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Abstract

The adoption of document stores, such as MongoDB or CouchDB, has drastically increased

in the past years. Part of this popularity can certainly be explained by their flexibility in

terms of loading, storing, and retrieving semi-structured data on massive scales. However,

adopting such systems presents challenges when exploring the data they store since the

structure of the document may not follow a single pattern, and thus present complex

hierarchical and nested structures that vary. Additionally, an analyst who wants to retrieve

data may experience difficulties since she must learn the specificities of the document store’s

native query language. In this work, we propose SEREIA, a system that facilitates data

exploration in document stores through keyword search. The user inputs a non-structured

keyword-based query and the system generates a structured query for the document store

that fulfills her information needs. We evaluated SEREIA using five datasets previously used

in the literature and the results we achieved indicate that SEREIA is suitable for helping users

in data exploration tasks by removing the burden of understanding the data organization of

the stored documents and by automatically generating queries to explore data of interest.

Keywords: information retrieval, data exploration, keywords, document stores

1 Introduction

The adoption of document stores, such as MongoDB or CouchDB, has increased drastically

in the past years. Currently, this kind of system is adopted in several domains and many

applications [1]. Part of this popularity is certainly due to their flexibility in terms of loading,

storing, and retrieving semi-structured data on massive scales [2, 3]. This flexibility is mainly

due to two aspects. First, document stores allow the creation of semi-structured documents
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with complex hierarchical and nested structures [2]. Second, they do not require a schema

definition [4]. In fact, they support the so-called schema later approach, i.e., they allow

“relaxed” data ingestion, without requiring that documents follow a predefined structure [3].

Dealing with these aspects adds a degree of complexity to the stored data and incurs

challenges that are noticed when data scientists need to retrieve information from these

systems [5–7]. Indeed, due to their lack of strict structure declarations, document stores require

the user to have a deep understanding of the underlying structure and organization of the

data when seeking information. In addition, another challenge is that the query languages

used by document stores are considerably more complex than, for instance, SQL. In fact,

document stores challenge even experienced data scientists who want to analyze the data

they store [8], resulting in extra time and effort when looking for relevant data, rather than

effectively analyzing it [6].

Previous works in the literature have presented proposals to facilitate the retrieval of data

from document stores. Systems such as Argo [4] and Sinew [3] employ an intermediate layer

that maps documents to relational structures, thus allowing the use of SQL in collections

of documents. In addition, Liu et al. [9] proposed an approach for storing documents in

relational databases that consequently allows the use of SQL on documents without requiring

the mapping step. Although these approaches facilitate the analysis of data in documents by

leveraging SQL, the user must still have knowledge of the structure of the document collection.

In this work, we propose SEREIA, a system that facilitates data exploration in document

stores. More specifically, SEREIA takes as input a non-structured keyword-based query and

generates a corresponding structured query written in the document stores’ native query

language. By doing so, we aim to help data analysts/scientists undertake their data analysis tasks

without having to deal with the typical complexities of retrieving data from document stores.

In particular, SEREIA avoids the need for users to have prior knowledge of the underlying

structure and organization of the stored documents, besides the syntax and operations of its

native query language. As we show through experiments, SEREIA allows one to explore the

contents of documents using a handful of keywords that express their information needs.

Our work with SEREIA is in line with previous work that has been developed to help

explore semi-structured or unstructured data. This includes interfaces that allow data discovery

by example [10] and using intermediary structures, e.g., knowledge graphs, that yield issuing

queries at a higher abstraction level [6, 11]. Although these proposals provide higher-level

interfaces for data exploration, they still require previous knowledge of the schema and the

adoption of some query language, such as SPARQL.

Our work extends previous work on keyword queries in databases, specifically MatCNGen

and CNRank [12–14]. To the best of our knowledge, SEREIA is the first system to propose

exploring document stores directly using keyword-based search. Our system maps each

keyword to an attribute in documents of a collection, based either on the name of the attribute

or on its values. Then, the system combines these mappings, generating possible interpretations

of the keyword query provided. A ranking algorithm is used to score the combinations that

are more likely to satisfy the user’s intent. From these higher-scored combinations, SEREIA

looks for ways to aggregate each mapping presented in a combination. This result is used to

generate a structured query in the document store’s native language that fulfills the original

keyword query.
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To evaluate SEREIA, we performed experiments using MongoDB1, currently the most

popular document store 2. We used five datasets, of which four were used in previous work.

For each dataset, we present a set of keyword queries, analyze their results, and analyze the

way SEREIA generates them, using information retrieval metrics. We also measure the time it

takes the system to generate and execute the query on the document store.

This paper is organized as follows: in Section 2 we discuss related work. In Section 3

we present an overview of the architecture of SEREIA and illustrate its functioning using an

example. In Sections 4, 5 and 6 we present and discuss the techniques that SEREIA employ

to generate a fully structured query given a keyword query. In Section 7 we illustrate how

the structured query is generated, along with the algorithm for this process. In Section 8 we

present experimental results. Finally, in Section 9 we discuss next steps regarding SEREIA and

summarize our findings.

2 Related Work

Previous works have presented proposals to facilitate retrieving data from document stores,

leveraging users’ knowledge in SQL, introducing intermediary layers to avoid dealing with

semi-structured collections of documents, and mapping documents to relational structures.

Systems such as Argo [4] and Sinew [3] materialize data from collections of documents in

relational tables in a preprocessing step, thus allowing the data to be retrieved later using SQL.

In addition, Liu et al. [9] propose storing documents in a relational structure without previously

mapping the document’s fields, thereby eliminating the preprocessing step. However, all

the approaches that adopt SQL to facilitate the retrieval of data from document stores still

challenge the user to comprehend the underlying structure and organization of the data.

To overcome such a problem, our system adopts a simpler approach, i.e., it provides a

keyword search interface over document stores. For the past two decades, researchers have

extensively studied relational keyword search systems (R-KwS) [15]. In general, these systems

fall into two categories. The first category represents schema-based systems whose objective is

to generate SQL queries given a keyword query by building a graph, called Schema Graph. In

this graph, the nodes represent relations and the edges represent referential integrity constraints.

From this graph, many Candidate Joining Networks (CJNs)3 can be generated. A CJN is a

joining tree that represents an interpretation of the original keyword query and describes how

the data in the underlying database can be joined to achieve the expected result for a given

keyword query. For every CJN, an SQL query may be generated. State-of-the-art systems in

this category employ an early evaluation to assess which CJNs better represent the original

keyword query. This evaluation improves not only the overall quality of the process, but also

its efficiency [12–14, 16]. The second category represents instance-based systems that aim to

materialize database tuples in a graph called Data Graph. In this graph, the nodes represent

the tuples of the database containing keywords, and the edges represent the constraints of the

referential integrity. Following this approach, the answer is a subtree of the data graph that

minimizes the distance between nodes containing the keyword query terms.

Our system, SEREIA, is based on the MatCNGen system [13, 14], which falls into the first

category. Natively, document stores support nested documents, and avoid references between

data items, which are common in relational databases. However, this increases the complexity

1https://www.mongodb.com/
2https://db-engines.com/en/ranking/document+store
3These structures were originally called Candidate Networks [15]
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of generating queries in document collections that correctly capture the user’s intent, as the

data sought can be found in a single collection or spanned in multiple collections, which

may or not be joinable according to the schema. However, by adapting the concept of CJNs,

SEREIA generates query alternatives that help the user quickly explore a document store.

Recently, Natural Language Interfaces for Databases (NLIDBs) have aroused interest.

Systems such as NaLIR [17] focus on mapping query terms to database schema elements

using techniques such as syntactic dependency rules and ontologies. On the other hand,

systems such as SQLizer [18] focus on translating NL queries into SQL using deep learning

techniques. Keyword-based query systems offer distinct advantages over Natural Language

Interface to Database (NLIDB) systems, particularly in the realm of data exploration and

query efficiency. Unlike NLIDBs, which often necessitate detailed and specific user input

to generate precise answers, keyword-based systems can provide a comprehensive range of

information with simple keyword queries. For instance, in a database containing data on

National Basketball Association (NBA) games, a query such as ”Stephen Curry” would yield

all pertinent information about the player without requiring a complete sentence or specific

question. These queries are often categorized as ”navigational queries,” a term that is well-

established in the field of information retrieval. Such queries are advantageous for users

interested in exploring the database’s content without a predefined question. The simplicity of

keyword-based systems also leads to faster query execution, as they bypass the computational

overhead associated with natural language processing. Moreover, past research [19] has

indicated that NLIDBs may overlook or misinterpret valuable keywords in the query, thereby

affecting the accuracy of the results. In contrast, keyword-based systems utilize every term in

the query, ensuring that all relevant information is considered. In summary, keyword-based

query systems offer a more straightforward, efficient, and often more accurate method for

database exploration compared to NLIDBs.

Our work is also in line with previous work developed to help users explore semi-structured

or unstructured data. Rezig et al. [10] introduced higher-level interfaces that allow the user

to provide examples that are used to retrieve similar data. The main goal is to synthesize

an SQL query that correctly captures the user intent through the provided examples. Other

works provide a more standard way of extracting data from the underlying data sources using

knowledge graphs, which can be queried with SPARQL or proposed query languages [6, 11].

Although these proposals aim at higher-level interfaces that facilitate data retrieval, they require

the user to perform several queries to find relevant data and join paths. In contrast, SEREIA

generates alternative queries that are likely to correspond to the intent of the user, ranking the

ones that most likely suit the needs of the user.

3 Overview

In this section, we present an overview of SEREIA. We base our discussion on a simplified

excerpt of the Yelp! database, illustrated in Figure 1, and which identifies documents by an ID

in the top right corner and, also, illustrates how documents connect to each other.

Consider that a user inputs the keyword query “italian restaurants reviewed michelle”,

expecting to retrieve all documents containing data on italian restaurants that were reviewed

by user Michelle. The result that satisfies this keyword query is obtained by joining data from

documents D2, D6 and D10 from the excerpt, resulting in the output shown in Figure 3. To

retrieve results satisfying the keyword query’s intent, one must issue a structured query to the
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underlying document store. A possible structured query that correctly retrieves the expected

result is shown in Figure 2.

Business collection Review collection

User collection

   {review_id: 3, 
    user_id: 3, 
    business_id: 3, 
    text: "Very fast delivery!", 
    stars: 5.0} 

D7

   {review_id: 2, 
    user_id: 2, 
    business_id: 2, 
    text: "Best food in Massachusetts!", 
    stars: 5.0} 

D6

  { user_id: 3, 
    fans: 50, 
    name: "David" } 

D11

  { user_id: 2, 
    fans: 150, 
    name: "Michelle" } 

D10

  { user_id: 1, 
    fans: 100, 
    name: "Tom" } 

D9

 {business_id: 3, 
    name: "The Italian Joint", 
    state: "Massachusetts", 
    city: "Boston", 
    categories: "italian, restaurants", 
    stars: 3.5} 

D3

   {review_id: 1, 
    user_id: 1, 
    business_id: 1, 
    text: "My favorite restaurant! I eat  
               there three times a week!", 
    stars: 5.0} 

D5

 {business_id: 2, 
    name: "Regina Pizzeria", 
    state: "Massachusetts", 
    city: "Boston", 
    categories: "italian, restaurants", 
    stars: 4.0} 

D2

 {business_id: 1, 
    name: "Subway", 
    state: "Texas", 
    city: "Austin", 
    categories: "fast food, restaurants", 
    stars: 5.0} 

D1

   {review_id: 4, 
    user_id: 4, 
    business_id: 4, 
    text: "Delicious hamburger!", 
    stars: 5.0} 

D8 {business_id: 4, 
    name: "Whataburger", 
    state: "Oregon", 
    city: "Portland", 
    categories: "fast food, burger", 
    stars: 3.5} 

D4
  { user_id: 4, 
    fans: 25, 
    name: "Larry" } 

D12

Tip collection

   {user_id: 4, 
    business_id: 4, 
    text: "Premium burger is they best     
            meal!"} 

   {user_id: 3, 
    business_id: 4, 
    text: "Their premium burger really       
           the one to choose!"} 

D13

D14

Fig. 1: An excerpt from collections in the Yelp! database

db.user.aggregate([

{ "$match": { "$expr": { "$regexMatch": {

"input": "$user.name", "regex": "michelle",

"options": "i"}}}},

{ "$lookup": { "from": "review",

"foreignField": "user_id",

"localField": "user_id", "as": "review"}},

{ "$unwind": "$review" },

{ "$lookup": { "from": "business",

"foreignField": "business_id",

"localField": "review.business_id", "as": "business"}},

{ "$unwind": "$business" },

{ "$match": { "$expr": { "$regexMatch": {

"input": "$categories", "regex": "restaurants",

"options": "i"}}},

{ "$match": { "$expr": { "$regexMatch": {

"input": "$categories", "regex": "italian",

"options": "i"}}}}])

Fig. 2: MongoDB Structured Query

SEREIA Architecture

We note that manually crafting such a query requires expertise in the query language of

the document store and, thus, a casual non-expert will find it difficult to explore documents

in a database of interest. This worsens if we consider that the database may have an intricate

structure with different collections with interconnected and nested documents.
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Next, we provide an overview of how SEREIA can be used to achieve the same results in

a more intuitive and easy way that allows casual users to explore document databases using

simpler unstructured keyword queries.

{ "business_id": 2,

"name": "Regina Pizzeria",

"state": "Massachusetts",

"categories": "italian, restaurants",

"stars": 4.0,

"review": {

"review_id": 2, "user_id": 2,

"business_id": 1, "stars": 5.0,

"text": "Best food in Massachusetts!" },

"user": {

"user_id": 2, "name": "Michelle",

"fans": 150 }}}

Fig. 3: Output for the keyword query

In Figure 4, we illustrate SEREIA’s architecture. This architecture relies on some techniques

previously presented in the literature [12, 13, 16] that allow keyword-based queries in relational

databases, which in our work we adapted to the context of document stores. Thus, we use a

terminology similar to the one adopted in previous work.

Keyword
Query

1 Keyword Matching

Value-Keyword
Matches Generation

Schema-Keyword
Matches Generation

VK Matches

SK Matches

Generation

3 Candidate Join Networks

Ranking

Generation

2 Query Matching

Ranking

Mongo Query

Fig. 4: SEREIA Architecture

The process begins when a user issues a keyword query. Then, our system attempts to

associate each keyword from the query with the attributes of a collection’s document. This

association can be either based on the attribute’s name or on its values. We call this phase

Keyword Matching 1 , whereby SEREIA associates keywords with attributes based on the

values containing these keywords, generating Value-Keyword Matches (VKMs), or associates

keywords with attribute or collection names, generating Schema-Keyword Matches (SKMs).

In Table 1 we show possible matches between keywords in the input query and document

attributes or database elements. For example, the term “italian” is likely to refer to information

in the Business collection, specifically in attributes name or categories, as illustrated

by documents D2 and D3 in Figure 1. Similarly, the term “restaurants” is likely to refer to

information in the attribute categories, from the Business collection or in the attribute

text, from the Review collection, as illustrated by documents D1, D2, D3 and D5 in

Figure 1. Since these keywords are part of attribute values, these matches are considered
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VKMs. In the case of the keyword “reviewed”, it actually matches the name of the Review

collection, which is why in Table 1 the keyword “reviewed” matches Review.self. Thus,

this match is considered an SKM. The Keyword Matching phase is detailed in Section 4.

Table 1: Query keywords matched to document

attributes

Keyword Matching Attribute

italian Business.categories, Business.name

restaurants Business.categories, Reviews.text

reviewed Review.self

michelle User.name

In sequence, SEREIA generates combinations of VKMs and SKMs. In these combinations,

we consider that all keywords in the query must be matched; in other words, the combination

must be total. Furthermore, we also consider that all pairs of keywords and attributes are

“useful”; that is, if we remove any of the pairs, this would result in a non-total combination.

All combinations that satisfy both criteria are called Query Matches (QMs) 2 . In Figure 5

we present all possible QMs of the KMs illustrated in Table 1.

italian→Business.categories
restaurants→Business.categories

reviewed→Review.self
michele→User.name

italian→Business.name
restaurants→Review.text

reviewed→Review.self
michele→User.name

(a) (b)

italian→Business.name
restaurants→Business.categories

reviewed→Review.self
michele→User.name

italian→Business.categories
restaurants→Review.text

reviewed→Review.self
michele→User.name

(c) (d)

Fig. 5: Examples of combinations of keywords matched.

Although many combinations are possible, it can be noted that the only combination that

fulfills the intention of retrieving documents containing data on Italian restaurants that were

reviewed by Michelle is the combination in Figure 5 (a). In general, just a few combinations

correspond to the user’s intention. Thus, to select such combinations, SEREIA uses a ranking

algorithm so that only the best ranked QMs are further processed. We present the details on

QMs, their generation, and ranking in Section 5.

The QMs described above identify which collections and documents contain the informa-

tion sought by the user when formulating a query. However, to produce a proper answer that

integrates this information, it is also necessary to properly “aggregate” documents necessary to

answer the query. To achieve this, SEREIA defines a sequence of processing stages on the data,

resulting in structures called Pipeline Sketches (PLSs). Thus, PLSs describes how data from

the document store collections can be processed to produce an answer to the keyword query.

The information from the QM collections shown in Figure 5 (a) can be integrated as follows:

where arrows indicate references between documents in the collections. It denotes that

we look for documents from the Business collection whose values of the categories
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Business.categories{italian, restaurants}

Review.self{reviewed}

User.name{michelle}

attribute contain the terms “italian” and “restaurants”, which are referred to by documents in

the Review collection, which, in turn, also refer to documents in the User collection whose

attribute name contains the term “michelle”. As the figure suggests, PLSs are paths, and we

will define their structure more precisely in Section 6.

As described above, SEREIA generates PLSs from QMs. Similarly to the Query Matching

phase, we also developed a PLS ranking algorithm to aid in selecting the best PLS that fulfills

the user’s keyword query intent. Then, SEREIA translates this PLS into a query that retrieves

data from the underlying document store. Considering the combination in Figure 5 (a), SEREIA

generates the structured query shown in Figure 2. In Section 7 we detail our algorithm for

generating a structured query from a given PLS.

During the PLS generation phase, SEREIA uses two data structures generated in a prepro-

cessing phase 0 : the Value Index and the Schema Index. The Value Index is an inverted index

that stores keywords and their occurrences in the document store, indicating their frequency

and indicating the collections and document attributes they were located. This information

is used when generating VKMs. The Schema Index is an inverted index that stores informa-

tion about collections and document attributes, and also statistics such as norm and inverted

frequency useful when ranking QMs and PLSs. This index is used when generating SKMs.

In the next sections, we present an in-depth explanation of SEREIA structure, processing

phases, and algorithms. SEREIA was fully implemented and is available at https://github.com/

bdri-ufam/sereia.

4 Keyword Matching

During the Keyword Matching phase, SEREIA can associate keywords from the query with

document attributes based on their values, using value-keyword matches.

Definition 1. Consider a keyword query Q, a collection of documents C, and a set A =
{A1, . . . , An} of attributes from all documents in C. A value-keyword match is a subset of

documents of C in which all documents contain a subset of the terms of Q in at least one of its

attributes. In other words, a VKM is a set of documents

CV [AK1

1
, . . . , AKn

n ] = {d|d ∈ C ∧ ∀Ai : W (d[Ai]) ∩Q = Ki}

where W (d[Ai]) returns the set of keywords found in the attribute Ai for document d and Ki

is the subset of keywords from Q associated with the attribute Ai.

Given a keyword query Q1 = “italian restaurants reviewed michelle” and the collections

of documents illustrated in Figure 1, possible value-keyword matches are:

UserV [name{michelle}] = {D8}

BusinessV [categories{italian}] = {D2, D3}

BusinessV [categories{restaurants}] = {D1, D2, D3}
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In the above VKM, we illustrate how SEREIA relates keywords, attributes, and documents.

Consider the VKM UserV [name{michelle}]. For instance, we indicate the match between

the keyword “michelle” and the name attribute from the User collection. In this case, the

match refers to document D8 from Figure 1. SEREIA is also capable of associating keywords

to collection or attribute names using schema-keyword matches.

Definition 2. Consider a keyword query Q, a collection of documents C and a set of attributes

of all documents in C to be A = {A1, . . . , Am}. A schema-keyword match is a subset of

documents of C in which at least one attribute name corresponds to a keyword in the query.

That is, an SKM is a set of documents

CS [AK1

1
, . . . , AKm

m ] = {d | d ∈ C ∧ ∀k ∈ Ki : match(k,Ai)}

where 1 ≤ i ≤ m, Ki is the subset of keywords from Q that are associated to Ai, match(Ai,Ki)

estimates the similarity between the schema element Ai and the keyword k, and S indicates a

match of keywords to the database schema.

Given the keyword queries Q2 = “cities subway”, Q3 = “states Whataburguer” and the

collections of documents illustrated in Figure 1, possible schema-keyword matches are:

BusinessS [state{states}] = {D1, D2, D3, D4}

BusinessS [city{cities}] = {D1, D2, D3, D4}

Notice that, differently from VKMs, SKMs refer to attributes found across the entire

collection. That is, SKMs do not “filter” documents based on attribute values, but rather

indicate documents that contain an attribute that matches a keyword from the query.

Finally, in some cases, a keyword in the query can refer to a whole collection, as in the case

of the term “reviewed” from the query Q1. To address this, we extend the schema-keyword

match notation to include a specific attribute to represent a collection. We call this attribute

self and consider match(self, k) to be true if k corresponds to a collection’s name. Regarding

this scenario, the schema-keyword match for the term “reviewed” from Q1 is defined as:

ReviewS [self{reviewed}] = {D5, D6, D7, D8}

The similarity function match used above can be implemented in many different ways.

Currently, this function matches a keyword and a schema element by applying a lemmatizer

and a stemmer, then executes an exact match on the processed results.

In the cases in which there are SKMs and VKMs for a query in the same collection, it is

useful to represent them using a single expression, which we call a Keyword Match (KM).

Definition 3. Consider a keyword query Q, a collection of documents C and a set of attributes

from all documents in C to be A = {A1, . . . , Am}. Let VKM = CV [A
KV

1

1
, . . . , A

KV
m

m ] be a

value-keyword match from C in Q. Let SKM = CS [A
KS

1

1
, . . . , A

KS
m

m ] be a schema-keyword

match from C in Q. A general keyword match from C in Q is given by:

CS [A
KS

1

1
, . . . , A

KS
m

m ]V [A
KV

1

1
, . . . , A

KV
m

m ] = VKM ∩ SKM

We note that a KM must satisfy both its components VKM and SKM. Thus, the documents

in the KM are those in VKM ∩ SKM.
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5 Query Matching

In general, many combinations of KMs of a keyword query may return documents that,

when correctly connected, satisfy the query given as input. However, in accordance with

previous work [12, 13, 15, 16], we consider in this work only combinations that correspond to

a “total” and “minimal” cover of a keyword query. More precisely, a total cover guarantees that

all terms from the keyword query are present in the result, and a minimal cover guarantees that

there are no documents with redundant information. Combinations that satisfy both criteria are

called query matches as formally defined below.

Definition 4. Let Q be a keyword query. Let M = {KM1, . . . ,KMn} be a set of keyword

matches for Q in a certain collection C, where:

KMi =CS
i [A

KS
i,1

i,1 , . . . , A
KS

i,mi

i,mi
]V [A

KV
i,1

i,1 , . . . , A
KV

i,mi

i,mi
]

Also consider KMi
=
⋃

1≤j≤mi

X∈{S,V }

KX
i,j , the set of all keywords associated with KMi and

KM=
⋃

1≤i≤n KMi
, be all keywords associated and with M . We say that M is a query match

for Q if, and only if, KM forms a minimal set cover of the keywords in Q, that is, KM = Q

and KM\KMi
̸= Q, ∀KMi

∈M .

Given the keyword query Q =“italian restaurants business reviewed michelle”, possible

VKMs and SKMs combinations are:

M1 = {UserV [name{michelle}],BusinessS [self{business}],

BusinessV [categories{restaurants,italian}],ReviewS [self{reviewed}]}

M2 = {UserV [name{michelle}],

BusinessV [name{italian}],ReviewS [self{reviewed},]}

M3 = {UserV [name{michelle}],BusinessV [categories{restaurants,italian}],

BusinessV [name{italian}],ReviewS [self{reviewed}]}

From these combinations, only M1 is considered a Query Match. M2 does not contain the

term “restaurants” from the keyword query Q, thus it is not total. On the other hand, M3 is

redundant, since removing the VKM BusinessV [name{italian}] would still result in a total

combination. Thus, M3 is not minimal.

Query Match Ranking

Since many QMs can be generated for a single keyword query, SEREIA uses a ranking

algorithm based on the CNRank algorithm [12] to identify QMs that are useful and more prone

to satisfy the user’s intent. SEREIA estimates the relevance of QMs based on a Bayesian Belief

Network model for the current state of the underlying database [16]. In practice, this model

evaluates two types of relevance evidence when ranking QMs. The TF-IDF model is used to

calculate a value-based score, which adapts the traditional Vector space model [20] to the

context of relational databases, as occurs in LABRADOR [21] and CNRank [12]. On the other

hand, the schema-based score is calculated by estimating the similarity between keywords

and schema element names. In SEREIA, only the top-k QMs in the ranking are considered

in following phases. By doing so, we avoid generating PLSs that are less likely to correctly

interpret the keyword query.
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To emphasize the importance of ranking QMs in SEREIA, we found out in our experiments

that certain keyword queries may generate hundreds or even thousands of QMs. This is due

to the high frequency of some keywords in several documents. For instance, in the IMDb

database, the average number of QMs per query is above 2500. The ranking process allows

SEREIA to discard most of these spurious QMs and focus on a handful of QMs that, as we

show experimentally, are likely to include the one that correctly satisfies the user’s needs.

6 Pipeline Sketches Generation and Ranking

To generate PLSs, SEREIA uses an auxiliary structure called Schema Graph. In this

graph, every node represents a collection from the document store, while the edges represent

references between documents of distinct collections.

Definition 5. Let C = {C1, . . . , Cn} be a set of collections from a document store. Let E

be a subset of the ordered pairs from C2 given by E = {⟨Ca, Cb⟩|⟨Ca, Cb⟩ ∈ C
2 ∧ Ca ̸=

Cb∧REF (Ca, Cb) ≥ 1}, where REF (Ca, Cb) gives the number of references from documents

of a collection Ca to documents of a collection Cb. We say that a schema graph is an ordered

pair GS = ⟨C, E⟩, where C is the set of vertices (nodes) of GS , and E is the set of edges of GS .

The function REF in Definition 5 is a way of indicating relationships between different

collections in the target document store. For instance, in Figure 1 we show documents from the

REVIEW collection that “link” to documents from the collections USER and BUSINESS. This

is reflected in the schema graph. Notice that the relationships between documents may also be

implemented by nesting all documents that represent other related entities in the structure of a

document. However, we do not consider this kind of relationship in our work. Considering the

excerpt in Figure 1, SEREIA generates the schema graph below:

GS = User Review

BusinessTip

6.1 Pipeline Sketch Generation

After defining the concept of a schema graph, we introduce the concept of Pipeline Sketch

(PLS). Roughly speaking, a PLS is a graph whose nodes include all KMs from a QM and

follows constraints that assure the generation of a structured query that is valid and properly

retrieves data from the document store.

Consider the keyword query Q1 = “businesses bricola stars 5.0” for the Yelp! database,

which, intuitively aims at retrieving the businesses which user “Bricola” rated with 5 stars.

One of the query matches generated for this keyword query is the following:

QM6 = {UserV [name{bricola}],

ReviewS [stars{stars}]V [stars{5.0}],

BusinessS [self{businesses}]}

The following PLS can be generated for QM6:

P1 = UserV [name{bricola}]

ReviewS [stars{stars}]V [stars{5.0}]

BusinessS [self{businesses}]

11



The PLS above illustrates how the KMs from a QM can be connected to retrieve information

from the document store. In the provided example, SEREIA uses the information from the

schema graph to generate a pipeline of stages between all the collections specified by QM6,

aiming at retrieving data from the document store. In addition, there can be cases in which the

collections from the KMs are not adjacent to each other in the graph and, thus, it is necessary

to include intermediate collections to correctly retrieve an answer the provided keyword query.

Consider again the keyword query Q = “businesses bricola stars 5.0” for the Yelp! database.

Another possible query match for this query is the following:

QM7 = {UserV [name{bricola}],

BusinessS [self{businesses}]V [name{stars},stars{5.0}]}

For this query match, two different PLSs can be generated, given the schema graph

generated for the Yelp! database:

P2 = UserV [name{bricola}]

Review

BusinessS [self{businesses}]V [name{stars}]

P3 = UserV [name{bricola}]

Tip

BusinessS [self{businesses}]V [name{stars}]

The PLSs above contain additional nodes that are used to connect non-adjacent KMs.

Considering PLS P1, notice that, in order to aggregate data from the User and Business

collections, SEREIA uses the Review collection as an intermediate collection to aggregate all

the collections required by QM7. In that example, SEREIA has more than one possibility for

aggregating both collections. The first option is using Review as an intermediate collection,

as seen in P2, and the second one is using the Tip collection, as seen in P3. In both cases, the

intermediate collection is adjacent to the collections involved in the query match according to

the schema graph.

In our work, based on the terminology used in previous work [13, 16], we call these

intermediate collections keyword-free matches, which are essential for the definition and

generation of Pipelines Sketches. Specifically, these matches assist when generating PLSs by

acting as intermediate nodes to other KMs.

Definition 6. We say that a keyword match KM given by KM =

CS [A
KS

1

1
, . . . , A

KS
m

m ]V [A
KV

1

1
, . . . , A

KV
m

m ] is a keyword-free match if, and only if,

∄KS
i ̸={} ∧ ∄KV

i ̸={}, where 1 ≤ i ≤ m.

For a more concise notation, we represent a keyword-free match as CS [ ]V [ ] or simply C.

For the sake of example, given the keyword match UserS []V [], we represent it as User, as

presented in a schema graph. Now, we formally define the concept of PLSs.

Definition 7. Let Q be a keyword query over a document store DS, whose schema graph is

GS . Also, let M be a query match for Q in DS. Let F be the set of keyword-free matches from

collections of GS . Consider a path graph of keyword matches P = ⟨V, E⟩, where V and E
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are the vertices and edges of J . We say that P is a pipeline sketch from M over GS if:

(i)V = M ∪ F

(ii)∀⟨KMa,KMb⟩ ∈ E =⇒ ∃⟨KMa,KMb⟩ ∈ GS

(iii)∀KMa ∈ VP : ∀⟨Ca, Cb⟩ ∈ EG :

REF (Ca, Cb) ≥ |{KMc|⟨KMa,KMc⟩ ∈ EP ∧ Cc = Cb}|

In Definition 7, we present the constraints used by SEREIA to generate PLSs. According

to (i) a PLS can be formed by keyword matches and keyword-free matches, in the case that

some KMs from a QM are not adjacent to each other. In (ii), we define that the edges from the

PLS follow the structure of the schema graph. Finally, (iii) defines the concept of soundness.

A sound PLS indicates that a KM cannot point to the same collection more times than the

number of attributes that reference that same collection. This concept of soundness is adapted

from previous work [16].

Consider the query match QM8:

QM8 = {UserV [average stars{5.0}],UserV [name{bricola}],

BusinessS [self{businesses}]V [name{stars}]}

The following structure can be generated for QM8:

P4 = UserV [name{bricola}]

Review

BusinessS [self{businesses}]V [name{stars}]

UserV [average stars{5.0}]

Recalling the definition of VKMs, UserV [name{bricola}] and

UserV [average stars{5.0}] are disjoint sets of documents. By inspecting Figure 1,

which shows an excerpt of the Yelp! database, we can safely assume that the Review collection

presents documents that refer only to a single user. Thus, a document from Review cannot

refer to two distinct users.

Given P4, this pipeline sketch would generate a query whose result is empty, as there is no

user with the name bricola and that presents an average star rating of 5. Per Definition 7, P4

presents an inconsistency and is considered an unsound PLS. From past examples, only P1,

P2, and P3 are considered valid PLSs.

6.2 Pipeline Sketch Ranking

As shown for QM7, a single QM may generate more than one PLS, resulting in a large

number of PLSs when considering several QMs. To prune spurious PLSs, which often do not

provide a plausible answer to the keyword query or do not present an answer at all, we adopt a

ranking algorithm that uses the previously computed QM scores while also penalizing large

PLSs, by decreasing the score proportionally to the size of the PLS. Therefore, the score of a

pipeline sketch PM from a query match M is given by:

score(PM ) = score(M)×
1

|PM |
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Consider PLSs P1, P2 and P3 from previous examples. Our ranking algorithm outputs

them in the following order: P1, P2 and P3. Regarding P2 and P3, these PLSs present the

same score since they indicate the same collections, just differing in the keyword-free match

that joins the desired collections. As keyword-free matches are not scored because they do not

match attributes, they do not affect the PLS score. In addition, these PLSs present a higher

number of KMs, being more penalized. As for P1, this PLS is more concise than the others in

the number of KMs and presents higher overall scores considering the individual KMs score.

7 Structured Query Generation

To provide users with an answer to their keyword queries, SEREIA generates a structured

query corresponding to one of the best-ranked PLSs. As mentioned, in this work we adopted

MongoDB as the underlying document store. In many cases, queries in MongoDB document

collections require using Aggregation Framework Pipeline4. This pipeline is based on different

stages that receive a collection as input and process it by: (i) adding new attributes to the

collection’s documents; (ii) modifying existing attributes, or (iii) filtering out documents that

do not satisfy a given condition. Each stage takes as input the data produced as the output from

the previous one. To properly present our algorithm for structured query generation, we first

need to overview the types of MongoDB stages we use and how they process the input data.

This is discussed next.

7.1 Query Stages in MongoDB

We briefly discuss the types of MongoDB stages we used in our work by means of a

running example, that illustrates how these stages modify the input data. Notice that all the

semantics presented here are inherent to MongoDB’s Aggregation Framework.

$match Stage

Given a term from the keyword query located in an attribute’s value, SEREIA generates a

$match stage to allow only documents that present a given value in that attribute, as seen in

Figure 6. This stage searches for values using regular expressions in the documents attributes.

[{ "user_id": "ABC",
"name": "Analucia",
"friends":
[ "DEF", "GHI" ]},

{ "user_id": "DEF",
"name": "Bricola",
"friends": [ "ABC" ]}, 

{ "user_id": "GHI",
"name": "Michelle",
"friends": [ "ABC" ]}] 

  [{ "user_id": "ABC", 
     "name": "Analucia", 
     "friends": [ "DEF", "GHI" ]}]

db.user.aggregate( 
  {"$match": { "$expr" : { 
 "$regexMatch": { 
  "input": "$name", 
  "regex": "analucia", 
  "options: "i"}}}})

USER collection

Fig. 6: $match query stage and output example

$lookup Stage

Considering scenarios in which a document database presents more than one collection,

such as the Yelp! database, MongoDB allows the join operation through the $lookup stage,

as seen in Figure 9. Essentially, this operator simulates the LEFT JOIN operation known in

4https://docs.mongodb.com/manual/aggregation/
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relational databases. By default, in this work, the $lookup stage always generates a new

attribute in the document with the same name as the collection. The result of satisfying all

conditions in the $lookup stage is added as an attribute to the base collection.

[{ "user_id": "ABC",
"name": "Analucia",
"friends":
[ "DEF", "GHI" ]},

{ "user_id": "DEF",
"name": "Bricola",
"friends": [ "ABC" ]}, 

{ "user_id": "GHI",
"name": "Michelle",
"friends": [ "ABC" ]}] 

USER collection

[{ "review_id": "R1",
"business_id": "B1", 
"user_id": "ABC",
"text": "Amazing!" },

{ "review_id": "R2",
"business_id": "B2",
"user_id": "ABC",
"text": "Incredible!"}, 

{ "review_id": "R3",
"business_id": "B3",
"user_id": "DEF",
"text": "Tasty food!"}] 

REVIEW collection

[{ "user_id": "ABC",
"name": "Analucia",
"friends": [ "DEF", "GHI" ],
"review": [ 
    { "review_id": "R1",
      "business_id": "B1", 
      "user_id": "ABC",
      "text": "Amazing!" },,
    { "review_id": "R2",
      "business_id": "B2",
      "user_id": "ABC",
      "text": "Incredible!"}
]},

{ "user_id": "DEF",
"name": "Bricola",
"friends": [ "ABC" ]
"review" [
    { "review_id": "R3",
      "business_id": "B3",
      "user_id": "DEF",
      "text": "Tasty food!"}
]}]

db.user.aggregate( 
    {"$lookup": {
     "as": "review",
     "foreignField": "user_id",
     "from": "review",
     "localField": "user_id"}}  
) 

Fig. 7: $lookup stage and output example

$unwind Stage

In cases in which the attribute is nested inside an array, the $match stage can not operate

directly on the attribute. To tackle this issue, we use the $unwind stage that “flattens” the

document on the given attribute, i.e., it deconstructs an array and replicates the document for

each element from the array, as seen in Figure 8. In essence, each document given as the output

for this stage resembles the input document with the value of the array field replaced by an

element from the array.

[{ "user_id": "ABC",
"name": "Analucia",
"friends":
[ "DEF", "GHI" ]},

{ "user_id": "DEF",
"name": "Bricola",
"friends": [ "ABC" ]}, 

{ "user_id": "GHI",
"name": "Michelle",
"friends": [ "ABC" ]}] 

USER collection [{ "user_id": "ABC",
"name": "Analucia",
"friends": "DEF"},

{ "user_id": "ABC",
"name": "Analucia",
"friends": "GHI"},

{ "user_id": "DEF",
"name": "Bricola",
"friends": "ABC"}, 

{ "user_id": "GHI",
"name": "Michelle",
"friends": "ABC"}] 

db.user.aggregate( 
    {"$unwind": "$friends"
) 

Fig. 8: $unwind query stage and output example

$set Stage

When executing the $unwind operation, MongoDB deconstructs an array and replicates

the input document for each element of the array, as seen in Figure 7. To avoid rebuilding

the deconstructed array, SEREIA duplicates the field that presents a list in its nested structure
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through a $set stage. This operation gets the content of the attribute passed as argument and

duplicates it in another attribute.

[{ "user_id": "ABC",
"name": "Analucia",
"friends":
[ "DEF", "GHI" ]}]

USER collection
[{ "user_id": "ABC",
"name": "Analucia",
"friends": [ "DEF", "GHI" ],
"friends_dup": [ "DEF", "GHI" ]
}]db.user.aggregate( 

    {"$set": { 
        "friends_dup": "$friends"} 
)

Fig. 9: $set query stage and output example

$group Stage

After an $unwind stage, it is common that multiple documents resemble the original

document, as shown in Figure 8. To revert this scenario, SEREIA groups all the information

from the original document through a $group stage. In this work, this stage is solely used

to aid when retrieving the original documents, discarding all documents replicated due to the

semantics of the $unwind stage. Figure 10 illustrates the output of this operator.

[{ "user_id": "ABC",
"name": "Analucia",
"friends": [ "DEF", "GHI"],
"friends_dup": "DEF"},

{ "user_id": "ABC",
"name": "Analucia", 
"friends": [ "DEF", "GHI"], 
"friends_dup": "GHI"},

{ "user_id": "DEF",
"name": "Bricola", 
"friends": [ "ABC"], 
"friends_dup": "ABC"}, 

{ "user_id": "GHI",
"name": "Michelle",
"friends": [ "ABC" ],
"friends_dup": "ABC"}] 

[{ "user_id": "ABC",
"name": "Analucia",
"friends": [ "DEF", "GHI"]},

{ "user_id": "DEF",
"name": "Bricola", 
"friends": [ "ABC"]},

{ "user_id": "GHI",
"name": "Michelle",
"friends": [ "ABC" ]]

db.user.aggregate( 
    {"$group": { 
 "_id": "$user_id", 
        "user_id": {"$first" : "$user_id"}
 "name": {"$first": "$name"}, 
 "friends": {"$first": "$friends"} 
    }
)

Fig. 10: $group stage and output example

7.2 Structured Query Generation Algorithm

Algorithm 1, called MongoQueryBuilder (MQB), is responsible for translating a CJN to a

structured query. In the discussion below, we illustrate the functioning of the algorithm using

the following example PLS:

P1 = USERV [name{michelle}]

REVIEWS [self{reviewed}]

BUSINESSV [categories{italian,restaurants}]

The MQB algorithm traverses the input PLS and outputs the query that can be executed

by MongoDB, along with the base collection, which we will define shortly. The process

is straightforward and starts when MQB selects the top-most KM as the starting node and

defines the previous node as NULL (lines 1-2). In particular, the latter is used to check whether

MQB must aggregate data between collections. Taking P1 as the input PLS, the starting node

selected is USERV [name{michelle}]. The collection associated with this node is called the
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base collection (Line 4) since it will be the first collection processed in the Aggregation

Pipeline. In our running example, MQB takes USER as the base collection. Next, MQB defines

an empty set for all visited nodes of CJN (Line 4). Finally, MQB calls another algorithm

called BuildStages (Algorithm 2), which recursively traverses P and generates MongoDB

stages to properly handle the collection corresponding to each node from P in the final query.

Algorithm 1: MongoQueryBuilder(P )

Input: P : A pipeline sketch

Output: MQ: A structured mongo query

baseCollection: base collection for aggregation

1 let currNode← the top-most node from P

2 let prevNode← NULL

3 let CS [A
KS

1

1
, . . . , A

KS
n

n ]V [A
KV

1

1
, . . . , A

KV
n

n ] be the KM from currNode

4 baseCollection← C

visited← {};
MQ← {};

5 BuildStages(MQ, currNode, prevNode, visited);

6 return MQ, baseCollection

The BuildStages algorithm calls several functions to build stages and adds them to the

structured query being built. As described below, there is a specific function for each type of

stage (Section 7.1). The algorithm’s initial step consists of extracting the KM from currNode.

Next, the algorithm checks if prevNode is not NULL (Line 1). In this case, it generates a

$lookup stage to indicate a join operation between the collections associated with currNode

and prevNode (Line 2). In addition, BuildStages generates an $unwind stage that allows for

attribute value matching in the next stage (Line 3). Since we are in the first iteration, prevNode

is NULL. In our running example, BuildStages iterates in all attributes of currentKM

(Line 4), i.e., USERV [name{michelle}], which generates $match stages (Line 7). This KM

only presents a single attribute name, and generates only one match stage as shown below.

In cases in which an attribute is located inside a list, BuildStages also generates $set

and $unwind stages, only to allow value matching (Lines 5-6). In this case, after matching,

BuildStages “cleans” the document by returning to its original state through a $group stage

(Line 8). Finally, BuildStages marks the current node as visited and iterates in its adjacent

nodes calling itself recursively if they were not visited (Lines 9-11).

As the adjacent node to USERV [name{michelle}], BuildStages is called and passes the next

node REVIEWS [self{reviewed}] and currNode as arguments, where the latter refers to the

node previously visited. After extracting the currentKM , BuildStages asserts that prevNode

is not NULL and generates a $lookup stage to perform a join between collections. In this

case, the join will be performed between the collections USER and REVIEW. After joining,

BuildStages generates an $unwind stage to flatten the array of joined documents, in order to

enable matching in the next stage, if needed. Since currentKM does not present any value for

matching (i.e. a SKM), this node is marked as visited and the algorithm is called for the next

adjacent node. In the final iteration, BuildStages generate $lookup and $unwind stages.
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Algorithm 2: BuildStages(MQ,currNode,prevNode,visited)

1 currentKM ← KM from currNode;

if prevNode <> NULL then

2 MQ.append(LookupStage(prevNode, currNode));

let Ccur be the attribute generated by $lookup in currNode

3 MQ.append(UnwindStage(Ccur));

4 foreach ⟨ attribute Ai, value KV
i ⟩ in currentKM do

5 if hasArray(Ai) then

6 MQ.append(SetStage(Ai));

MQ.append(UnwindStage(Ai));

7 MQ.append(MatchStage(Ai, K
V
i ));

if hasArray(Ai) then

8 MQ.append(GroupStage());

9 visited← visited ∪ currNode;

foreach node v ∈ getAdjacents(currNode) do

10 if v ̸∈ visited then

11 BuildStage(MQ, v, currNode, visited);

Notice that currNode contains a VKM, which presents values that must be matched. For

each of the attributes and values, BuildStages generates matches. Finally, after the recursive

calls to BuildStages, MQB returns the Mongo Query built MQ and the base collection C,

enabling SEREIA to issue the query against MongoDB. The MongoDB query generated for

the example is given in Figure 2.

8 Experimental Evaluation

In this section, we report a set of experiments performed with SEREIA using datasets pre-

viously used in the literature related to document stores. The experiments aimed at submitting

exploratory keyword queries to SEREIA to assess whether it is capable of correctly retrieving

the information expected by the user, thus aiding in data discovery and exploration tasks.

8.1 Setup

We ran all experiments on a machine running Arch Linux with the following specifications:

32GB RAM, Intel® Core™ i9-10850K @ 4.9GHz. All implementations were made in Python

3.10. We used MongoDB with default configurations as document store.

Datasets

Our experiments comprised five datasets, for which we summarize the statistics in Table 2,

showing the number of collections, documents, queries, and respective dataset sizes5.

The NBA dataset contains data for 28 years of basketball games, ranging from 1985 to 2013.

For this dataset, we generated a set of ten keyword queries. The Twitter dataset contains nearly

2 million documents obtained directly from the Twitter API. For this dataset, we generated

5Datasets available at https://github.com/bdri-ufam/sereia
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eleven queries. The DBLP dataset contains nearly 2 million documents, containing data on

conference proceedings, journal articles, PhD thesis, etc. The query set for DBLP was obtained

from SPARK [22] and contains a total of ten queries. All three datasets were used in previous

work for exploratory OLAP on document stores [23]. The IMDb dataset was obtained from

Kaggle6 and has documents containing data from approximately 45K movies released before

July 2017 from the well-known Internet Movie Database (IMDb)7. The query set for IMDb

has previously been used in the evaluations of keyword search system [24] and contains 26

queries. The Yelp! dataset was used for benchmarking a JSON parser [25] and contains rich

data on businesses, as well as users and their reviews and tips from these businesses. The query

set for Yelp! was obtained from SQLizer [18] and consists of 28 queries formulated in Natural

Language. We adapted these queries to our experiments by removing their non-keyword terms.

Table 2: Dataset collections and query sets statistics

Dataset No. Collections No. Documents Size (GB) No. Queries

NBA 1 31.686 0.2 10

Twitter 1 1.984.049 5.1 11

DBLP 1 1.984.049 0.8 10

IMDb 2 90.939 0.2 26

Yelp! 6 12.486.440 17.4 28

Gold Standards and Evaluation Metrics

We evaluated the results of SEREIA in two steps: (i) quality of the query matches and pipeline

sketches ranking and (ii) quality of the documents retrieved. For each step, we manually

generated the relevant set of QMs, PLSs, and relevant documents to be retrieved.

To evaluate (i), we use the Precision@k (P@k) and Mean Reciprocal Rank. Given a

keyword query Q, the value of PQ@K is 1 if the correct Query Match or Pipeline Sketches

for Q appears in a position up to position K in the ranking and 0 otherwise. P@K in

our evaluations is the average of PQ@K for all Q in the query set. With respect to MRR,

considering a keyword query Q, the value of reciprocal ranking for Q, RRQ, is given by 1

P
,

where P is the rank position of the relevant result. The MRR for a query set is the average

of RRQ for all Q in the query set. As for (ii), we measure precision, as the ratio of relevant

documents among all retrieved documents, and recall, as the ratio of relevant documents

retrieved among all relevant documents for a given query.

8.2 General Results

Table 3 presents statistics on the results obtained for each dataset used in the evaluation

process. More specifically, considering all queries in a query set, we show the maximum

(Max) and the average (Avg) number of schema-keyword matches (No. SKMs), value-keyword

matches (No. VKMs), query matches (No. QMs) and pipeline sketches (No. PLSs).

Overall, the number of SKMs is low across all datasets since many queries do not present

references to the datasets’ schema. Naturally, the number of VKMs is higher, since most

queries express keywords present in attribute values. This is the case for most queries in the

IMDb query set that cite actors’ names such as “johnny depp” and “will smith”. In particular,

the DBLP queries did not present references to the document’s schema elements.

6https://www.kaggle.com/rounakbanik/the-movies-dataset
7https://www.imdb.com/
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Table 3: General statistics on the results for each dataset

No. SKMs No. VKMs No. QMs No. PLSs

Dataset Max Avg Max Avg Max Avg Max Avg

NBA 2 0.5 11 4.2 16 3.8 3 1.2

Twitter 2 0.18 48 26 199 86 29 12

DBLP 0 0 20 7.9 140 22.7 3 1.2

IMDb 4 0.5 192 34 75197 3191 5551 438

Yelp! 3 0.9 37 15 497 72 318 49

Regarding QMs, the numbers are higher due to the combinatorial process of the matching

phase (Section 5). As seen in IMDb, the maximum number of QMs generated was 75,197.

This is due to values that may be found in many different attributes and considering a single or

multiple documents. For example, the keyword query “harrison ford george lucas” presents

keywords, such as “george”, that can be mapped to, for example, credits.cast.name or

credits.cast.character.

Note that, in general, the number of PLSs was lower than the number of QMs in most

datasets. This is explained by the pruning conditions explained in Section 6. The Yelp! dataset

presented a different behavior, in which the maximum number of PLSs exceeds the maximum

number of QMs. In this case, we see that some QMs may generate more than one PLS for a

given keyword query, resulting in a larger number of PLSs. This results from the fact that Yelp!

presents more collections that can be used when connecting KMs, increasing the number of

PLSs. For instance, in the QM {BusinessS [self{businesses}], UserV [name{bricola}]} the

keyword matches can be connected through the Tip or Review collections.

8.3 Query Match Ranking Evaluation

In this experiment, we evaluate the quality of the QM ranking algorithm based on the

P@K and MRR metrics. Since a single keyword query may generate several QM, SEREIA

relies on the QM ranking algorithm to select the correcto one among those generated. In

Figure 11, we show the overall evaluation of the query match ranking for each dataset.
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Fig. 11: MRR and P@K of Query Match Ranking

In all datasets but one, SEREIA was able to find the correct QM at most in the 5th position

of the ranking. When considering the Yelp! and NBA datasets, P@1 is above 0.9, indicating that

the correct answer is in the first ranking position for several queries. In the case of the IMDb,
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DBLP and Twitter datasets, ranking the correct QM in the higher positions was harder. This

is due to a handful of queries that generated several QMs since they match values scattered

through many attributes. Some of these QMs, although not correct, received a high score and

ranked higher than the correct one. Thus, as seen in the graph, there are cases in which the

correct QM appears only in the 5th position. Regarding the MRR metric, we reached a score of

0.67, which reflects the presence of almost all correct QMs within the top 3 ranking positions.

As an example of situations in which SEREIA was not able to rank the cor-

rect QM in the first position, consider the keyword query “will smith”. The QM

{CREDITS[cast.name{will, smith}]} is the correct one for this query. However, the QM

ranking algorithm assigned the top position to the QM MOVIES[overview{will, smith}].
In this situation, the term “will” is a verbal form frequently found in the attribute overview,

and thus, yielded to a high score in the second QM , as detailed in Section 5.

8.4 PLS Ranking Evaluation

In this experiment, we evaluated the quality of our PLS ranking. As in the previous section,

we also use the P@k and MRR metrics for evaluation, shown in Figure 12. For this experiment,

the generation of PLSs uses the top-N QMs based on their ranking. Considering the findings

of the QM ranking experiment, we used N = 9.
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Fig. 12: MRR and P@K of Pipeline Sketches

In the PLS ranking experiment, SEREIA ranked the correct PLS at most in the 5th position

of the ranking for the majority of datasets, except the IMDb dataset. Nonetheless, the P@1
metric presented better results than in the QM ranking evaluation. This improvement is more

evident in the DBLP, where the ranking algorithm places all correct PLSs in the first position.

Again, the IMDb dataset poses difficulties due to matching values scattered through many

attributes. Furthermore, as noted earlier (Section 6.2), the PLS ranking algorithm leverages the

score previously calculated by the QM ranking, leading to a scenario that is similar to the QM

ranking evaluation for the IMDb dataset. However, both QM and PLS ranking experiments

differ due to the scoring strategy employed by the PLS ranking algorithm, which favors PLSs

with smaller sizes and higher scores.
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8.5 Performance Evaluation

Table 4 exhibits the average execution times per phase and also the total time regarding the

whole generation process. In general, the time spent in the whole process is dominated by the

QM generation phase, in particular in the case of datasets with larger number of colections, i.e.,

Yelp! and IMDB, due to the increased number of combinations between KMs. KM generation

time is low in general, and higher times are observed in Yelp! and Twitter datasets, due to

matching values scattered through multiple attributes, which results in a slight increase in time.

For instance, considering the keyword query “5.0 star italian restaurants” for the Yelp! dataset,

the keyword “star” could be narrowed down to the number of stars of a given business, the

number of stars of a given review, to a business name or a business’ address. Thus, a single

keyword may incur the generation of several KMs.

Table 4: Avg. Execution time for each

SEREIA phase (ms)

Dataset KM QM PLS Total

Yelp! 11.68 160.45 9.86 182.00

NBA 2.21 2.21 0.07 4.49

DBLP 0.77 3.17 0.19 4.14

Twitter 6.29 3.00 0.29 9.60

IMDb 3.51 549.70 5.45 558.67

As for the PLS generation phase, the execution times are directly affected by the number

of distinct collections referred by the generated QMs. In other words, an increased number

of collections results in more possibilities when connecting KMs from a QM. This is clearly

observed in the NBA, DBLP and Twitter datasets. Since all of them present a single collection,

they require less computation and time resources. On the other hand, as the number of

collections increase, so does the generation time, as in the case of the IMDb and Yelp! datasets.

Once we have the PLSs, the last step involves generating structured queries that will be

executed in the underlying document store (Section 7). In Table 5 we show the average and

maximum times for generation of structured queries, as well as for the execution of these

queries. Overall, the maximum generation time is as low as 1 millisecond regarding the query

generation, thus demonstrating the efficiency of our query generation algorithm. The overall

execution times, on the other hand, are more prone to last longer due to the execution in the

underlying document store. In our experiments, we saw a maximum of 9 seconds for execution

time, which was in the Yelp! dataset. This higher time is seen in the keyword query “businesses

bricola stars 5”, in which we must join three collections (Business, User and Review)

while also filtering documents based on attribute values, such as “Bricola” for the username

and “5” as the review rating.

Table 5: Query Generation and Execution time statistics (ms)

Step Statistics NBA Twitter DBLP IMDb Yelp!

Generation
Avg Time 0.177 0.243 0.235 0.182 0.232

Max Time 0.275 0.343 0.331 0.385 1.311

Execution
Avg Time 450.7 4016.0 2521.4 217.5 616.9

Max Time 1009.0 6024.2 3669.5 483.1 9014.3
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8.6 Quality of results evaluation

Once SEREIA generates structured queries and executes them in the underlying document

store, we can assess the quality of the documents retrieved against the set of documents

expected according to our gold standards and considering each dataset. In Figure 13 we

evaluate this quality using the Precision and Recall metrics. In this evaluation, we consider

two scenarios: (i) the Precision/Recall metrics considering the Top-1 PLS ranked by SEREIA

and (ii) one PLS manually selected by the user from the Top-5 PLS rank. In the latter, we

exhibited the top PLSs for the user and she selected the one that best suited the necessity of the

keyword query. We name this approach as Assisted Ranking (AR), while the default approach

we will refer as Default Ranking (DR).
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Fig. 13: Precision and Recall for SEREIA in each dataset

On average, the precision and recall presented by SEREIA using DR for the query sets

were 0.76 and 0.67, respectively. Overall, SEREIA correctly retrieved the majority of expected

documents in this scenario. In the fewer cases that affected the precision and recall metrics,

the correct PLSs were not in the first rank position and, thus, SEREIA did not retrieve only

documents expected in the query’s intent. These superfluous documents derive from queries in

which keywords were scattered in different document attribute values, as stated in Section 5.

In contrast, adopting AR increased both metrics, achieving 0.96 and 0.98 for precision and

recall, respectively. This shows that SEREIA was able to help the user correctly retrieve data

by choosing between the top PLS ranked alternatives.

Table 6: Number of correct queries per dataset and

approach

Dataset Default Ranking Assisted Ranking Total

Yelp! 23 (82%) 28 (100%) 28

NBA 9 (90%) 10 (100%) 10

DBLP 10 (100%) 10 (100%) 10

Twitter 3 (27%) 11 (100%) 11

IMDb 3 (11%) 22 (85%) 26

Additionally, in Table 6, we show the number of queries correctly generated per dataset

and ranking approach. We indicate for each dataset (Column 1), the number of correct queries

considering the approach of the PLS ranking (Columns 2 and 3), that is, Default Ranking
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and Assisted Ranking, respectively. Finally, we also indicate the total number of queries to

be generated per dataset (Column 4). As noted in Figure 13, the Assisted Ranking produces

better outputs since the correct query is found within the top-5 positions, as opposed to the

Default Ranking approach that considers only the top-1 position.

9 Conclusions and Future Work

In this paper, we presented SEREIA, a system that helps users explore data in document

stores via keyword queries. To our knowledge, SEREIA is the first system that allows explo-

ration using keyword queries directly in a document store. Our system extends previous work

on keyword search systems in relational databases [12, 13], and we proposed several changes

to enable the adoption of document stores. We present a comprehensive set of experiments that

we carried out using datasets and query sets previously adopted in the literature. The results of

these experiments indicate that SEREIA is capable of helping users explore document stores,

and requires only a handful of keywords as input, rather than requiring the user to generate a

fully structured query in the document store query language. This is important because the

time and effort spent learning how to explore data available in document stores is greater

when compared to relational databases due to the semi-structured nature of the documents.

By providing a more straightforward approach to exploring document stores, that is, through

keyword queries, SEREIA facilitates data analysis in document stores and decreases the time

necessary for an analyst to find relevant data.

In this work, our implementation is specific to MongoDB, a system we chose because of

its popularity. However, there may be cases where developers may prefer alternative document

stores, such as CouchDB8 or Couchbase9. Considering its architecture, SEREIA can be easily

adapted to other document stores. Adding support for other document stores requires two main

changes: (i) implementing an adapter to retrieve data from the target document store and (ii)

implementing a module to translate a CJN to the query language of the target document store.

In addition, several systems in the literature focus on handling data stored in heteroge-

neous data sources. Such systems, often called polystores [26, 27], are database management

systems built on top of multiple heterogeneous storage engines, including relational databases

and document stores [28]. Since with SEREIA we demonstrated that keywords are a viable

alternative for exploring document stores, and many previous systems have also achieved the

same result for relational databases, an intriguing question is whether keyword-based queries

could be used as a unifying approach to allow data exploration in polystores. Another similar

application scenario for such an approach is data lakes [5, 29], which presents massive stores

of data, such as relational and JSON data, for future analytics. In both scenarios, leveraging

data exploration through keyword search may be helpful to the user, as she would not need

to know details on the organization of each distinct data source, and could then explore the

contents of these sources with less difficulty. As in other tasks related to polystores and data

lakes, realizing such an approach would require some form of integration between stored data

items in different formats. For instance, a challenge that arises is that there is no explicit defini-

tion on how data from different sources can be joined. Techniques for finding relationships

between distinct datasets have been investigated in the past literature [6, 29, 30]. In conven-

tional approaches, techniques often leverage metrics like content and schema similarity to

minimize manual labor in establishing connections among related information within data

8https://couchdb.apache.org/
9https://www.couchbase.com/
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lakes. Recent advancements in Large Language Models (LLMs) offer a promising alternative.

Researchers are increasingly utilizing LLMs to automatically analyze documents stored in data

lakes. These models not only interpret the content but also facilitate the generation of links

between related data [31]. Furthermore, LLMs can automate the process of code generation

for data extraction tasks [32]. By integrating techniques like these into our framework, we can

explore its potential usefulness in scenarios that involve polystores or data lakes.
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