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Fast superconvergent solvers for weakly
singular Hammerstein equations

Mohamed Arrai, Chafik Allouch and Abderrahim Aslimani

Abstract. This article investigates discrete versions of the projection-
type and modified projection-type methods for solving Hammerstein
integral equations with a weakly singular kernel. The approximating
operator utilized is either the orthogonal projection or an interpolatory
projection onto a space of piecewise polynomials of degree ≤ r − 1
with respect to a graded partition of [0, 1]. The study reveals that the
proposed methods achieve optimal rates of convergence, demonstrating
that the numerical quadrature used to estimate the integrals maintains
the same rates of convergence as the continuous methods. The
theoretical findings are supported by numerical experiments.

Mathematics Subject Classification (2010). 41A10, 45G10, 47H30, 65R20.

Keywords. Hammerstein equation, Numerical quadrature, Discrete
Galerkin method, Discrete collocation method,Weakly singular kernels,
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1. Introduction

We consider the following Hammerstein integral equation

x− Tx = f, (1.1)

where T is a compact operator defined on X = C[0, 1] by

(Tx)(s) =

∫ 1

0

κ(s, t)ψ(t, x(t))dt, s ∈ [0, 1]. (1.2)

The kernel κ(s, t) is of weakly singular type

κ(s, t) = m(s, t)gα|s− t|, (1.3)

with

gα|s− t| =
{
|s− t|α−1, for 0 < α < 1,

log(|s− t|), for α = 1,
(1.4)

This work was completed with the support of our TEX-pert.
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and m(s, t) ∈ C([0, 1] × [0, 1]), f and ψ are known functions with ψ(t, u)
nonlinear in u and x is the function to be determined. The solution of
Hammerstein equations (1.1) is what we call the fixed point of the operator T .
In this framework, authors in [5, 27] examined the existence and uniqueness
of the solution of equation (1.1). The most important method for analyzing
the solvability theory for such equations is the Banach fixed-point theorem
(see e.g.,[6, 7, 8, 21, 23] and the references contained in them).

Previous research has explored various numerical methods using
piecewise polynomials for solving equation (1.1). One of these methods
is product integration, which is particularly useful for solving (1.1) with
a weakly singular kernels. In a study conducted by Kaneko et al.
[16] both product integration and collocation methods were employed
to solve Hammerstein equations with weakly singular kernels, and they
discovered certain properties of the approximate solutions that demonstrate
superconvergence. In another study by Hakk and Pedas [14], they established
that the collocation solution exhibits superconvergence at the interpolation
points if the appropriate interpolation points are selected. The notion of a
graded mesh was first presented by Rice [22]. Schneider [25] then applied this
concept by using nonlinear spline approximation to create a graded mesh, and
evaluated the convergence rates of approximate solutions in different discrete
methods. The discrete modified collocation method was examined in [13] as
an alternative approach to solve equation (1.1), which contains kernels that
are weakly singular.

The method known as Galerkin is examined in relation to piecewise
polynomials using orthogonal projection. The study in [12, 17] established
that the iterated Galerkin method attains superconvergence for Hammerstein
equations with both smooth and weakly singular kernels. Additionally,
Golberg and Chen [9, 10] compiled a comprehensive analysis of the discrete
Galerkin methods for integral equations. Recently, the authors in [3] proposed
a modified Galerkin-type method for weakly singular kernels that is based on
the superconvergent version of the Kumar and Sloan method [20], which is
commonly known as the collocation-type method in literature due to its initial
definition using an interpolatory operator. In this paper, the method will be
referred to as a discrete Galerkin-type method when a Hyperinterpolation
projection is used, or a discrete projection-type method when the projection
type is not specified.

The aim of this paper is to investigate the discrete projection-type
and discrete modified projection-type methods for approximate solution
of (1.1) with a weakly singular kernel using piecewise polynomial basis
functions . It is worth mentioning that the continuous method is proposed
in [3] for Hammerstein integral equations. Our research shows that when
dealing with weakly singular kernels, the iterated version of the discrete
modified projection-type method has a better convergence rate compared to
the projection-type and modified projection-type methods. Additionally, the
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proposed method achieves convergence rates that are consistent with those
of the continuous methods.

Regarding computational analysis, the research literature lacks sufficient
computational results for finding an approximate solution of (1). To fill this
gap, we present some computational results for integral equations with weakly
singular properties. Since we used a graded mesh, we had to compute the
weights required for the product integration method carefully. To do this, we
followed the approach outlined in a previous work by Atkinson [4].

The contents of the paper are as follows. Section 2 presents an overview
of relevant results and establishes the necessary background. Numerical
results of the discrete projection-type and modified projection-type methods
for the integral operator with both an algebraic singularity and a logarithmic
singularity are defined in Section 3. In Section 4, we give the convergence
orders of the proposed method and its iterated version. Numerical validation
is given in Section 5.

2. Background and results

For a fixed s ∈ [0, 1], define the kernel κs(t) ≡ κ(s, t) for t ∈ [0, 1] to be the
s section of κ. We assume that

M ≡ sup
s∈[0,1]

∫ 1

0

|κ(s, t)|dt <∞ and lim
s→σ

∥κs − κσ∥∞ = 0, σ ∈ [0, 1].

If x ∈ C[0, 1], then from Lemma 2.3 of Kaneko et al. [15], Tx ∈ C(0,α)[0, 1].
Here C(0,α)[0, 1] denotes the class of α-Hölder continuous functions defined
on [0, 1].

C(0,α)[0, 1] =

{
g ∈ C[0, 1], sup

0≤x,ζ≤1

|g(x)− g(ζ)|
|x− ζ|α <∞

}

for 0 < α < 1, and

C(0,1)[0, 1] =

{
g ∈ C[0, 1], sup

0≤x,ζ≤1

|g(x)− g(ζ)|
|x− ζ|log|B/(x− ζ)| <∞

}
,

for some B > 1. We assume that ψ(., x(.)) ∈ C[0, 1] and ∂ψ/∂u(., x(.)) ∈
C[0, 1]. Then, the operator T is Fréchet differentiable and its Fréchet
derivative at x is the linear operator

(T ′(x)g)(s) =

∫ 1

0

κ(s, t)
∂ψ

∂u
(t, x(t))g(t)dt g ∈ C[0, 1].

Let x0 be an isolated solution of (1.1) such that [ min
s∈[0,1]

x0(s), max
s∈[0,1]

x0(s)] ⊂ R.

For δ0 > 0, let

B(x0, δ0) = {x ∈ X : ∥x0 − x∥∞ < δ0}.



4 M. Arrai, C. Allouch and A.Aslimani

The partial derivative ∂ψ/∂u of ψ with respect to the second variable exists
and is Lipschitz continuous in a neighborhood of x0, that is, there exists a
constant δ1 > 0 such that∣∣∣∣

∂ψ

∂u
(t, x0)−

∂ψ

∂u
(t, x)

∣∣∣∣ ≤ δ1|x0 − x|, x ∈ B(x0, δ0).

If f ∈ C[0, 1], then from Theorem 2.4 in [15], the Hammerstein equation (1.1)
has a unique solution x0 ∈ C[0, 1].
Let S be a finite set in [0, 1] and define the function ωS(t) = inf{|s−t| : s ∈ S}.
In the language of Rice [22], a function x is said to be of Type(α, r, S), for
−1 < α < 0 if

|x(r)(t)| ≤ c|ωS(t)|α−r, t ̸∈ S.

and for α > 0, if the above condition holds and x ∈ Lip(α), where

Lip(α) = {x : |x(s)− x(t)| ≤ c|s− t|α, s, t ∈ [0, 1]}.
According to [15], if f is of Type(β, k, {0, 1}), then a solution of (1.1) with
the kernel defined by (1.3) is of Type(γ, k, {0, 1}), where γ = min{α, β}.
For x, y ∈ Lp[0, 1] and p ∈ [1,∞]. The inner product is defined by

⟨x, y⟩ =
∫ 1

0

x(t)y(t)dt and norm is ∥x∥Lp =

(∫ 1

0

x(t)pdt

) 1

p

.

We denote by Wm
p [0, 1] the Sobolev space of functions g whose mth

generalized derivative g(m) belongs to Lp[0, 1]. The norm in the space
Wm
p [0, 1] is defined as

∥g∥Wm
p

=

m∑

k=0

∥g(k)∥p.

Let q = r
γ
be the index of singularity for some integer r ≥ 1. Based on Rice’s

concept of graded mesh [22], we examine the partition of [0, 1] defined as

ti =





1

2

(
2i

n

)q
, 0 ≤ i ≤ n

2 ,

1− tn−i,
n
2 ≤ i ≤ n.

(2.1)

Define 0 ≤ ζ1 < ζ2 < . . . < ζr ≤ 1. The nr collocation points are chosen as

tij = ti + ζj(ti − ti−1), 1 ≤ i ≤ n, 1 ≤ j ≤ r. (2.2)

In order that

ti−1 ≤ ti1 < ti2 < . . . < tir ≤ ti, 1 ≤ i ≤ n.

Put Ii = [ti−1, ti], we denote by Xn = S
ν
r (Πn) the space of piecewise

polynomials of order r and ν continuous derivatives, (−1 ≤ ν ≤ r − 2)
with knots at Πn, that is

Xn = {ϑ ∈ Cν [0, 1] : ϑ|Ii ∈ Pr, 1 ≤ i ≤ n}
where Pr−1 denotes the space of polynomials of degree at most r − 1. Here
ν = 0 corresponds to the case of continuous piecewise polynomials. If ν =
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−1 there is no continuity requirements at the breakpoints. Note that the
dim(Xn) = nr − (n− 1)(ν − 1).

Lemma 2.1. (Schneider [25]) Let κ(s, t) be a kernel of the form (1.3), then
for each s ∈ [0, 1], there exists u ∈ S

ν
r (Πn) such that

∥κs − u∥L1 =

{
O(n−α), 0 < α < 1,

O(n−1 log n), α = 1.
(2.3)

One of the goals of this paper is to develop Gauss-type numerical
quadratures for the singular integrals. To introduce the discrete methods,
we consider a quadrature formula defined by

∫ 1

0

ρ(x)f(x)dx (2.4)

where f ∈ Type(α, 2r, {0}) with α > 0 and ρ a weight function that is positive
on (0, 1). Let q = 2r + 1/α and a partition

(Πn) : t0 = n−q, ti = iqt1, i = 1, 2, . . . , n. (2.5)

A particular case of the quadrature scheme which will be called Gauss-
Legendre type quadrature developed in [18] is concerned when the weight
function ρ(x) = 1 on each subinterval [ti−1, ti]

∫ ti

ti−1

f(x)dx ≃
r∑

j=1

ωijf(tij), (2.6)

where 0 ≤ tij ≤ 1 are quadrature points and ωij > 0 the corresponding
weights. This formula has degree of precision 2r on each subinterval. We
assume for x ∈ C[0, 1] it holds

∣∣∣∣∣∣

∫ ti

ti−1

f(x)dx−
r∑

j=1

ωijf(tij)

∣∣∣∣∣∣
= O(n−2r−1). (2.7)

Currently, we use ∫ 1

t0

f(x)dx =

n∑

i=1

∫ ti

ti−1

f(x)dx, (2.8)

to approximate (2.4). In order to evaluate (2.8), we can consider the following
composite integration rule over all of [0, 1]. As indicated in Theorem 3.1 of
[18], for any f ∈ Type(α, 2r, {0}), the error estimate has the following form

∣∣∣∣∣∣

∫ 1

0

f(x)dx−
n∑

i=1

r∑

j=1

ωijf(tij)

∣∣∣∣∣∣
= O(n−2r). (2.9)

Using the above numerical integration method, we define the discrete inner
product as

⟨f, g⟩n =

n∑

i=1

r∑

j=1

ωijf(tij)g(tij), g ∈ C[0, 1]. (2.10)
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Then, we define a numerical approximation to the integral operator in (4.1)
by

(Tnx)(s) =

n∑

i=1

r∑

j=1

ωijκs(tij)ψ(tij , x(tij)), s ∈ [0, 1]. (2.11)

Assume that x0 ∈ C[0, 1] and that ψ ∈ C[0, 1]. By virtue of estimate (2.9),
we find

∥T (x0)− Tn(x0)∥∞ = O(n−2r). (2.12)

The Fréchet derivative of Tn is given by

(T
′

n(x0)g)(s) =

n∑

i=1

r∑

j=1

ωijκs(tij)ψ1(tij)g(tij), g ∈ C[0, 1],

where ψ1(t) ≡ ∂ψ
∂u

(t, x0(t)). The uniformly boundedness of T ′
n(x0) follows

from

∥T ′
n(x0)g∥∞ ≤ sup

s∈[0,1]

n∑

i=1

r∑

j=1

ωij |κs(tij)| |ψ1(tij)| |g(tij)|

≤MΨ1∥g∥∞,
(2.13)

where M ≡
n∑
i=1

r∑
j=1

ωij |κs(tij)|, Ψ1 ≡ sup
t∈[0,1]

|ψ1(t)|, this implies ∥T ′
n(x0)∥∞ ≤

MΨ1.
If ψ1 ∈ C[0, 1], then from (2.9)

∥T ′(x0)− T
′

n(x0)∥∞ = O(n−2r). (2.14)

The operator T ′
n is Lipschitz continuous in a neighborhood B(x0, δ0) of x0,

that is, there exists a constant δ2 > 0 independent of n such that

∥T ′

n(x)− T
′

n(x0)∥∞ ≤ δ2∥x− x0∥∞, x ∈ B(x0, δ0). (2.15)

For the rest of paper, we define two types of projections from X to Xn.

•Discrete orthogonal projection operator: Namely Hyperinterpolation
operator πGn x : L2[0, 1] → Xn is defined by

(πGn x)(s) =

nr∑

i=1

⟨x, φi⟩nφi(s), (2.16)

where {φ1, φ2, . . . , φnr
} is an orthonormal basis for Xn.

• Interpolatory projection operator: For x ∈ C[0, 1], let πCn x : C[0, 1] → Xn

be the interpolatory operator defined by

(πCn x)(s) =

nr∑

i=1

x(τi)ℓi(s), s ∈ [0, 1],

(πCn x)(τi) = x(τi), 1 ≤ i ≤ nr,

(2.17)
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where the collocation points are

{τi : i = 1, 2, ..., nr} = {tij = ti + ζj(ti − ti−1), 1 ≤ i ≤ n, 1 ≤ j ≤ r},
and {ℓi : i = 1, 2, ..., nr} is the Lagrange basis of Xn.
For notational convenience from now on we write πn ≡ πGn or πCn . In both
cases πn converge to the identity operator pointwise on C[0, 1]. From Atkinson
et al. in [11], πn can be extended to L∞[0, 1] and

p = sup
n

∥πn∥ < C. (2.18)

In this paper, C will denotes a generic constant independent of n.

3. The numerical methods

The projection-type method involves the approximation of the function
z(t) = ψ(t, x(t)) using a polynomial zn = πnz of degree ≤ n. The
approximating equation of (1.1) is

xSn − TSn x
S
n = f, xSn ∈ X (3.1)

The operator TSn , which is defined in [20], is a nonlinear operator given by

(TSn x)(s) =

∫ 1

0

κ(s, t)πnz(t)dt, s ∈ [0, 1]. (3.2)

The linear operator that corresponds to the Fréchet derivative of TSn is
expressed as

((TSn )
′(x)g)(s) =

∫ 1

0

κ(s, t)πn
∂z

∂u
(t)g(t)dt.

In [3], a modified projection-type method is introduced to achieve a more
precise approximation solution than xSn

xMn − TMn xMn = f, xMn ∈ X (3.3)

where

TMn = πnT + TSn − πnT
S
n . (3.4)

is a superconvergent operator with a finite rank. We define the solution
obtained through the iterated modified projection-type method as

x̃Mn = TxMn + f. (3.5)

The discrete projection-type method for equation (1.1) is seeking an
approximate solution xSn to x0 such that

xSn − TSn x
S
n = f, xSn ∈ X. (3.6)

where TSn is the discrete nonlinear operator given by

(TSn x)(s) = ⟨κs, πnz⟩n, s ∈ [0, 1]. (3.7)
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To obtain an approximation solution that is more accurate than xSn , we
can use the discrete modified projection-type method, which is expressed
as follows

xMn − TMn xMn = f, xMn ∈ X (3.8)

and

TMn = πnTn + TSn − πnTSn , (3.9)

while the discrete iterated modified projection-type solution is defined by

x̂Mn = Tnx
M
n + f. (3.10)

Implementation details. Let πGn be the Hyperinterpolation operator defined

by (2.16). Then, the associated operator TSn defined by (3.7) is given by

TSn x(s) =

nr∑

l=1

kl(s)⟨z, φl⟩n, s ∈ [0, 1], (3.11)

we denote by kl(s) = ⟨κs, φl⟩n the numerically computed value of (2.10) using
the Gauss legendre-type quadrature. From (3.6), we observe that xSn has the
following form

xSn(s) = f(s) +

nr∑

l=1

alkl(s).

The coefficients {ai, i = 1, . . . , nr}, are obtained by substituting xSn in (3.6).
Hence we obtain the following system of nonlinear equations of size n.

ai −
n∑

j=1

r∑

k=1

ωjkψ

(
tjk, f(tjk) +

nr∑

l=1

alkl(tjk)

)
φi(tjk) = 0, 1 ≤ i ≤ nr.

(3.12)
From equation (3.8) we can show that the approximate solution xMn has the
following form

xMn (s) = f(s) +

nr∑

i=1

aiφi(s) +

nr∑

j=1

bjkj(s), (3.13)

where the coefficients {ai, bi, i = 1, ..., nr} are obtained by substituting xMn
from equation (3.13) into equation (3.8) then, we successively have

πGnKnx
M
n =

nr∑

i=1

⟨Knx
M
n , φi⟩nφi =

nr∑

i=1

{
⟨
n∑

j=1

r∑

k=1

ωjkz(tjk), φi⟩n
}
φi,

TSn x
M
n = ⟨κs, φi⟩n⟨z, φi⟩n =

nr∑

i=1

ki(s)

n∑

j=1

r∑

k=1

ωjkz(tjk)φi(tjk),

πGn T
S
n x

M
n =

nr∑

i=1

⟨TSn xMn , φi⟩nφi =
nr∑

i=1

{ nr∑

j=1

⟨z, φj⟩n⟨kj , φi⟩n
}
φi,
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where

z(t) = ψ

(
t, f(t) +

nr∑

i=0

aiφi(t) +

nr∑

l=0

blkl(t)

)
.

Except for some very specific situations, the family of functions {φi, kj} are
linearly independent, therefore we can identify the coefficients of φi and kj
respectively. Then for i, j = 1, . . . , n we obtain the nonlinear system of size 2n,





ai = ⟨
n∑
j=1

r∑
k=1

ωjkz(tjk), φi⟩n −
nr∑
j=1

⟨kj , φi⟩n,

bj =
n∑
j=1

r∑
k=1

ωjkz(tjk)φj(tjk).

Let πCn be the interpolatory operator defined by (2.17). Then, TSn can be
written as

TSn x(s) =

nr∑

j=1

ωj(s)z(τj), s ∈ [0, 1], (3.14)

where ωj(s) = ⟨κs, ℓj⟩n. It is easy to see from equation (3.6) that the
approximate solution xSn is given by

xSn(s) = f(s) +

nr∑

j=1

ajωj(s).

Equivalently, we obtain the system of nonlinear equations defined by

ai − ψ


τi, f(τi) +

nr∑

j=1

ajωj(τi)


 = 0, 1 ≤ i ≤ nr. (3.15)

For the interpolatory projection given by (2.17), we apply πCn and (I − πCn )
to equation (3.8), to obtain

πCn x
M
n − πCn Tnx

M
n = πCn f, (3.16)

(I − πCn )x
M
n − (I − πCn )T

S
n x

M
n = (I − πCn )f. (3.17)

By writing

Tnx
M
n = Tn(I − πCn )x

M
n + Tnπ

C
n x

M
n , (3.18)

and replacing (I − πCn )x
M
n by its expression from equation (3.17), Tnx

M
n

becomes

Tnx
M
n = Tn

(
(I − πCn )T

S
n x

M
n + πCn x

M
n + (I − πCn )f

)
. (3.19)

Now, by replacing Tnx
M
n in equation (3.16), we obtain

πCn x
M
n − πCn Tn

(
(I − πCn )T

S
n x

M
n + πCn x

M
n + (I − πCn )f

)
= πCn f, (3.20)

and then for i = 1, ..., nr, we have

xMn (τi)− Tn
(
(I − πCn )T

S
n x

M
n + πCn x

M
n + (I − πCn )f

)
(τi) = f(τi). (3.21)
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Now using the expressions of the operators πCn , Tn and TSn , we obtain the
following nonlinear system of size nr

ai −
n∑

j=1

r∑

k=1

ωjkκ(τi, tij)ψ

(
tjk,

nr∑

i=1

(ai − fi)ℓi(tjk) +

nr∑

i=1

ωi(tjk)ψ(τi, ai)

−
nr∑

i=1

nr∑

l=1

ωl(τi)ψ(τl, al)ℓi(tjk)

)
= fi,

where fi := f(ti) and {ai = xMn (τi), i = 1, 2, . . . , n} are the unknowns. From
(3.17), the approximate solution is given by

xMn = πCn x
M
n + (I − πCn )T

S
n x

M
n + (I − πCn )f,

= f +

nr∑

i=1

(ai − fi)ℓi +

nr∑

i=1

ωi(.)ψ(τi, ai)−
nr∑

i=1

nr∑

l=1

ωl(τi)ψ(τl, al)ℓi.

(3.22)

When using a Hyperinterpolation operator, equations (3.8) and (3.10)
result in discrete modified Galerkin-type and iterated modified Galerkin-
type methods. On the other hand, if an interpolatory projection operator
is used instead of πn, equations (3.8) and (3.10) produce discrete modified
collocation-type and iterated modified collocation-type methods, respectively.

4. Convergence rates

The main results of this section can be established by making use of the
following lemma.

Lemma 4.1. ( Ahues et al. [1]) Let X be a Banach space and A,An be bounded
linear operators on X. If ∥An − A∥ → 0, as n → ∞ and (I − A)−1 exists,
then for n large enough (I −An)

−1 exists and is uniformly bounded on X.

In the lemma that follows, we demonstrate the invertibility of the linear

operators (I − (TSn )
′(x0))

−1.

Lemma 4.2. Suppose that x0 ∈ C[0, 1] is a unique solution of (1.1) and that 1
is not an eigenvalue of T ′(x0). Let κ(s, t) be a kernel of the form (1.3). Then

for n large enough, the operators (I − (TSn )
′(x0))

−1 exists and are uniformly
bounded, i.e., there exists a constant C1 > 0 independent of n such that

∥(I − (TSn )
′(x0))

−1∥∞ ≤ C1. (4.1)

Proof. Note that

∥T ′(x0)− (TSn )
′(x0)∥∞ ≤ ∥T ′(x0)− (TSn )

′(x0)∥∞ + ∥(TSn )′(x0)− (TSn )
′(x0)∥∞,

it follows that

max{∥T ′(x0)− (TSn )
′(x0)∥∞, ∥(TSn )′(x0)− (TSn )

′(x0)∥∞} → 0 as n→ ∞.
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Note that there exits n0 such that for all n ∈ N, n ≥ n0, then from the

integration rule (2.9), we obtain ∥(TSn )′(x0)−(TSn )
′(x0)∥∞ → 0 as n→ ∞.

Let g ∈ C[0, 1], we can write

∣∣[T ′(x0)− (TSn )
′(x0)]g(s)

∣∣ ≤ sup
0≤s≤1

∫ 1

0

∣∣∣∣κ(s, t)
∂

∂u
[(z0 − πnz0)(t)]g(t)

∣∣∣∣ dt,

≤ sup
0≤s≤1

∫ 1

0

|κs(t)(ψ1(t)− πnψ1(t))| |g(t)|dt.

Then

∥[T ′(x0)− (TSn )
′(x0)]g∥∞ ≤ ∥κs(ψ1 − πnψ1)∥∞∥g∥∞,

≤M∥ψ1 − πnψ1∥∞∥g∥∞.
(4.2)

Since ψ1 ∈ C[0, 1], we have ∥ψ1−πnψ1∥∞ → 0 as n→ ∞ which implies that
(TSn )

′(x0) → T ′(x0) pointwise in C[0, 1] as n→ ∞. Then again,

∥(TSn )′(x0)g∥∞ ≤ sup
0≤s≤1

∫ 1

0

|κ(s, t)|
∣∣∣∣πn

∂z

∂u
(t)g(t)

∣∣∣∣ dt,

≤Mp∥ψ1g∥∞,
≤MpΨ1∥g∥∞,

and by using the Hölder inequality,
∣∣((TSn )′(x0)g)(s)− (TSn )

′(x0)g)(σ)
∣∣ =

sup
0≤s≤1

∫ 1

0

∣∣∣∣κ(s, t)
∂

∂u
πnz(t)g(t)− κ(σ, t)

∂

∂u
πnz(t)g(t)

∣∣∣∣ dt,

≤ ∥κs − κσ∥L1∥πnψ1g∥∞,
≤ pΨ1∥κs − κσ∥L1∥g∥∞.

(4.3)

This shows that {(TSn )′(x0)} is collectively compact. As a result of the theory

of collectively compact operators, the operators (I − (TSn )
′(x0))

−1 exists and
are uniformly bounded, for some sufficiently large n. □

The following result can be proven in the same manner as in Theorem
2 in [26].

Theorem 4.3. Suppose that x0 ∈ C[0, 1] is a unique solution of (1.1) and xSn
be the unique solution of (3.6) in the sphere B(x0, δ0). Let κ(s, t) be a kernel
of the form (1.3) and f be of Type(β, r, {0, 1}) . Assume that for r = 0, 1,
ψ ∈ C(0,1)([0, 1]× (−∞,∞)) and for r ≥ 2, ψ ∈ Cr−1([0, 1]× (−∞,∞)). If 1
is not an eigenvalue of the compact linear operator T ′(x0). For a sufficiently
large n, we have

∥x0 − xSn∥∞ ≤ C1

∥∥T (x0)− TSn (x0)
∥∥
∞
. (4.4)

Under the hypothesis of Lemma 4.2, it becomes straightforward to prove

the invertibility of the operators (I − (TMn )
′

(x0))
−1.
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Lemma 4.4. Suppose that x0 ∈ C[0, 1] is a unique solution of (1.1) and that 1
is not an eigenvalue of T ′(x0). Let κ(s, t) be a kernel of the form (1.3). Then

for n large enough, the operators (I − (TMn )
′

(x0))
−1 exists and are uniformly

bounded, i.e., there exists a constant C2 > 0 such that

∥(I − (TMn )
′

(x0))
−1∥∞ ≤ C2 <∞. (4.5)

Proof. By writing

T ′(x0)− (TMn )′(x0) = πn(T
′(x0)− T ′

n(x0)) + (I − πn)(T
′(x0)− (TSn )

′(x0)).

Since the estimate (2.8) is convergent on C[0, 1], πn is uniformly bounded
and converges to the identity operator pointwise, additionally {T ′

n(x0)} is
collectively compact and is pointwise convergent on C[0, 1]. Choose n ≥ n0

max{∥T ′(x0)− T ′
n(x0)∥∞, ∥T ′(x0)− (TSn )

′(x0)∥∞} → 0 as n→ ∞.

For each g ∈ C[0, 1], it follows from estimate (2.18) and (4.2) that
∣∣∣(I − πn)(T

′(x0)− (TSn )
′(x0))g(s)

∣∣∣ ≤ (1 + ∥πn∥∞)∥(T ′(x0)− (TSn )
′(x0))g∥∞.

Then by applying (4.2), we obtain ∥(T ′(x0)− (TMn )
′

(x0)∥∞ −→ 0 as n→
∞. Therefore (4.5) is a consequence of Lemma 4.1. □

From the above results, we remark that the operator (TMn )′ is Lipschitz
continuous in a neighborhood B(x0, δ0) of x0, that is, there exists a constant
δ3 > 0 independent of n such that

∥(TMn )
′

(x)− (TMn )
′

(x0)∥∞ ≤ δ3∥x− x0∥∞, x ∈ B(x0, δ0). (4.6)

The succeeding theorem presents the error of approximation for the discrete
modified projection-type method and its iterated version.

Theorem 4.5. Suppose that x0 ∈ C[0, 1] is a unique solution of (3.8) and xMn
and x̂Mn be the approximate solution defined by (3.8) and (3.10) respectively.
Let κ(s, t) be a kernel of the form (1.3) and f be of Type(β, r, {0, 1}). Assume
that for r = 0, 1, ψ1 ∈ C(0,1)([0, 1] × (−∞,∞)) and for r ≥ 2, ψ1 ∈
Cr−1([0, 1] × (−∞,∞)). If 1 is not an eigenvalue of the compact linear
operator T ′(x0). For a sufficiently large n, we have

∥x0 − xMn ∥∞ ≤ Cn−2r + C2∥(I − πn)(T (x0)− TSn (x0))∥∞. (4.7)

Additionally

∥x0 − x̂Mn ∥∞ ≤ C∥x0 − xMn ∥2∞ + C2∥T
′

n(x0)(T (x0)− TMn (x0))∥∞
+ ∥T (x0)− Tn(x0)∥∞.

(4.8)

Proof. The proof of (4.7) is a simply application of Theorem 2 in [26]. Then

∥x0 − xMn ∥∞ ≤ C2∥T (x0)− TMn (x0)∥∞. (4.9)
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Now, we show that the estimate ∥T (x0) − TMn (x0)∥∞ can be expressed in
the following manner

∥T (x0)− TMn (x0)∥∞ = ∥πn(T (x0)− Tn(x0)) + (I − πn)(T (x0)− TSn (x0))∥∞
≤ Cn−2r + ∥(I − πn)(T (x0)− TSn (x0))∥∞.

(4.10)

Hence, (4.7) follows by adding the above estimate in (4.9). Recognizing that
the second term on right hand side of (4.10) can also be bound by

∥(I − πn)(T (x0)− TSn (x0))∥∞ ≤ (1 + p){∥T (x0)− TSn (x0)∥∞
+ ∥TSn (x0)− TSn (x0)∥∞}.

(4.11)

Note that from (1.1) and (3.10) we have

x0 − x̂Mn = T (x0)− Tn(x
M
n ),

= Tn(x0)− Tn(x
M
n ) + T (x0)− Tn(x0).

(4.12)

To prove (4.12) in infinity norm we use a mean value theorem and (2.15).
Therefore, for some 0 < θ < 1, we get

∥Tn(x0)− Tn(x
M
n )∥∞ = ∥T ′

n(x0 + θ(x0 − xMn ))(x0 − xMn )∥∞,
= ∥[T ′

n(x0 + θ(x0 − xMn ))− T ′
n(x0) + T ′

n(x0)][x0 − xMn ]∥∞,
≤Mθδ2∥x0 − xMn ∥2∞ + ∥T ′

n(x0)(x0 − xMn )∥∞.

By applying the Lipschitz’s continuity of T
′

n and taking the norm on both
sides of the above equation. Then (4.12) can be written as

∥x0−x̂Mn ∥∞ ≤ ∥Tn(x0)− Tn(x
M
n )∥∞ + ∥T (x0)− Tn(x0)∥∞,

≤Mθδ2∥x0 − xMn ∥2∞ + ∥T ′

n(x0)(x0 − xMn )∥∞ + ∥T (x0)− Tn(x0)∥∞.
(4.13)

In order to evaluate the second term of the estimate (4.13), we write

(I − (TMn )′(x0))(x0 − xMn ) = T (x0)− TMn (x0)− (TMn )′(x0)(x0 − xMn )

+ TMn (x0)− TMn (xMn ).

Applying T
′

n(x0) to both sides and using the mean value theorem, it follows
that

T
′

n(x0)(x0 − xMn ) = T
′

n(x0)(I − (TMn )′(x0))
−1[T (x0)− TMn (x0)

− (TMn )′(x0)(x0 − xMn ) + TMn (x0)− TMn (xMn )]

= T
′

n(x0)(I − (TMn )′(x0))
−1[T (x0)− TMn (x0)] + T

′

n(x0)(I − (TMn )
′

(x0))
−1

[(TMn )
′

(x0 + θ(x0 − xMn ))− (TMn )
′

(x0)](x0 − xMn ),

where 0 < θ < 1. Now from estimates (4.5) and (4.6) one has

∥T ′

n(x0)(x0 − xMn )∥∞ ≤ C2∥T
′

n(x0)(T (x0)− TMn (x0))∥∞ + C2Mθδ3∥x0 − xMn ∥2∞.
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By Combining (4.13) with the above estimate, we get

∥x0 − x̂Mn ∥∞ ≤C∥x0 − xMn ∥2∞ + C2∥T
′

n(x0)(T (x0)− TMn (x0))∥∞
+ ∥T (x0)− Tn(x0)∥∞,

with C =Mθ(δ2 + C2δ3). This completes the proof. □

Since πn is the projection operator defined using the nonuniform
breakpoints (2.1), the rate of convergence of the proposed methods is closely
linked to the smoothness of z0. Based on the regularity result of z0 obtained
in [15], we can derive the following lemma.

Lemma 4.6. (Rice [22]) Let z0(t) = ψ(t, x0(t)) be a function of class
Type(α, r, {0, 1}). Then

∥(I − πn)z0∥∞ = O(n−r) (4.14)

upon choosing q = r
α
or q = r

1−ϵ for any ϵ ∈ (0, 1) in the logarithmic case.

4.1. Discrete Galerkin-type and modified Galerkin-type methods

In this subsection, we demonstrate the outcomes concerning the convergence
rate of the Hyperinterpolation projection.

Theorem 4.7. Let x0 be an isolated solution of (1.1) and xSn be the unique
solution of (3.6) in the sphere B(x0, δ0). We assume that the conditions
in Theorem (4.3) are satisfied with r ≥ 1. Also assume that x0 is of
Type(α, r, {0, 1}) for α > 0 or x0 is of Type(α− ϵ, r, {0, 1}) for any ϵ ∈ (0, 1)
in the logarithmic case. Then

∥x0 − xSn∥∞ =

{
O(n−r−α), 0 < α < 1,

O(n−r−1 log n), α = 1.
(4.15)

Proof. According to Theorem 4.3, in order to estimate ∥x0 − xSn∥∞ it is

necessary to estimate ∥T (x0)− TSn (x0)∥∞. Consider

∥T (x0)− TSn (x0)∥∞ ≤ ∥T (x0)− TSn (x0)∥∞ + ∥TSn (x0)− TSn (x0)∥∞. (4.16)

Since z0 ∈ Type(α, r, {0, 1}) or z0 ∈ Type(α−ϵ, r, {0, 1}) and ⟨u, (I−πGn )z0⟩ =
0, for any u ∈ S

ν
r (Πn). Then it follows from the Hölder inequality, Lemma

(2.1) and estimates (4.14)

∥∥T (x0)− TSn (x0)
∥∥
∞

= sup
s∈[0,1]

∣∣∣∣
∫ 1

0

κ(s, t)(I − πGn )z0(t)dt

∣∣∣∣ ,

= sup
s∈[0,1]

∣∣⟨κs − u, (I − πGn )z0⟩
∣∣ ,

≤ ∥κs − u∥L1∥(I − πGn )z0∥∞,

≤
{
Cn−r−α, 0 < α < 1,

Cn−r−1 log n, α = 1.

(4.17)
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By applying the Banach-Steinhaus theorem [1], it is shown that

sup
0≤s≤1

nr∑

i=1

|ki(s)| ≃ sup
0≤s≤1

nr∑

i=1

∣∣ki(s)
∣∣ ≤ C,

where C is a constant independent of n. Next, using equation (3.11) with
ki(s) = ⟨κs, φi⟩, for the second term in (4.16), we write

∣∣∣(TSn (x0)− TSn (x0))(s)
∣∣∣ = sup

0≤s≤1

∣∣∣∣∣

nr∑

i=1

ki(s)⟨z0, φi⟩ −
nr∑

i=1

ki(s)⟨z0, φi⟩n

∣∣∣∣∣

≤ sup
0≤s≤1

nr∑

i=1

|ki(s)| |⟨z0, φi⟩ − ⟨z0, φi⟩n|

≤ C |⟨z0, φi⟩ − ⟨z0, φi⟩n| .
(4.18)

Hence by (2.7) it follows that

|⟨z0, φi⟩ − ⟨z0, φi⟩n| ≤
n∑

i=1

∣∣∣∣∣∣

∫ ti

ti−1

z0(t)φi(t)dt−
r∑

j=1

ωijz0(tij)φi(tij)

∣∣∣∣∣∣

≤ Cn−2r.

Then, combining the above estimates with (4.16)- (4.18), the bound (4.15)
follows. □

Our next task is to demonstrate a theorem that establishes the rate of
convergence of the approximation xMn and x̂Mn to the exact solution x0.

Theorem 4.8. Assume that the conditions in Theorem (4.5) are satisfied. Let
x0 be an isolated solution of (1.1) and x0 ∈ Type (α, r, {0, 1}) for α > 0 or
x0 ∈ Type (α− ϵ, r, {0, 1}) for any ϵ ∈ (0, 1) in the logarithmic case. Let xMn
and x̂Mn be the approximate solution defined by (3.8) and (3.10) respectively.
For all large n, we have

∥x0 − xMn ∥∞ =

{
O(n−r−α), 0 < α < 1,

O(n−r−1 log n), α = 1.
(4.19)

In addition, assume that ψ1 ∈ Type (α, r, {0, 1}) for α > 0 or ψ1 ∈ Type
(α− ϵ, r, {0, 1}) for α = 1, then

∥x0 − x̂Mn ∥∞ =

{
O(n−r−2α), 0 < α < 1,

O(n−r−2(log n)2), α = 1.
(4.20)

Proof. The estimate (4.19) is obtained by combining (4.16)-(4.18) with (4.7).
In order to give an approximation error of the iterated discrete modified
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Galerkin-type method, we use the second term on right hand side of (4.8)
and (4.10)
∣∣∣T

′

n(x0)(T (x0)− TMn (x0)(s)
∣∣∣ ≤ Cn−2r

∣∣∣T
′

n(x0)
∣∣∣+

∣∣∣T ′
n(x0)(I − πGn )(T (x0)− TSn (x0))

∣∣∣
(4.21)

By using (2.3) and estimates (4.16)-(4.18) when selecting q = r
α

for α > 0
and q = r

1−ϵ in the logarithmic case. Then, for all u ∈ S
ν
r (Πn)

∥T ′
n(x0)(I − πGn )(T (x0)− TSn (x0))∥∞ ≤ (1 + p)∥κsψ1 − u∥L1∥T (x0)− TSn (x0)∥∞

≤
{
C(1 + p)n−r−2α, 0 < α < 1,

C(1 + p)n−r−2(log n)2, α = 1.

(4.22)

Finally, combining estimates (2.12), (4.19), (4.21) and (4.22) with (4.8), we
deduce (4.20) in form

∥x0 − x̂Mn ∥∞ = O(n−2r−2α) +O(n−r−2α) +O(n−2r), (4.23)

if 0 < α < 1. This completes the proof. □

Corollary 4.9. Let S−1
1 (Πn) be the space of piecewise constant functions. We

let α = 1
2 , that is q = 2 and q > 1 in the logarithmic case, then

∥x0 − xSn∥∞ =

{
O(n−1.5), α = 1

2 ,

O(n−2 log n), α = 1

In addition, the above error bound and ∥x0 − xMn ∥∞ have almost the same
order of convergence, while for the discrete iterated modified Galerkin-type
method can be bounded by

∥x0 − x̂Mn ∥∞ =

{
O(n−2), α = 1/2,

O(n−3(log n)2), α = 1.

4.2. Discrete collocation-type and modified collocation-type methods

In this subsection, we will exhibit the results that related to the convergence
rate of the interpolatory projection.

Theorem 4.10. Let x0 be an isolated solution of (1.1) and xSn be the unique
solution of (3.6) in the sphere B(x0, δ0). We assume that the conditions in
Theorem (4.3) are satisfied with r ≥ 1 and that x0 is of Type(α, r, {0, 1}).
Then

∥x0 − xSn∥∞ = O(n−r). (4.24)

Proof. From estimate (4.4) we have

∥x0 − xSn∥∞ ≤ C1∥T (x0)− TSn (x0)∥∞ + C1∥TSn (x0)− TSn (x0)∥∞. (4.25)
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Since z0 belongs to the class of Type(α, r, {0, 1}) and {ti, i = 0, . . . , n} are
selected according to (2.1). Applying (4.14), we obtain

∥T (x0)− TSn (x0)∥∞ ≤ sup
s∈[0,1]

∫ 1

0

|κ(s, t)|
∣∣(I − πCn )z0(t)

∣∣dt,

≤M∥(I − πCn )z0∥∞,
≤ CMn−r.

(4.26)

For each s ∈ [0, 1] we let ωi(s) = ⟨κs, ℓi⟩. By using (3.14), we write

∣∣∣(TSn (x0)− TSn (x0))(s)
∣∣∣ = sup

0≤s≤1

∣∣∣∣∣

nr∑

i=1

(ωi(s)− ωi(s))z0(ti)

∣∣∣∣∣

≤ sup
0≤s≤1

nr∑

i=1

|ωi(s)− ωi(s)| |z0(ti)| .

Therefore, by (2.7) we can conclude

∥TSn (x0)− TSn (x0)∥∞ ≤ nr∥ωi(s)− ωi(s)∥∞∥z0∥∞
≤ Crn−2r∥z0∥∞,

(4.27)

□

The following theorem pertains to the overall superconvergence of xSn
to x0, and it relies heavily on the inequality (4.24).

Theorem 4.11. Let x0 be an isolated solution of (1.1) and xSn be the unique
solution of (3.1) in the sphere B(x0, δ0). We assume that the conditions in

Theorem (4.3) are satisfied with r ≥ 1 and that M1 ≡
∫ 1

0

∏r
j=1(ζj − s)ds = 0

where ζj , j = . . . , r are the points used in (2.2). Also assume that x0 is of
Type(β, r+ 1, {0, 1}) for α ≤ β ≤ r+ 1 or x0 is of Type(β − ϵ, r+ 1, {0, 1})
for any ϵ ∈ (0, β) in the logarithmic case. Then

∥x0 − xSn∥∞ =

{
O(n−r−α), 0 < α < 1,

O(n−r−1 log n), α = 1.
(4.28)

Proof. Continuing the argument from the previous theorem, z0 ∈ Type(β, r+
1, {0, 1}) or z0 ∈ Type(β−ϵ, r+1, {0, 1}). The result of this theorem is always
depends on (4.25). However, from Theorem 3 of Schneider [25], we have

∥∥T (x0)− TSn (x0)
∥∥
∞

≤
{
Cn−r−α, 0 < α < 1,

Cn−r−1 log n, α = 1.
(4.29)

such that q = α+r+1
α+β and q = α+r+1

α+β−ϵ in the logarithmic case used as the

graded exponent in (2.1). Hence, the estimate (4.28) is obtained by combining
(4.25), (4.27) and (4.29). □

The next theorem establishes the superconvergence of the discrete
modified solutions xMn and x̂Mn to the exact solution.
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Theorem 4.12. Assume that the conditions in Theorem (4.5) are satisfied. Let
x0 be an isolated solution of (1.1) and x0 ∈ Type (α, r, {0, 1}) for α > 0 or
x0 ∈ Type (α− ϵ, r, {0, 1}) for any ϵ ∈ (0, 1) in the logarithmic case. Let xMn
and x̂Mn be the approximate solution defined by (3.8) and (3.10) respectively.
For all large n, we have

∥x0 − xMn ∥∞ =

{
O(n−r−α), 0 < α < 1,

O(n−r−1 log n), α = 1.
(4.30)

In addition, assume that ψ1 ∈ Type (α, r, {0, 1}) for α > 0 or ψ1 ∈ Type
(α− ϵ, r, {0, 1}) for α = 1, then

∥x0 − x̂Mn ∥∞ =

{
O(n−r−2α), 0 < α < 1,

O(n−r−2(log n)2), α = 1.
(4.31)

Proof. First, by combining (4.27) and (4.29) with (4.7) the estimate (4.30) is
proved since q = min{ r

α
, α+r+1
α+β } and q = min{ r

1−ϵ ,
α+r+1
α+β−ϵ} in the logarithmic

case used as the graded exponent in (2.1).
To obtain the desired result of the discrete iterated version, we apply (4.10)
to the following approximation

∥T ′

n(x0)(T (x0)− TMn (x0)∥∞ ≤ CMn−2r + ∥T ′
n(x0)(I − πCn )(T (x0)− TSn (x0))∥∞.

(4.32)

The last term of (4.32) can be formulated by using Theorem 4-(i) of Graham’s
[12], if x0 ∈W ℓ

1 (0 < ℓ ≤ 2r) and κsψ1 ∈Wm
1 (0 < m ≤ r), then

[T ′
n(x0)(I − πCn )(T (x0)− TSn (x0))](s) = ⟨κsψ1 − u, (I − πCn )(T (x0)− TSn (x0))⟩n

+ ⟨u, (I − πCn )((T (x0)− TSn (x0))− v)⟩n + ⟨u, (I − πCn )v⟩n,
(4.33)

for some u ∈ S
−1
m (Πn) and some v ∈ S

−1
ℓ (Πn), with 0 < m ≤ r and 0 < ℓ ≤ 2r.

According to the proof as described in ([12], p. 362), we would like to point
out that the optimal order corresponds to the first term of (4.33). Then, from
estimates (2.3), (4.11), (4.27) and (4.29) one gets

∥κsψ1 − u∥L1∥(I − πCn )(T (x0)− TSn (x0))∥∞ ≤
{
C(1 + p)n−r−2α, 0 < α < 1,

C(1 + p)n−r−2(log n)2, α = 1.

(4.34)

Consequently, the estimate (4.31) follows immediately by combining (2.12),
(4.30), (4.32)-(4.34) with (4.8). □

Corollary 4.13. Let S−1
1 (Πn) be the space of piecewise constant functions. We

let α = β and let ζ1 = 1
2 i.e., interpolation at the mid-point, then M1 = 0. If

q = α+r+1
2α and q > α+r+1

2α in the logarithmic case, then

∥x0 − xSn∥∞ =

{
O(n−1.5), α = 1/2,

O(n−2 log n), α = 1,
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that is, q = 2.5 and q > 1.5 for α = 1.
If M1 ̸= 0, q = r

α
and q > r in the logarithmic case, then ∥x0 − xSn∥∞ =

O(n−1) for any 0 < α ≤ 1, that is q = 2 and q > 1 for α = 1.
If q = min{ r

α
, α+r+1

2α } and q > min{r, α+r+1
2α } in the logarithmic case, then

∥x0 − xMn ∥∞ =

{
O(n−1.5), α = 1/2,

O(n−2 log n), α = 1,

that is q = 2 and q > 1 for α = 1. In addition,

∥x0 − x̂Mn ∥∞ =

{
O(n−2), α = 1/2,

O(n−3(log n)2), α = 1.

5. Numerical results

This section includes two numerical examples that demonstrate the
theoretical estimates derived in the preceding sections. Let Xn be the
space of piecewise constant functions (r = 1) were used as approximating
subspaces. In this framework, a Newton–Raphson method was used to
solve different nonlinear systems. It should be noted that all the necessary
integrals were computed with a highly accurate Gauss-type quadrature
rule [18]. Furthermore, the numerical algorithms were implemented using
WOLFRAM MATHEMATICA.

Example 1. Consider the following Hammerstien equation

x(s)−
∫ 1

0

1√
|s− t|

[
1

1 + x(t)

]
dt = f(s), 0 ≤ s ≤ 1, (5.1)

where f is selected so that the exact solution is x(s) =
√
s, which is non

smooth. In the following, we verify and confirm the bounds described in
Corollary 1 and 2, since the solution is of Type( 12 , r, {0, 1}). The convergence
rate is affected by the value of parameter q which is used to establish a graded
mesh.

From Corollary 1, if q = 2, then the expected orders of convergence
for the discrete Galerkin-type and modified Galerkin-type solutions are 1.5,
whereas for the discrete iterated modified Galerkin-type solution it is 2.

From Corollary 2, if q = 2.5, then the expected order of convergence
for the discrete collocation-type is 1.5. If q = 2, then the expected order
of convergence for the discrete collocation-type is 1, and 1.5 for the
discrete modified collocation-type, whereas for the discrete iterated modified
collocation-type solution it is 2.

Example 2. We solve the following integral equation

x(s)−
∫ 1

0

log(|s− t|)x2(t)dt = f(s), 0 ≤ s ≤ 1, (5.2)
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where f is selected so that the exact solution is x(s) = s log(s), which is of
Type(1, k, {0, 1}).

From Corollary 1, if q > 1, then the expected orders of convergence
for the discrete Galerkin-type and modified Galerkin-type solutions are 2,
whereas for the iterated modified Galerkin-type solution it is 3.

According to Corollary 2, if q > 1.5, then the expected order of
convergence for the discrete collocation-type is 2. If q > 1, then the expected
order of convergence for the discrete collocation-type is 1, and 2 for the
discrete modified collocation-type, whereas for the discrete iterated modified
collocation-type solution it is 3. The results of these estimates are confirmed
by the numerical computations.

From the integral equations (5.1) and (5.2), we compute the maximum
errors and orders of convergence of the approximation solution obtained by
the discrete modified projection-type method and its iterated version and we
compare them with those obtained by the projection-type method in Table
1-4, respectively.

In Tables 1 and 2, we observe that a satisfactory precision is obtained
even when the polynomials are of low degree. As expected the performance
of the discrete projection-type and the discrete modified projection-type
methods are similar. Note that, this remark remains valid in the case of
discrete collocation-type method except when we choose the interpolation
at the mid-points. By observing the results, we can note that in order to
achieve an error of order 10−4, the discrete modified collocation-type method
requires a system of size 64 to be solved. In contrast, to achieve a similar
order of accuracy in the discrete modified Galerkin-type method, a system
of size 128 needs to be solved. However, when computing ∥x0 − x̂M16∥∞ by
a discrete modified projection-type method, which is obtained by solving a
system of size 16 in the modified collocation-type and 32 in the modified
Galerkin-type method, we get an error of the order of 10−4.

As a result, the discrete projection-type and the modified projection-
type methods have almost the same order of convergence, the iterated discrete
modified projection-type method converges less than both of them in terms
of the error and the order of convergence. It should be mentioned that
the discrete modified collocation-type method has benefits theoretically and
computationally over the discrete modified Galerkin-type method, which
require solving an extremely large nonlinear system that is computationally
very expensive. There are similar observations to be made in the Tables 3
and 4.

To ensure that all relevant information is included, we present
in Figures 1 and 2 the errors in absolute value obtained by different
methods when employing example (5.1). These methods include the discrete
projection-type (shown in yellow), the discrete modified projection-type
(shown in blue), and the discrete iterated modified method (shown in green)
with different values of n.
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n ∥x0 − x
S
n∥∞ order ∥x0 − x

M
n ∥∞ order ∥x0 − x̂

M
n ∥∞ order

2 1.16× 10−1 1.14× 10−1 4.72× 10−2

4 4.18× 10−2 1.46 3.87× 10−2 1.55 9.77× 10−3 2.27
8 1.56× 10−2 1.42 1.33× 10−2 1.53 2.12× 10−3 2.20
16 5.30× 10−3 1.56 4.15× 10−3 1.68 4.85× 10−4 2.12
32 1.66× 10−3 1.66 1.46× 10−3 1.50 1.14× 10−4 2.07
64 5.60× 10−4 1.57 5.13× 10−4 1.50 2.77× 10−5 2.05

Table 1. Discrete Galerkin-type and modified Galerkin-
type methods for algebraic singularity.

n ∥x0 − x
S
n∥∞ order ∥x0 − x

S
n∥∞ order ∥x0−x

M
n ∥∞ order ∥x0−x̂

M
n ∥∞ order

2 1.49× 10−1 1.06× 10−1 1.19× 10−1 5.55× 10−2

4 5.37× 10−2 1.47 6.09× 10−2 0.80 4.55× 10−2 1.39 1.11× 10−3 2.31
8 1.98× 10−2 1.43 2.65× 10−2 1.20 1.15× 10−2 1.54 2.39× 10−3 2.21
16 6.66× 10−3 1.57 1.19× 10−2 1.15 5.45× 10−3 1.51 5.90× 10−4 2.12
32 2.03× 10−3 1.71 5.48× 10−3 1.12 1.91× 10−3 1.51 1.51× 10−4 1.96
64 6.28× 10−4 1.69 2.52× 10−3 1.12 6.82× 10−4 1.48 3.48× 10−5 2.12

Table 2. Discrete collocation-type and modified
collocation-type methods for algebraic singularity.

n ∥x0 − x
S
n∥∞ order ∥x0 − x

M
n ∥∞ order ∥x0 − x̂

M
n ∥∞ order

2 6.97× 10−2 5.31× 10−2 3.65× 10−2

4 3.18× 10−2 1.13 1.65× 10−2 1.68 7.97× 10−3 2.19
8 1.10× 10−2 1.52 3.04× 10−3 2.43 9.82× 10−4 3.02
16 3.08× 10−3 1.83 5.34× 10−4 2.51 1.07× 10−4 3.19
32 8.01× 10−4 1.94 1.18× 10−4 2.17 1.20× 10−5 3.15
64 2.02× 10−4 1.98 2.71× 10−5 2.12 1.40× 10−6 3.09

Table 3. Discrete Galerkin-type and modified Galerkin-
type methods for logarithmic singularity.

n ∥x0 − x
S
n∥∞ order ∥x0 − x

S
n∥∞ order ∥x0−x

M
n ∥∞ order ∥x0−x̂

M
n ∥∞ order

2 5.88× 10−2 4.57× 10−2 4.23× 10−2 7.43× 10−3

4 3.54× 10−2 0.73 5.35× 10−2 0.22 1.17× 10−2 1.84 1.16× 10−3 2.67
8 7.39× 10−3 2.25 2.64× 10−2 1.01 2.81× 10−3 2.06 2.63× 10−4 2.13
16 1.56× 10−3 2.24 1.17× 10−2 1.17 5.58× 10−4 2.33 4.30× 10−5 2.61
32 3.72× 10−4 2.07 5.74× 10−3 1.02 1.53× 10−4 1.83 1.44× 10−5 1.57
64 8.99× 10−5 2.05 2.85× 10−3 1.00 3.76× 10−5 2.03 1.68× 10−6 3.10

Table 4. Discrete collocation-type and modified
collocation-type methods for logarithmic singularity.
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Galerkin-type method

Modified Galerkin-type method

Iterated modified Galerkin-type method
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Figure 1. Discrete Galerkin-type and modified Galerkin-
type methods for algebraic singularity.

Collocation-type method when M1=0

Modified collocation-type method

Iterated modified collocation-type method
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Figure 2. Discrete collocation-type and modified
collocation-type methods for algebraic singularity.

6. Conclusion

The primary objective of this research paper is to examine a modified
projection-type method in discrete version for solving Hammerstein integral
equations. The integral operator in question has a singularity that is
either algebraic or logarithmic in nature. The paper presents theoretical
calculations for both the error bound and the convergence rate of the method.
Furthermore, numerical examples are provided to demonstrate the practical
effectiveness of the proposed approach and to validate the theoretical error
estimates. The results in this paper have the potential to be extended to
derivative-dependent Hammerstein integral equations, although that topic
would require another research paper to address.
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