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Abstract
Accurate segmentation of specific organ from computed tomography (CT) scans is a basic and crucial task for
accurate diagnosis and treatment. To avoid time-consuming manual optimization and to help physicians distin-
guish diseases, an automatic organ segmentation framework is presented. The framework utilized convolution
neural networks (CNN) to classify pixels. To reduce the redundant inputs, the simple linear iterative clustering
(SLIC) of super-pixels and the support vector machine (SVM) classifier are introduced. To establish the perfect
boundary of organs in one-pixel-level, the pixels need to be classified step-by-step. First, the SLIC is used to
cut an image into grids and extract respective digital signatures. Next, the signature is classified by the SVM,
and the rough edges are acquired. Finally, a precise boundary is obtained by the CNN, which is based on
patches around each pixel-point. The framework is applied to abdominal CT scans of livers and high-resolution
computed tomography (HRCT) scans of lungs. The experimental CT scans are derived from two public datasets
(Sliver 07 and a Chinese local dataset). Experimental results show that the proposed method can precisely and
efficiently detect the organs. This method consumes 38 s/slice for liver segmentation. The Dice coefficient of
the liver segmentation results reaches to 97.43%. For lung segmentation, the Dice coefficient is 97.93%. This
finding demonstrates that the proposed framework is a favorable method for lung segmentation of HRCT scans.
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Introduction

CT is one of the most significant medical imaging technolo-
gies to assess the human body. Human CTscans contain abun-
dant information, such as complex soft-tissues and vascular
and multiple organs, including the liver, kidney, gallbladder,
lung, and spleen. For computer-aided diagnosis, segmentation
for the region of interest (ROI) in CT images is a key precon-
dition. Therefore, seeking a generic method that can replace
manual segmentation is urgent.

Several state-of-the-art algorithms, including thresholding,
region-based methods, and graph cut, have been proposed to
assist organ segmentation. Thresholding is one of the simplest
and the most classical methods for segmenting images that are
light objects on dark backgrounds. For example, Moltz [1]
combined a threshold-based approach with morphological
processing and achieved the accurate segmentation of liver
tumors. Compared with other strategies, thresholding in-
volved fewer calculations, but it does not account for the spa-
tial characteristics, since it is sensitive to noise.

Region growing [2] is a typical application of region-based
methods. This application is a procedure that clusters all the
pixels into sub-regions according to a predefined criterion. For
example, Devi K G [3] used a 3D regional growth method to
distinguish between the kidneys, spleen, and three other or-
gans. However, region growing is a method that depends on
the seed region selection. Researchers usually select the seed
points to improve the quality of segmentation. An adaptive
regional growth method that learns the homogenous criteria
from characteristics of the region was presented by [4].
However, the efficiency depends on the homogeneity of the
tissue. Under-segmentation will occur when the target is
inhomogeneous.

The core of graph cuts represents the image to an undirect-
ed weighted graph. Oda M [5] applied graph cut to four-organ
segmentation. Graph cut is not always automatic, since it
needs users to carefully select seed points labeled as the
Bobject^ and Bbackground^ [6].

Several machine learning-based attempts [7–9] have also
been applied to the domain. Existing work in multi-organs
segmentation can be roughly divided into registration-based
and classification-based methods [10]. Several classification-
based methods [11–13] used traditional classifiers to extract
appearance features. Researchers in the field of medical imag-
ing investigate the potential of deep learning in medical im-
ages acquired with CT, MRI, and PET [14]. Deep learning
(DL) has shown promising accuracy as an automatic segmen-
tation algorithm. Meanwhile, certain specific DL frameworks
are primarily being performed for classification [15–17], ob-
jects detection (lesions, organs) [18–21], and segmentation
[22, 23]. CNN [24] is an effective branch of deep artificial
neural networks. Kayalibay [25] achieved effective segmen-
tation of hand and brain MRIs using the CNN-based method.

Employing a similar approach, Cha K [26] segmented the
bladder, and Zou Y [27] segmented several digestive organs.

In CNN-based semantic segmentation tasks, the patch-
based method transforms segmentation into pixel-wise classi-
fication. The strategy improved segmentation with more pre-
cise outputs. However, in spite of the high classification accu-
racy, the traditional CNN cannot avoid poor results, which
caused by huge input data. In other words, reducing data re-
dundancy can promote segmentation. A novel CNN frame-
work that provides substantial improvements using super-
pixels and a support vector machines (SVM) is presented in
this paper.

Abdominal CTs can reflect multiple organs; however, ab-
dominal CTs can image only a part of the lung bases, and they
cannot be used to detect most lung diseases due to the incom-
plete reflection. At present, a most common clinical tactic to
detect lung disease is HRCT. HRCT enhances parameters to
maximize the spatial resolution at the time of imaging. HRCT
can clearly reflect lung tissue and is regarded as the first option
for the diagnosis of pulmonary diffuse lesions.

For the two types of CT images, we emphasize determining
the contours and then extracting entire regions of organs. The
presented framework was verified using liver and lung seg-
mentation with desirable outputs.

The next section provides details of the dataset and
methods. The section after that describes the experimental
results and the evaluation. Finally, we discuss and conclude
the results.

Materials and Methods

Experimental Environment

The whole experiment was performed on a PC with Linux
Ubuntu 14.04 LST 64-bit operating system with an Intel i3
3.6 GHz CPU (Intel Core i3-4160), 16 GB of memory and an
NVIDIA GeForce GTX 960 graphics card. The CNN was
trained and tested using the CAFFE deep learning library
[28]. The algorithms (including the super-pixel and post-pro-
cesses) are conducted on MATLAB 2016a software. Since
LIBSVM is one of the most widely used SVM libraries of
[29], the involved SVM classifier is based on LIBSVM 3.14.

Materials

The experimental data are comprised of two parts: the liver
dataset and the lung dataset.

The liver data comes from the public dataset Sliver 07 [30].
The dataset consists of abdominal CT scans from 20 anesthe-
tized patients (more than 5500 liver slices) and regional anno-
tations. The CT scans are in grayscale with 512 × 512 pixels.
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The lung data are gathered from the open Chinese dataset
TIANCHI Medical AI Challenge [31]. The dataset is com-
posed of 13 HRCT scans. The sum of CT images reaches to
5000 slices, and the CT slices are all in grayscale with 512 ×
512 pixels. The corresponding ground truths of all lung slices
are marked by a specific group of 4 radiologists. The radiolo-
gists are all clinicians working at the First Hospital of Jilin
University, China, and their experience levels are detailed as
follows: Radiologist1 is a chief physician with 24 years of
experience. Radiologist2 is an attending doctor with 13 years
of experience. Radiologist3 is an attending doctor with 6 years
of experience. Finally, Radiologist4 is a physician with 3 years
of experience. The process of annotation is divided into two
steps. In the initial blinded-read phase, each radiologist inde-
pendently reviewed each CTslice and marked the lung region.
In the subsequent unblinded-read phase, each radiologist in-
dependently reviewed their own marks along with the anony-
mous marks of the three other radiologists to render a final
opinion.

Finally, we processed the two dataset via the Bleave-one-
patient-out^ cross-validation tactic to divide the original
dataset into a training set and a testing set.

Methods

We intend to classify each pixel of the CT images via CNN. To
reduce the input, the super-pixel and SVM classifier are intro-
duced. Organ segmentation is executed in following manner.
First, CT slices are decomposed into a set of disjointed super-
pixels by the SLIC. Next, calculation is performed on each
super-pixel region and a multi-elemental array is formed. The
digital signature of the array contains divided mathematical
criteria of the SLIC. These signatures represent the character-
istics of different organs in abdominal CT images. Even if the
selected organ is by itself, more information can be obtained
from the figures. Compared to the ground truth, the selected
super-pixels are divided into three parts: all-organ area (la-
beled as 1), mixed area (labeled as 0), and non-organ area
(labeled as − 1). Then, ample labeled vectors are put into
SVM classifier to train a model. Through the trained SVM
model, all super-pixel blocks in the CT images could be auto-
matically classified. The SVM reduces the computational ef-
forts and identifies the initial liver boundary [32].

Consequently, we utilize the CNN to refine the rough
edges. We treat a single pixel on an edge as the center and
cut a specific sized patch around it. Next, the patches are fed
into CNN, and a training model is obtained. The CNN model
can achieve pixel-wise assorting and smooth the rough edges.
To date, the desirable contours of organs in CT images have
already been extracted through above procedure. Finally, the
output from the CNN is post-processed. In this phase, several
kinds of morphological treatments are manipulated to com-
plete the outputs. Certain interrupted edges are connected by

close operation. Next, the closed areas are filled. The erosion
operation is employed to eliminate thin protrusions and tiny
isolated areas to obtain the final results. The above master
steps can be viewed in the flow diagram in Fig. 1.

SLIC

Within a super-pixel, pixels have similar colors, textures, and
intensities [33]. SLIC [34] has been proven as a fast and ef-
fective method to generate super-pixels. SLIC proceeds in the
following steps.

Step 1. Initializing the seed points. The sole parameter of the
SLIC algorithm is K, which indicates the desired
amount of the equally sized super-pixels. Assuming
that the image includes a total of N pixels, then the
size of each super-pixel grid isN/K. The approximate
size of grids is

S ¼
ffiffiffiffiffiffiffiffiffi
N�

K

q
ð1Þ

Step 2. Assignment. Once each pixel i is related to the
nearest cluster center; there is a step to update the
center by adjusting the mean [l,a,b,x,y]T vector,
where lmeans light, and a and b represent the color
changing trends. In the CIELAB color space, the
information involving color is represented by the
vector [l,a,b]T, while the pixel’s position is located
by the vector [x,y]T.

Step 3. Distance measurement. According to the presented
vector, it is necessary to normalize color proximity
and spatial proximity using the formulas

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l j−li
� �2 þ aj þ ai

� �2 þ b j þ bi
� �2q

ð2Þ

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x j þ xi
� �2 þ y j þ yi

� �2r
ð3Þ

To combine the two distances into a single measure, the
formula is defined as

D
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc
m

� 	2

þ dS
S

� 	2
s

ð4Þ

where S represents the interval between grids, and m is the
balanced parameter used to weigh the proportions of color
information and spatial information in this measurement.
Finally, a separate number was assigned to each cluster on
the basis of the computed distance.
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Step 4. Connection. Disjointed pixels were redistributed to
nearby super-pixels to enhance the connectivity.

Figure 2b shows the segmentation result when the param-
eter K equals 200. Super-pixel grids can be divided into three
categories: all-organ areas (labeled as 1), non-organ areas (la-
beled as − 1), and mixed areas (labeled as 0). Figure 2b ex-
hibits the label assignment.

In the CIELAB color space, the pixels in the same super-
pixel grid share similar digital signatures including color and
spatial information, which are represented by a mean vector
[l,a,b,x,y]T. However, in grayscale images, the expression of
[l,a,b]Twould be invalid.We employ the mean and variance of

grayscale values in each super-pixel grid to indicate the fluc-
tuation of grayscale color. Therefore, the mathematical trait is
re-denoted by the vector [x,y,m,v]T, in which m and v are the
mean and variance respectively.

The selection of the parameter K can be pivotal, since it
directly determines the number of vectors. A small size cannot
provide a sufficient signature, and an overly large size will
increase complexity and cause over-fitting. With respect to
the accuracy of the SVM on the liver dataset, we assess it with
a K range of 200–2000 with an interval of 200. The accuracy
trend is shown in Fig. 3. We notice that the accuracy steadily
increases between K = 200 and K = 1000, and then slightly
fluctuates from K = 1200 to K = 2000. Therefore, we carry
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Fig. 1 Flow diagram of the main
steps

Fig. 2 a Original image. b
Illustration image with labeled
super-pixel when K = 200



out another detailed comparison from K = 1200 to K = 2000
with an interval of 100. The second accuracy trend is
displayed in Fig. 4. It is obvious that the optimal selection is
when K = 1500. An exemplary output of SLIC is shown in
Fig. 5.

SVM Classifier

SVM is a statistically robust learning method based on struc-
tural risk minimization [35]. When solving small-sample,
non-linear, and multi-dimensional data in our experiment,
the SVM classifier displays unique advantages.

As the name implies, the SVM classifier demands vectors.
The extracted features adapt to this requirement. The target of
the SVM is to find an optimal solution to the hyper-plane and
separate the data among 3 classes (1, 0, and − 1). Each training
data instance consists of a (pi, qi) pair, and we defined the pair
as

pi ¼ xi; yi;mi; vi½ �T ; i ¼ 1⋯N ð5Þ

qi ¼
1
0
−1

8<
: ; i ¼ 1⋯N ð6Þ

where i represents the i-th vector, and N is the total number of
vectors.

For the given pairs, selecting the appropriate param-
eters for LIBSVM would directly affects the accuracy.
First, parameter s = 0 represents the classification mode.
Since the scale of the extracted features is not large, it
is unnecessary to reflect the limited features to a high
dimensional space. Therefore, the kernel function is set
to RBF and parameter t is 2. Parameter v = n represents
the n-fold cross-validation tactic and we adopt v =
n = 10. For classification, the four elements play equal
roles so that w = 1.

Otherwise, the precision depends on the site of gamma
(parameter g) and cost (parameter c). To locate the appropriate
parameters of c and g, a piece of brief code about parameter
optimization is introduced. The details are exhibited in
Algorithm 1.
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selection of K

Fig. 4 Detailed line chart of the
selection of K



Algorithm 1 realizes the best accuracy when g = 1.2, c= 2.7.
Using the optimal combination of selected parameters, the

SVM separates the super-pixels of the testing scans into 3
classes: all-organ area (labeled as 1), mixed area (labeled as
0), and non-organ area (labeled as − 1). Finally, among the
target of edges collection, only the grids labeled as 0 are re-
served for the further refinement.

CNN

CNN is a popular branch of deep learning. In 2012, Alex
Krizhevsky [36] proposed a classical CNN model, which
was called AlexNet by the scholars in this field.

AlexNet consis ts of f ive convolut ional layers
(Conv1~Conv5), three max-pooling layers (Pool1, Pool2,
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Fig. 5 a Liver segmentation
result of SLIC when K = 1500. b
Lung segmentation result of SLIC
when K = 1500

Algorithm 1 Parameter optimization on c and g. N is the maximum number of iterations, we used 

N=100; Step_size is the increased interval once, we used Step_size=0.1, and Step_size is growing in the 

range of [0, 5]; cmd is a parameter list in string form, cmd=’s=0, t=2, w=1,v=10’; data is the 

four-elemental vectors that are extracted from the super-pixels; label is that corresponds to each vector.

c=0, g=0;

Getting the initial best_accuracy by training SVM with the input data, label and parameter list: ‘cmd + 

c, g’;

for N do

for Step_size [0, 5] do

Generating accuracy by training SVM with the input data, label and parameter list: ‘cmd + 

c=c+Step_size, g’;

if accuracy > best_accuracy do

best_accuracy = accuracy;

best_c = c;

end if

Generating accuracy by training SVM with the input data, label and parameter list: ‘cmd + 

‘best_c, g=g+Step_size’;

if accuracy > best_accuracy do

best_accuracy = accuracy;

best_g = g;

end if

end for

end for

print best_c, best_g;



and Pool5) and three fully connected layers (Fc1–Fc3). We
adopt the original structure, loss function, optimizer, and most
parameters except for the num-output of the traditional
AlexNet. The parameter num-output represents the numbers
in each layer.Num-output should be adjusted so that the model
can be better adapted to the input. The details of the resetting
are shown in Table 1, and the revised structure is exhibited in
Fig. 6.

To improve the performance of the architecture, we need to
collect a large amount of pixels to make it more powerful and
intelligent. Therefore, splitting out patches of the detected
edges is an ideal solution. The AlexNet captures information
from patches, simplifies the sources, and exports feature maps
layer by layer. The size of a patch directly influences the
Breceive filed^ of the aftermost feature map.

In the framework of CAFFE, the length of the Breceive
filed^ in each layer can be calculated as

L ¼ Input þ 2*Pad−Kernel
Stride

þ 1 ð7Þ

For the input of 512 × 512 pixels, each super-pixel contains
approximately 175 pixels when K = 1500. Since the CNN is
performed based on super-pixels, the final Breceive filed^
should be smaller than the average area of the super-pixels.

In other words, the maximum of the length is
ffiffiffiffiffiffiffiffi
175

p
≈13 pixels.

The other correspondence can be found in Table 2.

With respect to the accuracy of CNN on the liver dataset,
we try every sized of patch mentioned in Table 2. The accu-
racy is shown in Fig. 7.

After repeated experiments, the patches whose size is 99
pixels are located at the highest rate of accuracy. The square
patches are cut from the original CT images with a size of
99 × 99 pixels2. It is a reasonable size, since there need to be
enough big regions for the CNN to distinguish boundaries and
ensure it is the target boundary. These patches are centered at
every point on the boundary, which is selected by the mixed
super-pixels in the section Materials and Methods-SVM.
Some patches are given in Fig. 8.

We used an untrained CNN with the above structure of
AlexNet structure. The patches are trained on CAFFE with
randomly initial weights. Based on the trained model, the
points on the rough boundary are sorted into two kinds: points
of organ region (labeled as 1) or points of background region
(labeled as 0). When all the organ regions are maintained,
smooth edges are effectively obtained.

Post-process

The presented segmentation method is emphasized on
contour extracted. However, there are some flaws in
the obtained boundary, including slight interruption and
tiny errors in predicted regions, as shown in Fig. 9.
Therefore, we applied some morphological operations
to correct for the deviation.

The open operation is used to remove isolated regions, and
the close operation is used to connect breakpoints on the bor-
der. Finally, we acquire closure on the contour. Then, the inner

Table 2 Correspondence between the size of patch and the area of final
Breceive filed^

The size
of patch
(pixels)

The area of
receive
filed
(pixels2)

The size
of patch
(pixels)

The area of
receive
filed
(pixels2)

The size
of patch
(pixels)

The area of
receive
filed
(pixels2)

275 13 × 13 195 8 × 8 115 3 × 3

259 12 × 12 179 7 × 7 99 2 × 2

243 11 × 11 163 6 × 6 83 1 × 1

227 10 × 10 147 5 × 5

211 9 × 9 131 4 × 4 – –

Table 1 Parameters of the proposed CNN

Layer Kernel Stride Pad Output size

Data – – – 99 × 99

Conv1 11 4 0 23 × 23 × 64

Pool1 8 1 0 16 × 16 × 64

Conv2 5 1 2 16 × 16 × 128

Pool2 4 2 0 7 × 7 × 128

Conv3 3 1 1 7 × 7 × 256

Conv4 3 1 0 5 × 5 × 256

Conv5 3 1 1 5 × 5 × 200

Pool5 3 2 0 2 × 2 × 200

Fc1 – – – 2 × 2 × 128

Fc2 – – – 2 × 2 × 32

Fc3 – – – 2 × 2 × 2
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CNN



area is filled and the segmentation result is obtained
(Fig. 10d).

Evaluation Metrics

Dice’s similarity coefficient [37] can directly reflect the
similarity between the segmentation result and the
ground truth. It is considered as a most common metric
when evaluating the accuracy of the segmentation algo-
rithm. It can be calculated as

Dice ¼ 2jA∩Bj
jAj þ jBj ð8Þ

Evaluation Metrics on Liver Dataset

The mean Dice of the final results reaches to 97.43% on the
liver dataset.

However, in order to highlight different aspects of segmen-
tation quality and acquire a comprehensive assessment, a va-
riety of different measures should be employed. According to
the literature [38], a scoring system is proposed for liver
segmentation.

The score is defined as

ϕi ¼ max 100−25*
εi

εi
; 0

 !
ð9Þ

ϕ ¼ 1

N
∑
N

i¼1
ϕi ð10Þ

where ϕ represents final score, ϕi is the score computed for
each individual output slice, εi is the actual value of the cor-
responding metric for each output slice, and εi is the mean of
all outputs.

The described scoring system was employed with the fol-
lowing five error measures: volumetric overlap error (VOE)
[39], relative volume difference (RVD), average symmetric
surface distance (ASD), maximum symmetric surface dis-
tance (MSD), and root mean square symmetric surface dis-
tance (RMSD). Theses metrics are defined by the expressions

VOE ¼ 1−
jA∩Bj
jA∪Bj ð11Þ

RVD ¼ � jAj‐jBj
jBj ð12Þ

ASD ¼ 1

jB1j þ jB2j
*

∑x∈B1
d X ;B2ð Þ þ ∑y∈B2

d
�
y;B1

�� �
ð13Þ
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Fig. 7 Line chart of the selection
of the patch size

Fig. 8 a–e Illustrations of extracted patches



MSD ¼ max dH B1;B2ð Þ; dH
�
B2;B1

�n o
ð14Þ

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

jS Að Þj þ jS Bð Þj

s * ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑sB∈S Bð Þd

2 sB; S Að Þð Þ
q

ð15Þ

where A represents the segmentation results, and B represents
the ground truth. B1 represents the boundary of the result, B2

represents the boundary of the ground truth, S(A) represents
the area of the resulting image, and S(B) represents the area of
the ground truth.

Among these metrics, VOE is 0 for a perfect segmentation
and 1 if segmentation and reference do not overlap at all. RVD
reveals whether a method tends to over-segment or under-
segment, where a value of 0 means that both volumes are

identical. RMSD is sensitive to outliers and returns the true
maximum error. For RMSD, ASD, and MSD, 0 represents a
perfect segmentation.

Results

Result on Liver Dataset

The accuracy of the SVM is enhanced by the parameter ad-
justment in Table 3.

The accuracy of the SVM classifier on the liver testing set
reaches 93.41 ± 0.59%. The accuracy of CNN is 89.33 ±
1.12%. An example of the results is shown in Fig. 10.
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Fig. 9 An example of the flaws

Fig. 10 aOriginal image, b rough
liver boundary from SVM, c liver
boundary from CNN, d liver
segmentation result from the
presented framework, e liver
segmentation result from patch-
based CNN only, and f liver
ground-truth image



From Fig. 10, it is intuitive to observe that the re-
sults are very close to the true case. The results show
that the pre-processing of the super-pixel and SVM pro-
motes segmentation. Figure 10e is an output of the
same CNN model, but the testing patches are cut from
all pixels of the original CT image. Though accuracy of
the trained CNN does not change, the false predictions
are increased actually with the large-scale input. The
comparison demonstrates that the pre-processing effec-
tively reduces input redundancy.

Result on Lung Dataset

The accuracy of the SVM classifier on the lung testing set is
92.9 ± 0.83%. The accuracy of the CNN reaches 91.8 ±
1.37%. An example of the results of lung segmentation is
shown in Fig. 11.

From the lung segmentation result of Fig. 11, we can con-
clude that the presented framework can maintain the integral
and symmetrical of the segmentation for both the left lung and
the right lung.

Evaluation

Evaluation on Liver Dataset

For the same datasets, the proposed framework is comparable
to the state-of-art methods. Table 4 displays a further compar-
ison among the other methods.

The above methods were all performed using the
same dataset as ours. [40, 41, 45] adopted traditional
methods. [42–44] proposed methods based on DL.
Table 3 summarizes that the presented framework is
better with lower time consumption. Compared to [44,
45], the proposed method improves accuracy. Compared
to [40–43], in the case of similar scores, the proposed
method reduces the processing time.

To test the segmentation performance for different
liver shapes, we divide the testing set into 10 subsets.
Each subset shares a similar form or liver size. The
scale of each subset is unequal, and the number of
slices ranges from 87 to 411. Instances of liver regions
in some subsets are shown in Fig. 12. Table 4 records
the performances in subsets 1–10.

In Table 5, the average areas liver is a metric used to
measure the relative liver size of different subsets.
Table 5 also shows the fluctuation of the six measure-
ments by average and variance. The value of mean Dice
is 97.1%, with the other five metrics being reasonable.
It reveals that the method is steady and can well adapt
to various liver forms.

Table 3 Parameters setting of LIBSVM

Parameters s t g c w v

Value 0 2 1.2 2.7 1 10
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Fig. 11 aOriginal image, b rough
lung boundary from SVM, c lung
boundary from CNN, d lung
segmentation result from the
presented framework, and e lung
ground-truth image



Evaluation on Lung Dataset

We applied a novel segmentation framework on a lung
dataset. According to formula (8), the mean Dice of the final
results reaches 97.93%. Processing a slice requires 40 s.

Most existing studies on lung segmentation are performed
on local datasets. To avoid unfair comparisons, we provide
with a rough contrast [46] and [47] adopt traditional methods.
The meanDice of [46] is 98.62%, and the meanDice of [47] is
93.7% [48] proposes a method based on DL and obtains a
mean Dice of 98.5%. From there results, we can conclude that

the presented framework works well on both abdominal CTs
and HRCTs.

Discussion

In clinical applications, automatic segmentation methods that
can detect multiple targets would be convenient for medical
staff and benefit patients. The presented framework is
accomplished-based liver and lung segmentations from CT
scans.

Table 4 Liver segmentation results comparison

Method Runtime (s/slice) VOE (%) RVD (mm) ASD (mm) MSD (mm) RMSD (mm) Score

Ref. [40] 135 5.35 − 0.17 0.84 19.58 1.78 80.3

Ref. [41] 90 5.42 1.75 0.79 33.55 1.87 76.2

Ref. [42] 285 6.24 1.18 1.03 18.82 2.11 77.9

Ref. [43] 120–180 4.58 1.08 0.68 16.88 1.45 83.4

Ref. [44] 27 7.87 1.31 1.29 23.56 2.50 71.4

Ref. [45] 24–184 5.90 2.70 0.91 18.94 1.88 77.8

Ours 38 6.17 1.33 1.48 17.80 2.19 78.1
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Fig. 12 a An example slice with
the ground truth in subset 2, b an
example slice with the ground
truth in subset 3, c an example
slice with the ground truth in
subset 6, and d an example slice
with the ground truth in subset 7



We verified the framework on two different CT
forms, the abdominal CT and the HRCT. In abdominal
CT images, the discrimination between the liver and
surrounding tissues are usually unclear due to low res-
olution, and the shapes and locations of livers are not
always regular. Nonetheless, the HRCT is a CT imaging
method with enhanced resolution. The desirable output
of our method is a testimony to the flexibility for both
high and low resolutions. In procedure of liver segmen-
tation, the Dice coefficient reaches 97.43%. Table 4
demonstrates that the performance of the presented
framework is comparable to other single-purpose
methods. For the exploration of segmentation perfor-
mances for different liver shapes, Table 5 proves that
our method is robust.

We also made an attempt to segment lungs for HRCT
using the proposed framework. All related parameter
settings are the same with liver segmentation. The mean
Dice of the final results reaches 97.93%. From the out-
put shown in Fig. 11d, the morphology of the obtained
lungs is complete and symmetrical. A precise and effi-
cient method of lung segmentation is significant to the
diagnosis of pectoral disease. Lung segmentation is a
crucial first step for the consequential detection of many
pectoral diseases, such as pulmonary nodules and dif-
fuse pneumonia, and the method can play a role in this
regard. All the parameters in the presented framework
are adjusted on the liver dataset. We except to fine-tune
the framework and make it more fitting to the lung
segmentation in the future. It could contribute to the
higher accuracy on lung segmentation.

In addition, the structure of DL determines the running time
reduction. The time consumed by the liver segmentation is
38 s/slice. For the left and right lungs segmentation, it takes
40 s/slice.

Conclusions

This paper presents a CNN-based framework for multiple or-
gans (liver and lung) segmentation from abdominal CT and
HRCTscans. The CNN is improved by the super-pixel (SLIC)
and SVM classifiers, which help reduce computational costs.
The framework performs a desirable segmentation on the
datasets that include livers and lungs. Overall, the processing
time is cut, while precise segmentation results are obtained. In
the future, we are committed to testing this framework on
other kinds of organs. Improvement of accuracy and efficien-
cy is also expected. We are looking forward to placing frame-
work into clinical diagnosis that can benefit patients.
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