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Abstract

The Quantum Approximate Optimization Algorithm (QAOA) represents a
promising approach for tackling combinatorial optimization challenges on near-
term quantum devices. Central to QAOA optimization is the minimization of
the expectation of the problem Hamiltonian for parameterized trial quantum
states, which motivates the exploration of advanced optimization techniques.
In this study, we propose a novel combinatorial optimization strategy, CNN-
CVaR-QAOA, which integrates a Convolutional Neural Network (CNN) with
Conditional Value at Risk (CVaR) to optimize QAOA circuits. By replacing the
traditional loss function with CVaR and leveraging CNN for variational quantum
parameter optimization, we demonstrate the superior efficacy of CNN-CVaR-
QAOA through experimental validation on Erdos-Renyi random graphs. Our
results show better solutions across various graph configurations. Furthermore, we
investigate the influence of the CVaR parameter (α) on algorithm performance,
revealing that lower α values lead to smoother objective functions and improved
approximation ratios. This work indicates that CNN-CVaR-QAOA offers signif-
icant advantages in optimizing QAOA parameters, particularly in the context of
Near-Term Intermediate-Scale Quantum era, highlighting its potential to enhance
QAOA optimization efforts across diverse optimization domains.

Keywords: Convolutional Neural Network, Conditional Value at Risk, QAOA
optimization
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1 Introduction

With the advent of Near-Term Intermediate-Scale Quantum (NISQ) computing, the
landscape of computational problem-solving is undergoing a profound transforma-
tion. Quantum computers are emerging as powerful tools poised to surpass classical
counterparts in tackling complex real-world problems. Combinatorial optimization
challenges, including Max Cut, Graph Coloring, Traveling Salesman, and Scheduling
Management, find their solutions through Ising Hamiltonians, thus making them ripe
for quantum computational approaches [1, 2, 3, 4].

Hybrid quantum-classical algorithms, particularly the Quantum Approximate
Optimization Algorithm (QAOA), stand out as promising methodologies in this arena.
By leveraging the principles of variation, QAOA offers an avenue to approximate
solutions for problems encoded by Hamiltonians [5]. Recent advancements in both
experimental implementations and theoretical underpinnings have propelled QAOA
into the limelight [4, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The tantalizing prospect of quan-
tum advantage over classical algorithms beckons, with evidence mounting to support
its universality and computational prowess [8, 15, 16, 17, 18].

Despite these advancements, the QAOA still faces several limitations and poten-
tial issues hindering its effectiveness. Notably, the trade-off between circuit depth and
performance, constrained by coherence times in existing and near-term quantum pro-
cessors, poses a significant challenge [19, 20, 21, 22]. Additionally, the complexity
introduced by the QAOA ansatz, with its increasing number of variational param-
eters, presents challenges for classical optimizers [23, 24, 25]. Previous studies have
shown that the optimal QAOA parameters exhibit specific patterns[26, 27], lead-
ing to depth-sequential strategies and machine learning-based methods for parameter
initialization[10, 23, 28, 29, 30]. For instance, Alam et al. adopted a regression model
to predict high-depth parameters from low-depth ones [26], while Amosy et al. applied
iterative neural networks for parameter initialization, selecting the most promising
parameter sets from cluster centers for the given problem[31]. However, existing
machine learning approaches exhibit limitations in universality, necessitating numer-
ous models for different problem sizes or QAOA depths, resulting in higher costs for
preparing extensive training data for deeper QAOAs [26, 28]. Moreover, the reliance
on expected value mean as the objective function may impede the optimization pro-
cess [6, 32]. Therefore, it is crucial to further explore effective methods for dynamically
controlling the expressiveness and trainability of QAOA for a given combinatorial
problem to achieve optimal performance.

In this study, we propose a novel method, CNN-CVaR-QAOA, which synergis-
tically integrates a classical convolutional neural network (CNN) with Conditional
Value at Risk (CVaR) aggregation functions to effectively optimize variational param-
eters, thereby augmenting the performance of the QAOA. The adoption of the CNN
architecture stems from the intrinsic similarities between pixel properties in images
and QAOA parameters, such as their continuity and correlation among adjacent
values. By employing CVaR instead of minimizing the expected value, our model iter-
atively optimizes by minimizing the CVaR, thereby aligning more closely with the
objective of solving combinatorial optimization problems. Comparative evaluations
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conducted on Max-Cut problem instances on Erdos-Renyi random graphs of differ-
ent sizes demonstrate that our proposed CNN-CVaR-QAOA method outperforms
alternative approaches, particularly at lower depths. This innovative framework not
only advances the frontier of quantum optimization but also underscores the poten-
tial of synergistic integration between classical and quantum techniques in addressing
complex computational challenges.

The paper is structured as follows: Section 2 provides an introduction to the
Quantum Approximate Optimization Algorithm. In Section 3, we outline the imple-
mentation details of the CNN-CVaR method. Section 4 elaborates on the numerical
and experimental study, followed by a conclusion where potential future steps are
discussed.

2 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) stands as a pivotal
solution tailored for tackling combinatorial optimization (CO) dilemmas, leveraging a
blend of quantum and classical methodologies. Illustrated in Fig. 1, QAOA harnesses
a parameterized quantum circuit denoted as U(θ), colloquially referred to as a varia-
tional form, to produce trial wavefunctions. The architecture of a p-layer circuit crafts
states through the expression:

|φ(γ, β)⟩ = (

p∏

p=1

e−iβpHM e−iγpHC ) |+⟩
⊗N

, (1)

where |+⟩ represents the eigenstate, the problem Hamiltonian HC is used to encode
the total energy of the system, and HM is known as the mixer Hamiltonian, given by
HM =

∑N

n=1 δ
X
n , where δXn is the Pauli-X operator acting on the qubit n [33]. Finally,

the p-dimensional vectors β and γ serve as the variational parameters corresponding
to HM and HC , respectively.

The QAOA operates by measuring the parameterized quantum state to derive a
solution, with its parameter adjustment process guided by a classical optimization
algorithm. The primary objective is to identify the optimal variational parameters
(β∗, γ∗) that minimize the objective function F (z):

F (z) = ⟨φ(γ, β)|HC |φ(γ, β)⟩ . (2)

This study predominantly addresses the Max-Cut problem. In formal terms, let
G(V, E) represent an undirected graph with a vertex set V = N, and E representing
the edge set. The problem attempts to partition the nodes of a graph G into two sets
[+1, -1], maximizing the number of edges between nodes from these two sets. The
optimal solution z∗ for Max-Cut maximizes the objective function C(z):

C(z) =
1

2

∑

(i,j)∈E

wij(1− (−1)zi(−1)zj ), (3)

3



where z represents a bit string. Theoretical studies have proven that determining
z∗ is an NP-hard problem, necessitating approximation techniques in most sce-
narios. A commonly used solver for Max-Cut is the Goemans-Williamson (GW)
algorithm, which employs Semidefinite Programming (SDP) methodologies to achieve
an approximation ratio of 0.879 [34].

To tackle combinatorial problems using physical systems, it’s imperative to map
the problem onto a Hamiltonian, where the ground state corresponds to the optimal
solution [35]. In the case of the Max-Cut problem with n nodes, the cost Hamiltonian
HC is constructed using the Pauli-Z operators as follows:

HC =
1

2

∑

(i,j)∈E

wij(I − δZi δ
Z
j ). (4)

Here, we simplify by setting all edge weights to 1, allowing us to confine each γ and
β within the intervals [0, π] and [0, π/2] respectively. For the Max-Cut problem, the
commonly used performance metric for QAOA is the approximation ratio R, which is
defined as:

R =
F (z)

Cmax

, (5)

where Cmax is the maximum cut of the graph.

3 CNN-CVaR Optimization

In this section, we propose to utilize CNN as a classical network parameter predic-
tion architecture to achieve more efficient optimization of QAOA[36], with CVaR
as the objective function[37]. The architecture of the proposed CNN model and the
aggregation function for CVaR optimization are elucidated below.

Our CNN model aims to learn a mapping function from the parameters of p-depth
QAOA to the parameters of p+1 -depth. The p-depth and p+1 -depth parameters are
denoted as tensors of size 1 × 2 × p and 1 × 2 × p+1, respectively. We initialize the
input by randomly setting the parameters of a QAOA circuit with a depth of 1 using
the QN-SPSA optimizer, a stochastic optimizer belonging to the family of gradient
descent methods [38]. As shown in Fig. 1, our CNN model architecture comprises two
key components: up-sampling and down-sampling. The up-sampling segment of our
CNN model is responsible for extracting features from the input QAOA parameters.
This segment consists of two convolutional layers, both employing a stride of 1 and
ReLU activation function [39] as the activation function. Each layer utilizes a 2×2
kernel and provides one zero-padding for all four inputs. The first layer expands the
input dimensions to 16, which are further augmented to 64 dimensions by the second
layer. On the other hand, the down-sampling section involves simplifying the extracted
features. Here, a single convolutional layer with a 64× 3×2 filter is employed to reduce
the dimensions from 64 to 1. This results in the final output of the CNN network,
which produce the final optimized variational parameters for the QAOA circuit.

The objective of CVaR is to prioritize improving the best outcomes observed,
rather than solely relying on the sample expected value as the traditional optimiza-
tion objective function. The method of CVaR that we adopt involves selecting a set
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Fig. 1 A schematic diagram illustrating a p-level quantum approximate optimization algorithm
along with the utilization of CNN-CVaR optimization. An example showcasing the Max-Cut problem
on a 12-node graph, with a quantum circuit taking input . Alternate application of UC(β) and UM (γ),
followed by the measurement of the final state to obtain the expected value relative to the objective
function HC . Subsequently, CVaR optimization is employed to replace the objective function, and
the resulting output is fed into a convolutional neural network to determine the optimal parameters
γ and β.

of observation results within measurements, where the sample Hk is sorted in non-
decreasing order, taking [H1,...,Hk] as the objective function[40]. Simultaneously, the
CVaR parameter α∈(0,1] is introduced, where α represents further calculating the
expected value within the α proportion of [H1,...,Hk], thereby smoothing the objective
function. The CVaR function, denoted as CV aRα, is defined as follows:

CV aRα =
1

αK

αK∑

k=0

HK , (6)

where α=1 corresponds to the sample mean expected value. Decreasing α biases the
selection of observation samples increasingly towards the best outcomes. It’s crucial
to note that employing CVaR optimization modifies our objective function (2) to:

min(CV aRα(F (z))), (7)

CV aRα considers only a subset of measurements, leading to an estimator variance
of O(1/(Kα2)), where K is the number of samples. As α decreases, CVaR increasingly
emphasizes the best observed samples while yielding a smoother and more manageable
objective function. This enhanced smoothness facilitates more efficient convergence in
optimization algorithms.

However, as indicated in Ref.[40], lowering the value of α to increase the approx-
imate ratio of QAOA results in performance degradation compared to the case of
Variational Quantum Eigensolver (VQE). Presumably, this occurs because the state

5



vector obtained with QAOA becomes relatively flat, preventing a large overlap with
the ground state. In this context, our CNN-CVaR co-optimization shows promise in
addressing this issue.

4 Performance of CNN-CVaR Optimization on
QAOA

4.1 Comparison between our heuristics and other optimizations

The analysis above indicates that the utilization of the CNN architecture for
optimizing subsequent layer parameters within the QAOA. These parameters are incre-
mentally predicted based on initial values. The CVaR aggregation function is employed
to optimize the cost function for parameter updates, thereby enhancing the efficacy of
optimal measurements through dynamic cost function adjustments. By amalgamating
these methodologies with QAOA, we effectively address combinatorial optimization
challenges, resulting in the development of our proposed approach, termed CNN-
CVaR-QAOA. The validation of our approach is conducted through the resolution
of the Max-Cut problem on regular graphs. We commence this validation process by
delineating our experimental setup, encompassing the configuration of hyperparame-
ters and the construction of the Max-Cut graph. Subsequently, to assess the proficiency
of our proposed initialization methodology, we juxtapose the performance of our opti-
mization strategy against standard strategies such as Random Initialization (RI) and
interpolation (INTERP) [10].

To thoroughly evaluate the performance of our proposed CNN-CVaR-QAOA, we
assembled a diverse collection of graphs with varying sizes, node degrees, and edge
probabilities. For analysis, we employed Erd?s?R?nyi (ER) graphs, randomly allocat-
ing both degree and edge probability for each node. Multiple instances were generated
for each configuration to derive statistical outcomes using the Max-Cut solver, with
the average approximation ratio as the primary metric. In our experimental setup, for
QAOA with a depth of 1, we consistently used the QN-SPSA optimizer to compute
initial parameters conducive to convergence.

Firstly, we employed CNN-CVaR-QAOA to analyze various graph configurations,
with the α parameter set to 0.5. The numerical outcomes are visualized in Fig. 2,
presenting the results derived from CNN-CVaR-QAOA(α=0.5) alongside four heuris-
tic Max-Cut solvers, namely Convolutional Neural Network prediction (CNN-QAOA),
Random Initialization (RI-QAOA), heuristic Interpolation method (INTERP-QAOA)
and Conditional Value at Risk optimization (CVaR-QAOA). Each scenario encom-
passes three distinct graph instances, where the number of nodes fluctuates within
the range of [6,16], mirroring the number of quantum bits in the quantum circuit.
The degree of nodes varies within the interval [3,8], and the probability of edge for-
mation fluctuates within the interval [0.5,0.7]. To gauge the performance gap between
CNN-CVaR-QAOA(α=0.5) and the optimal classical outcomes, we employed the
approximation ratio. For circuit depth 3, we validated our approach across diverse
regular graphs, as shown in Fig. 2(a) and (b), affirming the superior approximation
ratio achieved by our CNN-CVaR-QAOA(α=0.5) strategy compared to the other four
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algorithms as qubit count and node degrees increased. Especially, the CNN-CVaR
co-optimization significantly improves performance over the CVaR optimization of
QAOA.

Additionally, with circuit depth set at 2 and α at 0.5, we evaluated the algorithm
across different configurations of ER random edge probability graphs, as indicated in
Fig. 2(c) and (d).Our CNN-CVaR co-optimization method improved approximation
ratio values in the range of 0.06-0.2 compared to other four methods. The find-
ings consistently underscored the optimal performance of CNN-CVaR-QAOA(α=0.5)
across all cases. Thus, our heuristic algorithm represents a substantial enhancement
in variational parameter optimization given the available resources.

Fig. 2 The average performance of QAOA is depicted on the graph. (a) On 3-regular ER graphs,
the approximation ratio obtained by each optimization method is presented as a function of the
number of nodes(qubits) in the graph, with the number of layers p set to 3. (b) On 12-node ER
graphs, the approximation ratio obtained by each optimization method is represented as a function
of the number of degrees in the graph, with the layer count (p) set to 3. (c) On ER sampled graphs
with edge probability of 0.6, comparison of the relative performance of CNN-CVaR method with four
other optimization methods on graphs containing 8, 10, and 12 qubits. (d) Comparison of the relative
performance of the CNN-CVaR approach to four other optimization methods on ER sampled graphs
with edge probabilities set to 0.5, 0.6, 0.7 for 12 qubits.
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Then, we conducted a series of experiments utilizing benchmark instances from
the Max-Cut dataset to investigate our optimization architecture by varying circuit
depths. Through meticulous analysis, we aimed to elucidate performance nuances
across different strategies and depths. Fig. 3(a) depicts randomly generated 8-node
3-regular graphs, serving as the focal point for comparative assessments among five
distinct methods. Notably, as illustrated in Fig. 3(b), the CNN-CVaR-QAOA(α=0.5)
strategy exhibited rapid convergence to the optimal solution at a depth of 3. The
CVaR(α=0.5) method, without CNN, converges to the optimal result at the depth of
4.

Fig. 3 (a) A set of diagrams extracted from the evaluation of an 8-node 3-regular graph instances.
(b) On 8-node 3-regular graph instances, the errors during the optimization processpn of the CNN-
CVaR(α=0.5) method compared to four other QAOA optimization methods. The QAOA circuit
varies from 2 layers to 10 layers. (c) A set of diagrams extracted from the evaluation of an 12-node 3-
regular graph instances. (d) On 12-node 3-regular graph instances, the errors during the optimization
process of the CNN-CVaR(α=0.1) method compared to four other QAOA optimization methods. The
QAOA circuit varies from 2 layers to 10 layers. The QAOA circuit varies from 2 layers to 10 layers.

Further insights were obtained from Fig. 3(c) and (d), revealing that CNN-CVaR-
QAOA(α=0.1) achieved optimality at a depth of 4 for the same 12-node 3-regular
graphs. Due to the setting of the α parameter, CVaR-QAOA(α=0.1) also converges to
the optimal result at this depth, but in comparison to CNN-CVaR-QAOA(α=0.1), it
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trails in the initial depths. Notably, superior performance was observed on unweighted
graphs, potentially due to the inherent complexities involved in optimizing solutions
for weighted counterparts. Furthermore, the circuit depth emerged as a critical factor
influencing the effectiveness of our strategy. Particularly significant is our approach’s
ability to produce comparable outcomes to alternative methods, even at shallower
depths. For instance, in the 12-node 3-regular graphs scenario, the performance of
CNN-CVaR-QAOA(α=0.1) at a depth of 2 rivaled that of CNN-QAOA and INTERP-
QAOA at depths as deep as 7. This finding demonstrates the potential of our approach
to efficiently leverage quantum resources while approximating optimal solutions for
the Max-Cut problem.

4.2 Analysis of hyperparameter in our co-optimization method

We examined the influence of hyperparameters, including the variational parameters
γ and β, particularly the α parameter of a CVaR aggregation function, on the per-
formance of the QAOA. We employed various configurations of regular graphs and
random edge probability graphs while maintaining a quantum circuit with a fixed
layer count of p=2. Across these setups, we obtain the results from three distinct
non-isomorphic instances.

In Fig.4, we present a heat map depicting the relationship between expectation val-
ues and the parameters γ, β, both ranging from 0 to π/2, for various CVaR parameter
α. As illustrated, the CVaR parameters are set to 1, 0.8, 0.5, and 0.1 on a 10-node 3-
regular graphs, with α =1 representing to the unoptimized cost function. By examining
the convergence landscapes under various configuration scenarios, we can evaluated
the quality of the results from the parameters. The yellow regions indicate the minimal
values of the expectation, signifying the convergence of the random 12-node 3-regular
graph. It is evident that the positions of the minimum remain almost consistent as the
parameter α changes, located in the ranges β ∈[0.2,0.6] and γ ∈[0.3,1.0], as indicated
by the yellow dashed lines in Figure 4. This demonstrates how the parameters β and
γ distribute to achieve the optimal solutions for our CNN-CVaR co-optimization.

Regarding the CVaR parameter α, our findings reveal that when a decrease in α

to 0.1 is associated with significantly lower energy values compared to the other three
scenarios. The optimal variational parameters distribution expands as α decreases, as
shown in Figure 4, β ∈ [0.3, 0.5] and γ ∈ [0.3, 0.65] for α = 1 and 0.8, and β ∈
[0.3, 0.6] and γ ∈ [0.3, 1.0] for α = 0.5 and 0.1. This phenomenon can be attributed
to the fact that, with α = 0.1, the minimum energy value achieved by our CNN-
CVaR co-optimization is closer to the ground state energy. Conversely, higher α values
correspond to higher energy values, indicating a lower probability of converging to
the ground state. Additionally, as α decreases, the upper bound of the expected value
also significantly decreases. These insights underscore the critical role of the CVaR
parameter in the optimization process, particularly in the search for superior energy
states.

Additionally, the quantitative performance analysis of CNN-CVaR co-optimization
under different α parameters is shown in Fig. 5. The circuit depth p is set to 2, and
on 10-node 3-regular graphs, we observed that under the parameter settings α=0.1,
α=0.3, α=0.5, and α=0.8, the approximation ratio of CNN-CVaR-QAOA(α=0.1)
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Fig. 4 The landscape of the expectation for a random 12-node 3-regular graph with γ ∈[0,π] and
β ∈[0,π]. (a) Convergence landscape of the parameters perturbations when α=1. (b) Convergence
landscape of the parameters perturbations when α=0.8. (c) Convergence landscape of the parameters
perturbations when α=0.5. (d) Convergence landscape of the parameters perturbations when α=0.1.
As the CVaR parameter α varies, with smaller values leading to convergence towards the optimal
expectation value, following the optimal quantum optimization path. Conversely, the maximum value
for α =1 deviates from the optimal path.

compared to the parameters of α=0.3, α=0.5, α=0.8, and α=1 were on average
improved by approximately 4.0%, 8.8%, 12.6%, and 13.7%, respectively. Similar
improvements were observed on 12-node 3-regular graphs, 14-node 3-regular graphs,
and 16-node 3-regular graphs. In Fig. 5(b), (c) and (d), more extensive testing was
conducted on random regular graphs configurations 10-node 5-regular graphs, 12-node
5-regular graphs, 14-node 5-regular graphs, and 16-node 5-regular graphs, and on the
random ER graphs, the edge probabilities are set to 0.5 and 0.7, while the number of
nodes varies between 8 and 14, to assess the impact of α on the overall performance
of CNN-CVaR-QAOA model. These observations further confirm the aforementioned
conclusions, which indicate that when executing CNN-CVaR-QAOA on a larger scale
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Fig. 5 The quantum approximation ratios obtained using classical simulation of CNN-CVaR-QAOA
at different α values, with a depth of 2. (a) Comparing the impact of different α values on the
overall performance for the Max-Cut problem on different random regular graphs with degree=3.
(b) Comparing the impact of different α values on the overall performance for the Max-Cut problem
on different random regular graphs with degree=5. (c) Assessing the effect of different α values on
the overall performance on different ER random graphs with edge probabilities of 0.5. (d) Assessing
the effect of different α values on the overall performance on different ER random graphs with edge
probabilities of 0.7. The error bars display the variance obtained through sampling over three non-
isomorphic instances.

quantum system, a smaller value of α would lead to the superior performance. These
improvements can be explained by Eq.(6), which shows that a smaller α value tends
to favor optimal observation results, thereby smoothing the objective function.

5 Conclusions

In this study, we introduce CNN-CVaR-QAOA, a novel approach that integrates
classical CNN architecture with CVaR aggregation to tackle the Max-Cut problem
on small-scale quantum devices. Our method predicts QAOA parameters for each
depth using a CNN network structure and incorporates the CVaR strategy as the
cost function for the quantum circuit. Through comprehensive benchmark tests on
diverse problem sets, we have demonstrated the superior performance of the CNN-
CVaR-QAOA strategy compared to random initialization methods and interpolation

11



techniques. Our numerical results reveal compelling advantages, particularly evident
in graph instances, where the depth-2 circuit of our approach exhibits performance
levels akin to pure CNN optimization at a depth of 6. Notably, we observe that the
α parameter in the CNN-CVaR-QAOA strategy plays a significant role in perfor-
mance enhancement, with smaller α values emphasizing favorable observation samples,
thereby leading to a smoother objective function and improved approximation ratios.

One of the distinguishing features of our proposed strategy is its ability to personal-
ize predicted parameters for individual graph instances, enabling a broader exploration
of optimal parameters. This flexibility becomes increasingly valuable as quantum com-
puting hardware progresses towards handling larger-scale QAOA instances requiring
p>>1. Our method’s potential to match the approximation ratio of classical QAOA
at lower depths positions it as a compelling alternative in the current NISQ era, char-
acterized by the emergence of larger quantum devices grappling with high noise levels
for executing deep circuits. While our focus lies on addressing the Max-Cut problem,
we envision broader applicability of our method across various optimization problems.
As quantum computers evolve and scale up in qubit count, the practicality of our
approach becomes more pronounced, particularly given the finite constraints on the
number of layers in QAOA for achieving feasible solutions. The CNN-CVaR-QAOA
strategy represents a promising advancement in quantum optimization techniques,
offering enhanced performance and adaptability that hold relevance not only for the
Max-Cut problem but for a wide array of optimization challenges in the quantum
computing landscape.
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