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Abstract Ensuring data security and integrity is cru-
cial for achieving the highest level of protection and per-

formance in modern cyber-physical systems (CPS). Au-
thenticated encryption with associated data (AEAD)
is an efficient and secure way to encrypt data that en-

sures confidentiality and authenticity. In this study, we

focus on image encryption using the TinyJAMBU ci-

pher within the AEAD scheme. In this paper, image

encryption using the TinyJAMBU cipher with software

and hardware modeling has been proposed, and image
encryption evaluation over standard matrices has been
performed. The hardware architecture for TinyJAMBU

has been implemented on the Xilinx Virtex-7 FPGA

device. The implementation results are compared with

the realization of other contemporary ciphers that bring

TinyJAMBU-128’s implementation better in terms of

look-up tables (LUTs), slice utilization, and power con-

sumption. In the experimentation phase, the results of

TinyJAMBU-128/192/256 for image encryption have

been compared with existing image encryption tech-

niques. It has been observed that, compared to other

implementations, the proposed image encryption appli-

cation using TinyJAMBU provides better results for
PSNR, MSE, RMSE, and UACI.

Keywords AEAD · Image encryption · Lightweight
cryptography · TinyJAMBU algorithm · Hardware

implementation · FPGAs.
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1 Equal contribution

1 Introduction

In the era of cyber-physical systems (CPS), with cloud

computing, edge computing, and the Internet of Things

(IoT), smart devices have become an integral part of

our lives. They are used to provide essential functions
related to the transmission, storage, and access of var-
ious types of data. IoT devices can be found in a wide
range of applications, from smart homes and wearable

devices to industrial machinery and healthcare devices.

They can potentially improve efficiency, reduce costs,

and improve safety and security in many applications

[19]. The rapid growth and widespread adoption of IoT
devices in various industries and regions have signifi-
cantly affected the global economy [27]. In these tech-

nology enablers, data security is essential for which

lightweight cryptography is deployed. Lightweight ci-

phers are used, especially when the form factors of the

devices are smaller and more portable [26].

The significance of lightweight image encryption has

grown due to the widespread use of image-based appli-

Fig. 1: Image authentication: The vital need in image
encryption.
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cations in resource-constrained environments, including

mobile devices and IoT applications [16]. These devices

typically have limited processing power, memory, and

energy resources, making it difficult to perform com-

putationally intensive encryption and decryption oper-

ations. Consequently, the adoption of lightweight im-

age encryption techniques becomes critical for ensuring

the security of image data in IoT devices (refer Fig.
1). Images often contain sensitive information, such as
personal or confidential data, which requires protection

against unauthorized access or disclosure. Lightweight

image encryption offers a viable solution for securing

this information while minimizing the resource require-

ments of the encryption/decryption process.

The proposed work provides high-level modeling,

hardware modeling, and associated analyses for AEAD-

based TinyJAMBU lightweight cipher for image en-

cryption. Image encryption is performed on 128/192/256-

bit of the TinyJAMBU cipher. In addition, the results

are compared in related lightweight image encryption

works. When considering the favorable results of im-

age encryption for TinyJAMBU, its hardware architec-

ture is proposed that works with 64-bit input plain-

text and associated data. The cipher is implemented on

the Xilinx Virtex-7 485t field-programmable gate array

(FPGA) device, resulting in better resource utilization

and power consumption compared to the existing con-

temporary designs of lightweight ciphers.
Article contribution: The main contributions of this

work in terms of image encryption and the FPGA im-
plementation of TinyJAMBU-128 are as follows:

– To meet the pressing security requirements of im-
ages, a lightweight AEAD-based TinyJAMBU has

been utilized.

– High-level modeling for TinyJAMBU to implement
a lightweight image encryption scheme.

– The evaluation of the image encryption parameters
has been analyzed for the three variants of Tiny-
JAMBU and compared with the existing image en-
cryption techniques. TinyJAMBU has shown 7.38%,

16.15%, 0.85%, 11.53%, and 6.88% improved results

in terms of peak signal-to-noise ratio (PSNR), mean

square error (MSE), root mean square error (RMSE),

unified average change intensity (UACI), etc.
– Hardware architecture of TinyJAMBU-128 algorithm

for lightweight image encryption has been proposed.

– The FPGA implementation of the cipher has been

carried out and the results are compared with the

implementation of other algorithms. The proposed

work provides better results in terms of LUT uti-

lization, slice utilization, and power consumption.

The rest of the paper is divided into eight sections

and the purpose of each section is discussed below. Sec-

tion 2 discusses the related work, followed by Section 3

discusses the details of the TinyJAMBU-128 cipher and
its pseudocode. The software modeling of TinyJAMBU-
based lightweight image encryption is explained in Sec-
tion 4. Section 5 provides the proposed hardware de-

sign of TinyJAMBU for image encryption. Experimen-

tal setup and related results of the proposed design and

its lightweight image encryption application are pro-

vided in Section 6. In Section 7, the article is concluded.

2 Related Work

Recent studies in cryptography have shown a significant
focus on lightweight AEAD-based ciphers. The confi-
dentiality and integrity of the data that are being trans-

mitted are adequately addressed by the AEAD mode

of operation. In particular, in the context of resource-

constrained environments of lightweight cryptography,

this mode of operation becomes beneficial. Modern

lightweight ciphers such as the low-latency lightweight
block cipher (LLLWBC) [37], GFRX [38], and DBST
[32], which is a lightweight block cipher employing dy-

namic S-box, have emerged as notable advancements in

the field. LLLWBC is a low-latency block cipher that

employs a generalized variant of the Feistel structure,

namely extended GFS. The GFRX algorithm employs

an add-rotate XOR (ARX) structure in combination

with distinct non-linear components to address all the

branches of a generalized Feistel structure, thus enhanc-

ing the diffusion effect with fewer rounds. DBST is con-

structed using a generalized Feistel variant structure

that combines linear and non-linear transformations. It

operates on 128-bit blocks and utilizes a 64-bit key size.

Table 1 presents fundamentals for the NIST finalists

of lightweight ciphers. Lynx [14] is one of the recently

proposed families of lightweight AEAD-based block ci-

phers. It comprises members of the 1-pass and rate-

1 variants, providing strong integrity security against

birthday-bound attacks in nonce-respecting, nonce- mis-

use, and related key scenarios. Naito et al. introduced
SAEB [24], which uses XOR exclusively for block en-
cryption. The SAEB cipher utilizes a state size that

is equal to the block size, enabling the processing of a

single data block at a time.

The TinyJAMBU cipher has gained attention in re-
cent years for its suitability in various applications and

has been implemented on hardware platforms. Wu et al.
in [31] aimed to design a TinyJAMBU cipher optimized
for devices where a secret key is stored. The inability

to control state bits leads to better authentication secu-

rity. TinyJAMBU-128 uses a 128-bit keyed permutation

with a message block size of 32-bit, and when the nonce

is reused, the attacker’s forgery advantage reduces to
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Table 1: Specifications for NIST finalist of lightweight ciphers [8].

Algorithm Type Variant(s)
Primary
Version

State
(Bits)

Key
(Bits)

Mode
Rate/Block

(Bits)
Tag

(Bits)
Security
(Bits)

ASCON [10] Sponge
ASCON-128 ASCON-p 320 128Duplex 64 128 128
ASCON-128a ASCON-p 320 128Duplex 128 128 128

ELEPHANT [7] Sponge
Jumbo Spongent 176 128Elephant 176 64 127
Dambo Spongent 160 128Elephant 160 64 112
Delirium Keccak 200 128Elephant 176 128 127

GIFT-COFB [4] Block GIFT-COFB GIFT-128 192 128COFB 128 128 128
GRAIN-128
AEAD [15]

StreamGRAIN-128 AEAD - 256 128 - 1 64 128

ISAP [9] Sponge

ISAP-A-128 ASCON-p 320 128 ISAP 64 128 128
ISAP-K-128 Keccak 400 128 ISAP 144 128 128
ISAP-K-128A Keccak 400 128 ISAP 144 128 128
ISAP-A-128A ASCON-p 320 128 ISAP 64 128 128

PHOTON-
Beetle [5]

Sponge
PHOTON-Beetle-
AEAD [128]

PHOTON-256 256 128Beetle 128 256 121

PHOTON-Beetle-
AEAD

PHOTON-256 256 128Beetle 32 256 128

Romulus [20] Block
Romulus-M SKINNY-128-384 384 128COFB 128 128 128
Romulus-N SKINNY-128-384 384 128COFB 128 128 128
Romulus-T SKINNY-128-384 384 128COFB 128 128 128

SPARKLE [6] Sponge

SCHWAEMM256-128SPARKLE 384 128SPARKLE 256 128 120
SCHWAEMM128-128SPARKLE 256 128SPARKLE 128 128 120
SCHWAEMM192-192SPARKLE 384 192SPARKLE 192 192 184
SCHWAEMM256-256SPARKLE 512 256SPARKLE 256 256 248

TinyJAMBU [31] SpongeTinyJAMBU TinyJAMBU 128 128TinyJAMBU 32 64 128
Xoodyak [2] SpongeXoodyak Xoodoo 384 128Cyclist 352 128 128

less than 2−15, adding to the strong authentication se-
curity. The hardware area is significantly reduced with

the constant use of fixed keys. Efficient input loading
on the hardware is another important feature discussed
in [31]. It uses at least 1024 rounds to encrypt a 32-

bit plain text block, making it impossible to recover

the key by differential and linear cryptanalysis with a

probability smaller than 2−64.

AEAD-based lightweight ciphers have numerous ap-

plications in the protection of data transmission, stor-

age, and access control. Bakhs-handeh et al. [3] pro-

posed an authenticated image encryption scheme based

on memory cellular automata and chaotic maps that

utilizes a permutation-diffusion architecture. The method

is designed to provide a high level of security through

its diffusion mechanism and offers computational ef-

ficiency and ease of implementation. Another chaotic

map, together with the rapid image encryption and au-

thentication scheme based on cellular automata, is pro-

posed in [34], which presents a keyed hash function that

generates a 128-bit hash value from the plain image

and secret hash keys. The hash value serves as the en-

cryption and decryption key, whereas secret hash keys

are utilized to authenticate the decrypted image. Thus,

several lightweight AEAD-based ciphers have been pro-

posed for image encryption. To the best of our knowl-

edge, none of the mentioned proposals have investigated

the utilization of the TinyJAMBU cipher specifically

for image security applications. In this paper, we ex-

plore the potential suitability of TinyJAMBU for image

encryption applications. We extensively evaluated the
TinyJAMBU cipher with all its variants for use in image
encryption. The experimental results indicate that it is
useful among existing AEAD-based ciphers, in particu-

lar, for image encryption. It performed well on the basis

of various evaluation parameters and histogram analy-

sis compared to other image encryption techniques.

Abdulgadir et al. [1] have provided lightweight side-

channel resistant implementations of TinyJAMBU for

hardware security applications considering the issue of

protecting intellectual property (IP) from theft. This

was done with the aim of ensuring that the area and

power consumption remained significantly lower than

current standards, such as AES-GCM. A TinyJAMBU
software implementation on a Siemens S7-1200 program-
mable logic controller has been given by [11]. The focus
here was on assessing the execution speed and memory

usage of each variant of the cipher on the industrial con-

troller. In [21], a TinyJAMBU software implementation

is performed on the ARM Cortex M0 and evaluated in

terms of three performance metrics: latency, through-
put, and memory usage. The impact of the length of
the input data and the parameters on implementation
performance was also discussed. Existing research on

lightweight image encryption has focused on develop-
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ing new algorithms and evaluating their performance

on software platforms.

The implementation of these algorithms on hard-
ware platforms, such as FPGAs, has received limited

contribution. This is a significant gap in research, as
hardware implementation offers several advantages over
software implementation, including improved performance,

reduced power consumption, and increased security. Ad-

ditionally, efficient image encryption techniques for IoT

devices that have limited computational resources are

needed. Therefore, there is a strong case for research-

ing the hardware implementation of lightweight image

encryption algorithms, such as TinyJAMBU and eval-

uating their effectiveness in securing images in IoT de-

vices. In the proposed work, we address this gap and

also implemented TinyJAMBU on a hardware platform

and its use for image encryption applications.

3 TinyJAMBU-128 Cipher

The TinyJAMBU cipher algorithm is a lightweight cryp-
tographic algorithm that operates on a 64-bit block size
and a key size of 128/192/256 bits. It uses a permutation-
based design with a round function consisting of substi-

tution and linear diffusion layers. The key is expanded

using a key scheduling algorithm that generates round

keys for each round of cipher. TinyJAMBU also incor-

porates the JAMBU mode of operation for authenti-
cated nonce-based encryption. The JAMBU mode uses
a nonce as an input, providing both confidentiality and
plaintext authenticity. The cipher encrypts plaintext in

a series of blocks, each combined with previous block’s

ciphertext using a message authentication code (MAC)

function. This function uses a secret key to generate a

tag that is appended to the ciphertext. TinyJAMBU is
designed to be secure against known attacks, including
differential and linear attacks.

3.1 The Keyed Permutation

The keyed permutation in TinyJAMBU is the core op-

eration that provides confusion and diffusion properties

to the algorithm. It is a permutation that takes input, a

128-bit state and a 128-bit key and produces as output

a new state. The permutation round consists of four
steps, each of which applies a set of operations that in-
clude bitwise XOR, bit rotation, substitution using a

nonlinear function, and a linear mixing operation. Al-

gorithm 1 depicts the working of TinyJAMBU cipher.

The basis of the algorithm lies in a nonlinear feedback

shift register (NFSR) of 128-bit that is used to update

the state [31] as shown in line 2 to 6.

Algorithm 1: TinyJAMBU-128 Algorithm

Input: N : 96-bit nonce, K : 128-bit key, AD:
associated data of length adlen, M : plaintext
of length mlen, F : 3-bit frameBits

Output: C : cipher text of length mlen, T : 64-bit
authentication tag

1 Function state update(S, K, N)
2 for i = 1 to N do
3 feedback ← s0 ⊕ s47 (∼ (s70&s85)) ⊕ s91 ⊕

Kimodklen

4 for j = 0 to 126 do

5 sj ← sj+1

6 s127 ← feedback

/* Key setup */

7 {s0, s1,....,s127} ← {0, 0,....,0}
8 stateUpdate(S, K, 1024)

/* Nonce setup */

9 {f0, f1, f2} ← {1, 0 ,0}
10 for j = 0 to 2 do
11 s36..38 ← s36..38 ⊕ f0..2
12 stateUpdate(S, K, 640)
13 s96..127 ← s96..127 ⊕ n32j..32j+31

/* Processing the full blocks of AD */

14 {f0, f1, f2} ← {1, 1 ,0}
15 for j = 0 to ⌊ adlen/32 ⌋ do
16 s36..38 ← s36..38 ⊕ f0..2
17 stateUpdate(S, K, 640)
18 s96..127 ← s96..127 ⊕ ad32j..32j+31

/* Processing the partial blocks of AD */

19 if adlen mod 32 0 then
20 s36...38 ← s36...38 ⊕ f0..2
21 stateUpdate(S, K, 640)
22 lenp ← adlen mod 32
23 startp ←adlen-lenp
24 s96..96+lenp−1 ← s96..96+lenp−1 ⊕ adstartp...adlen−1

25 s32..33 ← s32..33 ⊕ (lenp/8)

26 else
27 go to Next Step

/* Processing the full blocks of plaintext */

28 {f0, f1, f2} ← {1, 0 ,1}
29 for j = 0 to ⌊ mlen/32 ⌋ do
30 s36..38 ← s36···38 ⊕ f0···2
31 stateUpdate(S, K, 1024)
32 s96..127 ← s96..127 ⊕ m32j..32j+31

33 c32j..32j+31 ← s64..95 ⊕ m32j..32j+31

/* Processing partial blocks of plaintext */

34 if mlen mod 32 > 0 then

35 s36..38 ← s36..38 ⊕ f0..2
36 stateUpdate(S, K, 1024)
37 lenp ← mlen mod 32
38 startp ← mlen - lenp
39 s96..96+lenp−1 ← s96..96+lenp−1 ⊕ mstartp..mlen−1

40 cstartp..mlen−1 ← s64..64+lenp−1 ⊕ mstartp..mlen−1

41 s32..33 ← s32..33 ⊕ (lenp/8)

42 else

43 go to Algorithm 2
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3.2 Initialization

The first step is initialization, which is shown in Algo-
rithm 1 from lines 7 to 13. It has been divided into two

steps: the key and the nonce setup. The setup of keys
involves a simple reset of the state followed by updating
the state using NFSR for 1024 rounds (P1024). For three

consecutive iterations, the frame bits in the message

are set to a value of ‘001’. During each iteration, the
state bits 36 to 38 are XORed with the corresponding
frame bit following the P640 permutation. Additionally,

the state bits from 96 to 127 and are XORed with the
corresponding nonce bits during the nonce setup step.
This process is performed iteratively to ensure that the
output of function is unpredictable and resistant to dif-

ferential cryptanalysis.

3.3 Processing of the Associated Data

The processing of the associated data step is shown in

Algorithm 1 from lines 14 to 18. AD= AD0...adlen−1

= d0,..., dadlen−1 are processed block by block, where

each block is 32 bits and adlen is the number of bits of

the total associated data. Depending on the number of

blocks of AD, the following steps occur: XORing state

bits 36 to 38 with the corresponding frame bits set to

‘011’, P640 permutation, and XORing state bits 96 to

127 with the corresponding AD bits. If the last block of

associated data is not complete, the partial block pro-

cessing steps are performed as specified in Algorithm

1. These steps involve XORing of frame bits with the

remaining bits of the incomplete block, followed by the

P640 permutation, and then updating the state twice
using functions that depend on length of the associated

data, adlen, and the modulus of adlen with 32.

3.4 Processing of the Plaintext

In Algorithm 1, the processing of the entire block of the

plaintext is shown from lines 28 to 33. M = M0...mlen−1

= m0...madlen−1 are processed block by block, where

each block is of 32 bits andmlen is the number of bits in

the total plain text message. Depending on the number

of blocks in M, many rounds of the following steps take

place starting with, XORing state bits 35 to 38 with the
corresponding frame bits set to ‘101’, P1024 and XOR-

ing state bits 96 to 127 with the corresponding bits M

following to generate the corresponding 32-bit of cipher
text. Similarly to the processing of the associated data
partial block, the partial block, if any of the plaintext

is processed through similar steps, ultimately generates

the last 32 bits of the plaintext message.

3.5 Finalization

The Algorithm 2 provides the finalization step. This
step generates the authentication tag required for the
authenticity check. When the message encryption is

complete, the values of FrameBits are set to ‘111’. This

triggers the XOR operation of the state bits numbered

36 to 38 with FrameBits, followed by the P1024 permu-

tation. The resulting state bits numbered 64 to 95 are

then extracted and used as the lower 32 bits of the au-

thentication tag. The same XOR operation is performed

again, followed by the P640 permutation to generate the

upper 32 bits of the authentication tag.

Algorithm 2: TinyJAMBU Finalization Stage

1 {f0, f1, f2} ← {1, 1, 1}
2 s36..38 ← s36..38 ⊕ f0..2
3 state update(S, K, 1024)
4 T36..38 ← s64..95
5 s36..38 ← s36..38 ⊕ f0..2
6 state update(S, K, 640)
7 T32..63 ← s64..95

4 A Software Modeling of TinyJAMBU-based

Lightweight Image Encryption

The high-level modeling and associated software im-
plementation of TinyJAMBU 128/192/256-bit variants
for image encryption are shown in Fig. 2. The results

are analyzed using various evaluation parameters and

histogram analysis of the ciphered images. A software

model of the AEAD-based TinyJAMBU algorithm for

lightweight image encryption involves creating a math-

ematical representation or simulation of the encryp-

tion process using software tools. The model consid-

ers specific steps and operations of the TinyJAMBU
algorithm, including key generation, initialization, as-
sociated data processing, plaintext processing, and fi-
nalization. It also incorporates the properties and char-

acteristics of TinyJAMBU, such as its lightweight de-

sign, high security, and efficiency. The software model

can be used to analyze and evaluate the performance

and security of TinyJAMBU-based image encryption
scheme. It can help to assess the resistance of the en-
cryption scheme to various attacks. The model can also
be used to measure computational overhead, memory

requirements, and algorithm processing time. Also, the

software model can help develop practical applications

of TinyJAMBU-based lightweight image encryption. It

can be used to create software tools to encrypt images

using TinyJAMBU on different platforms.

In this, the channel of an image has been extracted

from an RGB image, and each channel is stored sepa-

rately. For each channel, the decimal equivalent array
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Fig. 2: Encryption of a 512× 512 image using TinyJAMBU-128 cipher.

of pixels has been extracted, and its hex form has been

created. Then, this array was passed through a Tiny-

JAMBU algorithm using flattened matrices, and the ci-

phered version was extracted. The image reconstruction

from this array has been carried out for all channels,

and a ciphered image of the input has been generated
using the TinyJAMBU-128 algorithm. After encrypting
an image using the TinyJAMBU-128 algorithm or any

other encryption algorithm, it is important to perform

a security analysis of the encrypted image to assess its

security and evaluate its resistance to potential attacks.

Security analysis of an encrypted image involves evalu-

ating the level of protection provided by the encryption
algorithm and its parameters.

5 Hardware Modeling of TinyJAMBU-128

The need of hardware for lightweight image encryp-

tion arises due to the high computational complexity

involved in encryption algorithms. As the size of the

image increases, the computational requirements of the

encryption algorithm also increase. The hardware im-

plementation of Tiny-JAMBU-128 is faster and more

efficient than the software implementation, making it

suitable for real-time image encryption applications. It

can also be used in resource-constrained IoT devices,

where lightweight encryption algorithms are preferred.

It involves designing a hardware architecture based on

the algorithm’s specifications and implementing it on
FPGA or other hardware devices. The hardware im-
plementation of TinyJAMBU-128 can be optimized to
reduce power consumption, increase performance, and

minimize the hardware resources.

Hardware-based image encryption provides faster

and more efficient encryption compared to software-

based approaches. Therefore, in this paper, we have pro-

posed a hardware implementation for the TinyJAMBU-

128 bit variant following the algorithm described in Sec-

tion 3. Here, a TinyJAMBU-128 architecture with a

controller is proposed for 64-bit plaintext and associ-

ated data input. The latency of the encryption opera-
tion is 7955 cycles due to the usage of keyed permu-
tation. Thus, it involves 640 and 1024 rounds of per-
mutations at various steps in the encryption. The to-

tal latency consists of 1025 cycles for key setup, 1926

cycles for nonce setup, and 1284, 2054, and 1666 cy-

cles for processing the full blocks of the associated data

step, processing the full blocks of the plaintext step,
and the finalization step, respectively. However, similar
steps are performed for the 96-bit and 256-bit variants.
The proposed hardware architecture and controller for

64-bit input TinyJAMBU-128 are discussed in Section

5.1 and Section 5.2.

5.1 Hardware Architecture for TinyJAMBU-128

The hardware architecture for TinyJAMBU-128 mainly

consists of four steps: initialization, associated data pro-

cessing, plaintext processing, and finalization. A custom

controller is used to provide the control signals to the

various modules of the architecture. The proposed ar-

chitecture of TinyJAMBU-128 is shown in Fig. 3. The
detailed operation of the architecture is as follows.

5.1.1 Initialization

In this step, the key configuration is performed, which

consists of resetting ‘State Update’ module. This is fol-

lowed by 1024 rounds of state update, in which an 11-

bit counter tracks the current round. Once the ‘State
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Update’ module completes all 1024 rounds, the ‘done’

flag is set to ‘1’, signaling the system to proceed to the

next step. After this, nonce setup is done which com-

prises three distinct sub-steps: XOR of frame bits with

state value, state update, and XORed output. First, the

frame bits are XORed, which are distinct in each step

of the process, as illustrated in Algorithm 1. The three

4×1 multiplexers (muxes) are utilized, and the frame
bits are XORed with the state value and subsequently

update the state from 36 to 38, as shown in Fig. 3. Then,

the state is updated by 640 rounds, and the state bits

are XORed with a 32-bit nonce value. A universal mux

is used to select 32 bits of the plaintext message, 32 bits

of associated data, and 32 bits of a nonce. Finally, the

resulted XOR output is given as one of the inputs to

the corresponding 2×1 mux and the other input is the

unupdated state value from bits 96 to 127.

5.1.2 Processing of the Associated Data

In this step, processing of all associated data blocks
has been carried out using hardware modules similar to
the initialization setup of the nonce, and if adlen mod

32 > 0, then different steps are followed to process the

partial blocks. Also, XORing of the state 96–127 bits
with associated data is done. It is contrast to XORing
with the nonce as in the previous step, along with the

change in frame bit value.

5.1.3 Processing of the Plaintext Message

The process consists of two divisions, one for processing
full blocks of plaintext and the other for processing par-

tial blocks of plaintext, identified by the flag of mlen

mod 32 > 0. For full block processing, similar steps

as in the nonce setup are followed with a change in

the third step. The cipher text is then generated and

stored in a file in the register, which is mapped using

a 4×1 mux. If the flag of mlen modifies 32 > 0, then
several different steps are performed. Similarly to the

previous step, partial block processing is unnecessary in
this design case, as the hardware is designed for 64-bit
input message size and 64-bit associated data, resulting

in two full blocks.

5.1.4 Finalization

The finalization process is performed directly after com-

pleting the plaintext processing. In this, the normal

state bits are updated similar to the nonce setup and

the associated data processing steps. This is followed

by 1024 rounds of state updates to generate the first 32

bits of the tag, which are then stored in the same reg-

ister file. Then, further steps are performed to generate

the next 32 bits of the tag, which are also stored in the

same register file. Finally, the sender-side encryption
process is completed. The final output is 64-bit cipher
bits and 64-bit authentication tag bits.

5.2 Design of a Controller

A controller for the proposed architecture is shown in
Fig. 4. In hardware architecture, the term ‘state’ refers
to the 128-bit value of the ‘State Update’ hardware

module, as shown in Fig. 3. The finite state machine

(FSM) state (FSM state) which is distinct from ‘state’,

refers to the current state of the controller.

5.2.1 Initialization

When the state rst signal is set to ‘1’, the 128-bit state
is initialized to ‘0’ and P1024 is applied to the state

for 1024 rounds. The bit11cntT ill control signal loads

the 11-bit counter to count 1024 rounds, while en 11bit

enables the counting in the datapath to count until
the flag bit11 countdone is set to ‘1’, which changes

FSM state to FrameBitsXOR. For the nonce setup,
the frame bits, ‘001’ are set using f sel and output of

the XOR operation is written back into the 36-38 bits

of the state using S36to38 sel and reg write pin of the

‘State Update’ module. Similarly, the P640 operation

is applied, and when bit11 countdone is set to ‘1’, the
FSM state changes to NonceXOR, indicating that the

8×1 mux in the datapath should select the 32 bits of
nonce in every loop using Snon ad m sel select line.

5.2.2 Processing the Associated Data

Once the three loops of the nonce setup step are com-

plete, FSM state changes FrameBitsXOR for the pro-

cessing of associated data. In this step, the frame bit
value is set to ‘011’ by setting f sel to ‘1’. The ad-

ditional control signals are similar to FrameBitsXOR
FSM state in the previous step. This step is followed

by the P640 and the ADXOR state, with control signals

similar to the initialization step. However, in ADXOR

FSM state, XOR of 32 bits of the associated data se-

lected using 8 × 1 mux of the datapath is performed
with the corresponding 96-127 state bits for each loop.

This step has two loops instead of three as in the initial-

ization step, as the input associated data are 64 bits.

5.2.3 Processing of Plaintext

In the previous step, after the two loops have been com-

pleted, f sel is set to ‘2’ for the frame bits, which is

‘101’ for this step. Similar control signals are used as in
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Fig. 3: The proposed hardware architecture of 64-bit TinyJAMBU-128.

FrameBitsXOR FSM state. P1024 is executed by set-

ting the 11-bit counter to ‘1024’. When bit11 countdone

is flagged, the state changes to MsgXOR, which is the

XOR of the 32 bits of plaintext message with the state

bits, 96–127. For this, Snon ad m sel is set to ‘6’ and

‘7’ for each loop of this step. In the last state of each
loop, the 32 bits of ciphertext are stored in Reg file of

the datapath. Another control signal, Sreg add sel, is

set to ‘0’ and ‘1’ for each loop, addressing the Reg file

to store the 32 bits of a ciphertext in two loops. The

two loops are used due to the 64-bit input Msg of the

proposed architecture.

5.2.4 Finalization

After two loops of the previous step, FSM state changes

to FrameBitsXOR of the finalization step. Frame bits

are ‘111’, and f sel is set to ‘3’. The controller releases

signals similar to those in the FrameBitsXOR step, fol-

lowed by signals to execute P1024. When bit11 countdone

is flagged, FSM state changes to store the first 32 bits
of the authentication tag generated as 64–95 state bits

in Reg file of the datapath. For this, sreg add sel is

set to ‘3’ to set the destination address of Reg file.

Another FrameBitsXOR step and P640 follow this step.

Finally, the remaining 32 bits of tag are generated as

64–95 state bits and stored in Reg file in storing tag
FSM state with the destination address set by sreg add sel.

6 Experimental Setup, Results, and

Comparison

To validate the TinyJAMBU encryption technique, nu-

merical simulations, and tests are performed using MAT-

LAB, C++, and Python languages. The test images

used in the experiment are obtained from the USC-SIPI

image database [30]. The development is carried out on

an Intel Core i7-10750H CPU@5.00GHz ×16 processor

and 32GB of RAM. The FPGA implementation has
been done using Xilinx’s Vivado v2022.1 in Verilog on

the Xilinx Virtex-7 FPGA device.

6.1 High-level Modeling Results

We have performed the matrices on the TinyJAMBU

algorithm and compared the results with the existing

related literature. The evaluation results performed on

the three TinyJAMBU variants are collectively tabu-

lated in Table 2. Based on the results of the PSNR,

MSE, RMSE, and NPCR values for the three ciphered

images, it is observed that for the 256-bit variant, it

gives better results. For entropy and UACI, the 128-bit

variant performs better. Taking into account the ma-

jority of evaluation parameters that favor the 256-bit

variant, the TinyJAMBU-256 variant is used for further

comparison with other image encryption techniques.
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Fig. 4: Controller for the 64-bit input TinyJAMBU-128.

Table 2: A comparison of the image evaluation parameters for all variants of TinyJAMBU.

Parameters
TinyJAMBU-128 TinyJAMBU-192 TinyJAMBU-256

Lenna Pepper Aeroplane Lenna Pepper Aeroplane Lenna Pepper Aeroplane
Entropy 7.9590 7.9589 7.9585 7.9588 7.9585 7.9579 7.9590 7.9587 7.9590
PSNR 8.6001 8.0973 7.9649 8.5954 8.1024 7.9603 8.5877 8.0890 7.9542
MSE 8975.6787 10077.4295 10389.3806 8985.2949 10065.4359 10400.2373 9001.2945 10096.6990 10414.9395
RMSE 94.7400 100.3864 101.9283 94.7907 100.3266 101.9815 94.8751 100.4823 102.0536
NPCR 99.5337 99.5663 99.6143 99.5354 99.5689 99.6089 99.5381 99.5587 99.6167
UACI 29.6180 24.0427 28.4108 29.6408 24.0846 28.4979 29.7267 24.0762 28.5852

The comparison of the evaluation parameters with

existing image encryption techniques using different cryp-

tographic algorithms is given in Table 3. This show-

cases the proposed image encryption algorithm has bet-

ter results in terms of entropy, PSNR, MSE, RMSE,

NPCR, and UACI with respect to the existing archi-
tectures. Compared to [28], the proposed encryption
techniques show 70.33% and 32.05% better PSNR and
MSE; UACI value is improved by 11.53% compared to

[18] and 5.96% compared to [36]; better PSNR and MSE

values of 11.10% and 19.5226% with respect to [29].

6.1.1 Histogram Analysis

Histogram analysis is used in image encryption to eval-

uate the statistical distribution of pixel values in both

the original and the encrypted image. It helps to ensure

that the encryption process does not significantly alter

the distribution of the pixel values, which could result

in a distorted or unrecognizable image. Histograms of

the original and encrypted images obtained by running

the three variants of TinyJAMBU on the three selected

images are shown in Fig. 5. A flat profile in the en-

crypted histogram means that the encrypted image has
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Table 3: A comparison of the image evaluation parameters with respect to other designs.

Image
Evaluation
Parameter

[18] [23] [12] [35] [17] [36] [28] [39] [29] This work

Lenna

Entropy 7.9973 7.9989 7.9991 7.4461 7.4455 7.9664 7.9992 - - 7.9590
PSNR - 45.6210 8.6403 - - - 28.9500 9.5400 9.5600 8.5877
MSE - 8319.0817 8893.0400 - - - 6816.1536 7229.0000 7244.0000 9001.2945
MSE - 91.2090 - - - - 82.5600 - - 94.8751
NPCR 99.6100 99.5870 - 99.8300 99.6100 99.6100 - - - 99.5381
UACI 33.4800 30.7010 - 30.2800 30.2800 27.8500 - - - 29.6180

Pepper

Entropy 7.9972 7.9989 7.9991 - - - - - - 7.9589
PSNR - 45.7160 8.1030 - - - 28.4200 8.9900 8.9100 8.0890
MSE - 8692.2060 10064.2000 - - - 8717.9570 8205.0000 8431.0000 10096.6990
RMSE - 93.2320 - - - - 93.3700 - - 100.4823
NPCR 99.6100 99.6010 - - - - - - - 99.5689
UACI - 31.0360 - - - - - - - 24.0427

Original Image TinyJAMBU-128 TinyJAMBU-192 TinyJAMBU-256

Lenna

Pepper

Airplane

Fig. 5: Comparisons of histograms for original and encrypted images for TinyJAMBU variants.

a uniformly distributed pixel intensity. In other words,

each value of pixels in the encrypted image has an equal
probability of occurring. This is desirable in image en-
cryption, as it makes it difficult for an attacker to dis-

cern meaningful information from the encrypted image.

Additionally, a flat profile can indicate that encryption

process has succeeded in disguising the original image

and making it difficult to recover the original content.

6.2 Hardware Implementation Results

The hardware implementation results of the proposed

architecture are compared with other hardware imple-

mentations performed on the Virtex-7 FPGA device.

The proposed architecture utilizes 0.08%, 0.02%, and

0.14% of LUTs, flip-flops, and slices, respectively. A
comparison of Fmax, LUTs, flip-flops, slices, and dy-

Table 4: A comparison of the Virtex-7 FPGA imple-
mentations with existing techniques.

Parameters [22] [25] [33] [13] This Work

Fmax (MHz) 479.00 57.94 39.50 374.00 128.15
LUTs 760 492 455 1614 258
Flip-flops 128 - 89 - 144
Slices 345 - 128 1355 109
Power (mW) 185 143 16 - 18

namic power of the proposed TinyJAMBU-128 with ex-
isting architectures are given in Table 4.

Compared to the existing architectures, the utiliza-

tion of LUTs and slices is reduced by 66.05% and 68.40%

with respect to [22], 84.01% and 91.95% with respect to

[13], 43.29% and 14.84% with respect to [33] and 47.56%

with respect to [25]. The proposed TinyJAMBU-128

architecture has maximum frequency, Fmax of 128.15
MHz, which is better than [33] and [25]. Compared to
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the existing architectures implemented on the Virtex-7

FPGA device, the power usage of the proposed work

is reduced by 87.41% with respect to [25] and 90.27%

with respect to [22].

7 Conclusion

In this paper, high-level modeling is presented for a
lightweight AEAD-based cipher, TinyJAMBU to en-

crypt images. An in-depth evaluation of the image en-
cryption performance of TinyJAMBU is conducted across
its three variants through a comprehensive analysis of

evaluation parameters and histogram analysis. Com-

pared to [28]he proposed encryption techniques demon-

strate significant improvements of 70.33% and 32.05%

higher PSNR and MSE values, respectively. Further-

more, the UACI value is enhanced by 11.53% compared

to [18] and 5.96% compared to [36]. Additionally, the

PSNR and MSE values show improvements of 11.10%

and 19.5226%, compared to [29]. Based on the assess-

ment of TinyJAMBU’s image encryption performance,

an hardware architecture for TinyJAMBU-128 with 64-

bit input has been proposed. An implementation of

the proposed architecture has been performed on the

Virtex-7 FPGA device, illustrating better utilization of

LUT, slices and power consumption than existing archi-

tectures. The LUTs and slices are reduced by 66.05%

and 68.40% with respect to [22], 84.01% and 91.95%

with respect to [13], 43.29% and 14.84% with respect

to [33] and 47.56% with respect to [25]. The power con-
sumption is reduced by 87.41% with respect to [25] and
90.27% with respect to [22]. The findings of this study
highlight the potential of TinyJAMBU for edge-node-

based secure image encryption applications.
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