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Fast superconvergent solvers for weakly
singular Hammerstein equations

Mohamed Arrai, Chafik Allouch and Abderrahim Aslimani

Abstract. This article investigates discrete versions of the projection-
type and modified projection-type methods for solving Hammerstein
integral equations with a weakly singular kernel. The approximating
operator utilized is either the orthogonal projection or an interpolatory
projection onto a space of piecewise polynomials of degree < r — 1
with respect to a graded partition of [0,1]. The study reveals that the
proposed methods achieve optimal rates of convergence, demonstrating
that the numerical quadrature used to estimate the integrals maintains
the same rates of convergence as the continuous methods. The
theoretical findings are supported by numerical experiments.

Mathematics Subject Classification (2010). 41A10, 45G10, 47H30, 65R20.

Keywords. Hammerstein equation, Numerical quadrature, Discrete
Galerkin method, Discrete collocation method,Weakly singular kernels,
Hyperinterpolation projection, Superconvergence.

1. Introduction

We consider the following Hammerstein integral equation

x—Tzx=f, (1.1)
where T is a compact operator defined on X = C[0, 1] by
1
(T2)(s) = [ w(sstpwtta)dr, s € (0.1 (1.2)
0
The kernel (s, t) is of weakly singular type
H(Svt) :m(57t)go¢|57t|7 (13)

with

|s —tj*t, for 0<a<l,
Gals —t] =
log(|s —t|), for a=1,

This work was completed with the support of our TEX-pert.
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and m(s,t) € C([0,1] x [0,1]), f and ¢ are known functions with (¢, u)
nonlinear in u and x is the function to be determined. The solution of
Hammerstein equations is what we call the fixed point of the operator T
In this framework, authors in [0l 27] examined the existence and uniqueness
of the solution of equation . The most important method for analyzing
the solvability theory for such equations is the Banach fixed-point theorem
(see e.g.,[0 [7, B 211 23] and the references contained in them).

Previous research has explored various numerical methods using
piecewise polynomials for solving equation (1.I). One of these methods
is product integration, which is particularly useful for solving with
a weakly singular kernels. In a study conducted by Kaneko et al.
[16] both product integration and collocation methods were employed
to solve Hammerstein equations with weakly singular kernels, and they
discovered certain properties of the approximate solutions that demonstrate
superconvergence. In another study by Hakk and Pedas [14], they established
that the collocation solution exhibits superconvergence at the interpolation
points if the appropriate interpolation points are selected. The notion of a
graded mesh was first presented by Rice [22]. Schneider [25] then applied this
concept by using nonlinear spline approximation to create a graded mesh, and
evaluated the convergence rates of approximate solutions in different discrete
methods. The discrete modified collocation method was examined in [13] as
an alternative approach to solve equation , which contains kernels that
are weakly singular.

The method known as Galerkin is examined in relation to piecewise
polynomials using orthogonal projection. The study in [I2, [I7] established
that the iterated Galerkin method attains superconvergence for Hammerstein
equations with both smooth and weakly singular kernels. Additionally,
Golberg and Chen [9] [T0] compiled a comprehensive analysis of the discrete
Galerkin methods for integral equations. Recently, the authors in [3] proposed
a modified Galerkin-type method for weakly singular kernels that is based on
the superconvergent version of the Kumar and Sloan method [20], which is
commonly known as the collocation-type method in literature due to its initial
definition using an interpolatory operator. In this paper, the method will be
referred to as a discrete Galerkin-type method when a Hyperinterpolation
projection is used, or a discrete projection-type method when the projection
type is not specified.

The aim of this paper is to investigate the discrete projection-type
and discrete modified projection-type methods for approximate solution
of with a weakly singular kernel using piecewise polynomial basis
functions . It is worth mentioning that the continuous method is proposed
in [3] for Hammerstein integral equations. Our research shows that when
dealing with weakly singular kernels, the iterated version of the discrete
modified projection-type method has a better convergence rate compared to
the projection-type and modified projection-type methods. Additionally, the
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proposed method achieves convergence rates that are consistent with those
of the continuous methods.

Regarding computational analysis, the research literature lacks sufficient
computational results for finding an approximate solution of (1). To fill this
gap, we present some computational results for integral equations with weakly
singular properties. Since we used a graded mesh, we had to compute the
weights required for the product integration method carefully. To do this, we
followed the approach outlined in a previous work by Atkinson [4].

The contents of the paper are as follows. Section 2 presents an overview
of relevant results and establishes the necessary background. Numerical
results of the discrete projection-type and modified projection-type methods
for the integral operator with both an algebraic singularity and a logarithmic
singularity are defined in Section 3. In Section 4, we give the convergence
orders of the proposed method and its iterated version. Numerical validation
is given in Section 5.

2. Background and results
For a fixed s € [0, 1], define the kernel k(t) = x(s,t) for t € [0, 1] to be the
s section of k. We assume that
1
M = sup / |k(s,t)|dt < oo and lim ||ks — kolleo =0, o €[0,1].
] 0 Ehande

s€[0,1

If 2 € C[0,1], then from Lemma 2.3 of Kaneko et al. [I5], T2z € C®)[0,1].
Here C(%)[0, 1] denotes the class of a-Holder continuous functions defined
on [0, 1].

C(O’O‘)[O,l]:{gEC[O,l}, sup |g(m)—g(()<oo}

0<z,c<1 T — (e

for 0 < a <1, and

o<z,c<1 |z — Cllog|B/(x — ¢

for some B > 1. We assume that ¢(.,z(.)) € C[0,1] and 9¢/0u(.,z(.)) €
C[0,1]. Then, the operator T is Fréchet differentiable and its Fréchet
derivative at x is the linear operator

c®D0,1] = {9 €C[0,1], sup o I OO} ’

1
(@)0)e) = [ rlst) G (taliald g€ Clo.1]

Let ¢ be an isolated solution of 1) such that [ min z¢(s), max z¢(s)] C R.
s€[0,1] s€[0,1]
For §p > 0, let
3({,60,(5()) = {{L‘ eX: ||(E0 — xHoo < 50}
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The partial derivative 9v/du of ¢ with respect to the second variable exists
and is Lipschitz continuous in a neighborhood of zg, that is, there exists a
constant d; > 0 such that

0
%(t,xo)f%(t,z) §51|I07I|, IEB(I(),(S()).

If f € C[0,1], then from Theorem 2.4 in [15], the Hammerstein equation (1.1])
has a unique solution zo € C0, 1].
Let S be a finite set in [0, 1] and define the function wg(t) = inf{|s—t| : s € S}.
In the language of Rice [22], a function z is said to be of Type(q,r,.S), for
—-1<a<0if
(6] < elws()*, tES.

and for a > 0, if the above condition holds and x € Lip(a), where

Lip(a) = {z : |z(s) —z(t)| < c|s —t|*, s,t€]0,1]}.

According to [I5], if f is of Type(B,k,{0,1}), then a solution of with
the kernel defined by (1.3) is of Type(~y, k, {0,1}), where v = min{«, 8}.
For x,y € LP[0,1] and p € [1,c0]. The inner product is defined by

1 »

1
(z,y) :/ z(t)y(t)dt and norm is ||z||r» = (/ x(t)pdt)
0 0
We denote by W;"[(), 1] the Sobolev space of functions g whose m'"

generalized derivative g™ belongs to LP[0,1]. The norm in the space
W0, 1] is defined as

m
lgllwy =" 1g™ .
k=0

Let g = % be the index of singularity for some integer > 1. Based on Rice’s
concept of graded mesh [22], we examine the partition of [0, 1] defined as

1/2i\?
t; = 2\n /)’

1_t’n7i7 %SZ

o
IN
IN

NIR

¢ (2.1)

IN

n.
Define 0 < (3 < (2 < ... < (- < 1. The nr collocation points are chosen as
tij=ti+(ti—tic1), 1<i<n, 1<5<r (2.2)
In order that
tic1 <tin <tio<...<tpp <t;, 1<i<n.

Put I; = [ti—1,t;], we denote by X, = 8¥(II,) the space of piecewise
polynomials of order r and v continuous derivatives, (=1 < v < r — 2)
with knots at II,,, that is

X, ={9eC”0,1] : 9|1, € Pr,1 <i<n}

where P,._; denotes the space of polynomials of degree at most r — 1. Here
v = 0 corresponds to the case of continuous piecewise polynomials. If v =
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—1 there is no continuity requirements at the breakpoints. Note that the
dim(X,)=nr—(n—1)(v —1).

Lemma 2.1. (Schneider [25]) Let k(s,t) be a kernel of the form (1.9), then
for each s € 0,1], there exists u € 8¥(I1,,) such that

On™%), 0<a<l,
o=l = 2.3
e — ul {om*mmm e (2.3)

One of the goals of this paper is to develop Gauss-type numerical
quadratures for the singular integrals. To introduce the discrete methods,
we consider a quadrature formula defined by

1
| otarswyis (2.4)
0
where f € Type(a, 2r,{0}) with « > 0 and p a weight function that is positive
n (0,1). Let ¢ = 2r + 1/ and a partition
(L) : to=n"9 t;=i%, i=12...,n (2.5)
A particular case of the quadrature scheme which will be called Gauss-

Legendre type quadrature developed in [I8] is concerned when the weight
function p(x) = 1 on each subinterval [¢;_1, ;]

[ r@s =3 ws(es), (2.

ti—

where 0 < ¢;; < 1 are quadrature points and w;; > 0 the corresponding
weights. This formula has degree of precision 2r on each subinterval. We
assume for z € C[0, 1] it holds

/.

ti—

flx dfowwf )| =0m= 1. (2.7)

Currently, we use
tq
f )dx = Z / flx (2.8)
tz 1

to approximate ([2.4)). In order to evaluate , we can consider the following
composite integration rule over all of [0,1]. As indicated in Theorem 3.1 of
[18], for any f € Type(c,2r,{0}), the error estimate has the following form

/f dx—zzw”f (tij)| = O(n™™"). (2.9)

=1 j=1

Using the above numerical integration method, we define the discrete inner
product as

=D > wiftiyalty),  g€Co,1]. (2.10)

i=1 j=1
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Then, we define a numerical approximation to the integral operator in (4.1)
by

(Toz)(s) = > > wijhs(tij)b(tij, x(t;), s €[0,1], (2.11)

i=1 j=1
Assume that zg € C[0,1] and that ¢ € C|0, 1]. By virtue of estimate (2.9)),
we find

1T (20) = T(o) [l = O(n™%"). (2.12)
The Fréchet derivative of T, is given by
(T, (x0)g)(s) = Z Zwij“s(tij>wl(tij)g(tij>v g € Clo,1],
i=1 j=1

where () = g—’ﬁ(t,xo(t)). The uniformly boundedness of T (xo) follows
from

IT5 (z0)glloe < sup D> wij s (tis)] [ (tis)] lg(tis)]

s€[0,1] 777 =1 (2.13)
< MP1]|g]loo,
where M = Y 3 wij [ks(tij)], ¥1 = sup [¢1(¢)], this implies ||} (x0)]loo <
i=1j=1 te[0,1]
MU;.
If 41 € C[0,1], then from ({2.9)

I (20) = T (20)l|oe = O(n™"). (2.14)

The operator T, is Lipschitz continuous in a neighborhood B(z, dg) of xo,
that is, there exists a constant do > 0 independent of n such that

I3 (@) = T (20)lloo < Gallz = @olloo, @ € B(o, o). (2.15)

For the rest of paper, we define two types of projections from X to X,,.

eDiscrete orthogonal projection operator: Namely Hyperinterpolation

operator 7&x @ L2[0,1] — X,, is defined by

(rSx)(s) = > (2, @i)npi(s), (2.16)
i=1
where {©1,¢2,...,@n, } is an orthonormal basis for X,,.

e Interpolatory projection operator: For x € C[0,1], let 75z : C[0,1] — X,,
be the interpolatory operator defined by
(’/Tgl’)(s) = ZZL’(Tl)El(s), s € [07 1]7
i=1
(ry2)(m) = 2(r:),  1<i<mn,

(2.17)
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where the collocation points are
{riv i=L2,. n}t={tiy =t +Gti—tiz1), 1<i<n, 1<j<r}

and {¢; : i=1,2,...,n,} is the Lagrange basis of X,,.

For notational convenience from now on we write 7, = 7& or 7¢. In both
cases T, converge to the identity operator pointwise on C0, 1]. From Atkinson
et al. in [11], m, can be extended to L*°[0,1] and

p =sup||m,| < C. (2.18)

In this paper, C' will denotes a generic constant independent of n.

3. The numerical methods

The projection-type method involves the approximation of the function
z(t) = (t,z(t)) using a polynomial z, = m,z of degree < n. The
approximating equation of (|1.1)) is

e - T8 = f, 2 eX (3.1)

The operator 77, which is defined in [20], is a nonlinear operator given by

(TSz)(s) = / K(s, )mz(t)dt, s e [0,1] (3.2)
0

The linear operator that corresponds to the Fréchet derivative of T is
expressed as

(@ @) = [ wtetim G att)i

In [3], a modified projection-type method is introduced to achieve a more

precise approximation solution than x?
M MM — f M e X (3.3)
where
™ = 7, T+ T7 — 7,T5. (3.4)

is a superconvergent operator with a finite rank. We define the solution
obtained through the iterated modified projection-type method as

M =TaM 4 f. (3.5)

The discrete projection-type method for equation (1.1) is seeking an
approximate solution Eg to xg such that

5 -TSTS = f, 75 eX. (3.6)
where Tins is the discrete nonlinear operator given by

(TSz)(s) = (kg Tn2)n, s€[0,1]. (3.7
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To obtain an approximation solution that is more accurate than ES , we

can use the discrete modified projection-type method, which is expressed
as follows

M _TMzM — f M eX (3.8)
and
TM =, Ty + TS - 7rnTS (3.9)
while the discrete iterated modified projection-type solution is defined by
M =1,z 4 f. (3.10)

Implementatlon details. Let 7TG be the Hypermterpolatwn operator defined
by (2 . Then, the associated operator TS defined by is given by

TSx(s) Zkl (2, 01)n s €1[0,1], (3.11)

we denote by k;(s) = (ks, ¢;)r the numerically computed value of (2.10) using

the Gauss legendre-type quadrature. From (3.6)), we observe that Z. has the

following form

The coefficients {a;,i = 1,...,7n,}, are obtained by substituting Z> in (3.6).
Hence we obtain the following system of nonlinear equations of size n.

- Z ijkib <tjka ftjx) + Zralkl(tjk)> 0i(tjx) =0, 1<i<n,.

j=1k=1 =1
(3.12)
From equation (3.8) we can show that the approximate solution x has the
following form

8) + zr: aigoi(s) + 2 b]FJ(S), (313)

where the coefficients {a;,b;, i=1,...,n,} are obtained by substituting
from equation ([3.13)) into equation (3.8) then, we successively have

R, = 3o, ot = D { (0 D was(tn)oi o
i=1

i=1 N j=1k=1
TSTY = (Ks, pi)nl2, @i)n = ZE‘(S) Z ijkz(tjk)%(tjk)a
i=1 =1 k=1

i TREN =Y (T5T oi)nipi = ) { > (2,000 k), %-)n}soi,

i=1 i=1 ~ j=1
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where
(0 =0 (150 + L aspi(t) + 300
1=0 =0

Except for some very specific situations, the family of functions {y;, k;} are
linearly independent, therefore we can identify the coefficients of ¢; and k;

respectively. Then for ¢, j = 1,...,n we obtain the nonlinear system of size 2n,
n T Ny
ai = (22 > wikz(tjn), @idn — 22 (kjs Pin,
j=1k=1 j=1
n T
b = > > wikz(tin)e;(tik)-
j=1k=1

Let 7$ be the interpolatory operator defined by 1) Then, Ti;f can be

written as
s) = iwj(S)Z(Tj), s €10,1], (3.14)

where @;(s) = (ks,Y; ) It is easy to see from equation (3.6) that the
approximate solution Z5 is given by

9+ am;(s)
j=1

Equivalently, we obtain the system of nonlinear equations defined by

a; — Tivf(Ti)‘FZajwj(Ti) =0, 1<i<n,. (3.15)
j=1

For the interpolatory projection given by (2.17), we apply 77,? and (I — 77,(5 )

to equation (3.8)), to obtain
7¢zM _ 2CT, M = 20 f, (3.16)
(I —m)z — (I —m)T5z, = (I —m))f. (3.17)

By writing

T,z = T,(I — @M + 1,75z, (3.18)

and replacing (I — 7¢)ZM by its expression from equation (3.17), T,z
becomes

T,z =T, ((I — 7 TSz + nSzh + (1 —79)f). (3.19)
Now, by replacing T,@M in equation , we obtain
rSTM — 78T, (I — 7S)TSzY + 75z + (I —7S)f) ==Sf,  (3.20)
and then for i = 1,...,n,, we have

zM (1) — Tn((I )Tsx + 7rC$M + - wf)f) (1) = f(m).  (3.21)
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Now using the expressions of the operators 7¢, T, and T;? , we obtain the
following nonlinear system of size n,

[

=D wikk(Ti, i)t <tjka > (ai = fi)tilte) + i@(ty‘kwm, a;)

j=1k=1 i=1
=Y @i, a)lit; )) fis

i=1 [=1
where f; := f(t;) and {a; = ZM(r;),i = 1,2,...,n} are the unknowns. From

(3.17)), the approximate solution is given by
M = 7O7M 1 (I — 7OTSTM 4 (I — 79) f,

n n¥n n
ne N,

:f+§ fzé +§ Wz Twaz - E E Wl Tz Tl7al€
i=1 =1 =1

(3.22)

When using a Hyperinterpolation operator, equations and
result in discrete modified Galerkin-type and iterated modified Galerkin-
type methods. On the other hand, if an interpolatory projection operator
is used instead of m,, equations and produce discrete modified
collocation-type and iterated modified collocation-type methods, respectively.

4. Convergence rates

The main results of this section can be established by making use of the
following lemma.

Lemma 4.1. ( Ahues et al. [1]) Let X be a Banach space and A, A,, be bounded
linear operators on X. If ||[A, — Al = 0, as n — oo and (I — A)~! emists,
then for n large enough (I — A,)~Y ewists and is uniformly bounded on X.

In the lemma that follows, we demonstrate the invertibility of the linear
operators (I — (T.3) (x0)) L.

Lemma 4.2. Suppose that xg € C|0,1] is a unique solution of (1.1)) and that 1
is not an eigenvalue of T'(x). Let k(s,t) be a kernel of the form . Then

for n large enough, the operators (I — (T.S)'(x0))~" exists and are umformly
bounded, i.e., there exists a constant Cy > 0 independent of n such that

(T = (T%) (x0) oo < Ch. (4.1)

Proof. Note that

IT"(z0) — (TF) (z0) oo < IT"(w0) — (T7)"(z0) e + (L) (w0) — (TF)"(z0) | oo
it follows that

max{|| T’ (xo) = (T;7)'(z0)lloc, (T37) (z0) = (T5)' (x0) |} = 0 as 1 — co.
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Note that there exits ng such that for all n € N, n > ng, then from the
integration rule (2.9), we obtain |[(T5) (z)— (T (z0)||ec — 0 as n — oo.

Let g € C[0, 1], we can write

1
(T (a0) = (T3 (aollg(s)] < sup [ ot )5L {20 = maco)Olg(0)] at,
0

0<s<1

< sup / a () (461 () — ot (8))] |9 ()] .

O<s<1
Then
[T (z0) = (T7) (20)]glloe < llks(¥1 = mnth1)lloc [lglloo,
< Ml[Y1 = b ]loollgll oo

Since ¢ € C[0, 1], we have |[¢); — 7,11 [|cc — 0 as n — oo which implies that
(T2 (z0) — T'(x9) pointwise in C[0,1] as n — oco. Then again,

(4.2)

1(T5) (20)glloc < sup / K(s,t)]|

0<s<1

< Mpl|¥19|lso,
< Mp¥1|g|loo,

7 2 Dl >] i,

and by using the Holder inequality,
[((T37) (x0)g)(s) — (T;7)' (z0)9) (0)| =
Oiligl/o n(s,t)a%ﬁnz(t)g(t) — k(o, t)%wnz(t)g(t) dt,

<|l&s = KollLr | Tnt19]lc0s

< pU1||ks — Kol 21 [|9]co-

(4.3)

This shows that {(T5) ()} is collectively compact. As aresult of the theory
of collectively compact operators, the operators (I — (T)¥) (x0)) ! exists and
are uniformly bounded, for some sufficiently large n. ([

The following result can be proven in the same manner as in Theorem
2 in [26].

Theorem 4.3. Suppose that xg € C[0,1] is a unique solution of and T
be the unique solution of (3.6) in the sphere B(zo,dy). Let k(s,t) be a kernel
of the form and f be of Type(B,r,{0,1}) . Assume that for r = 0,1,
Y € COD([0,1] x (—o0,00)) and for r > 2,9 € CT=1([0,1] x (—00,00)). If 1
is not an eigenvalue of the compact linear operator T'(xq). For a sufficiently
large n, we have

lzo = 75 [|oo < C1[|T(0) — T (0)]| .- (4.4)

Under the hypothesis of Lemma@ it becomeb straightforward to prove
the invertibility of the operators (I — (TM) (x4))~!.
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Lemma 4.4. Suppose that xg € C|0,1] is a unique solution of (1.1) and that 1
is not an eigenvalue of T'(xo). Let k(s,t) be a kernel of the form . Then

for n large enough, the operators (I — (TM) ()" exists and are umformly
bounded, i.e., there exists a constant Cy > 0 such that

(I = (TM) () [loo < Ca < 00, (4.5)
Proof. By writing
T’ (20) — (TM) (20) = mn (T" (o) — T (w0)) + (I — mn ) (T" (o) — (T5)' (w0)).

Since the estimate (2.8)) is convergent on C]0,1], 7, is uniformly bounded
and converges to the identity operator pointwise, additionally {7 (z¢)} is
collectively compact and is pointwise convergent on C[0, 1]. Choose n > ng

max{[|T"(zo) — T, (x0)lloc, 17" (x0) — (TT*?)'(Q?O)HM} =0 as n— oo
For each g € C[0,1], it follows from estimate and (£.2)) that

(I = mn)(T" (o) — (ﬁ)’(wo))g(S)‘ < (U [Imalloo) 1T (20) = (T (20))glloo-

Then by applying (4.2)), we obtain ||(T”(zo) — (TM) (20)]|ec —> 0 as n —
co. Therefore ([L.5)) is a consequence of Lemma [4.1] d

From the above results, we remark that the operator (TM ) is Lipschitz
continuous in a neighborhood B(zg, dg) of xg, that is, there exists a constant
03 > 0 independent of n such that

1T (2) = (T3T) (x0)lloo < b3l — wollocs @ € Blxo, bo). (4.6)

The succeeding theorem presents the error of approximation for the discrete
modified projection-type method and its iterated version.

Theorem 4.5. Suppose that xo € C[0,1] is a unique solution of @ and TM
and TM be the approximate solution defined by (@ and (3.10}) respectively.
Let k(s,t) be a kernel of the form and f be of Type(B,r,{0,1}). Assume
that for r = 0,1, ¢ € COD([0,1] x (—o00,00)) and for r > 2,4 €
C™1([0,1] x (—o0,00)). If 1 is not an eigenvalue of the compact linear
operator T' (o). For a sufficiently large n, we have

lzo =3 [loo < Cn™?" + Col|(I = m)(T(0) — T (o)) |- (4.7)
Additionally
170 — 23 lloo < Cllzo — Z3 |2 + Cal| Ty, (w0) (T (o) — T (o))l oo

n

(4.8)
+ 1T (z0) — Tn(zo)lloc-

Proof. The proof of (4.7)) is a simply application of Theorem 2 in [26]. Then

2o — ZY oo < C2l|T(w0) — TM (20| co- (4.9)
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Now, we show that the estimate ||T(z0) — TM (zo)||oo can be expressed in
the following manner

IT(x0) = T} (x0) e = (T (w0) = T(20)) + (I = mn)(T(20) — T (0))lloo
(x

< Cn™% 4 ||(I = m) (T (20) = T3 (20)) oo
(4.10)

Hence, (4.7) follows by adding the above estimate in (4.9). Recognizing that
the second term on right hand side of (4.10) can also be bound by

(7 = m) (T (w0) — T3 (0))|loo < (1 +p){IIT(x0) = T (x0) 1o
+ T3 (x0) = T (x0)l|oo }-
Note that from (1.1)) and ( - we have
zo — M = T(x0) — T, (M),
= Ty(x0) — Tn(@Y') + T(0) — T (o).

To prove (4.12) in infinity norm we use a mean value theorem and (2.15).
Therefore, for some 0 < 6 < 1, we get

1T (20) = Tu(@n")lloo = 175 (w0 + O(wo — T )) (20 — T3 ) 0
= 1T (w0 + 0(z0 — T3,1)) — Ty (w0) + T (20)][z0 — Tl
< M05slz0 — T |2 + 1T, (20) (20 — T )

(4.11)

(4.12)

By applying the Lipschitz’s continuity of T, ,; and taking the norm on both

sides of the above equation. Then (4.12)) can be written as
lzo=23" oo < | Tn(@0) = Tn(@n)llo + I T'(x0) — (o) oo

< MO ||z0 — Zp' |12 + 1T (w0) (0 — TN lloo + IT(20) — T (0) oo
(4.13)

In order to evaluate the second term of the estimate (4.13), we write
(I = (L) (x0))(wo — T ) = T(x0) — T (o) — (T} (wo)(x0 — T)
+ T (wo) — T (7).

Applying T,/L(xo) to both sides and using the mean value theorem, it follows
that

=Ty, (xo)(I — (L)) (w0)) [T (o) — TM (w0)] + T (o) (I = (TM) (o))"
[(TM) (w0 + 0(z0 — 7)) — (TI) (0 )](330 - f?f >,

where 0 < 6 < 1. Now from estimates and one has

1T, (20) (w0 — T2 loo < Col| T, (20) (T (2 ) - T,{”(xo))lloo + CyMO53||mo — 73 |12
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By Combining (4.13]) with the above estimate, we get
0 — B [loo <Cllzo — T2, + Ca T (0) (T(w0) — T3 (20))loc
+ ||T($0) - Tn(xO)Hom
with C' = M6(52 + C293). This completes the proof. O

Since m, is the projection operator defined using the nonuniform
breakpoints , the rate of convergence of the proposed methods is closely
linked to the smoothness of zy. Based on the regularity result of zy obtained
in [I5], we can derive the following lemma.

Lemma 4.6. (Rice [22]) Let zo(t) = (t,x0(t)) be a function of class
Type(a, r,{0,1}). Then

[(I = m)20lle0 = O(n™") (4.14)

T

— for any € € (0,1) in the logarithmic case.

upon choosing ¢ = = or q =

4.1. Discrete Galerkin-type and modified Galerkin-type methods

In this subsection, we demonstrate the outcomes concerning the convergence
rate of the Hyperinterpolation projection.

Theorem 4.7. Let xo be an isolated solution of and T3 be the unique
solution of (3.60) in the sphere B(xg,dp). We assume that the conditions
mn Theorem are satisfied with r > 1. Also assume that xo is of
Type(a,r,{0,1}) for a > 0 or xq is of Type(a—e,r,{0,1}) for any e € (0,1)
in the logarithmic case. Then

O(n~ "¢ 0 1
0 — 750 = (n ) ), O<a<l, (4.15)
O(n~"tlogn), a=1.

Proof. According to Theorem in order to estimate ||zg — T ||o it is
necessary to estimate ||T(xg) — T2 (z0)|loo. Consider

IT(x0) = TF (z0) oo < I T(z0) = T3 (0)lloe + IT57 (20) — TF (20) [ oo- (4.16)

Since 2o € Type(a,r,{0,1}) or 2o € Type(a—e,r,{0,1}) and (u, (I-75)2) =
0, for any w € 8¥(II,,). Then it follows from the Hélder inequality, Lemma

(2.1) and estimates (4.14))

HT(JUO) — T;?(a:o)Hoo = sup
s€[0,1]

/01 (s, )(I — 78)z0(t)dt| |

= sup |</£5 —u, (I —7%)20)],

s€[01] (4.17)
lrs =l x| (T = 75) 20l oo

< Cn™"™%, 0<a<l,

~|Cn"llogn, a=1.

IN
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By applying the Banach-Steinhaus theorem [I], it is shown that

sup Z|k )| = sup Z|k‘

0<5<1 O<5<1

where C is a constant independent of n. Next, using equation (3.11) with
ki(s) = (ks, pq), for the second term in (4.16)), we write

(T3(0) ~ T@o))(6)| = sup (3~ kils)ans i = > Fis) )
< sup 3 k)] |20, 93) — (20 Pidl
0<s<1 4

< C {20, pi) — (20, Pi)nl -
(4.18)

Hence by (2.7)) it follows that

|<207§02> ZO»SDZ |<Z/

— tll

SO'L dt—zwzjzo 13)901( U)
j=1

<COn~?
Then, combining the above estimates with (4.16)- (4.18]), the bound (4.15))
follows. O

Our next task is to demonstrate a theorem that establishes the rate of
convergence of the approximation ac and 7M to the exact solution z.

Theorem 4.8. Assume that the conditions in Theorem are satisfied. Let
xo be an isolated solution of and xo € Type (a,7,{0,1}) for a > 0 or
xo € Type (o —€,7,{0,1}) for any € € (0,1) in the logamthmzc case. Let TM
and M be the approximate solution defined by (@ and respectively.
For all large n, we have

O(n—"« 0 1
2o —Zp|loo = (n 1)’ sash (4.19)
O(n " tlogn), a=1.

In addition, assume that ¢y € Type (a,7,{0,1}) for a > 0 or i1 € Type
(o —€,7,{0,1}) for a =1, then

0) _T_QO‘, 0<a<l,
||wo—wM||oo={ (n7*), 0<a

O(n=""2(logn)?), a=1. (420)

Proof. The estimate (4.19)) is obtained by combining (4.16)-(4.18) with (4.7]).

In order to give an approximation error of the iterated discrete modified
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Galerkin-type method, we use the second term on right hand side of (4.8)
and (-10)

T, (@o)(T (w0) = T (o) (s)| < Cn ™"

Tr;(%)‘ +
(4.21)

T, (w0)(I = ) (T (w0) = T (w0))|

By using (2.3) and estimates (4.16])-(4.18) when selecting ¢ = = for a > 0

T

and ¢ = 1 in the logarithmic case. Then, for all u € 8} (Il,,)

I, (o) (I = 7 )(T (o) = TiF (x0)) oo < (1+ p)Isth1 — ull 1 [T (20) — T (20) [l
- Cl+pmnT2 0<a<l,
“|C1+pn"2(ogn)?, «a=1.
(4.22)

Finally, combining estimates (2.12), (4.19), (4.21) and (4.22) with (4.8)), we
deduce (4.20) in form

20 — Moo = O(R ™2 72*) + O(n"72%) + O(n™?"), (4.23)

if 0 < o < 1. This completes the proof. O

Corollary 4.9. Let 87'(I1,,) be the space of piecewise constant functions. We
let o = %, that is ¢ = 2 and q > 1 in the logarithmic case, then

O —-1.5 _ 1
HwO _Eﬁnoo — (7172 )7 «a 27
O(n*logn), a=1

In addition, the above error bound and ||z — TM||eo have almost the same
order of convergence, while for the discrete iterated modified Galerkin-type
method can be bounded by

-2 =1/2
oo = &l = 000
O(n=3(logn)?), a=1.

4.2. Discrete collocation-type and modified collocation-type methods

In this subsection, we will exhibit the results that related to the convergence
rate of the interpolatory projection.

Theorem 4.10. Let o be an isolated solution of and fi be the unique
solution of (5.6]) in the sphere B(xg,dy). We assume that the conditions in
Theorem are satisfied with r > 1 and that xo is of Type(a,r,{0,1}).
Then

20 — 75 loo = O(n ™). (4.24)
Proof. From estimate (4.4) we have
lz0 = T3 lloe < CLlIT (x0) = Ty (20)lloo + C1IT; (x0) = T (w0)lloo-  (4.25)
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Since zp belongs to the class of Type(a,r, {0,1}) and {t;,i = 0,...,n} are
selected according to ). Applying (4 , we obtain

1T (20) — T (20)||oe < sup / k(s )] [(1 — 72 (t )|dt,
s€[0,1]
(4.26)
< M|(I = 77)z0 o0
<CMn™".
For each s € [0,1] we let w;(s) = (ks, £;). By using (3.14)), we write
’(Tf(ﬂﬂo) — T$(x0))(s)| = sup Z(wi(S) —wi(s))zo(t:)
0<s<1 |4
< su wi(s) —wi(s)| |z
70<£IZ' 3 20(t)]
Therefore, by (2.7) we can conclude
1T (20) = T (20) o < nrllwi(s) — @i(s)lloo 12000 (4.27)
< Crn 2000 '
U

The following theorem pertains to the overall superconvergence of Z5
to g, and it relies heavily on the inequality (4.24)).

Theorem 4.11. Let xo be an isolated solution of and T be the unique
solution of (3.1)) in the sphere B(xg,dp). We assume that the conditions in
Theorem re satisfied with r > 1 and that M; = fo =1 ((G—9)ds=0
where (5,5 = ...,r are the points used in . Also assume that xg is of
Type(B,r+1,{0,1}) fora < 8 <r+1 orzg is of Type(8—e€,7+1,{0,1})
for any € € (0, 8) in the logarithmic case. Then

O(n~—""2), 0 1
o — 750 = (n 1>’ <e<d (4.28)
O(n~""tlogn), a=1.

Proof. Continuing the argument from the previous theorem, zy € Type(S3,r+
1,{0,1}) or zo € Type(S—e,7+1,{0,1}). The result of this theorem is always
depends on (4.25). However, from Theorem 3 of Schneider [25], we have

Cn™"™% 0O0<a<l,

4.29
Cn~""llogn, a=1 (4.29)

7o) ~ TS| < {

such that ¢ = %‘El and q = gigi in the logarithmic case used as the

graded exponent in (2.1)). Hence, the estimate (4.28)) is obtained by combining

(@25), [@.27) and (@.29). O
Y

The next theorem establishes the superconvergence of the discrete
modified solutions M and ZM to the exact solution.
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Theorem 4.12. Assume that the conditions in Theorem are satisfied. Let
xo be an isolated solution of and xg € Type (a,7,{0,1}) for a > 0 or
xo € Type (a — €,7,{0,1}) for any € € (0,1) in the logarithmic case. Let TN
and M be the approzimate solution defined by (@ and (3.10}) respectively.
For all large n, we have

On™" %), 0<ac<l,

2o — 3 oo = ( _r_l) (4.30)
O(n logn), a=1.

In addition, assume that ¢ € Type (a,1,{0,1}) for a > 0 or 11 € Type

(o —€,7,{0,1}) for a =1, then

—r—2a 1
2o — ZM|0o = O(nﬂn ) ) O<a<l, (4.31)
O(n (logn)?), a=1.

Proof. First, by combining (4.27) and (4.29)) with (4.7 . ) the estimate is

proved since ¢ = min{Z, "‘;ﬁ; } and g = mln{ T 31;;:} in the logamthmic
case used as the graded exponent in (2.1]).
To obtain the desired result of the discrete iterated version, we apply (4.10)

to the following approximation

1T, (20)(T(w0) — TM (20) oo < CMn™2" + || T (wo) (I — 7§ ) (T (wo) — T (w0)) | sc-

(4.32)

The last term of (4.32)) can be formulated by using Theorem 4-(i) of Graham’s
[12], if z € Wl(O <€ < 2r) and kst € W{*(0 < m < r), then

[T (o) (I — w5 )(T(z0) — T (20))](5) = (k1 — u, (I — 7 )(T(wo) — TF(20)))n
+{u, (I = 1) (T(x0) = T (20)) = v))n + {u, (I = 7 )0)n,

(4.33)
for some u € 8;,}(I1,) and some v € 8, ' (I1,,), with0 < m < rand 0 < £ < 2r.

According to the proof as described in ([12], p. 362), we would like to point
out that the optimal order corresponds to the first term of (4.33)). Then, from

estimates (2.3), (4.11)), (4.27) and (4.29) one gets

— Cl+pm"22 O0<a<l
s1 — ul| o (I — 79N (T (xg) — TS o < ’ ’
It =l | (2 = 7)(T o) = T (o)) {Cu+pmr2@gma oot

(4.34)

Consequently, the estimate (4.31)) follows immediately by combining (2.12)),
(&30, (£.32)-(%34) with (L8). O

Corollary 4.13. Let Sl_l(Hn) be the space of piecewise constant functions. We
let o = and let (1 = % i.e., interpolation at the mid-point, then My = 0. If
q= %Ta“ and q > %&H in the logarithmic case, then

-15) a=1/2
oo =l = 4O, 2 @I
O(n~*logn), a=1,
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that is, ¢ = 2.5 and g > 1.5 for a = 1.

If My # 0, ¢ = Z and ¢ > r in the logarithmic case, then ||zo — Ty [0 =
O(n=Y) for any 0 < a <1, that is q =2 and ¢ > 1 for a = 1.

If ¢ = min{Z, 2t} and ¢ > min{r, 2} in the logarithmic case, then

20 =3 [loo = {
that is ¢ =2 and q > 1 for a = 1. In addition,

-2 =1/2
oo = e = O €12
O(n=3(logn)?), a=1.

o(n='?), a=1/2,
O(n=%logn), a=1,

5. Numerical results

This section includes two numerical examples that demonstrate the
theoretical estimates derived in the preceding sections. Let X, be the
space of piecewise constant functions (r = 1) were used as approximating
subspaces. In this framework, a Newton—Raphson method was used to
solve different nonlinear systems. It should be noted that all the necessary
integrals were computed with a highly accurate Gauss-type quadrature
rule [I8]. Furthermore, the numerical algorithms were implemented using
WOLFRAM MATHEMATICA.

Example 1. Consider the following Hammerstien equation

wle) = / ﬁ 50

where [ is selected so that the exact solution is x(s) = /s, which is non
smooth. In the following, we verify and confirm the bounds described in
Corollary 1 and 2, since the solution is of Type(%, r,{0,1}). The convergence
rate is affected by the value of parameter ¢ which is used to establish a graded
mesh.

From Corollary 1, if ¢ = 2, then the expected orders of convergence
for the discrete Galerkin-type and modified Galerkin-type solutions are 1.5,
whereas for the discrete iterated modified Galerkin-type solution it is 2.

From Corollary 2, if ¢ = 2.5, then the expected order of convergence
for the discrete collocation-type is 1.5. If ¢ = 2, then the expected order
of convergence for the discrete collocation-type is 1, and 1.5 for the
discrete modified collocation-type, whereas for the discrete iterated modified
collocation-type solution it is 2.

]dt:f(s), 0<s<1, (5.1)

Example 2. We solve the following integral equation

2(s) —/0 log(|s — #))a2(t)dt = f(s), 0<s<1, (5.2)
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where f is selected so that the exact solution is z(s) = slog(s), which is of
Type(1,k,{0,1}).

From Corollary 1, if ¢ > 1, then the expected orders of convergence
for the discrete Galerkin-type and modified Galerkin-type solutions are 2,
whereas for the iterated modified Galerkin-type solution it is 3.

According to Corollary 2, if ¢ > 1.5, then the expected order of
convergence for the discrete collocation-type is 2. If ¢ > 1, then the expected
order of convergence for the discrete collocation-type is 1, and 2 for the
discrete modified collocation-type, whereas for the discrete iterated modified
collocation-type solution it is 3. The results of these estimates are confirmed
by the numerical computations.

From the integral equations and , we compute the maximum
errors and orders of convergence of the approximation solution obtained by
the discrete modified projection-type method and its iterated version and we
compare them with those obtained by the projection-type method in Table
1-4, respectively.

In Tables 1 and 2, we observe that a satisfactory precision is obtained
even when the polynomials are of low degree. As expected the performance
of the discrete projection-type and the discrete modified projection-type
methods are similar. Note that, this remark remains valid in the case of
discrete collocation-type method except when we choose the interpolation
at the mid-points. By observing the results, we can note that in order to
achieve an error of order 10™4, the discrete modified collocation-type method
requires a system of size 64 to be solved. In contrast, to achieve a similar
order of accuracy in the discrete modified Galerkin-type method, a system
of size 128 needs to be solved. However, when computing |zo — 24|/~ by
a discrete modified projection-type method, which is obtained by solving a
system of size 16 in the modified collocation-type and 32 in the modified
Galerkin-type method, we get an error of the order of 1074,

As a result, the discrete projection-type and the modified projection-
type methods have almost the same order of convergence, the iterated discrete
modified projection-type method converges less than both of them in terms
of the error and the order of convergence. It should be mentioned that
the discrete modified collocation-type method has benefits theoretically and
computationally over the discrete modified Galerkin-type method, which
require solving an extremely large nonlinear system that is computationally
very expensive. There are similar observations to be made in the Tables 3
and 4.

To ensure that all relevant information is included, we present
in Figures [I] and [2| the errors in absolute value obtained by different
methods when employing example (5.1]). These methods include the discrete
projection-type (shown in yellow), the discrete modified projection-type
(shown in blue), and the discrete iterated modified method (shown in green)
with different values of n.
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n lzo — EEHOO order [lzo — E%Hm order |zo — 5?%”00 order
2 1.16 x 1071 1.14 x 1071 4.72 x 1072

4 418 x 1072 1.46 387x 1072 155 9.77 x 1072 2.27
8 1.56 x 1072 1.42 1.33x 1072 1.53 212x 1072 2.20
16 530 x 1073 1.56 415x 1072  1.68 485 x107*  2.12
32 1.66 x 1073 1.66 1.46 x 1072 1.50 1.14 x 107 2.07
64 5.60 x 107%  1.57 513 x107%  1.50 2.77x107°%  2.05

TABLE 1. Discrete Galerkin-type and modified Galerkin-
type methods for algebraic singularity.

n lzo —EEHOO order ||zo —@SLHOO order ||xo—ff\{1||oo order ||J:o—55f‘f||oo order
2 1.49 x 107¢ 1.06 x 107¢ 1.19 x 107¢ 5.55 x 1072
4 537 x 1072 1.47 6.09x 1072 0.80 4.55x 1072 1.39 1.11x107% 2.31
8 1.98 x 1072 1.43 265x 1072 1.20 1.15x 1072 1.54 2.39x 1072 221
16  6.66x 1072 157 1.19x 1072 1.15 545x 1072 151 590x107% 2.12
32 203x107% 1.71 548 x107% 1.12 191 x10~2 1.51 1.51x107™* 1.96
64 6.28x107% 1.69 252x 1072 1.12 6.82x 107* 1.48 348 x107° 2.12
TABLE 2. Discrete collocation-type and  modified
collocation-type methods for algebraic singularity.
n llzo — 5|l order lzo — Z2||ee order lzo — ZM||ec  order
2 6.97 x 1072 5.31 x 1072 3.65 x 1072
4 3.18 x 1072 1.13 1.65 x 1072 1.68 797 x 1072 2.19
8 1.10 x 1072 1.52 3.04x 1072 243 9.82 x 107*  3.02
16 3.08 x107% 1.83 5.34x 107* 251 1.07 x 107*  3.19
32 8.01x107* 1.94 1.18 x 107*  2.17 1.20 x 107°  3.15
64 202x10"% 1.98 271 x 107°  2.12 1.40 x 107%  3.09
TABLE 3. Discrete Galerkin-type and modified Galerkin-
type methods for logarithmic singularity.
n llzo — T3 |leo  order ||zo — T5||eo  order ||wo—ZN ||oo  order |lzo—ZA |l order
2 5.88 x 1072 4.57 x 1072 4.23 x 1072 7.43 x 1073
4 354x 1072 0.73 5.35x1072 0.22 1.17x1072 1.84 1.16 x 1073 2.67
8 739 x 1072 225 264x1072 1.01 2.81x107% 2.06 2.63x107* 2.13
16 156x 1073 224 1.17x 1072 1.17 558 x107* 2.33 4.30x107° 2.61
32 3.72x107% 207 574x107% 1.02 1.53x107* 1.83 1.44x107° 1.57
64 8.99x107° 205 2.85x1072 1.00 3.76 x 107° 2.03 1.68 x 10~¢ 3.10

TABLE 4. Discrete

collocation-type

collocation-type methods for logarithmic singularity.

and modified
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0117}
0.108 | Galerkin—type method
0.099 1 B Modified Galerkin-type method

0%2? [ Il lterated modified Galerkin—-type method

0.072
0.063 -
0.054 -
0.045
0.036
0.027 -
0.018
0.009

10 20 30 40 50 60

F1GURE 1. Discrete Galerkin-type and modified Galerkin-

type methods for algebraic singularity.

0.153| o
8'132: Collocation-type method when M;=0
0.126 B Modified collocation-type method
8'182 [ [l Iterated modified collocation-type method
0.099 -
0.09+
0.081
0.072+
0.063
0.054
0.045
0.036
0.027
0.018
0.009

10 20 30 40 50 60

FiIGURE 2. Discrete collocation-type and modified
collocation-type methods for algebraic singularity.

6. Conclusion

The primary objective of this research paper is to examine a modified
projection-type method in discrete version for solving Hammerstein integral
equations. The integral operator in question has a singularity that is
either algebraic or logarithmic in nature. The paper presents theoretical
calculations for both the error bound and the convergence rate of the method.
Furthermore, numerical examples are provided to demonstrate the practical
effectiveness of the proposed approach and to validate the theoretical error
estimates. The results in this paper have the potential to be extended to
derivative-dependent Hammerstein integral equations, although that topic
would require another research paper to address.
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