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One-dimensional continuous-time quantum walks
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Abstract

We survey the equations of continuous-time quantum walks onsimple one-dimensional lattices,
which include the finite and infinite lines and the finite cycle, and compare them with the classical
continuous-time Markov chains. The focus of our expositoryarticle is on analyzing these processes
using the Laplace transform on the stochastic recurrences.The resulting time evolution equations, clas-
sical versus quantum, are strikingly similar in form, although dissimilar in behavior. We also provide
comparisons with analyses performed using spectral methods.

1 Introduction

The theory of Markov chains on countable structures is an important area in mathematics and physics. A
quantum analogue of continuous-time Markov chains on the infinite line is well-studied in physics (for
example, it can be found in [12], Chapters 13 and 16). More recently, it was studied by Aharonovet al. [2]
and by Farhi and Gutmann [11]. The latter work placed the problem in the context of quantum algorithms for
search problems on graphs. Here the symmetric stochastic matrix of the graph is viewed as a Hamiltonian
of the quantum process. Using Schrödinger’s equation withthis Hamiltonian, we obtain a quantum walk on
the underlying graph, instead of a classical random walk.

Recent works on continuous-time quantum walks on finite graphs include the analyses of mixing and
hitting times on then-cube [16, 14], of mixing times on circulant graphs and Cayley graphs of the symmetric
group [6, 13], and of hitting times on path-like graphs [8, 9]. Most of these are structural results based on
spectral analysis of the underlying graphs, such as then-cube, circulant and Cayley graphs, and (weighted)
paths. For example, Moore and Russell [16] proved that the mixing time of a quantum walk on then-cube
is asymptotically faster than a classical random walk; Kempe [14] proved that the hitting time for vertices
on opposite ends of then-cube is exponentially faster than in a classical random walk. Ahmadiet al. [6]
and Gerhardt and Watrous [13] proved that circulants and theCayley graph of the symmetric group lack the
uniform mixing property found in classical random walks.

A recent work of Childset al. [9] gave intriguing evidence that continuous-time quantumwalk is
a powerful method for designing new quantum algorithms. They analyzed diffusion processes on one-
dimensional structures (finite path and infinite line) usingspectral methods. Another work by Childs and
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Goldstone [10] explored the application of continuous-time quantum walks to perform Grover search on
spatial lattices.

There is an alternate theory ofdiscrete quantum walks on graphs, which we will not discuss here. This
alternate model was studied in Aharonovet al. [4] and Ambainiset al. [5], but had appeared earlier in work
by Meyer [15]. The work by Ambainiset al. [5] had also focused on one-dimensional lattices. Recently,
Ambainis [1] developed an optimal (discrete) quantum walk algorithm for the fundamental problem of
Element Distinctness. This offers another idea for developing quantum algorithms.

We survey and (re)derive equations for the continuous-timeclassical and quantum walks on one-
dimensional lattices using the Laplace transform that works directly with the recurrences. The Laplace
transform is a well-known tool in stochastic processes (see[7]) and it might offer a useful alternative to the
Fourier transform in certain settings.

1.1 Stochastic walks on graphs

Let G = (V,E) be a simple (no self-loops), countable, undirected graph with adjacency matrixA. LetD
be a diagonal matrix whosej-th entry is the degree of thej-th vertex ofG. The Laplacian ofG is defined
asH = A − D. Suppose thatP (t) is a time-dependent probability distribution of a stochastic (particle)
process onG. The classical evolution of the continuous-time walk is given by the Kolmogorov equation

P ′(t) = HP (t). (1)

The solution this equation, modulo some conditions, isP (t) = etHP (0), which can be solved by diagonal-
izing the symmetric matrixH. Thisspectral approach requires full knowledge of the spectrum ofH.

A quantum analogue of this classical walk uses the Schrödinger equation in place of the Kolmogorov
equation. Letψ : V (G) → C be the time-independent amplitude of the quantum process onG. Then, the
wave evolution is

iℏ
d

dt
ψ(t) = Hψ(t). (2)

Assumingℏ = 1 for simplicity, the solution of this equation isψ(t) = e−itHψ(0), which, again, is solvable
via spectral techniques. The classical behavior of this quantum process is given by the probability distribu-
tion P (t) whosej-th entry isPj(t) = |ψj(t)|2, whereψj(t) = 〈j|ψ(t)〉. Theaverage probability of vertex

j is defined asP (j) = limT→∞
1
T

∫ T
0 Pj(t)dt (see [4]).
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Figure 1: Examples of some one-dimensional lattices. From left to right:Z, P4, Z4.

The table in Figure 2 shows the known equations for continuous-time stochastic walks on the infinite
(integer) lineZ = {. . . ,−2,−1, 0, 1, 2, . . .}, the finite cycleZN = {0, . . . , N − 1} onN vertices, and the
finite pathPN = {0, . . . , N} onN +1 vertices, in terms of the two kinds of Bessel functionsI(·) andJ(·).
We assume here that the particle is initially at0. The plots in Figures 3 and 4 show the dissimilar behavior
of the classical versus quantum walks.
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Graph Classical walk Quantum walk
Pj(t) = probability on vertexj at timet ψj(t) = amplitude on vertexj at timet

Z e−tI|j|(t) (−i)|j|J|j|(t)

ZN
∑

α≡±j(modN)

e−tIα(t)
∑

α≡±j(modN)

(−i)αJα(t)

PN
∑

α≡±j(mod2N)

e−tIα(t)
∑

α≡±j(mod2N)

(−i)αJα(t)

Figure 2: The equations of the continuous-time classical versus quantum walks on the infinite line, finite
cycle, and the finite line, assuming the particle starts at position 0.

1.2 Laplace transform

The Laplace transform of a time-dependent functionP (t), denotedP̂ (s) = L{P (t)}, is defined as

L{P (t)} =

∫ ∞

0
e−stP (t) dt. (3)

The only basic properties of the Laplace transform which we will need are (see [3]):

• Linearity: L{aP (t) + bQ(t)} = aP̂ (s) + bQ̂(s)

• Derivative:L{P ′(t)} = sP̂ (s)− P (0)

• Shifting: L{eatP (t)} = P̂ (s− a)

The relevant Inverse Laplace transform involving the Bessel functions are (forν > −1):

P̂ (s) =
(s−

√
s2 − a2)ν√
s2 − a2

⇐⇒ P (t) = aνIν(at) (Eqn. 29.3.59 in [3]) (4)

P̂ (s) =
(
√
s2 + a2 − s)ν√
s2 + a2

⇐⇒ P (t) = aνJν(at) (Eqn. 29.3.56 in [3]) (5)

2 The infinite line

Classical process.The Kolmogorov equation for the infinite line is

P ′
j(t) =

1

2
Pj−1(t)− Pj(t) +

1

2
Pj+1(t), (6)

with initial valuePj(0) = δ0,j . The Laplace transform of (6) is

P̂j+1(s)− 2(s + 1)P̂j(s) + P̂j−1(s) = −Pj(0). (7)
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The solution ofq2 − 2(s+ 1)q + 1 is q± = (s+ 1)±
√

(s+ 1)2 − 1. A natural guess of the solution is

P̂j(s) =

{

Aqj+ if j < 0

Aqj− if j > 0
(8)

Whenj = 0, we getA = (1 + s− q−)−1. Thus, forj ∈ Z,

P̂j(s) =
q
|j|
−

(1 + s− q−)
=

((s+ 1)−
√

(s+ 1)2 − 1)|j|
√

(s + 1)2 − 1
. (9)

Using the Inverse Laplace transform (4), after shiftingS = s+ 1, we get

Pj(t) = e−tI|j|(t). (10)

This is a probability function, sinceet/2(z+1/z) =
∑∞

k=−∞ zkIk(t), if z 6= 0 (see Eqn. 9.6.33 in [3]).

Quantum process. The Schrödinger equation for the infinite line is

iψ′
j(t) =

1

2
ψj−1(t) +

1

2
ψj+1(t). (11)

The Laplace transform of (11) is

ψ̂j+1(s)− 2i(sψ̂j(s)− ψj(0)) + ψ̂j−1(s) = 0 (12)

The solutions ofq2 − 2isq + 1 areq± = i(s ±
√
s2 + 1), whereq+q− = 1. A guess for the solution is

ψ̂j(s) =

{

Aqj+ if j ≤ 0

Aqj− if j > 0
(13)

Whenj = 0, we getA = (s+ iq−)−1. Thus,

ψ̂j(s) =
q
|j|
−

(s+ iq−)
= (−i)|j| (

√
s2 + 1− s)|j|√
s2 + 1

. (14)

The Inverse Laplace transform (5) yields, forj ∈ Z,

ψj(t) = (−i)|j|J|j|(t), (15)

This is a probability function, since1 = J2
0 (z) + 2

∑∞
k=1 J

2
k (z) (see Eqn. 9.1.76 in [3]).

Spectral analysis. Let H be a Hamiltonian defined as〈j|H|k〉 = 1
2 if j = k ± 1, and0 otherwise. For

eachp ∈ [−π, π], define|p〉 so that

〈j|p〉 = 1√
2π
eipj. (16)

The eigenvalue equationH|p〉 = λp|p〉 has the solutionλp = cos(p). Thus, the amplitude of positionj
when the particle starts at position0 is

〈j|e−iHt|0〉 = 1

2π

∫ π

−π
eipje−it cos(p)

dp = (−i)jJj(t) (see Eqn. 9.1.21 in [3]) (17)

Childset al. [9] gave a more generalized analysis along these lines.
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3 The finite cycle

Classical process.If A is the adjacency matrix of the finite cycle, letH = 1
2A− I be its Laplacian matrix.

The Kolmogorov equation for the finite cycle is

P ′
j(t) =

1

2
Pj−1(t)− Pj(t) +

1

2
Pj+1(t). (18)

Applying the Laplace transform to (18), we get

(s+ 1)P̂j(s)− Pj(0) =
1

2
P̂j−1(s) +

1

2
P̂j+1(s). (19)

For convenience, define the extra conditionP̂−1(s) = P̂N−1(s) + 2, so thatP̂j+1(s) − 2(s + 1)P̂j(s) +
P̂j−1(s) = 0 holds forj ∈ ZN . The cycle condition iŝPN (s) = P̂0(s). We guess the solution to be

P̂j(s) = Aqj+ +Bqj−, (20)

whereq± is the solution tox2 − 2(s + 1)x + 1 = 0, i.e.,q± = (s + 1) ±
√

(s+ 1)2 − 1, with q+q− = 1.
Using the cycle condition, we get

AqN+ +BqN− = A+B =⇒ A(qN+ − 1) = B(1− qN− ) =⇒ B = AqN+ . (21)

Using the extra condition and (21), we getA = 2((q+ − q−)(qN+ − 1))−1. Thus, forj ∈ ZN ,

P̂j(s) = Aqj+ +Bqj− = A(qj+ + qN−j
+ )

=
2

(q+ − q−)

(qj− + qN−j
− )

(1− qN− )
=

2

(q+ − q−)

∞
∑

k=0

(

qkN+j
− + q

(k+1)N−j
−

)

=

∞
∑

k=0

[

((s+ 1)−
√

(s+ 1)2 − 1)kN+j

√

(s+ 1)2 − 1
+

((s + 1)−
√

(s+ 1)2 − 1)(k+1)N−j

√

(s+ 1)2 − 1

]

.

The Inverse Laplace transform (4), after shifting, yields,for j ∈ ZN ,

Pj(t) =
∞
∑

k=0

e−t
[

IkN+j(t) + I(k+1)N−j(t)
]

=
∑

α≡±j(modN)

e−tIα(t). (22)

Quantum process. Since the finite cycle is a regular graph, instead of the Laplacian, we use the adjacency
matrix directly. In a continuous-time quantum walk, this simply introduces an irrelevant phase factor in the
final expression. The Schrödinger equation, in this case, is

iψ′
j(t) =

1

2
ψj−1(t) +

1

2
ψj+1(t). (23)

The Laplace transform of (23) is

ψ̂j+1(s)− 2i(sψ̂j(s)− ψj(0)) + ψ̂j−1(s) = 0 (24)

The cycle boundary condition iŝψN (s) = ψ̂0(s). For convenience, define

ψ̂−1(s) = ψ̂N−1(s) = 2i. (25)
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The solutions ofq2 − 2isq + 1 areq± = i(s±
√
s2 + 1), with q+q− = 1. A solution guess, forj ∈ ZN , is

ψ̂j(s) = Aqj+ +Bqj−. (26)

The cycle boundary condition yieldsB = AqN+ . By (25), we getA = 2i((q+ − q−)(qN+ − 1))−1. Thus, for
j ∈ ZN ,

ψ̂j(s) = Aqj+ +Bqj− = A(qj+ + qN−j
+ )

=
2i

(q+ − q−)

(qj− + qN−j
− )

(1− qN− )
=

2i

(q+ − q−)

∞
∑

k=0

(

qkN+j
− + q

(k+1)N−j
−

)

=
∞
∑

k=0

[

((−i)(
√
s2 + 1− s))kN+j

√
s2 + 1

+
((−i)(

√
s2 + 1− s)(k+1)N−j

√
s2 + 1

]

.

The Inverse Laplace transform (5) gives, forj ∈ ZN ,

ψj(t) =

∞
∑

k=0

[

(−i)kN+jJkN+j(t) + (−i)(k+1)N−jJ(k+1)N−j(t)
]

=
∑

α≡±j(modN)

(−i)αJα(t). (27)

Spectral analysis.The normalized adjacency matrixH of ZN is the circulant matrix

H =















0 1/2 0 . . . 0 1/2
1/2 0 1/2 . . . 0 0
0 1/2 0 . . . 0 0
...

...
...

...
...

1/2 0 0 . . . 1/2 0















. (28)

It is well-known that allN × N circulant matrices are unitarily diagonalized by the Fourier matrixF =
1√
N
V (ωN ), whereωN = e2πi/N andV (ωN ) is the Vandermonde matrix defined asV (ωN )[j, k] = ωjk

N ,

for j, k ∈ {0, 1, . . . , N − 1}. The eigenvalues ofH areλj = 1
2(ω

j
N + ω

j(N−1)
N ) = cos(2πj/N), for

j = 0, 1, . . . , N − 1. Thus, the wave amplitude at vertexj at timet is

ψj(t) =
1

N

N−1
∑

k=0

e−it cos(2πk/N)ωjk
N . (29)

From earlier analysis, we get the following Bessel equation

1

N

N−1
∑

k=0

e−it cos(2πk/N)e2πijk/N =
∑

α≡±j(modN)

(−i)αJα(t). (30)

It is an open question if there exists a timet ∈ R
+ such that for allj ∈ ZN we have|ψj(t)|2 = 1/N , i.e.,

uniformity is achieved at some timet. ForN = 2, 3, 4, it is known thatinstantaneous exact uniform mixing
is achieved (see [16, 6]).
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4 The finite path

Classical process. Let A be thenormalized adjacency matrix of the finite path, whereA is a stochastic
matrix with the probability transitions are proportional to the degrees of the vertices. LetH = A− I be its
Laplacian. Then, the Kolmogorov equation, in this case, is

P ′
j(t) =

1

2
Pj−1(t)− Pj(t) +

1

2
Pj+1(t), (31)

for 0 < j < N , with initial conditionPj(0) = δj,0 and boundary conditions

P ′
0(t) = P1(t)− P0(t), P ′

N (t) = PN−1(t)− PN (t). (32)

The Laplace transform of (31) is

P̂j+1(s)− 2(s+ 1)P̂j(s) + P̂j−1(s) = 0, 0 < j < N, (33)

and two boundary equations(1 + s)P̂0(s) − 1 = P̂1(s), and(1 + s)P̂N (s) = P̂N−1(s). A guess of the
solution is

P̂j(s) = Aqj+ +Bqj−, 0 ≤ j ≤ N, (34)

whereq± = (s+1)±
√

(s+ 1)2 − 1. The boundary equations giveB−A = 2/(q+− q−) andA = Bq2N− .
Combining these last two equations, we get

A =
2

(q+ − q−)

q2N−
(1− q2N− )

. (35)

Thus, forj = 0, 1, . . . , N ,

P̂j(s) = Aqj+ +Bqj− = A(qj+ + q2N−j
+ ) =

2

(q+ − q−)

(qj− + q2N−j
− )

(1− q2N− )

=
2

(q+ − q−)

∞
∑

k=0

(q2Nk+j
− + q

2N(k+1)−j
− ).

The Inverse Laplace transform (4), after shifting, yields,for j = 0, 1, . . . , N ,

Pj(t) =
∞
∑

k=0

e−t
[

I2Nk+j(t) + I2N(k+1)−j(t)
]

=
∑

α≡±j(mod2N)

e−tIα(t). (36)

Quantum process. The Schrödinger equation for the finite path is

iψ′
j(t) =

1

2
ψj−1(t) +

1

2
ψj+1(t), (37)

for 0 < j < N , with initial conditionψj(0) = δ0,j and boundary conditions

iψ′
0(t) = ψ1(t), iψ′

N (t) = ψN−1(t). (38)

The Laplace transform of (37) is

ψ̂j+1(s)− 2isψ̂j(s) + ψ̂j−1(s) = 0, 0 < j < N, (39)
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and two boundary equationsisψ̂0(s)− i = ψ̂1(s), andisψ̂N (s) = ψ̂N−1(s). The solutions ofq2− 2isq+1
areq± = i(s±

√
s2 + 1). A guess of the solution is

ψ̂j(s) = Aqj+ +Bqj−, 0 ≤ j ≤ N. (40)

From the boundary equations, we getB −A = 2i/(q+ − q−) andB = Aq2N+ . Thus,

A =
2i

(q+ − q−)

q2N−
(1− q2N− )

. (41)

For j = 0, 1, . . . , N ,

ψ̂j(s) = Aqj+ +Bqj− = A(qj+ + q2N−j
+ )

=
2i

(q+ − q−)

(qj− + q2N−j
− )

(1− q2N− )
=

2i

(q+ − q−)

∞
∑

k=0

(

q2Nk+j
− + q

2(k+1)N−j
−

)

=

∞
∑

k=0

[

((−i)(
√
s2 + 1− s))2Nk+j

√
s2 + 1

+
((−i)(

√
s2 + 1− s))2(k+1)N−j

√
s2 + 1

]

.

The Inverse Laplace transform (5) yields, forj = 0, 1, . . . , N ,

ψj(t) =
∞
∑

k=0

[

(−i)2Nk+jJ2Nk+j(t) + (−i)2N(k+1)−jJ2N(k+1)−j(t)
]

=
∑

α≡±j(mod2N)

(−i)αJα(t). (42)

Spectral analysis.The spectrum of a path onn vertices is given by Spitzer [17]. Forj ∈ {0, 1, . . . , N}, the
eigenvalueλj and its eigenvectorvj are given by

λj = cos

(

(j + 1)π

N + 2

)

, vj(ℓ) =

√

2

N + 2
sin

(

(j + 1)π

N + 2
(ℓ+ 1)

)

. (43)

The probability of measuring vertex0 at timet is given by

P0(t) =
4

(N + 2)2

∑

j,k

sin2
(

(j + 1)π

N + 2

)

sin2
(

(k + 1)π

N + 2

)

e−it(λj−λk). (44)

Since all eigenvalues are distinct, theaverage probability of measuring the starting vertex0 is

P (0) =
4

(N + 2)2

∑

j,k

sin2
(

(j + 1)π

N + 2

)

sin2
(

(k + 1)π

N + 2

)

lim
T→∞

1

T

∫ T

0
e−it(λj−λk) dt

=
4

(N + 2)2

∑

j

sin4
(

(j + 1)π

N + 2

)

.

Equating this with (42), we obtain a Bessel-like equation:

lim
T→∞

1

T

∫ T

0

∣

∣

∣

∣

∣

∣

∑

a≡0(mod2N)

(−i)aJa(t)

∣

∣

∣

∣

∣

∣

2

dt =
4

(N + 2)2

N
∑

k=0

sin4
(

(k + 1)π

N + 2

)

(45)
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5 Conclusions

This expository survey reviews equations for the continuous-time quantum walks on one-dimensional lat-
tices. The focus was on analysis based on the Laplace transform which works directly with the stochastic re-
currences. It would be interesting to extend this analysis to higher-dimensional or to regular graph-theoretic
settings. Another interesting direction is to consider lattices with defects and weighted graphs [9].
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Figure 3: Stochastic walks on the infinite lineZ: (a) plot ofP0(t) in the continuous-time random walks for
t ∈ [0, 50]. (b) plot of |ψ0(t)|2 in a continuous-time quantum walk fort ∈ [0, 50]. Both processes exhibit
exponential decay, but with the quantum walk showing an oscillatory behavior.
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Figure 4: Stochastic walks on the finite cycleZ5, each approximated using21 terms: (a) plot ofP0(t) in the
continuous-time random walks fort ∈ [0, 50]. (b) plot of |ψ0(t)|2 in the continuous-time quantum walk for
t ∈ [0, 500]. The classical walk settles quickly to1/5, while the quantum walk exhibit a short-term chaotic
behavior and a long-term oscillatory behavior below0.1.
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