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1 Introduction

Markov decision process (MDP) offers a general
framework for modelling sequential decision making
where outcomes are randomll. It stemmed from opera-
tions research and has been widely used in a broad range
of areas, including manufacturing, economics, ecology,
biology, automatic control and robotics. Since Kaelbling
et al.ll introduced MDPs, in particular partially observ-
able Markov decision processes (POMDPs) into artificial
intelligence (AI), they have been successfully applied in
planning, scheduling, machine learning, to name just a
few.

1.1 Quantum Markov decision processes

Recently, MDPs have been generalised into the
quantum world in two slightly different ways:

1) The notion of quantum observable Markov de-
cision process (QOMDP) was defined by Barry et al.lBl as
a quantum generalisation of Kaelbling et al.'s POMDPI2,
The following two problems were studied there:

i) Policy existence problem for the infinite horizon:
Given a QOMDP, a starting state, and a value V', wheth-
er there is a policy that achieves reward at least V7

ii) Goal-state reachability problem for the finite-hori-
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zon: Given a QOMDP, a starting state s, and a goal state
s’, whether there is a policy that can reach s’ from s with
probability 17

The most interesting result in [3] is a computability
separation between POMDPs and QOMDPs indicating
that the goal-state reachability is decidable for POMDPs
but undecidable for QOMDPs.

2) Another quantum generalisation of MDPs, called
gqMDP, was defined in [4]. A major difference between
QOMDPs and gMDPs is that a policy in a QOMDP
maps directly a (pure or mixed) quantum state to an ac-
tion, whereas a policy in a qMDP maps the outcome of
measurement on a quantum state to an action. It was
proved that the goal-reachability problem for infinite-ho-
rizon qMDPs with probability 1 or p < 1 is EXP-hard or
undecidable, respectively. The authors have employed
quantum Markov chains (QMCs) as the semantic model
in their research on static analysis of quantum programsl5: 6.
In particular, the termination problem of quantum pro-
grams can be reduced to reachability of QMCs. This ob-
servation lead the authors further to developing model
checking techniques for quantum systems[” 9. Essentially,
the main results in [4] are extensions of the correspond-
ing results of [9] to qMDPs.

1.2 Quantum machine learning

In the last five to ten years, a new research line has
been rapidly emerging at the intersection of quantum
physics and Al & machine learning!0: 11l. The interaction
between these two areas is bidirectional:

1) Quantum physics helps to solve AI & machine
learning problems via quantum computation.
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2) AI & machine learning methodologies and tech-
niques are employed to help solving problems in quantum
physics.

For more detailed discussions about this area, the
reader is referred to several excellent surveysl2-14],

Reinforcement learning is a basic machine learning
paradigm, in which an agent learns behaviour through
trial-and-error interactions with the dynamic environ-
ment(!5 16, Several quantum reinforcement learning mod-
els have already been proposed either for enabling to ap-
ply reinforcement learning in the quantum world or for
enhancing reinforcement learning by exploiting quantum
advantage (see for example [17-20]). A question natur-
ally arises here: How can the quantum Markov decision
processes introduced in [3, 4] be used as a mathematical
framework of quantum reinforcement learning?

1.3 Contributions of this paper

The main problem considered in [3, 4] is the reachabil-
ity of quantum Markov decision processes (QOMDPs and
gMDPs). However, a crucial step in classical reinforce-
ment learning is to find an optimal behaviour of the
agent that can usually be formulated as an optimal policy
in MDPs. This paper solves the optimal policy problem
for quantum Markov decision processes to provide a use-
ful mathematical tool for decision making and reinforce-
ment learning in the quantum world. In this paper, we fo-
cus on the case of finite horizon. The case of infinite hori-
zon will be discussed in a forthcoming paper. We adopt a
model that extends a qMDP defined in [4].

The paper is organised as follows: Quantum mechan-
ics is briefly reviewed in Section 2 in a way that the AI
community can easily understand. Several basic notions,
including gMDP, policy and expected reward, are defined
in Section 3. A backward recursion for the expected re-
ward with a given policy is established, and an algorithm
based on it for computing the expected reward is presen-
ted in Section 4. In Section 5, the Bellman principle of
optimality is generalised to qMDPs and an algorithm for
finding optimal policies for gMDPs is given. A key step in
the algorithms presented in Sections 4 and 5 is the com-
putation of quantum probabilities. For readability, we
separate it from the other parts of the algorithms and
solve it in Section 6. An illustrative example is shown in
Section 7. The paper concludes with several remarks
about further studies.

2 Preliminaries

For the convenience of the reader, we review the ba-
sics of quantum mechanics. In this paper, we only con-
sider quantum systems of which the state spaces are fi-
nite-dimensional. So, their mathematical descriptions can
be presented in the languages of vectors and matrices.
We assume the reader is familiar with matrix algebra. All
operations (e.g., addition, multiplication, scalar product)

of vectors and matrices used in this paper are standard.
Quantum states. Following the convention in
quantum theory, we use the Dirac notation to write

|¢> = (a17 e 7an)T

for a column vector, i.e., an element in the n-dimensional
complex vector space C", where C is the field of complex
numbers, and T stands for transpose. If the components
of the vector satisfies the normalisation condition:

n

> ad* =1

i=1

then |v) is called a unit vector. The dual of |¢) is the row
vector (Y| = (a1, -+ ,an).
postulates of quantum mechanics, a pure state of an n-

According to the Dbasic

level quantum system can be represented by a unit vector
|y € C™. For example, the state of a qubit (quantum bit)
is a 2-dimensional vector:

(a.8)" = ( g > = al0) + 80)

with |a|? + |8|*> = 1, where [0) = (1,0)T,]1) = (0,1)T is a
basis of the 2-dimensional space C% Two example qubit
states are

- L

=7

(10) £ [1)).

More generally, a mixed state of an n-level system is
described by an n X mn positive semi-definite matrix
p = (pij) with trace:

tr(p) = Zpii =1

called a density matrix in C™. It turns out that each
density operator p can be written in the form of

p= ZPin‘)(W

where {|¢;)} is a family of pure states, and {p;} is a
probability distribution. So, mixed state p can be
interpreted as follows: The system is in state [¢;) with
probability p;. For example, if a qubit is in state |0) with
probability % and in state |1) with probability %, then it
can be depicted by the density matrix:

po=§|o><0|+§|—><—|=é( ° )

Dynamics of quantum systems. For any matrix
A = (ai;), we write AT for the transpose and conjugate of
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A, ie., AT = (b;;) with b;; = a}, for all 4, j. An n x n com-
plex matrix U is called a unitary matrix if

UTU = Inxn

where I is the identity matrix. If the states of a closed
quantum system at times t and t' are |¢) and [¢'),
respectively, then they are related to each other by a
unitary matrix U which depends only on the times t and t':

') = Uly).

If the system is in mixed state p,p’ at time ¢, ¢, re-
spectively, then,

p = UpUT.

For example, the NOT gate and Hadamard gate on a
qubit are respectively described by unitary matrices:

0 1 1 (1 1
X:<1 0)’H:ﬁ(1 1)

and the state po is transferred by H into

11 1
r_1
HpoH—3<1 2).

More generally, the dynamics of an open quantum sys-
tem is described by a super-operator. The notion of su-
per-operator can be introduced in several different (but
equivalent) ways. Here, we choose to use the Kraus oper-
ator-sum representation, which is convenient for compu-
tation. A super-operator £ transforms a density matrix to
another and is defined by a family of n x n matrices

{E:}:

E(p) =D EipE]

for each density matrix p, where it is required that

> E'Ei = Lixa.

It is obvious that £ degenerates to a unitary matrix
whenever {F;} is a singleton. For example, the bit flip ac-
tion transfers the state of a qubit from |0) to |1) and vice
versa, with probability 1 —p, 0 < p < 1. It is described by
the super-operator:

&(p) = EopEo + ErpEr
where
EOZ\/];I,Elz 1—pX

@ Springer

and I, X are the 2 x 2 unit matrix and the NOT gate,
respectively. For example, state po is transformed by £ to

12 1
1. % 1
6 3
E(p) = L 5 2
"6 6 3

Quantum measurements. To acquire information
about a quantum system, a measurement must be per-
formed on it. A quantum measurement on an n-level sys-
tem is described by a collection M = {My} of nxn
complex matrices satisfying the normalisation condition:

ZMLMm — Inxn

where the indices m stand for the measurement outcomes.
We write O(M) ={m} for the set of all possible
outcomes of M. If the state of a quantum system is
[y immediately before the measurement, then the
probability that result m occurs is

p(m) = (Y| M, My |9)

and the state of the system after the measurement is

M |9)

p(m)

If the state of a quantum system was p before meas-
urement, then the probability that result m occurs is

p(m) = tr(My,pM},) (1)
and the state after the measurement is

Mmer]:’L
p(m)

(2)

For example, the measurement on a qubit in the com-
putational basis {|0),|1)} is M = {Mo, M1}, where

Mo:|0><0|:<(1) 8>,M1:|1><1|:<8 ?)

If we perform )M on a qubit in state po, then the prob-
ability that we get outcome 0 is

p(0) = tr(Mopo) = tr

o olw;
Il
|

1
and the probability of outcome 1 is p(1) = 5 In the case

that the outcome is 0, the qubit will be in state |0) after
the measurement, and in the case that the outcome is 1,
it will be in state |1).
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Composite quantum systems. In the example
presented in Section 7, we will need the notion of a tensor
product of vector spaces. For each 1 <i < n, let H; be a
vector space with {|i;;)} as an orthonormal basis. Then
the tensor product Hi1 ® - -+ ® H, is the vector space with
{|¥1j,,** ,¥nj.)} as an orthonormal basis. For example,
the state space of two-qubits is C2® C2% A two-qubit
system can be in a separable state

[¥) = |1) ® [h2) = |¢1), [1h2)

where [¢1),|Y2) are one-qubit states, e.g., |0,0),]0,1),
|1,4),|+,—). It can also be in an entangled state that
cannot be written as the product of two one-qubit states,
like the EPR (Einstein-Podolsky-Rosen) pair or Bell
state:

|Boo) = %(|00> +]11)).

3 Basic definitions

Recall from [1] that an MDP consists of decision
epochs, states, actions, transition probabilities and re-
wards. The decision epochs are the points of time where
decisions are made. In this paper, we only consider the
case of finite horizon — the set 7 of decision epochs is fi-
nite. We write S for the set of possible states of the sys-
tem and A for the set of allowable actions. At each de-
cision epoch, the system occupies a state s € S, and the
decision maker take an action a chosen from A. As a res-
ult of taking action a in state s at decision epoch ¢, the
decision maker receives a reward r:(s,a), and the system
evolves as follows: At the next decision epoch, the sys-
tem is in state s’ with probability p:(s’|s, a).

A gMDP is a quantum generalisation of MDP where
the dynamics of and the observation on the system are
governed by the laws of quantum mechanics. Formally,
we have:

Definition 1. A gMDP is a 7-tuple

P = (T, H,p, A {E(la) :t € T,a € AL, M, {r it €T}

where:

1) T ={1,2,---, N} is the set of decision epochs.

2) H = C" is the state space of an n-level quantum
system.

3) p is a density matrix in H, called the starting state.

4) A is a set of action names.

5) For each t € T and a € A, &(:|a) is a super-operat-
ors in H.

6) M is a set of quantum measurements in H. We
write:

0= J {M}xo@)].

MeM

T)Foreach 1<t<N-1,1r:0xA—R (real num-
bers) is the reward function at decision epoch ¢, and
rn : O = R is the reward function at the final decision
epoch N.

An MDP is a decision maker together with a classical
(but stochastic) system on which the decision maker can
take actions. In contrast, a qMDP consists of a decision
maker and a quantum system of which the state space is
H = C". The state of this quantum system is described
by a density matrix. A and M are the sets of actions and
measurements, respectively, allowable to perform on the
system. For each decision epoch t & 7, the decision
maker acquires information about the system through
performing a chosen measurement M € M. It is possible
that different outcomes occur with certain probabilities.
Each (M,m) € O is called an observation, meaning that
measurement )/ is performed and the outcome is m. For
each action a € A, the super-operator & (-|a) models the
evolution of the system if a is taken on it between ¢ and
the next epoch. So, if the system is in state o before ac-
tion a, then it will be in state & (ola) after action a. Ob-
viously, & (:|a) can be seen as the quantum counterpart of
the matrix

{pt(81|57a)}515,68

of transition probabilities in a MDP. For each
(M,m) € O and a € A, (M, m,a) is the reward that the
decision maker gains by taking action a at decision epoch
t when the outcome of measurement )/ is m. Note that
in a MDP, the reward depends on the state of the
system. However, in a qMDP, the reward depends on the
observation (M, m) about the system rather than directly
on the state of the system, because usually the state of a
quantum system cannot be fully known. Since at the final
epoch t = N, no action will be taken, the domain of the
reward function ry is @ but not O x A.

Now we start to examine the behaviour of a qMDP by
introducing the following:

Definition 2. Let 1 <t < N. Then a sequence

ht = (Ml,ml,(ll,' . ,Mt_l,mt_l,at_l,Mt,mt)

is called a history of t epochs if (Mi,m1),---,
(Me—1,m¢—1), (M¢,m:) € O and a1, -+ ,at—1 € A.

History h; records the activities of the decision maker:
For each j < t, she/he performed measurement M; on the
system, got outcome mj, and then took action a; on it. It
is assumed that measurement M; happened before action
aj. If a; was taken before Mj, then the result would be
different because a measurement usually changes the
state of a quantum system. We write tail(h:) = (M, my).
The set of histories of ¢t epochs is denoted H;. Obviously,
if ht € Hy, at,aeq1,--- y Qe (k—1) € A and (Mt+1,mt+1),
(Mt+2, mt+2), ey (Mt+k, mt+k) S O, then

(hty aty, Megy1, miy1, Gerr, Mego, M2, o Qg (k—1),
Mk, misr) € Heyy

@ Springer
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for 1 <k<N—t.

A policy specifies the rule to be used by the decision
maker to choose the measurements and actions per-
formed at all decision epochs. For any nonempty set X,
we write D(X) for the set of probability distributions

over X.

Definition 3. Arandomised history-dependent policy
is a sequence m = (o, f1, @1, , BN-1,an—1), where:

1) Qo € D(M)

2o :Hix A—-DM)fort=1,--- ,N—1

3) ﬂtZHt A)D(A) fOI‘t:].,"' ,N*].

For each M € M, ao(M) is the probability that A/ is
chosen at the beginning of the decision process. For each
1<t<N-1 h € H, a€ A and M € M, Bt(ht)(a) is
the probability that action a is chosen to take between
decision epoch ¢ and t+1 given history h:, and
at(he,a)(M) is the probability that measurement M is
chosen to perform at epoch t+ 1 given history h: and
that action a was taken between epoch t and t+ 1. In
particular, 7 is a deterministic (history-dependent) policy
if ao, ai(ht,a) and Be(h:) are all single-point distribu-
tions; that is, ap € M, and

at:HtXA—>M, ﬂtth-}A

fort=1,---,N—1.
Now let @ be a randomised history-dependent policy,
1<t < N and

hy = (Ml,m1,a1, cee ,Mtfl,mtfl,atfl,Mnmt) € H;.

Then repeated applications of (1) and (2) yield the
probability of h; under m:

t—1

p" (he) =ao (M) [ [ s % B (hy)(a;) x s (hy, a;) (M 11)] X pe

Jj=1

Where hj = (Ml,ml,ah--- ) Mj,hmj,l,aj,l,Mj,mj)
for 1 < j <t, and

p1 =tr (MlmlpMIrru)

pj = tr (Mjmjgjfl(ﬂjfl\aj—l)Mfm

3)

). 1<i<N

J

{pl = MlmlpMLnl/pl
pi = Mjm;Ei—1(pj-1laj—1) M), /pj, 1 <j <N.

(4)

Intuitively, the system starts in state p. At the initial
epoch, measurement M is chosen by policy = with prob-
ability ao(M1) to perform on the system, outcome m; is
obtained with probability pi, and the state of the system
is changed to pi. Then action a; is chosen by 7 with
probability $;(h1)(a1), and the system is transformed in-
to state &1(pi]a1). In general, at epoch j, measurement
M; is chosen with probability aj;—1(hj—1,a;—1)(M;) to

@ Springer

perform on state &;_1(pj—1]laj—1), outcome m; occurs
with probability p;, and the state of the system becomes
pj. Furthermore, action a; is chosen with probability
Bj(h;)(a;) and it transforms the system into state
& (pjla).-

The following lemma gives a more compact represent-
ation of probability function p” (-).

Lemma 1.

p"(ht)=ao(M1) | | [Bj(h;)(a;)xa;(hs,a;)(Mj41)] xtr(or)

j=1

where
{0'1 = Mlmllefml (5)
o= Mjmj5j71(0j71|aj71)M}mj(1 <j<n).

Proof. By a routine calculation. |

Finally, we can define the reward received by the de-
cision maker in a qMDP. For each randomised history-de-
pendent policy 7, if 7 is used in the decision process,
then the expected total reward over the decision making
horizon is

vy = > p'(hy) xr(hy) (6)
hny€E€HN

where r(hy) is the reward received along history hy, i.e.,

z

-1
ri(My, m, ae) +rv(My, mn)
1

r(hn) =

t

if hN = (Ml,m1,a1,- .. ,MN_1,mN_1,aN_1,MN,mN).

4 Policy evaluation

As in the case of MDPs, a direct computation of the
reward in a qMDP based on defining emuation (6) is very
inefficient. In this section, we establish a backward recur-
sion for the reward function so that dynamic program-
ming can be used in policy evaluation for gMDPs. To this
end, we first introduce a conditional probability function.
Let m be a randomised history-dependent policy,
1<t< N and

he = (My,my, a1, -+, My—1,me—1,ac—1, My, my) € Hy

fe = (at, Myy1,miq1,- - yan—1, Mn,mn) € (A X O)N_t,

Clearly, the concatenation (h, f:) of h: and f; is in
Hy. By repeated applications of (1) and (2), we obtain
the conditional probability of f; under = on hy:

P (felhe) = Nl:ll [Bi(hj)(a;)xa;(hy,a;)(Mjt1) X pj41]

' )

=t
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where
h’j = (ht7at7Mt+17mt+17"' 7a.7—17Mj7mj)

and p;'s are defined by (3). Similar to Lemma 1, we have:
Lemma 2.

(i) = T 185(hs)(a5) % a5 (h3,05) (31)] x

where 0;'s are defined by (5).
Proof. By a routine calculation. O
Using the conditional probability function p™(:|h:), we
can compute the expected reward in the tail of a decision
process. More precisely, for each randomised history-de-
pendent policy 7, function

uy : Hi - R

is defined to be the expected total reward obtained by
using policy 7w at decision epochs t,t+1,---, N; i.e., for
every hy € Hy,

uf (he) = >

fte(AxO)N—t

P (felhe) x 7(ft) (9)
where
N-—1
r(fi) =Y (M, my,a5) + v (My, mn).

Theorem 1 presents a backward recursion that shows
how to compute the conditional reward uy at decision
epoch ¢ from the conditional reward u;,; at the next
epoch t + 1.

Theorem 1. (Backward Recursion) For each
1 <t< N —1, we have:

uy (he) = Z Z Be(he)(ar) X as(he, ar) (Meyr) ¥
at€AMi1EM

|:7't(Mt7 me, ar) + Zpt+1 X u?+1(ht,at, Mt+1,mt+1)]

1

(10)

where the third > is over mi41 € O(Myy1).
Proof. Straightforward. |
The aim of policy evaluation is to compute the total
reward vy. The following lemma gives a representation of
vy in terms of the conditional reward u] at the first de-
cision epoch.

Lemma 3.
= Y ao(My) X te(Mim, pM{,, ) % uf (My,m1)
(M1,m1)€O

(11)

Proof. Routine. |

Combining Theorem 1 and Lemma 3 enables us to de-
velop a dynamic programming algorithm for evaluating
vp; see Algorithm 1. Note that there is an essential diffi-
culty in step 2 of this policy evaluation algorithm, namely
the computation of quantum probabilities p;y1. The same
difficulty arises in the next section where the optimal
policies for qMDPs are considered. So, this problem will
be carefully addressed in Section 6.

Algorithm 1. Policy evaluation

1) Set t =N and u}{,(hN) ITN(MN,mN) for h,N (S
Hpy with tail(hN) = (MN,mN).

2) Substitute ¢t — 1 for t. Compute uf (h:) for hy € H,
with tail(h:) = (Mg, m) using (10).

3) If t =1, go to step 4. Otherwise, return to Step 2).

4) Compute vy by (11).

Note that for each ¢, the computation of p; according
to Theorem 3 takes time O(tn®) where n is the dimen-
sion of the Hilbert space. Furthermore, as |H;| =
|OI*|A|"™!, and for each h; € H: the computation of
uf (he) in (10) requires |O| x |A| multiplications each of
which needs to compute ps+1 = pe+1(he+1), the total com-
plexity of Algorithm 1 is O(|O|N AV nb).

5 Optimality of policies

Now we turn to consider how to compute optimal
policies. The optimal expected total reward over the de-
cision making horizon is defined by

VN = Supuy.
For any 1 <t < N and h; € Hy, uj(h:) is defined to
be the optimal expected total reward from decision epoch
t onward when the history up to time ¢ is hy, i.e.,

uf (he) = sup uf (he)

where 7 traverses over all randomised history-dependent
policies. Similar to Lemma 3, Lemma 4 shows that the
optimal total reward vy can be represented in terms of
the optimal reward uT at the first decision epoch.

Lemma 4.
VN =

sp 4 Y () x i (0rme) b )
MieM | o co(m)

Proof. By a routine calculation. 0

Lemma 4 provides a method for computing the optim-
al total reward vy through computing the optimal re-
ward u] at the first decision epoch, which can be com-
puted by backward recursion based on the following
quantum generalisation of the Bellman optimality equa-
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tions:

[blu¢(he) = sup  sup
at€EA My L1EM

|:7”t (M, e, ar) + sz+1 X Ut (P, asy Mega, mt+1)]

(13)
for t=1,---,N—1, where the summation is over
mey1 € O(Mi41), and pey1 is given by (3), and

un(hn) =rnv(My, mn) (14)
if
hy = (My,mi,a1,-+ , Mn_1,mn_1,an—1, Mn,mN).

Theorem 2 shows that the optimal expected reward
uy (ht) at decision epoch ¢t can be computed by solving
the optimal equations.

Theorem 2. (The principle of optimality) Let
us : He — R(t=1,--- ,N) be a solution of the optimality
equations (13) and (14). Then,

Ut (ht) = U: (ht)

forallt=1,--- N and h; € H,.

Proof. First, we show that u;(h:) < ui(h:) by back-
ward induction on t. By definition, it holds for ¢t = N.
Now assume that it holds for ¢ + 1. Then using Lemma
4.3.1 in [21] and Theorem 1, we obtain:

ug (ht) = supuy (he) = supz Z BL

at Mgy

(he)(at) x ag (ht, a)(Mig1)X
[Tt(Mtvmt,at) + Z P11 X

mi41
U1 (he, ae, Meyr,megn)] <
sup sup sup [r¢(Mz, me, az) + Z Prp1 X
T ag Mpyq mit1
uyp1 (hey @, Myp1, mig1)] =
sup sup [r¢(My, me, ar) + Z Dt+1X
at My Mg

sup uggq (he, at, M1, mes1)] =
T

sup sup [r¢(Mye, me, ai) + Z P41 X
at My Mg

i1 (B, @, M1, meqr)] <

sup sup [re(My, me, ai) + > pre1X
ay Myiq Mg

Uit (hey @y Myt1, mig1)] = ue(he).

Note that the last inequality comes from the induc-
tion hypothesis for ¢ + 1.

Secondly, we show that u:(h:) < uf(h:). For given ¢t
and h; and for any e >0, by the definition of wy,

@ Springer

Ut+1,°** ,UN, we have

Jaf, M1 s.t. ug(he) — € < re(Me,my, af)+
Z Pt+1 X ut+1(ht, af, Mt*+1, mt+1)
mi41
Vg1, Jagin, Mo
st w1 (heg1) — € < repr (Mig1, megr, atyr)+
Z D2 - Utt2(hep1,ai i1, Mo, met2)
myyo
VYmpy_1,3Jan_1, My
sit. un—1(hnv-1) —e <ry—1(My—1,mn—1,an_1)+

szv 'UN(hN—17aR71:MI>t77mN)'

myN
Here,

* * * *
hj = (he,ag, Mipr, meq1, - 051, M; , M)

for t < 7 < n. We choose a deterministic policy

" = (ao, Br,01, -, BN—1,0N 1)

such that o;(M;,m;) = M;; and B;(M;,m;) = aji;.
Then, we obtain:

ut(he) < re(Me,my, ap) + Z Pt+1X

me41
wey1(he, af, My, meqn) + € <
re(My, me, ap) + E P+t X [rep1 (M1, meg1, ai)+

me41

g Det2 X Uy (het, a:+17 Mt*+27mt+2) + 5] +e=

mi42

ro(Meyme,a) + ) peax

me41

Z Pt+1 X

M1, Mt 42

* *
Tep1 (M, Meg1, azyq) +

Ptz X Urya(her1, a1, MG, Miga) + 26 <

Q+ >

Mt 41, M2, MN

un(hn-1,an_1, My, mn) + (N —t)e =
Q+ Z Pt+1X

M4 1, M2, ,MN

Pt+1 X PN42 X -+ X pN X

pNt2 X - X pn X N (My,mn) + (N —t)e =
Z Pt+1 X
MU 12,70 MN — 1
Pt4+2 X+ -+ X PN X [Tt(Mtymt’a:) + Tt+1(M:+17mt+1,a:+1)
+- +ryoi(My—1,ma—1,an-—1) + TN (Mg, my)] =
up (he) + (N = t)e <
ui (he) + (N = t)e

where
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Q = re(Me,me, a;) + Z Pt X Pegr (Mir, M, aga)+

mi41

> Pir1 X Prya X Tep2 (Mo, Mit2, afye) + -+

mMi41,Me41

Z Pt+1 X Pty2 X - - -

M4 1,M 42,0, MN —1

X PN-1"
* *
rv—1(My_1,mN-1,aN_1).

Note that the equality " £" follows from that

* *
g D1 X P2 X - XDN X T (Mg, My, apyj) =
Mt 1, Mt 4250005 my
§ M :
Pe1 XPet2 X o+ X Py X (Mg, Mt j, aiyz)

Mt 1Mt 4250005 Mg

for j=1,--- N —t—1, and similar equalities for r; and
rn. Finally, arbitrariness of € leads to u¢(h:) < uj(he). O

It can be seen from the above proof that for any
€ > 0, we can find a deterministic policy

TrE = (a(e)aﬁ;aaia e 755\771705\771)

such that

(szmt,ﬁt Mmmt

Z Pt4+1X

mi41

upy1 (e, By (Me,me), oy (Mg, m ), mis1) + ——

€

N1 2wt

for t=1,2,---
the sense that vl > vl — e. In particular, if both A and
M are finite and O(M) is finite for every M € M, then

there is a deterministic policy

,N — 1. Then 7¢ is an e-optimal policy in

= (ao, B1,01, - ,fN-1,0N-1)

such that

re(Myg, my, Be (M, my))

Z Pt4+1 X

mie41

wyp1 (he, Be (M, mi), o (Me, me), mey1) = ug (he)

for t=1,2,---

dynamic programming algorithm can be developed for

,N —1. Based on this observation, a

computing the optimal expected reward vy and finding
an optimal policy for the case that A, M and all O(M)
with M € M are finite.

Algorithm 2. Finding optimal policy

1) Set t=N and un(hn)=r~v(Mn,my) for
hn € Hy with ta’il(h]\]) = (MN,mN).

2) Substitute ¢t — 1 for ¢. Compute uj (ht) for h: € Hy
with tail(hy) = (M, me) using (13) (with uy and weq1 be
replaced by u}, ui,q, respectively).

Set

(Be(Me, my), e (M, me)) € arg Y

re(My,me,a) + Y pert X uger (he, a, M,m)

meO (M)

3) If t =1, go to Step 4). Otherwise, return to Step
2).

4) Compute vy by (12).

As in Algorithm 1, the problem of computing the
quantum probability p:y1 arises in Step 2) of this al-
gorithm. Furthermore, it is easy to see that Algorithm 2
has the same complexity as Algorithm 1.

6 Computation of quantum probabili-
ties

Now we present a method for computing the quantum
probabilities p: needed in both Algorithms 1 and 2. First
of all, an elegant formula for p; can be easily derived from
its defining equation (3) by induction on ¢.

Lemma 5. For each hy = (M1, m1,a1,- -+, My—1,ms—1,
at—1, My, m¢) € Hy, we have:

tr(oe)
= h =
pt pt( t) tr(Utfl)
where o;'s are defined by (5).
Proof. By induction on ¢. a

However, it is hard to compute probability p; directly
using the above lemma because (¢ — 1)-fold iterations of
super-operators occurs in o;. The matrix representation of
a super-operator is usually easier to manipulate than the
super-operator itself. Suppose super-operator £ has the
representation:

=Y EipE]

for all density matrices p. Then the matrix representation
of £ is the n? x n? matrix:

M=) E®E

where A* stands for the conjugate of matrix A, i.e.,
A" = (aj;) with a; being the conjugate of complex

number a;;, whenever A = (a;;). We write:

®) =>_lis)

for the (unnormalized) maximally entangled state, where
{|7)} is an orthonormal basis of H = C".

Lemma 6. ([6], Lemma 2.1) Let J be the n x n unit
matrix and )M/ the matrix representation of super-operat-
or £. Then for any density matrix p, we have:

1) (E(p) @ I)|®) = M(A® I)|D).
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2) tr(p) = (Plp @ 1),
For every j, we write N; for the matrix representa-
tion of super-operator &;(+|a;), and

Lj = Mjmj X M;mj-

Then a combination of the above two lemmas yields
an elegant formula for computing the quantum probabil-
ity p: through ordinary matrix multiplications:

Theorem 3.

b= (®|NtLi—1N¢—1--- L1N1(p ® I)|P)
(®|N¢—1Li—2Ni—2---LiN1(p ® [)|(I>>'

Proof. This theorem can be easily proved by combin-
ing Lemmas 5 and 6. |

7 An illustrative example

We now give an example to illustrate the ideas intro-
duced in the previous sections. Suppose a quantum robot
& is walking in an (np 4+ 1) X (ny + 1) grid environment
shown in Fig.1 (when nj, = 3 and n, = 2). Initially, the
robot is at the S = (0,0) location. At each decision epoch,
it can choose to move horizontally or vertically, each im-
plemented by a (one-dimensional) Hadamard quantum
walk2ll, After each move, the robot's location informa-
tion is (partially) obtained by making a measurement de-
tecting its positions. If the robot is found outside the
grid, it gets a penalty (a negative reward —r), and then
restarts from the original point S; If it reaches the target
slot T'= (nn,ny), then it stays there and a reward R is
received; For other cases, no reward or penalty incurs.
We assume that np +n, >0 and R > r > 0.

N

Fig.1 A quantum robot walking in a grid (with n, = 3 and
Ny = 2

Formally, let H; and H, be two 2-dimensional vector
spaces with {|0)n,|1)n}, {|0)v,|1)v}, respectively, as an
orthonormal basis. They will serve as the state spaces of
the coins for the horizontal and vertical walks, respect-
ively. The location space H, is the vector space with
{li,7)p : (i,5) € G} as an orthonormal basis, where

G={-1,,mp+1} x{=1,--- ,n, +1}.

The shift operators for the horizontal and vertical

walks are defined by

Shp = Z Z |k)h<k\®|i—(—1)k,j>p<i,j|

(i,7)€G ke{0,1}

@ Springer

and

Spo="»_ > li.i=(=1)")p(i, il @ K)o (k|

(i,5)€G ke{0,1}

respectively, where
G = {(7".]) e | 0<i<np,,0<5< nva(inj) # (nhvn’v)}'

Note that we use subscripts to indicate which subsys-
tems the corresponding operators are performed on. For
example, Sp, acts only on systems H, and H,. For
* € {h,v}, let W* be the quantum-walk super-operator in
the grid G along direction x, except that it stops when
reaching the target slot or getting out of the grid, i.e., for
any quantum state p,

Wi p)=U'p U+ 3
(4,J)€G\G

P jpPi;

where

Uh = (Shp ®I’U)(Hh ®Ip ®[’U)
Uv = (Ih ® Spv)(lh ® Ip & H'v)
Pij=1In®1i,5)p(i,jl ® I

and K, J stand for the Hadamard matrix and the unit
matrix, respectively. Let Ereset be the super-operator
which resets the robot to the initial state (i.e., the
position to (0,0), and the coin states to |0)) when it walks
outside the grid. To be specific, Ereset has the Kraus

operators:
{Eina Eio,?,tk,l | (’L»]) S G\Gzn7 kal € {0> 1}}

where G = G U {(nn, ny)}, and

E"=00 Y |Lj)i.jel
(i,§)EGIn
E2h 1 = 10)n (k| ®10,0),(i, j| @ 0), (1.

Now, for t € T, let
gt("*) = greset o W*

be a composed super-operator obtained by first applying
Ereset and then W*. Moreover, let M = {II,} be a set
consisting of a single measurement [T on system H,,
where TI = {II', 1, 11"}, IT' = |n4, 7o) (N4, 0,

H? = Z |17]><Z7]‘

(4,J)€EG

and I1* = I, — II' — [I°. Finally, we define:
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R, ifm=!
r(m) =14 —r, ifm=x
0, ifm="71.

For each 1<t< N -1, M €M, and a € {h,v}, let
re(M,m,a) = rn(M,m) = r(m).

With the notations presented above, the robot-walk-
ing system can be modelled by a gMDP:

P=(T,H,p, A, {&(la) : t €T, ae A, M,{ri:t€T})

where H=Hn@Hp @ Hv, p=10)1(0]®10,0),(0,0]® |
0),{0], and A ={h,v}. As M contains only a single
measurement, we can simply denote a history in H; by
he = (m1,a1,m2, - ,at—1,m¢). Furthermore, it is easy to
see that m; = 7 in any history h;.

In the remainder of this section, we compute the op-
timal expected total reward vy as well as (one of) the
corresponding policies in several simple cases. Our
strategy is to first calculate for any hy = (mi,a,
ma, - ,ai—1,m) € H,, 1<t< N, the probability
pt = pe(my | hy—1,a.—1) defined in (3). Then (13) is re-
cursively employed to calculate wu:(h:). Finally, we get
vy = u1(?) from Lemma 4 and Theorem 2.

Case N = 1: This case is trivial, as no decision is
needed to make, and vy =r(?) = 0.

Case N =92 From (13), we have for any
hQ = (?,a1,m2), Ug(hz) = T(mz), and

u1(?) = max {p2('|?,a1)- R—p2(x | ?,a1) -7}
aj€{h,v}

p2(!] 7,a1) =

1/2, ifng, =1 A ng, =0
0, otherwise

a1 denotes the direction other than a1, and

1/2, ifng >0
1, if na, =0.

p2A(x | ?,a1) = {

(R=71)/2, ifnp+n,=1
—r/2, otherwise

and one of the optimal policies could be taking a1 = h if

np > 1, and a1 = v otherwise.

Case N = 3: For any ha = (7, a1, m2),

uz(h2) =r(mah ma }{P:s(! | h2,a2) x Rps(x | ha, az)xr}.
as v

Note that when ms = X, the robot is reset to the ini-
tial state. Thus ps(m | h2,a2) = p2(m | 7,a2) where p2 is

computed in the previous case. Similarly, as the robot is
terminated when ms =, ps(m | he,a2) =1if m ="!and 0
otherwise. Furthermore, it is not hard to show that

p5(' | ?70‘17?70’2) =

1/2, ifar=as A ng, =2 A ng, =0
1/2, ifar#a2 A np=n,=1
0, otherwise

and

p3(>< | ?aa17?7a2) =

1/2, ifG,l:aQA?’Lal:].Anal>0
1/2, ifal;éag/\nh>0/\nv>0
1, ifar#a2 A ngg >1 A ng, =0
0, otherwise.

With these we know that for any a; € {h,v}, u2
(?,a1,!) = 2R, uz2(?,a1, x) = —r + v3, and

u2(?7a17 ?) = n}gx{pd(' ‘ ?,CL1, ?70‘2)'

R—p3(x | ?a1,?,a2) xr} =

R/2, ifng =2 A ng, =0
(R—1r)/2, ifnp=n,=1

—r/2, ifne =1 A ng, >1
0, otherwise

and one of the optimal policies could be taking a2 = a1 if
np = ny, = 1, and a2 = a1 otherwise. Furthermore,

u1(?) = max Z

ay i
me{!,x,?}

p2(m | ?,a1) - u2(?,a1,m)
Let T'(m) = pa(m | 7,a1) - u2(?, a1, m). We compute:

0, otherwise

(R—13r)/2, ifneg =0A ng =1
T(x) = —3r/2, ifng =0 A ng, >1

{R, ifneg =1 A ng, =0

(R—3r)/4, ifneg =1A ng =0

—3r/4, otherwise

if’I’La1:2 A 77/51:0

R/47
() = (R=r)/4, ifnp=n, =1

—r/4, ifng =1 A ng, >1
0, otherwise.
Thus,
(5R—3r)/4, if nmin = 0Anmax =1
. (R—=3r)/4, if nymin = 0 A nmax =2
v3 =ui(?) = .
(R — 47‘)/4, if Nmin = L A Nmax = 1
—3r/4, otherwise

where nmax = max{nu,ns}, nmin = min{np,n,}, and one
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of the optimal policies could be taking ai such
that n,, = Nmax. Furthermore, a; =a1 if ny, =n, =1,

otherwise, take a2 = a1.

8 Concluding remarks

In this paper, we studied the optimal policy for qM-
DPs of finite-horizon. It is shown that the problem can
by solved by dynamic programming together with matrix
multiplications for computing quantum probabilities. We
hope that the mathematical framework of qMDPs de-
veloped in [3, 4] and this paper can provide certain
theoretical foundations for quantum reinforcement learn-
ingl720] quantum robot planning?224 and other de-
cision-making tasks in the quantum world.

For future studies, one of the most interesting prob-
lems is to settle the complexity of the optimal policy
problem (as well as other problems) for gMDPs (in com-
parison with that for classical MDPs and POMDPs[2%: 26]),
Another interesting problem is to find quantum al-
gorithms (rather than classical algorithms as considered
in the present paper) for solving qMDPs, in particular,
speeding up the computation of quantum probabilities.
Since the state space of a qMDP is a continuum and thus
doomed-to-be infinite, it will be useful to extend analysis
techniques for MDPs with infinite state spaces, e.g.,
bisimulation and metricsi27 28], to the quantum case.
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