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Abstract

The limitation of the small-scale expression samples generally causes the
performance degradation for facial expression recognition-based meth-
ods. Also, the correlation between different expression is always ignored
when performing feature extraction process. Given above, we propose a
novel approach that develops multi-class differentiation feature represen-
tation guided joint dictionary learning for FER. The proposed approach
mainly includes two steps: firstly, we construct multi-class differentia-
tion feature dictionaries corresponding to different expressions of training
samples, aiming to enlarge inter-expression distance to mitigate the prob-
lem of nonlinear distribution in training samples. Secondly, we joint learn
the multiple feature dictionaries by optimizing the resolutions of each fea-
ture dictionary, aiming to establish the strong relationship and enhance
the representation ability among multiple feature dictionaries. To sum
up, the proposed approach has more discriminative ability from the rep-
resentation perspective. Comprehensive experiments carried out using
three public datasets, including JAFFE, CK+, and KDEF datasets,
demonstrate that the proposed approach has strong performance
for small-scale samples compared to several state-of-the-art methods.

Keywords: facial expression recognition, multi-class differentiation feature
representation, joint dictionary learning



Springer Nature 2021 BTEX template

2 Multi-class differentiation feature representation guided joint dictionary learning for facial expression recognition

1 Introduction

Facial expression recognition (FER) has been developed as an important
research topic owing to its wide application [1-4]. Despite deep learning mod-
els achieves comparative performance in FER, they mostly leverage vast
annotated samples during the training stage. Thus, it is a challenging and
meaningful task to learn discriminative expression features from limited
datasets.

To resolve the problem of expression recognition with scanty samples, most
existing FER methods can be roughly partitioned into two major aspects:
feature descriptor-based methods [5-16] and dictionary learning-based methods
[22-33]. The former mainly focuses on extracting discriminative features to
perform FER, including handcrafted descriptors and deep descriptors. The
latter aims to learn the compacted atom representations for FER, including
single dictionary learning and multi-dictionary learning.

Many handcrafted descriptors for FER have been successfully proposed to
extract low-level expression features [5-11]. For example, Chen et al. [5] devel-
oped a novel method which utilized the expression samples based on 11-norm
sparse representation to reduce the problem of cross-domain mismatch. Liu et
al. [6] proposed a main directional mean optical-flow (MDMO) feature that
can learn the discriminative dictionary from micro-expression samples. Fur-
thermore, Yan et al. [7] presented an effective image filter learning method
to acquire expressions representation. Besides the handcrafted features-based
methods above, deep descriptors-based methods have made a breakthrough
in the field of FER [12-18]. For instance, Yu et al. [12] proposed a multi-
task method that used the channel module and spatial module to obtain
co-attention scores on FER tasks. Zhu et al. [13] constructed convolutional rela-
tion network for FER, which adopted a feature similarity comparison among
the enough expression images to identify new categories with fewer images.
Also, Xue et al. [15] employed the vision transformers model to obtain the
feature representation between different facial regions adaptively and achieved
satisfying performance. However, considering the deep learning models have a
complex structure that heavily reply on large number of training samples and
consequently consumes a large amount of computational cost, some researchers
[19-21] turned to deep subspace learning based methods that only used two
filter layers to perform the feature representation procedure. For example, Sun
et al. [20] proposed an extended dictionary consisting of feature and varia-
tion dictionaries to resolve the problem caused by limited training samples.
Also, they [21] proposed an effective classification method based on PCANet
and LDANet to learn abstract expression features. Although deep descriptors-
based methods have shown many advantages in extracting abstract features,
the performance on the small-scale datasets will degrade because of the deep
model overfitting.

Dictionary learning (DL) methods [22-28] also have shown the good per-
formance for FER tasks as well. From the perspective of single dictionary
learning, Tanfous et al. [23] employed sparse coding and dictionary learning to
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obtain the 2D facial landmark sequences for expression recognition. Yan et al.
[25] proposed an unsupervised domain adaptive dictionary method to connect
source domain and target domain, which the coding of the two domains were
embedded on each other to achieve comparative performance. Zhang et al. [26]
presented the Fisher discrimination dictionary learning (FDDL) that added
the Fisher discrimination criteria to make the dictionary atoms correspond to
class labels. Given the fact that face similarities may confuse the expression
recognition process, some multi-dictionary learning methods have been pre-
sented to address this problem [29-33]. For example, Moeini et al. [28] extracted
comprehensive features by respectively learning identity and expression dic-
tionaries to gain optimal expression classification for FER. Besides, Luo et al.
[29] presented multi-resolution dictionary learning method that supplied the
dictionary for each resolution to alleviate the problem of facial images resolu-
tion diversity. Zhang et al. [33] presented a cost-sensitively joint feature and
dictionary learning approach, which considered the separate misclassification
cost objectives during the feature and dictionary learning stages to achieve a
minimum overall recognition loss.

The literatures above have shown the promising performance, while the
nonlinear distribution in expression samples and the correlation between dif-
ferent expressions are still crucial for FER. Hence, in this paper, we proposed a
multi-class differentiation feature representation guided joint dictionary learn-
ing approach which focused on extracting the discriminative features from the
limited expression images. More specifically, we first constructed the multi-
class differentiation feature dictionaries to enlarge inter-expression distance,
aiming to increase the linear separability among expression samples. Further-
more, our approach jointly learned the multiple feature dictionaries by adding
a relatively constraint to establish the strong relationship and enhance the
representation ability among multiple feature dictionaries. To sum up, we pre-
sented a novel feature learning approach with high discriminability based on
the multi-class differentiation representation and joint dictionaries learning.
The major contributions include:

e We provided a universal multi-class feature representation approach,
which is benefit for increasing inter-expression distance to make the class-wise
information discriminative.

e We further jointly learned the multiple feature dictionaries to form a more
robust and comprehensive dictionary, which can be extended to application of
other multi-class recognition tasks.

e We conducted extensive experiments in different scenarios, such as
different datasets, to demonstrate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. Section 2 describes the
proposed approach in detail. We compare our approach with several state-of-
the-art methods on three public expression datasets in Section 3. Section 4
shows the visualization study and analyzes the proposed approach. Finally, we
draw the conclusion in Section 5.
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2 The proposed approach

In this section, the proposed approach is illustrated in Fig. 1. As is shown
in the figure, the proposed approach includes two main steps. Firstly, we con-
struct multi-class differential feature dictionary. Secondly, we jointly learn the
multiple feature dictionaries by optimizing the resolutions of each feature dic-
tionary. The detail of multi-class differentiation feature representation model
is introduced in Section 2.1, and the process of joint feature dictionary learning
as well as classification criterion are given in Section 2.2.
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Fig. 1 An illustration of the proposed approach

2.1 Multi-class differentiation feature representation
model

In this subsection, we present the proposed multi-class differentiation fea-
ture representation model, aiming to highlight class-related features cor-
responding to each expression while suppressing class-unrelated expression
features. Now we will depict the process of this model in detail. Let
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X=[X1,...,X;,...,Xc] € R™N (i =1,2,...,0) with C expression classes
denote the original dictionary, where X;=[;1,...,%ij,...,Tin,] € R™™ is
the training subset of the i*" class and n; is the number of samples from class
1. Also, m represents the dimensionality of training sample and N is the total
number of training samples. For a random training sample x; ;, we first gen-

erate the intra-class sample f; ; obtained by the sparsely linear reconstruction
of Xz

fij=Xi-o (1)
Where a=[d1,...... ,5ni]T € R™*l is the representation coefficient that
corresponds to the i* class and can be obtained by employing the sparse rep-
resentation based [;-norm minimization given that it shows promising sparsity
for reconstruction [34]:

(&) = argmin ||y, s.t.]|z; — fijlla <€ (2)
«

Then we obtain the proposed differentiation feature d; ; by:
dij =xij— fij (3)

For a random query sample y, we can obtain the corresponding differentia-
tion feature vectors [y1,...,Yi,. .., yc] in the similar way with d; ; . Then, all
differentiation features can form multi-class differentiation feature dictionaries
[D1,...,D;,...,D¢], which can be written as:

Dy dyq - diy oo din
Di|=|dy- - dy- dn (4)
| D¢ | | doy -+ doyj -+ dox

2.2 Joint feature dictionary learning

To establish the strong relationship and enhance the representation ability
among multi-class differentiation feature dictionaries [D1,...,D;, ..., D], we
propose to jointly learn the multiple feature dictionaries by optimizing the
resolutions of each feature dictionary. We assume that the multi-class difference
feature dictionaries above can be incorporated into a framework, namely the
joint feature dictionary learning model that can be defined as:

C
(D1, Dis... Do, A) = argmin 37X - DA+ 45 - (5)

Tyeeenns Do, AT

Where A= [p1,. .., fi,- .. ,uN]T is the coding coefficient matrix and ~ is the
regularization parameter. It’s worth mentioning that 7||A||§ stabilizes the
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least square solution and prevents the model from over-fitting of the train-
ing data. Also, 'y||A||§ generates a certain degree of sparsity to the solution

<ﬁ1, ....,D;,....Dc, A>, aiming to reduce the number of feature vectors and

the complexity of the model.

Obviously, Eq. (5) is a typical norm minimization problem and the initial-
ization of the dictionary is vital for learning the ideal dictionary. In this paper,
we initialize [D1,...,D;, ..., D¢] and obtain the coding coefficient matrix A
for the first time:

C

C
A= (Z D;"D; +~4I)7 ! Z D;TXx; (6)
=1 i=1

Where [ is an identity matrix. Assuming the coefficient matrix A and sub-
dictionaries D1,...,D;_1,D;11,...,Dc were ﬁ}(&ld, we subsequently update
D; to obtain the optimized feature dictionary D; corresponding to D; by:

D; = argmin|| X; — D; A|2=X;A% (7)

Dj 7(175.7)
Where At=AT(AAT)-L. Then the optimal feature
dictionaries ﬁl, R ﬁi, e Db] can be obtained. The summation of

[y1,---,Yi,---,Yyc] is defining by:

c
s = Zyz (8)

In the classification step, we code s on the dictionaries 151, . ,ﬁi, e D¢
respectively. Assuming 6,,, is the coefficient vector corresponding to D,,, and
the query sample can be assigned to the label of the minimized reconstruction
error of m*" class:

K(m):argmin{\\s—ﬁm9m||§},(m:1,2,...,0) (9)

3 Experiments and Results

Three public datasets containing basic seven facial expressions were used
in experiments, including the Japanese Female Facial Expression (JAFFE)
[35], the Extended Cohn-Kanade (CK+) [36], and the Karolinska Directed
Emotional Faces (KDEF) [37] datasets. To be convenient, the expressions
anger, disgust, fear, happiness, sadness, surprise, and neutral were abbre-
viated to “An”, “Di”, “Fe”, “Ha”, “Sa”, “Su”, and “Ne”, respectively. We
adopted Leave-One-Subject-Out (LOSO) cross-validation in the experiments.
The facial images were first cropped to a size of 64*64 and subsequently down-
sampled to 48*48 pixels. We empirically set the parameter v to 0.0001 in the
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proposed joint feature dictionary learning. In this paper, we compared the pro-
posed approach with some handcrafted-based and the deep-based methods.
Also, we conducted the experiment with different block occlusion and random
corruption to verify the robustness of our approach.

3.1 Comparison with state-of-the-art methods

We compared the performance of our approach with some state-of-the-
art handcrafted methods (e.g. LTeP+SVM [10], LPQ+SLPM+NN [11], and
HOG+ SRC [44] et al.) and some deep methods (e.g. E-PCANet [20], K-
PCANet [21], and DCNN [38] et al.). Tables 1-3 showed the average
accuracies obtained by different methods on the three datasets. From these
tables, we see that our approach achieved the best performance. Our approach
achieved the highest average accuracy of 80.28% and 96.31% on the JAFFE
and CK+ datasets, respectively. Also, the proposed approach outperforms all
other methods with a significant advantage on the KDEF dataset. To wrap up,
our approach is superior to some handcrafted methods and even better than
some of the deep learning methods.

Table 1 State-of-the-art FER accuracies on the JAFFE dataset

Methods Type Avg accuracy (%)
LTeP+SVM [10] Handcrafted 67.14
LPQ+SLPM+NN [11]  Handcrafted 67.61
E-PCANet [20] Deep 69.40
K-PCANet [21] Deep 68.80
Feature fusion [39] Handcrafted 70.00
Kas et al. [40] Handcrafted 77.62
Proposed Handcrafted 80.28

3.2 Comparison with different DL methods

We also compare our approach with some different DL methods including
SRC [47], SVGDL [48], and DPL [49]. The average accuracies under different
number of atoms are shown in Fig. 2, respectively. From Fig. 2, we observe

Table 2 State-of-the-art FER accuracies on the CK+ dataset

Methods Type Avg accuracy (%)
CNN-+AFM [41] Deep 89.84
WPLBP [42] Handcrafted 91.72
LPQ+SLPM+NN [11] Handcrafted 94.61
E-PCANet [20] Deep 85.66
DCNN [38] Deep 94.44
MSCNN ([43] Deep 95.54

Proposed Handcrafted 96.13
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Table 3 State-of-the-art FER accuracies on the KDEF dataset

Methods Type Avg accuracy (%)
HOG+SRC [44] Handcrafted 78.00

DFD [45] Handcrafted 82.24
MobileNet [46] Deep 73.74
E-PCANet [20] Deep 80.61
K-PCANet [21] Deep 80.20

Proposed Handcrafted 84.69

Fig. 2 The average recognition rates with different numbers of atoms on the (a) JAFFE,
(b) CK+, and (c) KDEF datasets, respectively

that our approach produced the highest average recognition rate on the three
datasets, and the overall performance of our approach can be improved by the
increasing numbers of dictionary atoms. This is mainly because our approach
jointly learns the multiple feature dictionaries, whereas comparing DL methods
are only adopting single dictionary learning that ignored the representation
diversities among multi-dictionaries. Also, our proposed approach performs a
global optimization of the dictionary, which can obtain the overall optimal
solutions. Besides, the number of dictionaries obtained by our approach is seven
times more than the original dictionary, which not only achieves the diversity
of the feature dictionary but also provides the diversity of dictionary atoms
during the dictionary update process. Based on the results, we can conclude
that the performance of our approach is superior to the other DL methods.

3.3 Confusion matrix graphs

The confusion matrices for our approach on the three datasets are shown in
Fig. 3. From the diagonal values in Fig. 3, we observe that our approach
provides promising performance in most classes. For example, Fig. 3a showed
that our approach obtained an average accuracy of 80.28% on the JAFFE
dataset. The proposed approach also achieves better accuracies in the other
two datasets (see Fig. 3b and 3c). Despite the small number of incorrect
classifications caused by the similar movements of facial muscles (e.g., anger,
fear, and neutral expressions), the diagonal results across each matrix in Fig.
3 indicate that most expressions on the three datasets are classified correctly,
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Fig. 3 The confusion matrix on the (a) JAFFE, (b) CK+, and (c¢) KDEF datasets, respec-
tively

thus verifying that our approach is indeed reliable and performs better in terms
of classification.

3.4 Effects of block occlusion and random corruption

To verify the robustness of our approach, block occlusion and random cor-
ruption were added to all testing samples, with the ratios ranging from 0 to
0.6. Fig. 4 showed the sample images with different block occlusion and ran-
dom corruption variances. We can observe that the images are increasingly
obscured with the increase of the ratio and we can hardly distinguish the exact
expression information when the samples were damaged severely (e.g., ratio >
0.4).

Due to block occlusion and random corruption were randomly distributed
in the facial images, we did experiments on the three datasets for ten times
to obtain the final results (average accuracy + standard deviation), as respec-
tively shown in Fig. 5 and Fig. 6. From these figures, we can intuitively see
that the average accuracies decrease with the increasing of the block occlu-
sion ratio and random corruption ratio. The reason here is that the ratio
increases but the sparsity gets worse. Even in this case, our approach still has
a significant advantage than the baseline method (that only use the original
dictionary). This is because the proposed multi-class differentiation features
better filters the occluded parts that benefit for the subsequent joint dictio-
nary learning. Overall, our proposed approach has stronger robustness than
the baseline method.

Fig. 4 Sample images with (a) block occlusion variances, and (b) random corruption
variances ranging from (left to right) 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively
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4 Visualization analysis of proposed approach

To better analyze our proposed approach, we first conduct the visualization
study from the perspective of the feature representation. The leftmost column
(bounded by green rectangles) of Fig. 7 represents a query image from the
JAFFE, CK+ and KDEF datasets, respectively. The right column (bounded
by blue rectangles) stands for images obtained by using seven classes to recon-
struct the query sample. From the right column and the images bounded by red
rectangles are from the true class in Fig. 7, we can observe that our approach
can make the true class sensitive. Consequently, we can conclude that only
the class-related dictionaries can be sensitive, which stand out the significant
advantage of our approach during the feature representation step.

We also use Fig. 8 to show the visualization of the sample distribution from
two representation spaces (original space and optimal feature space, respec-
tively). From the upper row of Fig. 8, we can observe that samples were
non-linear and cluttered distribution because seven facial expressions had not
been separated in the original space. From the lower row of Fig. 8, the atoms
from the optimal feature space gradually form different separated clusters.
This is reasonable that dictionary atoms from optimal feature dictionary can
correspond to true class labels. Thus, our method can learn the dictionary
with strong representation ability and effectively discriminate facial expression
features.
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Fig. 7 A query image (bounded by green rectangles) from (a) JAFFE, (b) CK+, and (c)
KDEF datasets, respectively. Images obtained by using seven classes to reconstruct the query
samples in the blue rectangles. Images bounded by red rectangles are from the true class
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Fig. 8 A visualization of the sample distribution under two representations on the (a)
JAFFE, (b) CK+, and (c) KDEF datasets, respectively. Top to bottom in each subgraph:
samples from the original space and atoms from the optimal feature space

5 Conclusion and future works

In this paper, we proposed a novel feature learning approach that presented
the multi-class differentiation representation guided joint feature dictionaries
learning for FER. Firstly, we obtained the multi-class differentiation feature
dictionaries aiming to increase the linear separability among expression sam-
ples. Secondly, we further jointly learned the multiple feature dictionaries by
optimizing the resolutions of each feature dictionary, aiming to establish the
strong relationship and enhance the representation ability among multiple fea-
ture dictionaries. Comprehensive experiment conducted on the JAFFE, CK+,
and KDEF datasets showed that our approach can be used for small-scale
datasets and have the promising performance. Although our approach obtained
higher accuracies, it was only applicable to static facial images in a laboratory
environment and in fact the real facial expressions were complex and real-time
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changing. In the future, we plan to research a more universal model to ana-
lyze expression recognition in realistic scenarios as well as in dynamic video
sequences.
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