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Real-Time Medical Lesion Screening: Accurate and Rapid Detector 

Dangguo Shao1∙ Jie Jiang1∙ Lei Ma1∙ Sanli Yi1 

Abstract 
Deep learning is a rapidly advancing field, and computer vision techniques such as image segmentation and object detection 
have found extensive applications across various domains. In medical images, computer vision technology proves effective 
in handling large volumes of medical imaging data, thereby improving screening efficiency. In the realm of practical medical 
image applications, object detection has not gained the same level of popularity as image segmentation. Even though some 
object detection algorithms have been employed for lesion detection, the majority are single-stage detection algorithms, 
primarily based on the YOLO series[1]. However, the emergence of Transformers[2] appears to be altering this landscape. 
Leveraging the outstanding performance of Transformers, we propose the RPC-DETR model based on DETR[6], further 
exploring the potential of Transformers in lesion screening detection. We conducted experiments with the RPC-DETR model 
on the publicly available brain tumor dataset Br35H, minimizing the model's parameter count and reducing its complexity. 
In our experiments, RPC-DETR achieved high accuracy with only 14 million parameters. In summary, we have achieved 
greater accuracy in brain tumor detection by employing a more lightweight model. 
 

Keywords Computer vision ∙ Lesion screening ∙ Attention mechanism ∙ DETR 

 

1. Introduction 

In recent years, the widely used image segmentation tech-
nique based on U-net[9] in the processing of medical im-
ages contrasts with the relatively limited application of ob-
ject detection. In the detection of lesions in brain tumor im-
ages, precise pixel segmentation is not necessary; instead, 
the focus is on identifying the occurrence and location of 
the lesions. Therefore, detection tasks are more suitable for 
brain tumor images. Detection algorithms can accurately 
identify and locate brain tumors, assisting doctors in the 
early detection of tumors. Through the precise detection of 
tumor features such as location, size, and shape, doctors can 
formulate more personalized treatment plans for patients. 
This contributes to improving treatment effectiveness, re-
ducing unnecessary side effects, and better meeting the 
needs of patients. Computer vision technologies in the field 
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of medical imaging have consistently faced several key 
challenges : 
(1) Detection technology needs to be highly accurate, ca-

pable of pinpointing and identifying potentially early 
lesions. This is essential to improve the reliability and 
accuracy of screening to avoid missed or misdiagnosed 
cases. 

(2) Timely detection of early lesions is crucial for treat-
ment and prevention. Therefore, detection techniques 
need to have the ability for rapid detection, accelerat-
ing the screening process, reducing waiting times, and 
improving the treatment outcomes for patients. 

(3) Object detection techniques for early lesions must 
have the capability to handle large-scale medical im-
age data. This includes efficient data storage, transmis-
sion, and processing to cope with the complex and di-
verse nature of patient data. 
While CNN architectures, particularly represented by 

the YOLO series, have been widely used for detection tasks 
due to their high accuracy and speed, the introduction of 
Vision Transformer (VIT)[10] in image processing has 
brought a new perspective to object detection tasks. The 



 

 

 

Figure 2：Our detector based on the Transformer, which generates the heat map based on the objects attended to by the Attention 
mechanism. 
 

proposal of VIT has sparked a trend in applying Trans-
former principles to computer vision applications. Among 
them, Detection With Transformer (DETR) introduced a 
different post-processing approach for object detection, 
marking the birth of the DETR series. Even models like 
DETR, which circumvent NMS operations, face challenges 
due to the inherent complexity of the model compared to 
typical CNN networks, making it difficult to achieve high 
accuracy while maintaining lightweight characteristics. 
Therefore, building upon the DETR framework, we propose 
RPC-DETR. 

Shortly thereafter, the Baidu team introduced Real-
Time Detection With Transformer (RT-DETR)[11], which 
is a remarkable work that, with astonishing results, outper-
formed all compared YOLO models. This achievement un-
derscores the enormous potential of DETR. Building upon 
RT-DETR, we conducted improvement experiments and ap-
plied it to medical image processing, resulting in our RPC-
DETR, achieving the results as shown in Figure 1 with the 
mAP50 metric. 

This work primarily aims to maintain high accuracy 
while striving to lightweight the model and reduce 

unnecessary computational redundancy. Inspired by the 
reparameterization in RepVGG[12] and the partial convo-
lution concept in Fasternet[13], we conducted analysis and 
experiments within the framework of RT-DETR, leading to 
the proposal of RPC-DETR, which we believe is suitable 
for medical image detection.  

The main contributions of this article are summarized 
as follows: 
⚫ The DETR detector architecture has been applied to 

lesion detection screening in medical images, showing 
improvements in various metrics compared to tradi-
tional real-time detectors such as the YOLO series. 

⚫ We propose the RPC-block, integrated into the back-
bone of RPC-DETR, to replace the convolutional part 
of the multiscale feature extraction in the Resnet net-
work[14]. This replacement not only enhances accu-
racy but also significantly reduces the parameter count, 
achieving the goal of a lightweight model. 

⚫ We have re-examined the loss function in object detec-
tion, adopting the more reasonable Shape-IoU[15] as 
the loss function for RPC-DETR. This adjustment ef-
fectively further enhances the accuracy of detection. 



 

 

 

2. Related work 

2.1. Real-time object detectors 

Current real-time object detectors primarily rely on deep 
learning techniques, especially convolutional neural net-
works. Advanced architectures such as Fast R-CNN[16], 
SSD[17], YOLO, RetinaNet[18], and FCOS[19]have 
achieved significant success in real-time object detection. 
These technologies not only improve accuracy but also 
strike a balance between speed and efficiency. They com-
monly share several characteristics: (1)These detectors fea-
ture streamlined and straightforward network architectures, 
contributing to their efficiency. (2)Stable Loss Functions: 
They employ stable loss functions, ensuring robust training 
and reliable optimization. (3)Effective Feature Extraction 
and Multi-Scale Feature Fusion: These methods employ 
strategies for efficient feature extraction and the fusion of 
multi-scale features, enhancing their overall performance. 
Anchor-Based Detectors: YOLOv5, as one of the most 
popular models for object detection in industrial applica-
tions, adopts the Anchor-based prediction paradigm. The 
core idea is to pre-define a set of anchor boxes on the image 
and then adjust these predicted anchor boxes through the 
model's loss training for precise localization and image 
classification. Models of this type typically involve two 
stages: anchor box generation and target prediction. How-
ever, this model has notable drawbacks. It requires generat-
ing a large number of prediction anchor boxes, which may 
lead to wastage of computational and storage resources. Ad-
ditionally, in the post-processing of model anchor boxes, 
Non-Maximum Suppression (NMS) is employed to remove 
redundant detection results, introducing extra hyperparam-
eters and computational complexity that may need manual 
tuning. 
Anchor-Free Detectors: YOLOv1[20] stands out as a clas-
sic example of anchor-free detectors. In YOLOv1, anchor 
boxes are not employed for prediction. Instead, bounding 
boxes are predicted through points near the center of objects. 
To generate high-quality detection results, only points close 
to the object's center are utilized. This design choice results 
in YOLOv1 having a lower recall compared to later ver-
sions like YOLOv2[21] that utilize an anchor-based ap-
proach. Subsequent models, such as FCOS, as well as 

updated versions like YOLOv6 and YOLOv8, have ad-
dressed this limitation, aiming to improve performance in 
the context of anchor-free detection. 

Despite significant progress in the implementation of 
object detectors, there are still challenges to address, includ-
ing accuracy in complex scenes, detection of small objects, 
and balancing real-time performance with accuracy. Future 
research directions may involve exploring new network ar-
chitectures, more effective strategies for real-time perfor-
mance optimization, and the integration of cross-domain 
applications. 
 

2.2. Detection with Transformer 

With the success of Transformers in the field of natural lan-
guage processing, as seen in models like BERT and the GPT 
series, researchers have started exploring the application of 
Transformers in object detection tasks. The Transformer ar-
chitecture has demonstrated outstanding performance in se-
quence modeling, which potentially gives it an advantage in 
handling object detection tasks with irregular arrangements. 

An important milestone in this line of work is the in-
troduction of ViT, which marked the first instance of apply-
ing the Transformer architecture to the field of computer vi-
sion. ViT divides an image into a series of patches and then 
maps these patches into the Transformer using an embed-
ding layer, allowing the model to globally model the entire 
image. The success of ViT has inspired subsequent research, 
including the development of the DETR model. Building on 
the success of ViT, researchers have proposed various 
frameworks for object detection using Transformers.  

DETR takes a step further by treating the object detec-
tion task as a sequence generation problem, providing a 
more intuitive way to capture relationships between objects. 
DETR adopts the encoder-decoder structure of the Trans-
former, where the encoder processes features from the input 
image, and the decoder generates a sequence of target class 
and position information. This sequence generation ap-
proach, distinct from traditional regression or classification 
methods, allows DETR to simultaneously output position 
and class information for multiple objects. Unlike methods 
that introduce candidate box generation with subsequent 
post-processing using NMS, DETR eliminates duplicate 
candidate boxes through decoder self-attention and one-to-
one supervision, ensuring that each true object is associated 



 

 

with a single candidate box. 
In subsequent work, such as RT-DETR, it has been 

demonstrated that for real-time detectors requiring NMS 
post-processing, anchor-free detectors outperform anchor-
based detectors with equivalent accuracy. The reason be-
hind this lies in the fact that anchor-based detectors generate 
more prediction boxes than anchor-free detectors. 
 

2.3. Bounding box loss  

In recent years, there has been rapid development in object 
detectors, accompanied by further exploration of bounding 
box loss functions. Initially, IoU (Intersection over Union) 
was commonly used to assess the degree of bounding box 
regression. Subsequently, a series of loss functions such as 
GIoU (Generalized IoU)[22], DIoU (Distance IoU)[23], 
CIoU (Complete IoU), and others emerged[24]. These loss 
functions iteratively build upon the foundation of IoU to 
achieve improved detection performance. 
IoU: The most commonly used bounding box loss function 
in object detection tasks, IoU has been employed in numer-
ous classical detection works. Its definition is as follows: 𝐼𝑜𝑈 = |𝐵 ∩ 𝐵𝑔𝑡||𝐵 ∪ 𝐵𝑔𝑡| (1) 
B denotes the predicted bounding box, while Bgt represents 
the ground truth bounding box. 
GIoU : In IoU, situations may arise in bounding box regres-
sion where the Ground Truth (GT) box and the Anchor box 
do not overlap, leading to gradient vanishing issues and hin-
dering normal convergence. To address this scenario, GIoU 
is proposed as an extension to IoU: 𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 − |𝐶 − 𝐵 ∩ 𝐵𝑔𝑡||𝐶| (2) 
C represents the minimum enclosing bounding box between 
the Ground Truth (GT) and the Anchor. 
DIoU: In comparison to its predecessors, DIoU introduces 
distance constraints between bounding boxes. Leveraging 
the centroid, it normalizes the distance loss component, fur-
ther enhancing the precision of regression results. Its defi-
nition is as follows: 𝐷𝐼𝑜𝑈 = 𝐼𝑜𝑈 − 𝜌2(𝑏, 𝑏𝑔𝑡)c2 (3) 
where b and bgt represent the centroids of the Anchor and 
GT boxes, respectively. ρ denotes the Euclidean distance 
between the centroids, and c is the diagonal distance of the 

minimum enclosing bounding box between b and bgt. 
CIoU: Incorporating considerations for the similarity of 
shapes between Ground Truth (GT) and Anchor, CIoU 
builds upon DIoU by introducing new shape loss terms to 
reduce differences in aspect ratios between Anchor and GT. 
Its definition is as follows: 𝐶𝐼𝑜𝑈 = 𝐼𝑜𝑈 − 𝜌2(𝑏, 𝑏𝑔𝑡)c2 − 𝛼𝑣 (4) 𝛼 = 𝑣(1 − 𝐼𝑜𝑈) + 𝑣 (5) 

𝑣 = 4𝜋 (𝑎𝑟𝑐 𝑡𝑎𝑛𝑤𝑔𝑡ℎ𝑔𝑡 − 𝑎𝑟𝑐 𝑡𝑎𝑛𝑤ℎ)2 (6) 
where wgt and hgt represent the width and height of the 
Ground Truth (GT), and w and h represent the width and 
height of the Anchor, respectively. 

In the DETR series of works, matching costs and Hun-
garian losses are employed to score bounding boxes. Unlike 
many detectors that utilize predicted boxes, this approach 
simplifies implementation and introduces issues related to 
the relative scaling of losses. To mitigate this problem, the 
authors adopted a linear combination of IoU loss and L1 
loss, where the scale of this combination remains invariant. 
 

3. Method 

3.1. Model Overview 

The model RPC-DETR, designed for lesion detection in 
medical images, primarily consists of three main compo-
nents: backbone, encoder, and decoder. The specific archi-
tecture of the model is illustrated in Figure 3. Building upon 
the DETR model's principles, RPC-DETR integrates the 
Transformer framework into a conventional CNN-based de-
tector. Leveraging the Transformer's self-attention mecha-
nism, it captures global information from images. As the 
Transformer operates concurrently on the entire global con-
text, it is not constrained by a fixed-size receptive field. 

Traditional CNN detectors typically rely on methods 
such as predicting anchor boxes (predominantly in Anchor-
based detectors) and post-processing techniques like Non-
Maximum Suppression (NMS) to determine the final pre-
diction results. In contrast, the RT-DETR (Real-Time 
DETR) work provides a notable comparison. Traditional 
CNN detectors, especially in Anchor-based models, gener-
ate a significantly higher number of predicted boxes than  



 

 

 

Figure 3: Overview of RPC-DETR. The input image, sized at 640×640, undergoes feature extrac-tion through conventional 
convolutional layers and normalization, followed by max-pooling. Subsequently, the RPC-block is applied to {S2, S3, S4, 
S5}, with S5 serving as the feature input to AIFI for scale-aware feature interaction within the same scale. The CCFM module 
is then em-ployed to perform cross-scale feature fusion on S3, S4, and F5. Ultimately, before proceeding to Head detection 
and classification, an IoU-based query selection module is employed to optimize object queries. 
 

Anchor-free models, leading to a substantial increase in the 
time spent on NMS during post-processing. DETR, on the 
other hand, directly outputs the positional information of 
objects of different classes using attention mechanisms, 
thereby avoiding some of the complexities in traditional 
methods. 

Moreover, DETR uses a fixed number of positional en-
codings instead of predicting boxes, making the model 
more flexible and suitable for varying numbers and sizes of 
targets. The DETR decoder identifies candidates through 
cross-attention, interacting with image features, and per-
forms one-to-one supervision by using self-attention to 

filter out redundant candidates. The latter part is similar to 
NMS post-processing, while the former resembles most de-
tectors in the initial stages. 

In the backbone section, RPC-DETR primarily adopts 
the ResNet-18 framework. What sets it apart is the modifi-
cation made at the forefront of the network. To enhance 
model performance, reduce model size, and address gradi-
ent flow issues during retraining, three 3×3 convolutional 
layers are employed instead of the original 7×7 convolu-
tional layer in the ResNet architecture. Using three 3×3 con-
volutional  layers instead of  a  single 7×7 layer reduces  



 

 

 

Figure 4: The RPC-block consists of two components, Repconv and Partialconv. Initially, the in-put is fed into Repconv. 
During the training process, three branches are formed, and Batch Nor-malization operations are applied to the results of 
each branch. The outputs of the branches are then combined through an Add operation, followed by the SiLU activation 
function, yielding the output of the first stage. In Partialconv, the output of the first stage serves as the input for the second 
stage. The input X is divided into two parts, X1 and X2, through a divide operation. After applying a regular 3×3 convolution 
operation to X1 and concatenating the result with X2, the combined output undergoes BN and ReLU operations, resulting 
in the final output of the RPC-block.The three layers of 3×3 convolution have a total of 27 parameters, whereas a single 7×7 
convolutional layer would require 49 parameters. To align with our lightweight improvement goals, we opted for smaller 
convolutional kernels. This not only reduces the parameter count but also diminishes model complexity, thereby lowering 
the risk of overfitting. 
 

parameter count, decreases model complexity, and miti-
gates overfitting risks. Employing consecutive 3×3 convo-
lutional layers enables a larger receptive field and deeper 
non-linearity, enhancing the neural network's capability to 
learn complex patterns and features, thereby improving rep-
resentational power. 

Through consecutive use of the RPC-block {S2, S3, 
S4, S5} for cross-scale feature extraction, the output of S5 
is eventually combined with positional encodings and fed 
into the AIFI module for scale-aware feature interaction. 
Since only scale-aware interaction is applied to S5, AIFI 
further reduces computational overhead. This self-attention 



 

 

operation captures relationships between conceptual enti-
ties in the image, facilitating subsequent modules for object 
detection. Subsequently, the CCFM module fuses features 
extracted from F5 and the previous scales S3 and S4 across 
different scales. The fused output is then input into the IoU-
aware Query Selection, providing encoder features with 
more precise classification and accurate location infor-
mation for object queries, thereby enhancing the accuracy 
of the detector. 

Finally, the output of the IoU-aware Query Selection 
serves as the input to the DETR decoder. In this process, 
DETR introduces class embedding information into the ear-
lier encoder section, seamlessly integrating category infor-
mation into the object detection procedure. This integration 
aids in enhancing the discriminative capability across dif-
ferent classes. 
3.2. RPC-block 

In DETR, the {S2, S3, S4, S5} layers were originally ex-
tracted using ordinary convolutional layers of different 
scales from ResNet-18. In this work, inspired by RepVGG 
and FasterNet, we introduce the RPC-block module to re-
duce redundancy in the convolutional process, aiming to 
lightweight the model while enhancing its effective feature 
extraction capabilities. The specific representation of the 
RPC-block module is illustrated in Figure 4. 

After extensive validation through various experi-
ments, conventional convolutional layers indeed possess 
numerous advantages in neural networks. However, they 
also expose a crucial drawback, namely, subpar feature ex-
traction performance. In RPC, we drew inspiration from the 
design of RepVGG, incorporating different-sized convolu-
tional kernels in distinct branches. The first branch employs 
a 3×3 kernel, the second branch uses a 1×1 kernel, and the 
third branch plays a role similar to the shortcut in ResNet. 
This design enables the model to learn to capture features at 
different scales and levels, enhancing the model's represen-
tational capacity for complex inputs. Following reparame-
terization, the different branches share the same convolu-
tional kernel weights, promoting model generalization and 
reducing the requirements for storage and computational re-
sources. This achieves the goal of lightweight and efficient 
model design. Subsequently, Batch Normalization is ap-
plied to all three branches, and their outputs are combined 
through an Add operation to generate a new output. The 

SiLU activation function is then applied to the output of this 
stage. 

The primary reason for using the SiLU activation func-
tion here is its smooth nature and continuous derivative, fa-
cilitating stable gradient propagation and making the net-
work easier to train. SiLU, as a smooth activation function, 
exhibits adaptability because its shape depends on the input. 
When the input is close to zero, the output of SiLU is ap-
proximately linear, while elsewhere it demonstrates non-
linear behavior. This adaptability helps the network better 
adapt to different input distributions. The specific expres-
sion is as follows: 
 𝐹(𝑥) = 𝑥 ∗ 𝜎(𝑥) (7) 𝜎 = 11 + 𝑒−𝑥 (8) 

 

Figure 5: SiLU (Sigmoid Gated Linear Unit) Activation 
Function 

 

Taking the output after SiLU as the input for the sec-
ond stage Partialconv, the Partialconv layer divides the in-
put X into two parts, X1 and X2. The X1 portion undergoes 
a 3×3 convolution operation for further feature extraction, 
while X2 remains unchanged and serves as a shortcut path. 
After concatenating the convolutional X1 with the original 
X2, the combined output goes through Batch Normalization 
to alleviate the issue of gradient vanishing and ReLU acti-
vation to introduce non-linearity. This process results in the 
output of our RPC-block. In this sequence, the Repconv 
stage is employed to learn features at different scales and 
levels, capturing a broader range of features. 



 

 

Simultaneously, the Partialconv stage reduces redundancy 
in the convolutional process, overcoming frequent memory 
access issues, and forms a simple yet fast and effective 
block. 
 

3.3. Shape-IoU in DETR 

The loss functions in earlier detectors have undergone a se-
ries of improvements based on the original IoU loss, such 
as GIoU, DIoU, CIoU, and others. Undoubtedly, these loss 
functions represent refinements to previous methods, pro-
gressively incorporating considerations for the geometric 
relationship between ground truth (GT) and anchor boxes. 
However, in Shape-IoU, it is argued that these methods 
overlook the intrinsic properties of the bounding box itself, 
such as shape and scale, as illustrated in Figure 6. Conse-
quently, a new generation of loss function, Shape-IoU, has 
been introduced. This loss function focuses on calculating 
loss by considering  

the inherent attributes of the bounding box, including its 
shape and scale. This approach aims to enhance the accu-
racy of regression in detecting objects. 

 

Figure 6 illustrates two sets of examples, denoted as A and 
B, and C and D, respectively. In both sets, intra-group biases 
are consistent. However, due to variations in the GT orien-
tation, there is an inconsistency in the directions of the long 
and short sides. This disparity in orientation results in a sig-
nificant difference in the final IoU values. 

In medical images, the regions of lesions often exhibit 
a multi-angular nature. We believe that Shape-IoU aligns 
well with the loss computation requirements of DETR. 
Therefore, we replaced the original IoU loss function in 
DETR with Shape-IoU. This substitution allows the loss 
function to focus on the shape and scale of the bounding 
box itself, aiming for more precise loss regression. The der-
ivation of the Shape-IoU formula is as follows: 

𝑤𝑤 = 2 × (𝑤𝑔𝑡)𝑠𝑐𝑎𝑙𝑒(𝑤𝑠𝑡)𝑠𝑐𝑎𝑙𝑒 + (ℎ𝑔𝑡)𝑠𝑐𝑎𝑙𝑒 (9) 
ℎℎ = 2 × (ℎ𝑔𝑡)𝑠𝑐𝑎𝑙𝑒(𝑤𝑠𝑡)𝑠𝑐𝑎𝑙𝑒 + (ℎ𝑔𝑡)𝑠𝑐𝑎𝑙𝑒 (10) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠ℎ𝑎𝑝𝑒 = ℎℎ × (𝑥𝑐 − 𝑥𝑐𝑔𝑡)2𝑐2 + 𝑤𝑤 × (𝑦𝑐 − 𝑦𝑐𝑔𝑡)2𝑐2 (11) 
Ω𝑠ℎ𝑎𝑝𝑒 = ∑ (1− 𝑒−𝑤𝑡)𝜃, 𝜃 = 4𝑡=𝑤,ℎ (12) 

{  
  𝑤𝑤 = ℎℎ × |𝑤 − 𝑤𝑔𝑡|max(𝑤,𝑤𝑔𝑡)𝑤ℎ = 𝑤𝑤 × |ℎ − ℎ𝑔𝑡|max(ℎ, ℎ𝑔𝑡) (13) 

𝐿𝑆ℎ𝑎𝑝𝑒−𝐼𝑜𝑈 = 1 − IoU + distance𝑠ℎ𝑎𝑝𝑒 + 0.5 × Ω𝑠ℎ𝑎𝑝𝑒 (14) 
 

The "scale" refers to a scaling factor, typically within 
the range of 0 to 1.5, and is related to the scale of the dataset. 
A smaller target scale corresponds to a larger scale factor. 
The parameters "ww" and "hh" denote the weighting coef-
ficients for the horizontal and vertical directions, respec-
tively, and are associated with the shape of the ground truth 
(GT) bounding box. 
 

4. Experiments 

4.1. Setups 

Dataset. In our experiments, we employed the publicly 
available dataset Br35H as the experimental  

dataset for our RPC-DETR model. This dataset focuses on 
brain tumor imaging. For this study, we utilized a total of 
500 images as the training set and 201 images as the valida-
tion set. 

Implementation Details. We adopted ResNet-18 as the 
backbone network for our RPC-DETR, wherein we re-
placed the original 7×7 convolutions in ResNet with three 
consecutive 3×3 ordinary convolutions. Typically, AIFI(At-
tention-based Intrascale Feature Interaction) module con-
sists of a single Transformer layer, and CCFM(Cross-Scale 
Context Feature Fusion) is comprised of three Repblocks. 

The training strategy and hyperparameters  

closely align with those of RT-DETR. We chose AdamW as 
the optimizer with an initial learning rate of 0.0001, weight 
decay of 0.0001, and a warm-up iteration of 2000 rounds. 
Data augmentation techniques include random color distor-
tions, cropping, flipping, and resizing. The training process 
was conducted over 150 epochs, with a batch size of 8 and  



 

 

Model Params Precision Recall AP50 AP50：95 GFLOPs FPS 

YOLOv5s 7M 0.866 0.856 0.903 0.646 15.8 84.03 

YOLOv5m 20.9M 0.893 0.821 0.909 0.628 47.9 54.05 

YOLOv5l 53..2M 0.896 0.86 0.914 0.629 107.6 49.5 

YOLOv6s 16.3M 0.906 0.911 0.934 0.713 44 108.7 

YOLOv6m 51.9M 0.895 0.865 0.912 0.69 161.1 40.98 

YOLOv6l 110.9M 0.892 0.876 0.912 0.675 391.2 26.88 

YOLOv8s 11.1M 0.938 0.906 0.948 0.732 28.4 78.12 

YOLOv8m 25.8M 0.938 0.897 0.948 0.725 78.7 59.17 

YOLOv8l 43.6M 0.942 0.925 0.953 0.725 164.8 40.49 

RPC-DETR(our) 14M 0.945 0.96 0.96 0.736 42.8 62.3 

Table 1: Comparison with YOLO Series Detectors on the Br35H Public Dataset. Training and inference were conducted using an 
RTX 4060 8G GPU for all models. Each model underwent 150 epochs of training with a consistent input resolution of 640×640. 
The evaluation focuses on assessing both model accuracy and complexity. 
 

4 workers. The experiments were conducted on hardware 
consisting of an AMD Ryzen 9 7940H CPU and a GeForce 
RTX 4060 laptop GPU for both training and testing phases. 
 

4.2. Comparison with other detectors 

In the context of medical image applications, our primary 
focus lies in evaluating the model's accuracy and complex-
ity after training. The goal is to achieve high precision while 
concurrently lightweighting the model to reduce computa-
tional demands. To address this, we conducted a compara-
tive analysis of RPC-DETR with YOLOv5, YOLOv6, and 
YOLOv8's L-network models based on metrics such as 
mAP. 

RPC-DETR ultimately achieved a mAP50 of 0.96 and 
mAP50:95 of 0.736, leading in both accuracy metrics com-
pared to the best-performing YOLOv8l in the YOLO series. 
Regarding model speed, RPC-DETR achieved a frame rate 
of 62.3 FPS in our testing environment (using an RTX 4060 

laptop GPU), ranking just below YOLO's S-level networks. 
However, from a comprehensive perspective, RPC-DETR  

surpassed the accuracy of L-level models while utilizing pa-
rameters falling between YOLO's S and M-level models, 
striking a favorable balance between accuracy and compu-
tational efficiency. 
 

4.3. Ablation study on IoU losses 

We conducted ablation experiments on commonly used loss 
functions, and the relevant data is presented in Table 2. Our 
primary focus lies on mAP 50 and mAP 50:95 to evaluate 
the model's accuracy. Compared to the previously intro-
duced GIoU, DIoU demonstrates a certain improvement in 
all aspects. While CIoU slightly outperforms GIoU and 
DIoU on mAP 50, there is a noticeable decline in perfor-
mance on mAP 50:95. In contrast, Shape-IoU achieves the 
highest accuracy.



 

 

RPC-block Shape-IoU Params AP50 AP50：95 GFLOPs 

  19.9M 0.935 0.732 56.9 

√  14M 0.942 0.734 42.8 

 √ 19.9M 0.947 0.736 56.9 

√ √ 14M 0.96 0.736 42.8 

Table 2 Ablation study on RPC-block and Shape-IoU. The test model is RT-DETR on RTX4060 laptop GPU evaluate. 
 

Model precision recall mAP50 mAP50:95 

RPC-DETR+GIoU 0.944 0.927 0.945 0.733 

RPC-DETR+DIoU 0.945 0.949 0.95 0.732 

RPC-DETR+CIoU 0.944 0.926 0.956 0.713 

RPC-DETR+Shape-IoU 0.945 0.96 0.96 0.736 

Table 3: Ablation experiments on IoU loss functions, with the best results highlighted in bold. The scale parameter for Shape-IoU 
is set to 1. 
 

4.4. Ablation study on RPC-DETR structure 

To validate the effectiveness of the structural improvements 
to the RT-DETR and assess the performance gains, we con-
ducted separate experiments, with a particular focus on the 
primary RPC-block and Shape-IoU loss function. Our key 
metrics of interest include the changes in model parameters, 
mAP50, mAP50:95, and GFLOPs before and after the 
model modifications. The experimental results are pre-
sented in Table 3. 
 

4.5. Result analysis 

Given that RPC-DETR is designed for lesion detection in 
medical images, we should emphasize the model's accuracy 
as a primary consideration, followed by its speed. A light-
weight model for detection can operate in real-time or near-
real-time, making it suitable for clinical scenarios where 

swift diagnostic decisions are required. As shown in Table 
1, our proposed RPC-DETR exhibits excellent performance 
compared to other currently popular detectors. It maintains 
high accuracy while being relatively lightweight and pos-
sessing fast inference speeds. Therefore, we believe this 
aligns well with the requirements of lesion detection in the 
field of medical imaging. 
 

5. Conclusion 

In this study, we focused on the detection of lesions in med-
ical images, attempting to apply an end-to-end detector to 
the screening of abnormalities. Leveraging the capability of 
Transformers in DETR to process global information, our 
approach allows for a comprehensive consideration of the 
interactions between features from different regions in 



 

 

medical images. Inspired by RepVGG and Fasternet, we in-
troduced the RPC-block, conducting further experimental 
exploration on the original end-to-end detector structure of 
DETR. Initially, we utilized reparameterized convolutions 
to learn features at different scales and reduce the parameter 
count in the feature extraction process. Subsequently, we 
employed partial convolutions to eliminate redundant fea-
tures during the convolution process. 

Simultaneously, we reevaluated the bounding box loss 
function used in DETR. To address the diverse shapes and 
scales present in medical images, we introduced a new 
Shape-IoU loss function in the DETR detector framework 
to enhance the accuracy of bounding boxes. As a result, we 
proposed a novel end-to-end detector, RPC-DETR, which 
not only improves accuracy in medical image detection but 
also  

reduces the device requirements for the model. We sin-
cerely hope that our work can provide valuable assistance 
in real-life scenarios and anticipate that this research will 
contribute insights for future endeavors in this field. 
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