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Abstract

Entanglement of dipole-dipole interacting spins 1/2 is usually investigated when the energy of

interaction with an external magnetic field (the Zeeman energy) is greater than the energy of dipole

interactions by three orders. Under this condition only a non-equilibrium state of the spin system,

realized by pulse radiofrequence irradiations, results in entanglement.

The present paper deals with the opposite case: the dipolar interaction energy is the order of

magnitude or even larger than the Zeeman one. It was shown that entanglement appears under

the thermodynamic equilibrium conditions and the concurrence reaches the maximum when the

external field is directed perpendicular to the vector connecting the nuclei. For this direction of

the field and a system of two spins with the Hamiltonian accounting the realistic dipole-dipole

interactions in low external magnetic field , the exact analytical expression for concurrence was

also obtained. The condition of the entanglement appearance and the dependence of concurrence

on the external magnetic field, temperature, and dipolar coupling constant were studied.
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I. INTRODUCTION

Appreciation of the role of quantum entanglement [1–3] as a resource in quantum telepor-

tation [4], quantum communication [5], quantum computation [6], and quantum metrology

[7, 8] has stimulated intensive qualitative and quantitative research. Entanglement, as the

quantum correlation, can bring up richer possibilities in the various fields of modern technol-

ogy. Therefore, in the past few years great efforts have been done to understand and create

entanglement. Entanglement between two quantum systems can be generated due to their

interaction only [1–3, 9]. It has recently been shown that, in a chain of nuclear spins s = 1/2,

which is described by the idealized XY model for a spin system under the thermodynamic

equilibrium conditions, entanglement appears at very low temperatures T ≈ 0.5 µK [10].

In most real quantum systems, such as dipolar coupling spin system, specific conditions

for creation of the entangled states are requested. In two-and three-spin [11] and many-

spin [12] clusters of protons subjected to a strong magnetic field, truncated dipole-dipole

interactions and multiple pulse radiofrequence irradiations, the entangled state of a spin

pair emerges at temperatures T ≈ 20 mK. In these papers the cases were considered where

the energy of interaction of the spins with the external magnetic field (the Zeeman energy)

is greater than the energy of dipole interactions by three orders [11, 12]. It was shown

that at this condition only a non-equilibrium state of the spin system, realized by pulse

radiofrequence irradiations, results in entanglement [12, 13].

The present paper deals with the case opposite to those considered previously [11, 12]: the

dipolar interaction energy is the order of magnitude or even greater than the Zeeman one.

We investigate entanglement of two spins coupled by the realistic dipole-dipole interactions

in a low external magnetic field under the thermodynamic equilibrium conditions. We study

dependence of the critical temperature and magnetic field at which entanglement appears

in this system on a dipolar coupling constant.

II. HAMILTONIAN OF DIPOLAR COUPLING SPIN SYSTEM AND CONCUR-

RENCE BETWEEN NUCLEAR SPINS 1/2

Let us consider a system of N spins coupled by long-range dipolar interactions and

subjected to an external magnetic field, ~H0 = H0~z. The total Hamiltonian of this interacting
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system can be written as

H = Hz +Hdd (1)

where the Hamiltonian Hz describes the Zeeman interaction between the nuclear spins and

external magnetic field (here we used ~ = 1)

Hz = ω0

N
∑

k=1

Izk , (2)

ω0 = γH0 is the energy difference between the excited and ground states of an isolated spin,

γ is the gyromagnetic ratio of a spin, Izk is the projection of the angular spin momentum

operator on the z- axes. The Hamiltonian Hdd describing dipolar interactions in an external

magnetic field [14]:

Hdd =
∑

j<k

γ2

r3jk
{
(

1− 3 cos2 θjk
)

[

Izj I
z
k −

1

4

(

I+j I
−

k + I−j I
+

k

)

]

−

3

4
sin 2θjk

[

e−iϕjk
(

Izj I
+

k + I+j I
z
k

)

+ eiϕjk
(

Izj I
−

k + I−j I
z
k

)]

− 3

4
sin2 θjk

[

e−2iϕjkI+j I
+

k + e2iϕjkI−j I
−

k

]

}

(3)

where rjk, θjk, and ϕjk are the spherical coordinates of the vector ~rjk connecting the j−th

and k−th nuclei in a coordinate system with the z-axis along the external magnetic field,

~H0, I
+

j and I−j are the raising and lowering spin angular momentum operators of the j-th

spin. We consider the situation when it is necessary to take into account all the terms of

the Hamiltonian of the dipole-dipole interactions, and not trusnckete any ones.

In the thermodynamic equilibrium the considered system is described by the density

matrix

ρ = Z−1 exp

(

− H

kBT

)

, (4)

where Z = Tr {exp (−H/kBT )} is the partition function, kB is the Boltzamnn constant,

and T is the temperature. We will analyze entanglement in the spin system described by

the density matrix (4).

In order to quantify entanglement, the concurrence C is usually used [15]. For the maxi-

mally entangled states, the concurrence is C = 1, while for the separable states C = 0. The

concurrence between the quantum states of two spins presented in the Hilbert space as a

matrix 4× 4 is expressed by the formula [15]

C = max

{

0, 2λ−
4

∑

i=1

λi

}

(5)
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where λ = max {λ1, λ2, λ3, λ4} and λi (i = 1, 2, 3, 4) are the square roots of the eigenvalues

of the product

R = ρρ̃ (6)

with

ρ̃ = (σy ⊗ σy) ρ̄ (σy ⊗ σy) (7)

where ρ̄ the complex conjugation of the density matrix (4) and σy is the Pauli matrix

σy =





0 −i

i 0



 . (8)

III. ENTANGLEMENT IN PAIR OF SPINS

We examine dependence of the concurrence, C, between states of the two spins 1/2 on the

magnetic field strength and its direction, dipolar coupling constant, and temperature. The

numerical calculation of entanglement of the spins at arbitrary orientation of the magnetic

field are performed using the software based on the Mathematica package. The results of the

numerical calculation show that concurrence reaches its maximum at the case of θ = π
2
and

ϕ = 0 (Fig. 1) and we will consider this case below. This orientation of the spins allows us

to obtain for concurrence as an exact analytical function of the temperature, magnetic field

and dipolar coupling constant γ2/r312. Using the exact diagonalization of the density matrix

(4) we obtain the concurrence in the following form:

C (β, d) = max















0,
A+ −A− − e

d
2 cosh d

4
(

e
d
2 cosh d

4
+ cosh

√
16β2+9d2

4

)















, (9)

where

A± =
1

2

√

√

√

√16β2 + 9d2 cosh

√
16β2+9d2

2
± 6d sinh

√
16β2+9d2

2

√

16β2 + 9d2 cosh2

√
16β2+9d2

4

16β2 + 9d2
,

(10)

with β = ω0

kBT
and d = γ2

r3
12
kBT

.

At high temperature and low magnetic field (β << 1) and/or small dipolar coupling

constant (d << 1) the expression in the figure brackets (9) becomes negative and, therefore,

entanglement is zero. Equating this expression to zero we obtain the critical parameters:
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temperature Tc, strength of magnetic field Hc, and dipolar coupling constant at which the

entanglement appears in a spin pair. Figure 2 presents the phase diagram in which the

boundary between the entangled and separated states is determined from equation:

A+ −A− − e
d
2 cosh

d

4
= 0. (11)

For example, at d = 1 entanglement can be achieved at β > 2.26. To estimate the critical

temperature let us consider fluorine with γ = 4. 0025kHz
G

and the dipolar interaction energy

typically of order of a few kHz (in frequency units) [14]. Taking H0 = 3 G we have ω0 = 12

kHz, which leads to Tc = 0.33 µK. The estimated value of temperature is in good agreement

with those reported early for the spin system s = 1/2 with theXY Hamiltonian in absence of

a magnetic field [10]. Both models give also qualitatively similar dependences of concurrence

on temperature but the model considered by us predicts appearance of entanglement in an

external magnetic field higher than the critical value. It is interesting that the ordered states,

such as antiferromagnetic, of nuclear spins were observed in a calcium-fluoride CaF2 single

crystal at T = 0.34 µK [14, 16]. This structure is characterized by domains in the form of

layers perpendicular to the external magnetic field. The magnetization inside the crystal

is parallel to the external field and reverses its sign from a layer to a layer, while the total

magnetization is zero. It is well know that when the magnetization reaches the maximum,

all the spins are aligned along the field and entanglement is absent [2, 3]. Entanglement

can appear if magnetization is less than its maximum. Therefore, it is reasonable to assume

that simultaneously with the transition to the ordered state there arises entanglement of

spins from different layers.

Figure 3 shows concurrence as a function of both parameters β and d at θ = π
2
and

ϕ = 0. At large temperature and low magnetic field concurrence is zero. One can see that

the concurrence increases with the magnetic field and inverse temperature and reaches its

maximum. Then the concurrence decreases. Figure 4 shows the concurrence as a function

of the magnetic field at a constant temperature, (Fig. 4a) and as a function of the inverse

temperature at a constant magnetic field (Fig. 4b). In the both cases concurrence remains

zero up to a certain value of the magnetic field (Fig. 4a) or of the inverse temperature (Fig.

4b), which depends on the coupling constant. The following increase of the magnetic field

or inverse temperature leads to eventually rising. In the case of increasing the magnetic field

concurrence increases up to the maximum and then decreases as a magnetic field increases
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(Fig.4a). Another behavior is observed at an increase of the inverse temperature (Fig. 4b):

concurrence monotone grows with 1/T up to a steady value depending on a magnetic

field and the following increase of the inverse temperature does not cause any change of

concurrence.

IV. DISCUSSION AND CONCLUSIONS

It was obtained that in zero magnetic field the system is in a separable state. The

system becomes entangled when the interaction energy of spins with the magnetic field are

of the order of the dipolar interaction energy. Then, with increasing magnetic field the spin

state tends to separable one. At a small dipolar coupling constant (d ≪ 1) from the exact

analytical solution (9) we obtain the following expression for the concurrency

C = max

{

0,− 1

2 cosh2 β

2

}

(12)

Therefore, at these conditions the states of the system are always separable, C = 0. Entan-

glement appears in the course of increasing the dipolar coupling constant. To distinguish an

entangled state from separable ones, it is important to determine an entanglement witness

(EW) applicable to the considered quantum system [17, 18]. The determination of EW is

one of the main problems of the experimental study of the entangled states. Internal energy

[19], magnetic susceptibility [20], magnetization [21, 22] , and intensity of MQ coherences

[12, 23, 24] were used as EW in different quantum systems. With the aim to obtain the

correlation between the nuclear magnetization and concurrence, using (4) and the definition

of nuclear magnetization Mz = Tr (ρIz), we obtain the exact expression for magnetization

as a function of parameters β and d at θ12 =
π
2
and ϕ12 = 0:

Mz =
−4β sinh

√
16β2+9d2

4

(16β2 + 9d2)

(

cosh

√
16β2+9d2

4
+ e

d
2 cosh d

4

) (13)

As example, at d = 3, the relation between the concurrence and magnetization can be fitted

by C = −0.71(M + 0.26) (Figure 5).

Concurrence, the measure of entanglement between the states of the two spins, depends

on the orientation of the magnetic field relative to vector ~r connecting the nuclei. At θ = 0
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and π the states are separable and the concurrence reaches its maximum at the case of θ = π
2

(Fig. 1). This effect can open a way to manipulate with the spin state by a rotation of the

magnetic field or a sample.

In conclusion, investigation of entanglement in a spin 1/2 system under the thermody-

namic equilibrium conditions showed that the entangled state can be achieved by application

of a low external field when the Zeeman interaction energy is the order of or even less than

the dipolar interaction one. It was estimated that for magnetic field H0 = 3 G, the entan-

gled state in a two-spin system arises at temperature T . 0.33 µK. The correlation between

concurrence and nuclear magnetization is considered and it was shown that concurrence is

well fitted by a linear dependence on the magnetization in the temperature and magnetic

field range up to a deviation of the magnetization from Curie’s law (β = 3.32, Fig. 5) .
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A. Figure Captions:

Fig. 1 (Color online) Concurrence as a function of the parameter β = ω0/kBT and

magnetic field direction at ϕ = 0 and d = 3.

Fig. 2 The phase diagram. Line presents boundary between the entangled and separated

states in the plane β − d.

Fig. 3 (Color online) Concurrence as a function of the ratios of the magnetic field strength

(ω0) and dipolar coupling constant ( γ2

r3
12

) to kBT .

Fig. 4 (Color online) Concurrence vs. magnetic field at T = const (a) and vs. tempera-

ture at H = const (b) for various dipole interaction constants. (a): black solid line - d = 0.5;

red dashed line - d = 2 ; blue doted line - d = 10. Magnetic field is given in units of kBT

γ
.

(b) black solid line - d
β
= 3; red dashed line - d

β
= 5 ; blue doted line - d

β
= 10. Temperature

is given in units of γ2

r3
12
kB
.

Fig. 5 (Color online) Absolute value of magnetization (black solid line) and concurrence

(red dash line) as a function of β = ω0

kBT
. Fitting of the concurrence (blue dash-dot line) by
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C = −0.71(M + 0.26) at d = 3.
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