−4s 1.4 × 10−3s (N̄ = 10, d f = 20)

dθ = 10, dy = 18, D = (0, 1), N = 4 2.6 × 10−3s 1.2 × 10−2s (N̄ = 50, d f = 25)

dθ = 2, dy = 6, D = (0, 1)2, N = 4 8.5 × 10−4s 1.6 × 10−3s (N̄ = 30, d f = 30)

Table 5 Timings of different
marginal approximations
(baseline, spatially correlated
and PDE-constrained); N and
d f are as in Table 4

Set-up π
N ,GX
marginal π

N ,GX ,s
marginal π

N ,GX ,PDE
marginal

dθ = 2, dy = 6, D = (0, 1), N = 4 1.7 × 10−3s 2.2 × 10−3s 3.2 × 10−3s

dθ = 2, dy = 6, D = (0, 1), N = 20 2.0 × 10−3s 2.6 × 10−3s 5.6 × 10−3s

dθ = 10, dy = 18, D = (0, 1), N = 4 3.4 × 10−3s 3.6 × 10−3s 1.1 × 10−1s

dθ = 2, dy = 6, D = (0, 1)2, N = 4 1.7 × 10−3s 2.2 × 10−3s 4.8 × 10−2s

Table 6 Timings of mean-based
and marginal approximation
when emulating the
log-likelihood

Set-up π
N ,�
mean π

N ,GX ,�
marginal

dθ = 2, dy = 6, D = (0, 1), N = 4 3.4 × 10−5s 5.8 × 10−5s

dθ = 2, dy = 6, D = (0, 1)2, N = 4 3.4 × 10−5s 5.8 × 10−5s

Table 7 Effective sample size for 106 samples

Model Ess

Baseline mean 7274

Baseline marginal 10,337

Spatially correlated marginal 9249

PDE-constrained mean 9637

PDE-constrained marginal 9982

The focus of this work was on practical aspects of using
Gaussian process emulators in this context, providing effi-
cient MCMC methods and studying the effect of various
modelling choices in the derivation of the approximate pos-
terior on its accuracy and computational efficiency. We now
summarise the main conclusions of our investigation.

1. Emulating log-likelihood vs emulating observations.
We can construct an emulator for the negative log-
likelihood � or the parameter-to-observation map GX in
the likelihood (3).

• Computational efficiency. The log-likelihood � is
always scalar-valued, independent of the number of

observations dy, which makes the computation of the
approximate likelihood for a given value of the param-
eters θ much cheaper than the approximate likelihood
with emulated GX . The relative cost will depend on
dy.

• Accuracy. When only limited training data are pro-
vided, emulating GX appears more reliable than emu-
lating �, even with the baseline model. The major
advantage of emulating GX is that it allows us to
include correlation between different observations,
i.e. between the different entries of GX . This sub-
stantially increases the accuracy of the approximate
posteriors, in particular if we use the PDE structure to
define the correlations (see point 3 below).

2. Mean-based vs marginal posterior approximations.
We can use only the mean of the Gaussian process emu-
lator to define the approximate posterior as in (10) and
(12), or we can make use of its full distribution to define
the marginal approximate posteriors as in (11) and (13).

• Computational efficiency. The mean-based approxi-
mations are faster to sample from using MALA. This
is due to simpler structure of the gradient required for
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the proposals. The difference in computational times
depends on the prior chosen, and is greater for the
PDE-constrained model.

• Accuracy. The marginal approximations correspond
to a form of variance inflation in the approximate
posterior (see Sect. 2.3), representing our incomplete
knowledge about the PDE solution. They thus com-
bat over-confident predictions. In our experiments,
we confirm that they typically allocate larger mass
to regions around the true parameter value than the
mean-based approximations.

3. Spatial correlation and PDE-constrained priors.

• Computational efficiency. Introducing the spatially
correlated model only affects the marginal approx-
imation, and sampling from the marginal approxi-
mate posterior with the spatially correlated model is
slightly slower than with the baseline model. The
PDE-constrained model significantly increases the
computational times for both the mean-based and
marginal approximations, with the extent depending
on the size of the additional training data.

• Accuracy. Introducing spatial correlation improves
the accuracy of themarginal approximation compared
to the baseline model. The most accurate results are
obtained with the PDE-constrained priors, which are
problem specific and more informative. A benefit of
the spatially correlatedmodel is that it does not rely on
the underlying PDE being linear, and easily extends
to non-linear settings.

In summary, the marginal posterior approximations and
the spatially correlated/ PDE-constrained prior distributions
provide mechanisms for increasing the accuracy of the infer-
ence and avoiding over-confident biased predictions, without
the need to increase N . This is particularly useful in practical
applications, where the number of model runs N available to
train the surrogatemodelmaybe very small due to constraints
in time and/or cost. This does result in higher computa-
tional cost compared to mean-based approximations based
on black-box priors, but may still be the preferable option if
obtaining another training point is impossible or computa-
tionally very costly.

Variance inflation, as exhibited in the marginal posterior
approximations considered in this work, is a known tool
to improve Bayesian inference in complex models, see e.g.
(Conrad et al. 2017;Calvetti et al. 2018; Fox et al. 2020).Con-
ceptually, it is also related to including model discrepancy
(Kennedy and O’Hagan 2000; Brynjarsdóttir and O’Hagan
2014). The approach to variance inflation presented in this
work has several advantages. Firstly, the variance inflation
being equal to the predictive variance of the emulator means

that the amount of variance inflation included depends on
the location θ in the parameter space. We introduce more
uncertainty in parts of the parameter space where we have
less training points and the emulator is possibly less accurate.
Secondly, the amount of variance inflation can be tuned in
a principled way using standard techniques for hyperparam-
eter estimation in Gaussian process emulators. There is no
need to choose amodel for the variance inflation separately to
choosing the emulator, since this is determined automatically
as part of the emulator.

Wedidnot apply optimal experimental design in thiswork,
i.e. how we should optimally choose the locations � of the
training data. One would expect that using optimal design
will have a large influence on the accuracy of the approx-
imate posteriors, especially for small N . In the context of
inverse problems, one usually wants to place the training
points in regions of parameter spacewhere the (approximate)
posterior places significant mass (see e.g. Helin et al. (2023)
and the references therein). For a fair comparison between
all scenarios, and to eliminate the interplay between optimal
experimental design and other modelling choices, we have
chosen the training points as a space-filling design in our
experiments. We expect the same conclusions to hold with
optimally placed points.

A Derivation of marginal likelihood

Letmθ = mGX
N (θ), Kθ = KN (θ, θ) and�η = σ−2

η Idy . Since

GN
X (θ) = mθ + ξ , where ξ ∼ N (0, Kθ ), using the definition

of the expectation we obtain

E

(
exp

(
−1

2
‖GN

X (θ) − y‖�eta

)
π0(θ)

)

= 1√
(2π)dy det (Kθ )∫

R
dy
exp

(
−

‖mθ + ξ − y‖2�η

2

)
exp

(
−‖ξ‖2Kθ

2

)
dξ .

Wethen rewrite and simplify the exponent part in the formula.
Let ȳ = y − mθ , then

− 1

2

(
‖ξ − (y − mθ )‖2�η

+ ‖ξ‖2Kθ

)

= −1

2

(
‖ξ − ȳ‖2�η

+ ‖ξ‖2Kθ

)

= −1

2

(
(ξ − ȳ)T�−1

η (ξ − ȳ) + ξ T K−1
θ ξ

)

= −1

2

(
ξ T (�−1

η + K−1
θ )ξ . − 2ȳT�−1

η ξ + ȳT�−1
η ȳ

)
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Since �η and Kθ are symmetric matrices, we have

ȳT�−1
η ξ

= ȳT ((Kθ + �η)
−1Kθ )(K

−1
θ (Kθ + �η))�

−1
η ξ

= (Kθ (Kθ + �η)
−1ȳ)T K−1

θ (Kθ + �η)�
−1
η ξ

= ỹTC−1ξ ,

whereC = Kθ (Kθ +�η)
−1�η and ỹ = C�−1

η ȳ. Substituting
it into the formula above, we have

= −1

2

(
ξ TC−1ξ − 2ỹTC−1ξ + ȳT�−1

η ȳ
)

We can then complete the square

= −1

2

(
‖ξ − ỹ‖2C − ỹT C−1ỹ + ȳT�−1

η ȳ
)

= −1

2

(
‖ξ − ỹ‖2C − (C�−1

η ȳ)T C−1(C�−1
η ȳ) + ȳT�−1

η ȳ
)

= −1

2

(
‖ξ − ỹ‖2C − ȳT�−1

η Kθ (Kθ + �η)
−1ȳ) + ȳT�−1

η ȳ
)

= −1

2

(
‖ξ − ỹ‖2C − ȳT (�−1

η Kθ (Kθ + �η)
−1 − �−1

η )ȳ)
)

= −1

2

(
‖ξ − ỹ‖2C + ȳT (Kθ + �η)

−1ȳ
)

= −1

2
‖ȳ‖2(Kθ +�η) − 1

2

(
‖ξ − ỹ‖2C

)

We now factor out exp
(− 1

2

(‖ξ − ỹ‖2C
))

from the integral,
and the remaining part matches the form of Gaussian distri-
bution up to a constant.

=
√
det (C)√
det (Kθ )

exp

(
−1

2
‖ȳ‖2(Kθ+�η)

)
∫
R
dy

1√
(2π)dy det (C)

exp

(
−1

2

(
‖ξ − ỹ‖2C

))
dξ

Hence, we obtain the explicit form of the marginal approxi-
mation.

E

(
exp

(
−1

2
‖GN

X (θ) − y‖�eta

)
π0(θ)

)

∝ 1√
(2π)dy det(Kθ + �η)

exp

(
−1

2
‖y − mθ‖2(Kθ +�η)

)

B Predictive Gaussian process

B.1 Derivation

Gaussian prior given by (15)

Conditioning the Gaussian process prior (15) on the data
GX (�) yields

GX (θ)|GX (�) ∼ GP(mGX
N (θ), KN (θ , θ ′)),

with

mGX
N (θ) = Kuu(θ ,�)Kuu(�,�)−1GX (�),

KN (θ , θ ′) = K (θ, θ ′)−
Kuu(θ,�)Kuu(�,�)−1K (θ ′,�)T

and

Kuu(�,�) = {kp(θ i , θ j )Ks(X , X)} ∈ R
Ndy×Ndy ,

Kuu(θ,�) = {kp(θ , θ j )Ks(X , X)} ∈ R
dy×Ndy . (24)

Gaussian prior given by (17) We can condition the joint
Gaussian process prior (17) as in Sect. 2.2 on the observations
g(�), where now

g =
⎡
⎣ GX (·)
g(·, Xg)

f (·, X f )

⎤
⎦ : T → R

dy+dg+d f .

After a re-ordering of the observations g(�), this results in
the conditional distribution

g(θ)|g(�) ∼ GP
(
mg

N (θ), KN (θ , θ ′)
)
,

where

mg
N (θ) = K̃ (θ ,�)K̃ (�,�)−1g(�),

K g
N (θ , θ ′) = K (θ , θ ′) − K̃ (θ ,�)K̃ (�,�)−1 K̃ (θ ′,�)T,

with K (θ , θ ′) = kp(θ , θ ′)Ks(X , X) as before and

K̃ (θ ,�) =
⎡
⎣Kuu(θ ,�) Kug(θ ,�) Ku f (θ ,�)

KT
ug(θ ,�) Kgg(θ ,�) Kg f (θ ,�)

KT
u f (θ ,�) KT

g f (θ ,�) K f f (θ ,�)

⎤
⎦

∈ R
(dy+d f +dg)×N (dy+d f +dg),

K̃ (�,�) =
⎡
⎣Kuu(�,�) Kug(�,�) Ku f (�,�)

KT
ug(�,�) Kgg(�,�) Kg f (�,�)

KT
u f (�,�) KT

g f (�,�) K f f (�,�)

⎤
⎦

∈ R
N (dy+d f +dg)×N (dy+d f +dg),

g(�) =
⎡
⎣ GX (�)

g(�, Xg)

f (�, X f )

⎤
⎦ ∈ R

N (dy+d f +dg),
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and

Kuu(�,�) = {kp(θ i , θ j )Ks(X , X)} ∈ R
Ndy×Ndy ,

Kuu(θ ,�) ∈ R
dy×Ndy ,

Kug(�,�) = {kp(θ i , θ j )BKs(X , Xg)} ∈ R
Ndy×Ndg ,

Kug(θ ,�) ∈ R
dy×Ndg ,

Ku f (�,�) = {kp(θ i , θ j )Lθ j
Ks(X , X f )} ∈ R

Ndy×Nd f ,

Ku f (θ ,�) ∈ R
dy×Nd f ,

Kgg(�,�) = {kp(θ i , θ j )BBKs(Xg, Xg)} ∈ R
Ndg×Ndg ,

Kgg(θ ,�) ∈ R
dg×Ndg ,

Kg f (�,�) = {kp(θ i , θ j )BLθ j
Ks(Xg, X f )} ∈ R

Ndg×Nd f ,

Kg f (θ ,�) ∈ R
dg×Nd f ,

K f f (�,�) = {kp(θ i , θ j )Lθ iLθ j
Ks(X f , X f )} ∈ R

Nd f ×Nd f ,

K f f (θ ,�) ∈ R
d f ×Nd f ,

g(�, Xg) = {g(θ i , Xg)} ∈ R
Ndg ,

f (�, X f ) = { f (θ i , X f )} ∈ R
Nd f .

The marginal posterior distribution on GX (θ) can then be
extracted from the above joint posterior by taking the first dy
rows ofmg

N and the first dy rows and columns of K g
N , which

gives

GX (θ)|GX (�), g(�, Xg), f (�, X f )

∼ GP(mGX
N ,X f ,Xg

(θ), KN ,X f ,Xg (θ , θ ′)), (25)

where

mGX
N ,X f ,Xg

(θ) =[
Kuu(θ ,�), Kug(θ ,�), Ku f (θ ,�)

]
× K̃ (�,�)−1g(�),

KN ,X f ,Xg (θ , θ ′) = K (θ , θ ′)
− [

Kuu(θ ,�), Kug(θ ,�), Ku f (θ ,�)
]

× K̃ (�,�)−1

⎡
⎣Kuu(θ

′,�)

Kug(θ
′,�)

Ku f (θ
′,�)

⎤
⎦ .

B.2 Computational implementation

Wehave three different approaches for emulating the forward
map and defining the correlation between its components.
We will refer to these as the independent, spatially cor-
related, and PDE-constrained model, respectively. Each of
them can be combined with the mean-based or the marginal
approximation of the posterior.We note here that for the com-
putational implementation of the spatially correlated model,
the introduction of the correlation matrix does not change
the predictive mean of the Gaussian process, it only affects
the predictive covariance (see Theorem 2 below). This was
already noted in Bonilla et al. (2007), but we give a proof for
this for completeness. Since the spatial correlation matrix is

independent of θ , the covariance matrix between two sets of
parameters �1 and �2 can be computed by the Kronecker
product, that is,

K (�1,�2)︸ ︷︷ ︸
N1dy×N2dy

= Kp(�1,�2)︸ ︷︷ ︸
(N1×N2)

⊗ Ks(X , X)︸ ︷︷ ︸
(dy×dy)

. (26)

Hence, assuming a spatial correlation of the type (14) only
affects approximate posteriors that take into account the
uncertainty of the emulator.

Theorem 2 Consider two Gaussian processes g0(θ) ∼
GP(m(θ), kp(θ , θ ′)Idy), g0,s(θ) ∼ GP(m(θ),

kp(θ , θ ′)Ks(X , X)), where Ks(X , X) is the covariance

matrix on the set of spatial points X = {xi }dyi=1 and kp(θ, θ ′)
is scalar-valued. Conditioning both Gaussian processes on
a set of training points g(�) = {g(θ i )}Ni=1, denote the cor-
responding conditional Gaussian processes by gN (θ) ∼
GP(mg

N (θ), KN (θ , θ ′)) and gNs (θ) ∼ GP(mg
N ,s(θ),

KN ,s(θ , θ ′)), respectively. Then we have,

mg
N ,s(θ) = mg

N (θ),

KN (θ , θ ′) = kN ,p(θ , θ ′)Idy ,
KN ,s(θ , θ ′) = kN ,p(θ , θ ′)Ks(X , X),

where kN ,p(θ, θ ′) is scalar-valued.

Proof Let kp(θ,�) := [kp(θ , θ1); . . . ; kp(θ, θ N )] ∈ R
dy ,

and denote by Kp(�,�) ∈ R
dy×dy the matrix with entries

(Kp(�,�))i, j = kp(θ
i , θ j ). Then by (8) we have

mg
N ,s(θ)

= m(θ) + (
kp(θ ,�) ⊗ Ks(X , X)

)T
× (

Kp(�,�) ⊗ Ks(X , X)
)−1

× (g(�) − m(�)) ,

where⊗ denotes the Kronecker product. Using properties of
products and inverses of Kronecker products and the fact that
Ks(X , X) is symmetric positive definite, we then have
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mg
N ,s(θ)

= m(θ) +
(
kp(θ,�)T ⊗ Ks(X , X)T

)

×
(
Kp(�,�)−1 ⊗ Ks(X , X)−1

)

× (g(�) − m(�))

= m(θ) +
(
kp(θ,�)T K p(�,�)−1

⊗Ks(X , X)T Ks(X , X)−1
)

× (g(�) − m(�))

= m(θ) +
(
kp(θ,�)T K p(�,�)−1 ⊗ Idy

)

× (g(�) − m(�))

= mg
N (θ).

The relationship between KN ,s(θ , θ ′) and KN (θ , θ ′) can be
shown in a similar way, using (9). ��
For the PDE-constrained model, since the covariance func-
tions related to f are obtained by applying the differential
operator, the spatially correlated matrix in the joint prior (16)
also depends explicitly on the parameters θ . Therefore, its
covariance matrix cannot be written in a Kronecker prod-
uct structure as in (26) and Theorem 2 does not apply. Thus,
incorporating the PDE constraints into the model also affects
the predictive mean and hence the mean-based posterior is
also changed.

C Derivation of the gradient of the
approximate log-posteriors

For the mean-based posterior:

∇ logπN ,GX
mean (θ |y)

= ∇ log

(
exp

(
− 1

2σ 2
η

‖mGX
N (θ) − y‖2

))

= − 1

2σ 2
η

∇
(
‖mGX

N (θ) − y‖2
)

= − 1

σ 2
η

(
∇mGX

N (θ)
)T (

mGX
N (θ) − y

)

= − 1

σ 2
η

(
∇K (θ,�)K (�,�)−1y

)T (
mGX

N (θ) − y
)

For the marginal posterior

∇ logπ
N ,GX
marginal(θ |y)

= ∇ log

⎛
⎝ exp

(
− 1

2‖mGX
N (θ) − y‖2

(KN (θ ,θ)+�η)

)
√

(2π)dy det
(
KN (θ , θ) + �η

)
⎞
⎠

= −1

2
∇

(
‖mGX

N (θ) − y‖2(KN (θ ,θ)+�η)

)

− 1

2
∇ log

(
(2π)n det

(
KN (θ , θ) + �η

))
= −(∇K (θ ,�)K (�,�)−1y)T (KN (θ , θ) + �η)

−1(mGX
N (θ) − y)

− 1

2
(mGX

N (θ) − y)T∇
(
(KN (θ , θ) + �η)

−1
)

(mGX
N (θ) − y)

− 1

2

(
Tr

(
(KN (θ , θ) + �η)

−1
)

∇(KN (θ , θ))
)

,

where

∇
(
(KN (θ , θ) + �η)

−1
)

=
− (KN (θ , θ) + �η)

−1∇ (KN (θ , θ)) (KN (θ , θ) + �η)
−1

and ∇KN (θ , θ) = 2∇K (θ,�)K (�,�)−1K (�, θ).

D Further numerical experiments

D.1 Constant diffusion coefficient

We consider the following PDE in one spatial dimension

− d

dx

(
eθ du(x)

dx

)
= 1,

x ∈ (0, 1), θ ∈ [−1, 1],
u(0) = 0, u(1) = 0. (27)

In this case the dimension of the parameter space is dθ =
1, and the solution is available in closed form.More precisely,
we have

u(x) = (x − x2)

2eθ
.

Given this explicit solution and the low dimension of the
parameter space, we calculate the true and approximate pos-
teriors on afine gridwithout having to resort toMarkovChain
Monte Carlo sampling. We now generate our observations y
according to equation (2) for θ† = 0.314 at a varying number
of spatial points dy (equally spaced in [0, 1]) and at a noise
level σ 2

η = 10−5. As we can see in Fig. 10 as we increase dy
the true posterior π(θ |y) tends to get more and more concen-
trated around the value of θ† which is consistent with what
the theory would predict by a Bernstein-von-Mises theorem
(see e.g. Giordano and Nickl (2020) for related results).

We now turn our attention to the different approximate
posteriors discussed in Section 2.3 obtained with different
Gaussian priors (independent, spatially correlated, and PDE-
constrained).

Baseline model: In the case of the simplest emulator with
independent entries, we illustrate in Fig. 11, how the mean-
based posterior π

N ,GX
mean (θ |y) and the marginal posterior

π
N ,GX
marginal(θ |y) behave as a function of the number of train-

ing points N (here dy = 5). The locations of the training
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Fig. 10 The true posteriors with different dy

points are chosen from the Halton sequence (Niederreiter
1992). Now, when comparing Fig. 11 (top left and top right)
we see that the marginal posterior is more spread than the
mean-based posterior. This is due to the variance inflation
associated with the marginal posterior which reflects better
the uncertainty of the emulator. For example, in the case
N = 1 the mean-based posterior has negligible posterior

probability mass near θ† and exhibits bimodality since it so
happens that the training point used is not near the true θ†.
However, due to the variance inflation this is not the case for
themarginal-based posterior. Furthermore, in Fig. 11 (bottom
left) we plot the Hellinger distance between the approximate
posteriors and the true posterior as a function of the num-
ber of training points N . As we can see the error for the
marginal-based posterior is slightly smaller than the error
for the mean-based posterior for small N . The two errors
are equal as N increases, which can be further understood
by Fig. 11(bottom right). Here, we plot the average variance
kN (θ, θ) (averaged over θ ) of our emulator for different val-
ues of N , and see that as expected from (11) the marginal
approximation behaves in the same manner as the mean-
based approximation once the average variance is of the same
order as the observational noise σ 2

η .

Spatially correlated model:As discussed in Appendix B, the
introduction of spatial correlation does not change the predic-
tive mean of the Gaussian processes.We hence now compare
in Fig. 12 the two different marginal posteriors π

N ,GX
marginal and

π
N ,GX ,s
marginal, where the latter includes spatial correlation. We

Fig. 11 Baseline model mean-based posterior (top left) and marginal
posterior (top right) with different N . The Hellinger distance between
approximated posteriors and the true posterior (bottom left) and average

predictive variance of the Gaussian process emulator (bottom right) as
N increases. GX is the discretised solution u in (27)

123



Statistics and Computing (2024) 34 :139 Page 21 of 25 139

Fig. 12 Baseline and spatially correlated model marginal posteriors for N = 2 (left plot). The Hellinger distance between approximated posteriors
and the true posterior (middle plot) and average predictive variance of the Gaussian process emulator (right plot) as N increases. GX is the discretised
solution u in (27)

Fig. 13 Comparison of different models when N = 2, for PDE model
d f = 5: mean-based posteriors (top left plot) and marginal posteriors
(top right plot). The Hellinger distance between approximated poste-

riors and the true posterior (bottom left plot) and average predictive
variance of the emulator (bottom right plot) as d f increases. GX is the
discretised solution u in (27)

again choose dy = 5. In particular, as we can see in Fig. 12
(left) (here N = 2), introducing spatial correlation seems
to improve the accuracy of the approximate posterior and
place more mass near θ†. The fact that the spatially corre-
lated model has an increased variance at N = 2 (see Fig. 12)

leads to similar behavior as in Fig. 11 with π
N ,GX ,s
marginal being

more spread than π
N ,GX
marginal. Furthermore, as we can see in

Fig. 12 (middle), as we increase the number of training points
for our Gaussian process, the Hellinger distance between the
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Fig. 14 Comparison of different models’ marginal distribution when
N = 4, for PDE model N̄ = 10 and d f = 50: mean-based approxima-
tion of the θ1 marginal (top left plot) and θ2 marginal (top right plot),

marginal approximation of the θ1 marginal (bottom left plot) and θ2
marginal (bottom right plot). GX is the integrals of solution u in (20)
with diffusion coefficient (21)

true posterior and π
N ,GX ,s
marginal is smaller than the one of the

baseline model.

PDE-constrained model: We now compare the behaviour
of the PDE-constrained model with the other two models,
both for mean-based approximate posterior, as well as for the
marginal posterior (again here dy = 5). In particular, as we

can see in Figs. 13 for N = 2, πN ,GX ,PDE
mean and π

N ,GX ,PDE
marginal are

indistinguishable from the true posteriorwhenusing N̄ = 10,
d f = 5 showing much better approximation properties than
the other twomodels. This is consistentwithwhatwe observe
in terms of the Hellinger distance, since both π

N ,GX ,PDE
mean

and π
N ,GX ,PDE
marginal have similar errors over different ranges of

values for N f . It is also worth noting that when compar-
ing with the Hellinger distance from Figs. 11 (bottom left)
and 12 (middle) we see that the PDE-based model achieves
the same order of error with only using half of the train-
ing points (N = 2 instead of N = 4). Furthermore, as we
can see in Fig. 13 (bottom right), the average variance of the
PDE-constrained emulator converges to zero very fast as the
number of extra training points for f increases, implying that
at least in this simple example adding the PDE knowledge

leads to an extremely good approximation of the forward
map.

D.2 Integral observation operator

We now investigate the proposed method with a differ-
ent form of the observation operator. In terms of the PDE
problem, we study again (20). However, instead of point-

wise observations GX (θ) = {u(x j ; θ)}dyj=1 as in (2), we

observe local averages GX (θ) = {∫ b j
a j

u(x; θ)dx}dyj=1 for
non-overlapping intervals [a j , b j ] ⊂ [0, 1].

For the inverse problem setting, we have θ† = [0.098,
0.430], dy = 16 (equally spaced sub-intervals of [0, 1]) and
σ 2

η = 10−6. We do not conduct precise integration as in
(27), but use MALA algorithm to obtain our samples. We
utilize 106 samples for all our approximate posteriors. We
treat the sampling results obtained by a mean-based approx-
imation with the baseline model for N = 102 training points
as the ground truth. In Fig. 14, we plot again the θ1 and θ2
marginals for all the mean-based posterior approximations
and themarginal posterior approximations. The result is simi-
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Fig. 15 Comparison of different models’ marginal distribution when
N = 4, for PDE model N̄ = 50 and d f = 25: mean-based approx-
imation (top plot) and marginal approximation (bottom plot). GX is

the discretised solution u in (20) with diffusion coefficient (22) and
dθ = 10. The true parameter θ† is being plotted as horizontal dashed
lines

lar to the example inSect. 4.2 that thePDE-constrainedmodel
performs better than the other two models.

D.3 Ten-dimensional parametric expansion diffusion
coefficient

We now increase the dimension of the diffusion coefficient
from dθ = 2 to dθ = 10 in (22), to test the proposed method
in a relatively high dimensional space. With regard to the
inverse problem setting, we set

θ† = [0.098, 0.430, 0.206, 0.090,−0.153,

0.292,−0.125, 0.784, 0.927,−0.233]

and we increase the number of observation points to dy =
20. The level of noise is the same as before (σ 2

η = 10−4).
The number of training points for all emulators is again set
to N = 4, and for the PDE-constrained emulator we use

N̄ = 50, d f = 25 and dg = 2. For the choices of kernels,
we use the squared exponential kernel for both kp and ks .

We now use the MALA algorithm to obtain 107 sam-
ples for the approximate posteriors. In this relatively high-
dimensional setting, we need longer chains for the sampling
algorithm to converge. Meanwhile, computation of a suit-
able "ground truth" is prohibitively expensive, so we only
compare the sampling result with the true parameter θ†. The
number of training points N = 4 is far from enough for the
baseline Gaussian process model to give an accurate predic-
tion. From Fig. 15, we can see that the mean-based posterior
approximation with the baseline model can only give a rea-
sonable approximation for the first few variables, for the rest
of the variables the approximation could not put any den-
sity around the true value. Adding spatial correlation to the
model helps the approximation move towards the true value,
but it still cannot correctly approximate the posterior for the
last few variables. The performance of the PDE-constrained
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Table 8 Timings of hyperparameter optimization

Model Time

Baseline model (σ, l for kp) 0.18s

Spatially correlated model (l for ks ) 0.04s

PDE-constrained model (l for ks ) 45s

model is much better than that of the other models, it is plac-
ing the posterior mass around the true value for all variables.

D.4 Timing of hyperparameter optimization

Table 8 gives computational timings for computing the hyper-
parameters in the covariance functions. The optimization of
the hyperparameters for ks involves repeatedly computing the
inverse of the Gram matrix. In the PDE-constrained model,
since the matrix is significantly augmented by the data of
PDE, the computation timing is therefore much longer than
that of the other two models.
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