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Abstract

This paper is concerned with algorithms and applications of decreasing minimization on an

M-convex set, which is the set of integral elements of an integral base-polyhedron. Based on a

recent characterization of decreasingly minimal (dec-min) elements, we develop a strongly poly-

nomial algorithm for computing a dec-min element of an M-convex set. The matroidal feature of

the set of dec-min elements makes it possible to compute a minimum cost dec-min element, as

well. Our second goal is to exhibit various applications in matroid and network optimization, re-

source allocation, and (hyper)graph orientation. We extend earlier results on semi-matchings to a

large degree by developing a structural description of dec-min in-degree bounded orientations of a

graph. This characterization gives rise to a strongly polynomial algorithm for finding a minimum

edge-cost dec-min orientation.
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1 Introduction

This paper is concerned with algorithms and applications of decreasing minimization on an M-convex

set, which is the set of integral elements of an integral base-polyhedron. An element of a set of vectors,

in general, is called decreasingly minimal (dec-min) if its largest component is as small as possible,

within this, its second largest component is as small as possible, and so on. Decreasing minimization

means the problem of finding a dec-min element of a given set of vectors (or even a cheapest dec-min

element with respect to a given linear cost-function). When the given set of vectors consists of integral

vectors, this problem is also referred to as discrete decreasing minimization. In the literature, typically

the term lexicographic optimization is used, but we prefer “decreasing minimization” because we

also consider its natural counterpart “increasing maximization,” and the use of these two symmetric

terms seems more appropriate to distinguish the two related notions. An element of a set of vectors is

called increasingly maximal (inc-max) if its smallest component is as large as possible, within this,

its second smallest component is as large as possible, and so on.

In the companion paper [21], the present authors have investigated the structural aspects of the

discrete decreasing minimization on an M-convex set. Among others, the dec-min elements are char-

acterized as those admitting no local improvement, where the precise meaning of a local improvement

is defined formally in term of “1-tightening step” in Section 2. It is also shown that an element of

an M-convex set is decreasingly minimal precisely if it is a minimizer of the sum of the squared

components.

As dual objects to dec-min elements, the notions of canonical chain, canonical partition of the

ground-set, and essential-value sequence were defined, and the structure of the set of all dec-min

elements is described in terms of these dual objects. (An equivalent definition of these notions is

given in Section 2.2.) We emphasize that the role of these dual objects is not merely to help us

fully understand the problem from its dual side. Beyond this, the dual characterization reveals the

fundamental feature of the primal problem that the set of dec-min elements itself forms an M-convex

set, and, in fact, a rather special one arising from a matroid by translation. In addition, these dual

objects are inherent in computing a dec-min element in strongly polynomial time and indispensable

for efficient computation of a minimum weight dec-min element, as well.

The first goal of this paper is to develop, on the basis of the above-mentioned structural character-

izations, a strongly polynomial algorithm for computing a dec-min element as well as the canonical

chain of a given M-convex set. The second goal is to exhibit several applications. For example, we

prove a conjecture of Borradaile et al. [7] on dec-min strongly connected orientations of undirected

graphs. Our general approach makes it possible to solve algorithmically even the minimum edge-

cost dec-min orientation problem when upper and lower bounds are imposed on the in-degrees and

the orientation is expected to be k-edge-connected (or even (k, ℓ)-edge-connected). These orientation

results form the basis of a major generalization of the so-called semi-matching problem initiated by

Harvey et al. [31], which had been motivated by a resource allocation problem in computer science.

Our approach is the first one that provides a strongly polynomial algorithm for the capacitated case,

as well.

An algorithmic solution to a discrete counterpart of Megiddo’s lexicographic flow problem [43, 44]

is also developed. Yet another application of the structural results of [21] gives rise to an extension

of a result of Levin and Onn [42] on finding k bases of a matroid on a ground-set S with n elements

such that the degree-vector of the hypergraph formed by these k bases is decreasingly minimal. Our

approach generalizes this problem to the case when one has k distinct matroids on S .

The paper is organized as follows. Algorithms for computing a dec-min element and the canonical

chain are given in Section 2. In Section 3, various kinds of applications are shown, including those

to matroids, network flows, arborescences, and connectivity augmentations. Sections 4, 5, and 6 are

devoted to detailed account of applications to graph orientation problems.
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1.1 Notation and terminology

We continue to use notation and terminology introduced in [21], while some additional ones are given

here. Let S be a finite ground-set S with n elements. Two subsets X and Y of S are intersecting if

X ∩Y , ∅, properly intersecting if none of X ∩Y , X − Y , and Y − X is empty, and crossing if none of

X − Y , Y − X, X ∩Y , and S − (X ∪ Y) is empty. For distinct elements s, t of S , a subset of S containing

t but not s is called a ts-set.

For a vector x ∈ RS or a function x : S → R, we define the set-function x̃ : 2S → R by x̃(Z) :=∑
[x(s) : s ∈ Z] (Z ⊆ S ). This is a modular function in the sense that x̃(X)+ x̃(Y) = x̃(X∩Y)+ x̃(X∪Y)

holds for every X, Y ⊆ S .

For any integral polyhedron R ⊆ RS , we use the notation
....
R to denote the set of integral elements

of R, that is,
....
R := R ∩ ZS , (1.1)

where
....
R may be pronounced “dotted R.” The notation is intended to refer intuitively to the set of

lattice points of R.

For a set-function h, we allow it to have value +∞ or −∞. Unless otherwise stated, h(∅) = 0

is assumed throughout. When h(S ) is finite, the complementary function h is defined by h(X) :=

h(S ) − h(S − X). Observe that the complementary function of h is h itself.

Let b be a set-function with b(∅) = 0, for which b(X) = +∞ is allowed but b(X) = −∞ is not. The

submodular inequality for subsets X, Y ⊆ S is defined by

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y). (1.2)

We say that b is (fully) submodular if this inequality holds for every pair of subsets X, Y ⊆ S with

finite b-values. When the submodular inequality is required only for intersecting (crossing) pairs

of subsets, we say that b is intersecting (crossing) submodular. A set-function p is called (fully,

intersecting, crossing) supermodular if −p is (fully, intersecting, crossing) submodular. It follows

from the definitions that if b is fully (or crossing) submodular with finite b(S ), then its complemen-

tary function b is a fully (or crossing) supermodular function, while b is not necessarily intersecting

supermodular when b is intersecting submodular.

For a (fully) submodular integer-valued set-function b on S with b(∅) = 0 and finite b(S ), the

base-polyhedron B is defined by

B = B(b) = {x ∈ RS : x̃(S ) = b(S ), x̃(Z) ≤ b(Z) for every Z ⊂ S }, (1.3)

which is a (possibly unbounded) integral polyhedron in RS . Section 14 of book [16] provides an

overview of basic properties of base-polyhedra; see also the book of Schrijver [53]. For example, it

is a basic property that B = B(b) is a non-empty integral polyhedron, and B uniquely determines its

defining (fully) submodular function b, namely,

b(Z) = max{x̃(Z) : x ∈ B} (= max{x̃(Z) : x ∈
....
B}).

By convention, the empty set is also considered a base-polyhedron. A (fully) supermodular integer-

valued set-function p with p(∅) = 0 and p(S ) finite also defines an integral base-polyhedron by

B = B′(p) = {x ∈ RS : x̃(S ) = p(S ), x̃(Z) ≥ p(Z) for every Z ⊂ S }, (1.4)

since the complementary function b := p of p is fully submodular and B′(p) = B(b). In discrete

convex analysis [46, 47], the set
....
B of integral elements of an integral base-polyhedron B is called an

M-convex set.

We say that a submodular function b and a supermodular function p meet the cross-inequality for

X, Y ⊆ S if

b(X) − p(Y) ≥ b(X − Y) − p(Y − X). (1.5)
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A pair (p, b) of set-functions is called fully paramodular (or we say that (p, b) is a strong pair) if b

is fully submodular, p is fully supermodular, and the cross-inequality holds for every X, Y ⊆ S . For a

strong pair (p, b), the polyhedron Q defined by

Q = Q(p, b) := {x ∈ RS : p(Z) ≤ x̃(Z) ≤ b(Z) for every Z ⊆ S } (1.6)

is called a generalized polymatroid (g-polymatroid, for short), while (p, b) is called the border

pair of Q. It is a basic fact [16] that Q is never empty. By convention, the empty set is also con-

sidered a g-polymatroid. Furthermore, a non-empty g-polymatroid Q uniquely determines its fully

paramodular border pair, and Q is integral when p and b are integer-valued. Base-polyhedra are spe-

cial g-polymatroids, namely, those for which p(S ) = b(S ), and every g-polymatroid arises from a

base-polyhedron by projection along a single coordinate axis.

To prove theorems on base-polyhedra, it is much easier to work with base-polyhedra defined by

fully sub- or supermodular functions. For applications, however, it is fundamentally important that

weaker set-functions (e.g. intersecting, crossing or even weaker submodular functions) may also

define base-polyhedra (or M-convex sets), as well as g-polymatroids. (We shall use this fact frequently

in Sections 5 and 6.) For example, if p is an integer-valued intersecting or crossing supermodular

function, then B′(p) can be proved to be an integral base-polyhedron (see, e.g. Theorem 15.3.4 in

book [16]), which may, however, be empty. (This result, for example, underlies the fact that the

in-degree vectors of k-edge-connected orientations of a 2k-edge-connected graph form an M-convex

set.)

When p is intersecting supermodular, b is intersecting submodular, and the cross-inequality holds

for properly intersecting pairs of subsets X, Y , we say that (p, b) is a weak pair or intersecting

paramodular. For such a border pair, Q = Q(p, b) is known to be a (possibly empty) g-polymatroid.

It should be noted, that the (unique) fully paramodular border pair defining Q can be concretely ex-

pressed with the help of the weak pair (p, b), but this formula is quite complicated (see, Corollary

15.3.4 in book [16]).

It is a non-trivial task to characterize the situation when B(b) is non-empty for a crossing submod-

ular function b but Fujishige [26] developed an elegant necessary and sufficient condition. A similar

theorem can be formulated for g-polymatroids defined by a weak pair (p, b) (see, Theorem 15.3.13

in book [16]). It should, however, be emphasized that applications often need base-polyhedra or g-

polymatroids defined by even weaker sub- or supermodular functions. For example, the in-degree

vectors of k-edge-connected digraphs obtained by adding a given number of arcs to an input digraph

H = (V, A) form an M-convex set. (See, Theorem 17.2.9 and Section 15 of [16] for an overview.

A recent paper of Bérczi and Frank [2] includes even more intricate constructions of M-convex sets

appearing in graph connectivity augmentation problems.)

We assume that graphs or digraphs have no loops but parallel edges are allowed. Sometimes we

refer to an edge of a digraph as an arc. For a digraph D = (V, A), the in-degree of a node v is the

number of arcs of D with head v. The in-degree ̺D(Z) = ̺(Z) of a subset Z ⊆ V denotes the number

of edges (= arcs) entering Z, where an arc uv is said to enter Z if its head v is in Z while its tail u is

in V − Z. The out-degree δD(Z) = δ(Z) is the number of arcs leaving Z, that is δ(Z) = ̺(V − Z). The

number of edges of a directed or undirected graph H induced by Z ⊆ V is denoted by i(Z) = iH(Z).

In an undirected graph G = (V, E), the degree d(Z) = dG(Z) of a subset Z ⊆ V denotes the number

of edges connecting Z and V − Z, while e(Z) = eG(Z) denotes the number of edges with one or two

end-nodes in Z. Clearly, e(Z) = d(Z) + i(Z).

2 Algorithms

In this section, we consider algorithmic aspects of decreasing minimization over an M-convex set.

In particular, we show how to compute efficiently a decreasingly minimal element along with its

canonical chain and partition.
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Let B be a non-empty integral base-polyhedron and let p denote the unique fully supermodular

function for which B = B′(p). Let m be an element of the M-convex set
....
B. We need some definitions

introduced in [21]. A 1-tightening step replaces m by m′ := m + χs − χt, where s and t are elements

of S for which m(t) ≥ m(s) + 2 and m′ belongs to
....
B. A subset X ⊆ S is called m-tight (with respect

to p) if m̃(X) = p(X). A subset X ⊆ S is called an m-top set if m(u) ≥ m(v) holds whenever u ∈ X

and v ∈ S − X. We call an integral vector x ∈ ZS near-uniform on a subset S ′ of S if its largest and

smallest components on S ′ differ by at most 1, that is, if x(s) ∈ {ℓ, ℓ + 1} for some integer ℓ for every

s ∈ S ′.

First we recall fundamental characterizations of a dec-min element of an M-convex set.

Theorem 2.1 ([21, Theorem 3.3]). For an element m of an M-convex set
....
B =

....

B′(p), the following four

conditions are pairwise equivalent.

(A) There is no 1-tightening step for m.

(B) There is a chain (∅ ⊂) C1 ⊂ C2 ⊂ · · · ⊂ Cℓ (= S ) such that each Ci is an m-top and m-tight set

(with respect to p) and m is near-uniform on each S i := Ci −Ci−1 (i = 1, 2, . . . , ℓ), where C0 := ∅.

(C1) m is decreasingly minimal in
....
B.

(C2) m is increasingly maximal in
....
B.

We mentioned already in Introduction that it is convenient to prove results for a base-polyhedron

assuming that it is given by a fully sub- or supermodular set-function. In applications, however, a base-

polyhedron is typically given by an intersecting or crossing (or even weaker) function. Therefore, in

describing and analysing algorithms, we consider these weaker functions, as well.

Remark 2.1. One of the most fundamental algorithms of discrete optimization is for minimizing a

submodular function, that is, for finding a subset Z of S for which b(Z) = min{b(X) : X ⊆ S }. There are

strongly polynomial algorithms for this problem; Schrijver [52] and Iwata et al. [36] are the first. We

shall refer to such an algorithm as a submod-minimizer subroutine. The complexity of a significantly

more efficient algorithm, due to Orlin [49], is O(n6) (where n = |S |) and this algorithm calls O(n5)

times a routine which evaluates the submodular function in question. (An evaluation routine outputs

the value b(X) for any input subset X ⊆ S ). A recent algorithm of Jiang [37] needs only O(n3) calls

of an evaluation routine. Naturally, submodular function minimization and supermodular function

maximization are equivalent.

2.1 The basic algorithm for computing a dec-min element

Our first goal is to describe a natural approach—the basic algorithm—for finding a decreasingly

minimal element of an M-convex set
....
B. The basic algorithm is always finite, and if B ⊆ RS

+, it is

pseudopolynomial in the sense that it is polynomial in n + |p(S )|. This means that the algorithm is

polynomial in n when B ⊆ RS
+ and |p(S )| can be bounded by a polynomial of n. This is the case,

for example, in an application to strongly connected decreasingly minimal (=egalitarian) orientations.

In the general case, where typical applications arise by defining p with a ‘large’ capacity function, a

(more sophisticated) strongly polynomial-time algorithm will be described in Section 2.4. In order to

find a dec-min element of an M-convex set
....
B, we assume that a subroutine is available to

compute an integral element of B. (2.1)

We use this subroutine only once to obtain an initial point in the algorithm.

Suppose now that an integral member m of B is available. The algorithm needs a subroutine to

decide for m ∈
....
B and for s, t ∈ S if m′ := m + χs − χt belongs to B. (2.2)

6



By n2 applications of subroutine (2.2), one can decide, for a given m ∈
....
B, whether there exists a

1-tightening step or not. Observe that the subroutine (2.2) is certainly available if we can

decide for any m′ ∈ ZS whether or not m′ belongs to B, (2.3)

though applying this more general subroutine is clearly slower than a direct algorithm to realize (2.2).

In this paper we mainly work with Subroutines (2.1) and (2.2), which are representation-free in the

sense that they do not refer directly to the supermodular (or submodular) functions describing B.

The realization of these subroutines depends on how the base-polyhedron B (or an M-convex set
....
B) is

given. Recall that a base-polyhedron can be described by a fully, intersecting, crossing, or even weaker

functions. For example, when B is described by a fully supermodular function p, (2.1) can be carried

out with n evaluations of p and (2.2) can be done with a single application of a submod-minimizer.

See Remark 2.2 for more details.

As long as possible, apply the 1-tightening step. By Theorem 2.1, when no more 1-tightening step

is available, the current m is a decreasingly minimal member of
....
B and the algorithm terminates. In

this connection we may recall the following characterization of a dec-min element of an M-convex

set.

Theorem 2.2 ([21, Corollary 6.4]). An element m of an M-convex set
....
B is a dec-min element of

....
B if

and only if it is a minimizer of the square-sum W(z) :=
∑

[z(s)2 : s ∈ S ] of z over the elements z of
....
B.

Now observe that a single 1-tightening step strictly decreases the square-sum of the components.

This implies that the number of 1-tightening steps is bounded by W(m) when m is the initial member

of
....
B. In particular, the algorithm is finite.

This algorithm, however, may be quite inefficient as is demonstrated by the simple example where

|S | = 2 and B = {(x1, x2) : x1 + x2 = 0}. Here if the initial member of
....
B is, for example, m =

(106,−106), then the algorithm needs 106 1-tightening steps. However, if B is in the non-negative

orthant (which is often the case in applications), then the following reasonable bound can be given for

the complexity. Since the square-sum of an arbitrary integral vector z ≥ 0 with z̃(S ) = p(S ) is at most

p(S )2 and z̃(S ) = p(S ) holds for all members z of
....
B, we conclude that the number of 1-tightening

steps is at most p(S )2. Therefore, if B ⊆ RS
+ and |p(S )| is bounded by a polynomial of n, then the basic

algorithm to compute a dec-min element of
....
B is strongly polynomial.

Although the basic algorithm is efficient when B ⊆ RS
+ and |p(S )| is ‘small’ (that is, |p(S )| is

bounded by a power of n), it is not strongly polynomial when |p(S )| is ‘large’. We postpone, till

Section 2.4, the description of a strongly polynomial algorithm for computing a dec-min element of

an M-convex set
....
B defined by a general p. In the next section we show how the canonical chain as

well as the essential value-sequence can be computed, once a dec-min element m is available. It is

emphasized that these dual objects are indispensable and must be computed when we are interested in

identifying the set of all dec-min elements of
....
B or in finding a minimum weight dec-min element (cf.,

[21, Section 5.3]).

Remark 2.2. In the algorithm above, we did not rely explicitly on the set-function defining the base-

polyhedron B in question, apart from the single value p(S ). The only assumption was that B is non-

empty and the subroutines (2.1) and (2.2) are available. When the base-polyhedron B = B′(p) is

given by a fully supermodular function p, then the subroutine (2.1) can be realized by a version of

the polymatroid greedy algorithm of Edmonds [9] that needs n evaluations of p (but not a submod-

minimizer subroutine). If p is intersecting supermodular, then an algorithm of Frank and Tardos [24]

requires n calls of a submod-minimizer. The same paper includes an algorithm for the case when p is

crossing supermodular, and this algorithm requires n2 calls of a submod-minimizer. Concerning the

other subroutine (2.2), we note that m′ = m + χs − χt is in B = B′(p) precisely if there is no m-tight

7



ts-set (with respect to p), and this is true even when B is defined by a crossing supermodular function

p. Therefore, the subroutine (2.2) can be realized with a single call of a submod-minimizer if p is fully

supermodular, n calls if p is intersecting supermodular, and n2 calls if p is crossing supermodular.

Remark 2.3. Theorem 2.2 shows that a dec-min element of an M-convex set is characterized as

a minimizer of the square-sum W(z). This naturally suggests the approach of minimizing W(z) to

find a dec-min element. Minimizing the square-sum W(z) over an M-convex set is a special case of

minimizing an M-convex function, for which a local improvement algorithm works (in finite steps)

[47]. The basic algorithm described above corresponds to the special case of this local improvement

algorithm for M-convex function minimization. It is also noted that Fujishige [25] (see also [27,

Section 8.2]) solved the continuous case of the square-sum minimization in polynomial time, which

problem is equivalent to finding the unique minimum norm point m∗ of a base-polyhedron B. In [20]

we proved a theorem formalizing the intuitive feeling that all the dec-min elements of
....
B are in the

neighbourhood of m∗, and this result makes it possible to develop an alternative algorithm to compute

a dec-min element of
....
B.

2.2 Computing the essential value-sequence and the canonical chain

In this section, we describe an algorithm that assigns a chain of subsets of S , a partition of S , and a

strictly decreasing sequence of integers to a given dec-min element m of an M-convex set.

Let B = B′(p) be again a (non-empty) integral base-polyhedron whose unique (fully) supermodu-

lar bounding function is p. In the algorithm, we assume that we can compute the smallest m-tight set

Tm(u) = Tm(u; p) containing a given element u ∈ S . Since we have Tm(u) = {s : m + χs − χu ∈ B},

Tm(u) is indeed computable by at most n applications of Subroutine (2.2).

Algorithm 2.3. Given a dec-min element m of
....
B, the following procedure computes a chain C∗ =

{C1,C2, . . . ,Cq} with C1 ⊂ C2 ⊂ · · · ⊂ Cq (= S ) and a partition P∗ = {S 1, S 2, . . . , S q} of S along with

a sequence β1 > β2 > · · · > βq of integers.

1. Let β1 denote the largest value of m. Let C1 :=
⋃
{Tm(u) : m(u) = β1}, S 1 := C1, and i := 2.

2. In the general step i ≥ 2, the pairwise disjoint non-empty sets S 1, S 2, . . . , S i−1 and a chain

C1 ⊂ C2 ⊂ · · · ⊂ Ci−1 have already been computed along with the values β1 > β2 > · · · > βi−1.

If Ci−1 = S , set q := i − 1 and stop. Otherwise, let

βi := max{m(s) : s ∈ S −Ci−1},

Ci :=
⋃
{Tm(u) : m(u) ≥ βi},

S i := Ci − Ci−1,

and go to the next step for i := i + 1.

It was proved in [21] (Corollary 5.4) that these sequences do not depend on the choice of m.

Therefore the chain C∗ is called the canonical chain belonging to
....
B, the partition P∗ is the canonical

partition of
....
B, while the sequence {β1, β2, . . . , βq} is called the essential value-sequence of

....
B. We

emphasize that Algorithm 2.3 is strongly polynomial for arbitrary p (independently of the magnitude

of |p(S )|), provided that a dec-min element m of
....
B is already available as well as the subroutine (2.2).

It is in order here to emphasize the significance of this algorithm for computing these dual objects.

By Theorem 2.4 below, Algorithm 2.3 enables us to computationally capture the set of all dec-min

elements. Concisely, the matroid associated with dec-min elements, as in Theorem 2.5 below, can

be identified by this algorithm. Here a matroidal M-convex set means [21] the translation of the

incidence vectors of bases of a matroid by an integral vector.
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Theorem 2.4 ([21, Corollary 5.2]). An element m of an M-convex set
....
B is decreasingly minimal if

and only if each Ci ∈ C
∗ is m-tight (with respect to p) and βi − 1 ≤ m(s) ≤ βi holds for each s ∈ S i

(i = 1, . . . , q).

Theorem 2.5 ([21, Theorem 5.7]). The set of dec-min elements of an M-convex set
....
B is a matroidal

M-convex set.

We shall we use Theorem 2.4 in Sections 4.3 and 5.1, and Theorem 2.5 in Sections 4.5 and 5.2.

Adaptation to the intersection with a box Algorithm 2.3 can be adapted to the case when we

have specific upper and lower bounds on the members of
....
B =

....

B′(p). Let f : S → Z ∪ {−∞} and

g : S → Z ∪ {+∞} be bounding functions with f ≤ g and let T ( f , g) := {x ∈ RS : f ≤ x ≤ g}

denote the box defined by f and g. It is a basic fact that the intersection of an integral base-polyhedron

with an integral box is another integral base-polyhedron (see, Theorem 14.3.9 in book [16] for this

statement in a more general context). Therefore the intersection B� := B ∩ T ( f , g) is also a (possibly

empty) integral base-polyhedron. Assume that B� is non-empty.

Let m be an element of
....
B� (= B� ∩ ZS ). Let Tm(u) denote the smallest m-tight set containing u

with respect to p, and let T �m(u) be the smallest m-tight set containing u with respect to p�.

Claim 2.6.

T �m(u) =


{u} if m(u) = f (u),

Tm(u) − {v : m(v) = g(v)} if m(u) > f (u).

Proof. We have T �m(u) = {s : m − χu + χs ∈ B�}. Since B� = B ∩ T ( f , g), we have m − χu + χs ∈ B� if

and only if (i) m − χu + χs ∈ B and (ii) m − χu + χs ∈ T ( f , g) hold. For s , u, (i) holds if and only if

s ∈ Tm(u), and (ii) holds if and only if m(u) > f (u) and m(s) < g(s). Hence follows the claim.

The claim implies that Algorithm 2.3 can be adapted easily to compute the canonical chain and

partition belonging to
....
B� along with its essential value-sequence.

Our next goal is to describe a strongly polynomial algorithm to compute a dec-min element of
....
B

in the general case when no restriction is imposed on the magnitude of |p(S )|. To this end, we need an

algorithm to maximize ⌈p(X)/|X|⌉, which is given in Section 2.3. The strongly polynomial algorithm

for computing a dec-min element is described in Section 2.4.

2.3 Maximizing ⌈p(X)/|X|⌉ with the Newton–Dinkelbach algorithm

In this section we describe a variant of the Newton–Dinkelbach (ND) algorithm to compute the maxi-

mum of ⌈p(X)/|X|⌉. We assume that p is an integer-valued set-function on a ground-set S with n ≥ 1

elements, p(∅) = 0, and p(S ) is finite (p(X) may be −∞ for some X but never +∞).

An excellent overview by Radzik [50] presents fundamental properties of the ND-algorithm, de-

scribing (among others) a strongly polynomial algorithm for minimizing (or maximizing) the ratio of

two modular set-functions. For the problem of maximizing ⌈p(X)/|X|⌉ (or p(X)/|X|), the ND-algorithm

terminates in at most n iterations, which follows from the observation of Topkis [55] that the function

h(µ) := max{p(X) − µ|X| : X ⊆ S } is a convex, piecewise-linear function with at most n breakpoints

A recent paper by Goemans et al. [28] establishes a quadratic O(n2) bound on the number of itera-

tions of the ND-algorithm for maximizing p(X)/a(X) over X with a(X) > 0, where a is an arbitrary

modular set function. We present a variant of the ND-algorithm whose specific feature is that it works

throughout with integers ⌈p(X)/|X|⌉. This has the advantage that the proof is simpler than the original

one working with the fractions p(X)/|X|.

The algorithm works if a subroutine is available to

find a subset X ⊆ S maximizing p(X) − µ|X| for any fixed integer µ. (2.4)

9



This subroutine will actually be needed only for special values of µ when µ = ⌈p(X)/ℓ⌉ (where X ⊆ S

and 1 ≤ ℓ ≤ n). We do not have to assume that p is supermodular and the only requirement for the

ND-algorithm is that Subroutine (2.4) be available. Via a submod-minimizer this is certainly the case

when p happens to be supermodular (cf., Remark 2.1).

In several applications, the requested general purpose submod-minimizer can be superseded by a

direct and more efficient algorithm such as the one for network flows or for matroid partition. The

subroutine (2.4) is also available in the more general case (needed in applications) when p is only

crossing supermodular. Indeed, for a given ordered pair of elements s, t ∈ S , the restriction of p on

the family of st-sets is fully supermodular, and therefore we can apply a submod-minimizer to each of

the n(n − 1) ordered pairs (s, t) to get the requested maximum of p(X) − µ|X|.

We call a value µ good if µ|X| ≥ p(X) for every X ⊆ S . A value that is not good is called bad.

Clearly, a sufficiently large µ is good. Our goal is to compute the minimum µmin of the good integers.

This number is nothing but the maximum of ⌈p(X)/|X|⌉ over non-empty subsets of S .

Let µ0 := ⌈p(S )/|S |⌉ − 1. This (possibly negative) number is bad and the algorithm starts with µ0.

Let

X0 ∈ arg max{p(X) − µ0|X| : X ⊆ S },

that is, X0 is a set maximizing the function p(X) − µ0|X|. Note that the badness of µ0 implies that

p(X0) > µ0|X0|.

The procedure determines one by one a series of pairs (µ j, X j) for subscripts j = 1, 2, . . . where

each integer µ j is a tentative candidate for µ while X j is a non-empty subset of S . Suppose that the

pair (µ j−1, X j−1) has already been determined for a subscript j ≥ 1. Let µ j be the smallest integer for

which µ j|X j−1| ≥ p(X j−1), that is,

µ j :=

⌈ p(X j−1)

|X j−1|

⌉
.

If µ j is bad, that is, if there is a set X ⊆ S with p(X) − µ j|X| > 0, then let

X j ∈ arg max{p(X) − µ j|X| : X ⊆ S },

that is, X j is a set maximizing the function p(X) − µ j|X|. (If there are more than one maximizing set,

we can take any). Since µ j is bad, we have X j , ∅ and p(X j) − µ j|X j| > 0.

Claim 2.7. If µ j is bad for some subscript j ≥ 0, then µ j < µ j+1.

Proof. The badness of µ j means that p(X j) − µ j|X j| > 0, from which

µ j+1 =

⌈ p(X j)

|X j|

⌉
=

⌈ p(X j) − µ j|X j|

|X j|

⌉
+ µ j > µ j.

Since there is a good µ and the sequence µ j is strictly monotone increasing by Claim 2.7, there

will be a first subscript h ≥ 1 for which µh is good. The algorithm terminates by outputting this µh

(and in this case Xh is not computed).

Theorem 2.8. If h is the first subscript during the run of the algorithm for which µh is good, then

µmin = µh (that is, µh is the requested smallest good µ-value) and h ≤ n.

Proof. Since µh is good and µh is the smallest integer for which µh|Xh−1| ≥ p(Xh−1), the set Xh−1

certifies that no good integer µ can exist which is smaller than µh, that is, µmin = µh.

Claim 2.9. If µ j is bad for some subscript j ≥ 1, then |X j−1| > |X j|.
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Proof. As µ j (= ⌈p(X j−1)/|X j−1|⌉) is bad, we obtain that

p(X j) − µ j|X j| > 0 = p(X j−1) −
p(X j−1)

|X j−1|
|X j−1|

≥ p(X j−1) −

⌈ p(X j−1)

|X j−1|

⌉
|X j−1| = p(X j−1) − µ j|X j−1|,

from which we get

p(X j) − µ j|X j| > p(X j−1) − µ j|X j−1|. (2.5)

Since X j−1 maximizes p(X) − µ j−1|X|, we have

p(X j−1) − µ j−1|X j−1| ≥ p(X j) − µ j−1|X j|. (2.6)

By adding up (2.5) and (2.6), we obtain

(µ j − µ j−1)|X j−1| > (µ j − µ j−1)|X j|.

As µ j is bad, so is µ j−1, and hence, by applying Claim 2.7 to j − 1 in place of j, we obtain that

µ j > µ j−1, from which we arrive at |X j−1| > |X j|, as required.

Claim 2.9 implies that n ≥ |X0| > |X1| > · · · > |Xh−1| ≥ 1, from which h ≤ n follows.

2.4 Computing a dec-min element in strongly polynomial time

In order to compute a dec-min element of an M-convex set
....
B =

....

B′(p), our first task is to compute the

smallest integer β1 for which
....
B has an element with largest component β1. Theorem 4.1 of [21] asserts

that β1 = max{⌈p(X)/|X|⌉ : ∅ , X ⊆ S }. By applying the ND-algorithm described in Section 2.3, we

can compute β1 in strongly polynomial time. Note that, by Theorem 2.8, the algorithm terminates

after at most n applications of Subroutine (2.4).

For any number β, a vector is said to be β-covered if each of its components is at most β. An

element m of
....
B is called a max-minimizer if its largest component is as small as possible. A max-

minimizer element m is said to be pre-dec-min in
....
B if the number of its largest components is as

small as possible. Obviously, a dec-min element is pre-dec-min, and a pre-dec-min element is a max-

minimizer.

Given the value of β1, a β1-covered element m of
....
B can easily be computed with a greedy-type

algorithm as follows. Since there is a β1-covered member of B, the vector (β1, β1, . . . , β1) belongs to

the so-called supermodular polyhedron S ′(p) := {x : x̃(X) ≥ p(X) for every X ⊆ S }. Consider the

elements of S in an arbitrary order {s1, . . . , sn}. Let m(s1) := min{z : (z, β1, β1, . . . , β1) ∈ S ′(p)}. In the

general step, if the components m(s1), . . . ,m(si−1) have already been determined, let

m(si) := min{z : (m(s1),m(s2), . . . ,m(si−1), z, β1, β1, . . . , β1) ∈ S ′(p)}. (2.7)

This computation can be carried out by n applications of a subroutine for a submodular function

minimization.

Given a β1-covered integral element m of B, our next goal is to modify m by a series of 1-tightening

steps to obtain a pre-dec-min element of
....
B. To this end, we consider one by one those elements t of

S for which m(t) = β1, and check whether a 1-tightening step can be applied at t with some element

s ∈ S . That is, for each element s ∈ S with m(s) ≤ β1 − 2, we check whether there is no m-tight ts-set.

If we find such an s, then m′ := m − χt + χs ∈
....
B and m′ has one less coordinates with value β1. (Note

that the largest component of m′ is also β1 as β1 was chosen to be the smallest upper bound). If no

such element s exists, then

β1 ≥ m(s) ≥ β1 − 1 holds for each s ∈ Tm(t), (2.8)
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where Tm(t) is the smallest m-tight set containing t. While updating m := m′ in the first case, we

iterate the above procedure for each element t of S with m(t) = β1.

The element of
....
B obtained from this series of modifications, which is denoted by m, has the

property (2.8) for all t ∈ S with m(t) = β1. Theorem 4.2 of [21] states that a β1-covered element m of
....
B is pre-dec-min precisely if m(s) ≥ β1 − 1 for each s ∈ S 1(m), where S 1(m) = ∪{Tm(t) : m(t) = β1}.

This and (2.8) imply that the final vector obtained by the above procedure is a pre-dec-min element of
....
B indeed.

Note that for a given pair (t, s) of elements, deciding whether a 1-tightening step is applicable

or not can be done by a single submod-minimization, and hence deciding whether a given t with

m(t) = β1 admits a 1-tightening step reducing m(t) can be done by at most n calls of a submod-

minimizer. Altogether, the procedure above needs at most n 1-tightening steps which can be carried

out by n2 calls of a submod-minimizer.

Recall that Tm(t) denoted the unique smallest tight set containing t when p is (fully) supermodular.

But Tm(t) can be described without explicitly referring to p since an element s ∈ S belongs to Tm(t)

precisely if m′ := m − χt + χs is in B, and this is computable by the subroutine (2.2). In particular, we

can compute S 1(m) by (2.2). We use a short-hand notation S 1 := S 1(m).

Let B1 denote the restriction of the base-polyhedron B to S 1 and B′
1

the contraction of B by S 1.

Theorem 4.6 of [21] states that, for m1 ∈ ZS 1 and m′
1
∈ ZS−S 1 , (m1,m

′
1
) is a dec-min element of

....
B

precisely if m1 is a dec-min element of
....
B1 and m′

1
is a dec-min element of

....

B′
1
. Let m1 := m|S 1 for the

pre-dec-min element m constructed above. Since m1 is near-uniform on S 1, it is a dec-min element of
....
B1. Hence, if m′

1
is a dec-min element of

....

B′
1
, then (m1,m

′
1
) is a dec-min element of

....
B. Such a dec-min

element m′
1

can be computed by applying iteratively the computation described above for computing

m1. In this way we can compute a dec-min element of
....
B.

It is worth mentioning that the restriction of the pre-dec-min element m to S 1 = S 1(m) is the same

as the restriction of the dec-min element (found by the above algorithm) to S 1. Therefore this S 1 is

the first member of the canonical partition belonging to
....
B.

The above algorithm computes a dec-min element of
....
B in strongly polynomial time. The subrou-

tine (2.1) is called only once at the beginning of the algorithm, and the running time of the algorithm is

governed by the number of calls of (2.2) and (2.4). First assume that we are given a fully supermodular

function p to describe B. To determine m1 and S 1, we need (i) n calls of (2.4) to compute the value β1

by the ND-algorithm, where one call of (2.4) requires a single application of a submod-minimizer, (ii)

n applications of a submod-minimizer to compute a β1-covered element by the greedy-type algorithm,

and (iii) n2 calls of (2.2) to compute a pre-dec-min element, where one call of (2.2) requires a single

application of a submod-minimizer. Therefore, we can determine m1 and S 1 with n + n + n2 = O(n2)

applications of a submod-minimizer. We repeat the above procedure on S − S 1, S − (S 1 ∪ S 2), and so

on. Hence the above algorithm finds a dec-min element and the canonical partition with O(n3) applica-

tions of a submod-minimizer, provided that we are given a fully supermodular function p to describe

the base-polyhedron B. Even when B is given in terms of an intersecting or crossing supermodular

function, this algorithm is strongly polynomial. Namely, the total number of submod-minimizer calls

is O(n4) if p is intersecting supermodular and O(n5) if p is crossing supermodular (see Remark 2.2).

Finally we recall Remark 2.1 for the complexity of a submod-minimizer.

3 Applications

3.1 Background

There are two major sources of applicability of the structural results on decreasing minimization on an

M-convex set. One of them relies on the fact that the class of integral base-polyhedra is closed under

several operations. For example, a face of a base-polyhedron is also a base-polyhedron, and so is the

intersection of an integral box with a base-polyhedron B. Also, the sum of integral base-polyhedra
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B1, . . . , Bk is a base-polyhedron B which has, in addition, the integer decomposition property meaning

that any integral element of B can be obtained as the sum of k integral elements by taking one from

each Bi. This latter property implies that the sum of M-convex sets is M-convex. We also mention the

important operation of taking an aggregate of a base-polyhedron, to be introduced below in Section

3.2.

The other source of applicability is based on the fact that not only fully super- or submodular

functions can define base-polyhedra but some weaker functions as well. For example, if p is an

integer-valued crossing (in particular, intersecting) supermodular function with finite p(S ), then B =

B′(p) is a (possibly empty) integral base-polyhedron (and
....
B is an M-convex set). This fact will be

exploited in solving dec-min orientation problems when both degree-constraints and edge-connectivity

requirements must be fulfilled. In some cases even weaker set-functions can define base-polyhedra.

This is why we can solve dec-min problems concerning edge- and node-connectivity augmentations

of digraphs.

3.2 Applications to matroids

Levin and Onn [42] solved algorithmically the following problem: Find k bases of a matroid M

on a ground-set S such that the sum of their characteristic vectors be decreasingly minimal. Their

approach, however, does not seem to work in the following natural extension. Suppose we are given

k matroids M1, . . . ,Mk on a common ground-set S , and our goal is to find a basis Bi of each matroid

Mi in such a way that the vector
∑

[χBi
: i = 1, . . . , k] is decreasingly minimal. Let BΣ denote the sum

of the base-polyhedra of the k matroids. By a theorem of Edmonds [9], the integral elements of BΣ
are exactly the vectors of form

∑
[χBi

: i = 1, . . . , k] where Bi is a basis of Mi. Therefore the problem

is to find a dec-min element of
....
BΣ. This can be done by the basic algorithm described in Section 2.1.

Let us see how the requested subroutines are available in this special case. The algorithm starts with

an arbitrary member m of
....
BΣ which is obtained by taking a basis Bi from each matroid Mi, and these

bases define m :=
∑

i χBi
.

To realize Subroutine (2.2), we mentioned that it suffices to realize Subroutine (2.3), which re-

quires for a given integral vector m′ with m̃′(S ) =
∑

i ri(S ) to decide whether m′ is in
....
BΣ or not. But

this can simply be done by Edmonds’ matroid intersection algorithm [11] (see also Section 13.1.2 in

[16]. Namely, let S 1, . . . , S k be disjoint copies of S and M′
i

an isomorphic copy of Mi on S i. Let N1

be the direct sum of matroids M′
i

on ground-set S ′ := S 1 ∪ · · · ∪ S k. Let N2 be a partition matroid

on S ′ in which a subset Z is a basis if it contains exactly m′(s) members of the k copies of s for each

s ∈ S . Then m′ is in
....
BΣ precisely if N1 and N2 have a common basis.

In conclusion, with the help of Edmonds’ matroid intersection algorithm, Subroutine (2.2) is avail-

able, and hence the basic algorithm can be applied.

Another natural problem concerns a single matroid M on a ground-set T . Suppose we are given a

partition P = {T1, . . . , Tn} of T and we consider the intersection vector (|Z ∩T1|, . . . , |Z∩Tn |) assigned

to a basis Z of M. The problem is to find a basis for which the intersection vector is decreasingly

minimal.

To solve this problem, we recall an important construction of base-polyhedra, called the aggregate.

Let T be a ground-set and BT an integral base-polyhedron in RT . LetP = {T1, . . . , Tn} be a partition of

T into non-empty subsets and let S = {s1, . . . , sn} be a set whose elements correspond to the members

of P. The aggregate BS of BT is defined as follows.

BS := {(y1, . . . , yn) : there is an x ∈ BT with yi = x̃(Ti) (i = 1, . . . , n)}. (3.1)

A basic theorem concerning base-polyhedra (see, for example, Theorems 14.2.12 and 14.2.13 in book

[16]) states that BS is a base-polyhedron, moreover, for each integral member (y1, . . . , yn) of BS , the

vector x in (3.1) can be chosen integer-valued. In other words,
....
BS := {(y1, . . . , yn) : there is an x ∈

....
BT with yi = x̃(Ti) (i = 1, . . . , n)}. (3.2)
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We call
....
BS the aggregate of

....
BT .

Returning to our matroid problem, let BT denote the base-polyhedron of matroid M. Then the

problem is nothing but finding a dec-min element of
....
BS .

We can apply the basic algorithm (concerning M-convex sets) for this special case since the re-

quested subroutines are available through standard matroid algorithms. Namely, Subroutine (2.1) is

available since for any basis Z of M, the intersection vector assigned to Z is nothing but an element of
....
BS .

To realize Subroutine (2.2), we mentioned that it suffices to realize Subroutine (2.3). Suppose we

are given a vector y ∈ ZS
+ (Here y stands for m′ in (2.3)). Suppose that ỹ(S ) = r(T ) (where r is the

rank-function of matroid M) and that y(si) ≤ |Ti| for i = 1, . . . , n.

Let G = (S , T ; E) denote a bipartite graph where E = {tsi : t ∈ Ti, i = 1, . . . , n}. By this definition,

the degree of every node in T is 1 and hence the elements of E correspond to the elements of M. Let

M1 be the matroid on E corresponding to M (on T ). Let M2 be a partition matroid on E in which a

set F ⊆ E is a basis if dF(si) = y(si), where dF(si) denotes the number of edges in F for which si is an

end-node. By this construction, the vector y is in
....
BS precisely if the two matroids M1 and M2 have a

common basis. This problem is again tractable by Edmonds’ matroid intersection algorithm.

As a special case, we can find a spanning tree of a (connected) directed graph for which its in-

degree-vector is decreasingly minimal. Since the family of unions of k disjoint bases of a matroid

forms also a matroid, we can also compute k edge-disjoint spanning trees in a digraph whose union

has a decreasingly minimal in-degree vector.

Another special case is when we want to find a spanning tree of a connected bipartite graph G =

(S , T ; E) whose in-degree vector restricted to S is decreasingly minimal.

3.3 Applications to flows

3.3.1 A base-polyhedron associated with net-in-flows

Let D = (V, A) be a digraph endowed with integer-valued bounding functions f : A → Z ∪ {−∞} and

g : A→ Z∪{+∞} for which f ≤ g. We call a vector (or function) z on A feasible if f ≤ z ≤ g. The net-

in-flow Ψz of z is a vector on V and defined by Ψz(v) = ̺z(v) − δz(v), where ̺z(v) :=
∑

[z(uv) : uv ∈ A]

and δz(v) :=
∑

[z(vu) : uv ∈ A]. If m is the net-in-flow of a vector z, then we also say that z is an

m-flow.

A variation of Hoffman’s classic theorem on feasible circulations [34] is as follows.

Lemma 3.1. An integral vector m : V → Z is the net-in-flow of an integral feasible vector (or in other

words, there is an integer-valued feasible m-flow) if and only if m̃(V) = 0 and

̺ f (Z) − δg(Z) ≤ m̃(Z) holds whenever Z ⊆ V, (3.3)

where ̺ f (Z) :=
∑

[ f (a) : a ∈ A and a enters Z] and δg(Z) :=
∑

[g(a) : a ∈ A and a leaves Z].

Define a set-function p f g on V by

p f g(Z) := ̺ f (Z) − δg(Z).

Then p f g is (fully) supermodular (see, e.g. Proposition 1.2.3 in [16]). Consider the base-polyhedron

B f g := B′(p f g) and the M-convex set
....

B f g. By Lemma 3.1 the M-convex set
....

B f g consists exactly of

the net-in-flow integral vectors m.

By the algorithm described in Section 2, we can compute a decreasingly minimal element of
....

B f g in

strongly polynomial time. By relying on a variant of the strongly polynomial push-relabel algorithm

described in book [16] (see, Section 6.1.3), one can check whether or not (3.3) holds. If it does

not, then this variant can compute a set most violating (3.3) (that is, a maximizer of ̺ f (Z) − δg(Z) −
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m̃(Z)), while if (3.3) does hold, then the push-relabel algorithm computes an integral valued feasible

m-flow. Therefore the requested oracles in the general algorithm for computing a dec-min element

are available through a network flow algorithm, and we do not have to rely on a general-purpose

submodular function minimizing oracle.

For the sake of an application of this algorithm to capacitated dec-min orientations in Section 4.2,

we remark that the algorithm can also be used to compute a dec-min element of the M-convex set

obtained from
....

B f g by translating it with a given integral vector.

3.3.2 Discrete version of Megiddo’s flow problem

Megiddo [43], [44] considered the following problem. Let D = (V, A) be a digraph endowed with a

non-negative capacity function g : A → R+. Let S and T be two disjoint non-empty subsets of V .

Megiddo described an algorithm to compute a feasible flow from S to T with maximum flow amount

M for which the net-in-flow vector restricted on S is (in our terms) increasingly maximal. Here a

feasible flow is a vector x on A for which Ψx(v) ≤ 0 for v ∈ S , Ψx(v) ≥ 0 for v ∈ T , and Ψx(v) = 0 for

v ∈ V − (S ∪ T ). The flow amount x is
∑

[Ψx(t) : t ∈ T ].

We emphasize that Megiddo solved the continuous (fractional) case and did not consider the cor-

responding discrete (or integer-valued) flow problem. To our knowledge, this natural optimization

problem has not been investigated so far.

To provide a solution, suppose that g is integer-valued. Let f ≡ 0 and consider the net-in-flow

vectors belonging to feasible vectors. These form a base-polyhedron B1 in RV . Let B2 denote the

base-polyhedron obtained from B1 by intersecting it with the box defined by z(v) ≤ 0 for v ∈ S ,

z(v) ≥ 0 for v ∈ T and z(v) = 0 for v ∈ V − (S ∪ T ).

The restriction of B2 to S is a g-polymatroid Q in RS . And finally, we can consider the face of Q

defined by z̃(S ) = −M. This is a base-polyhedron B3 in RS , and the discrete version of Megiddo’s flow

problem is equivalent to finding an inc-max element of
....
B3. (Recall that an element of an M-convex

set is dec-min precisely if it is inc-max.)

It can be shown that in this case again the general submodular function minimizing subroutine

used in the algorithm to find a dec-min element of an M-convex set can be replaced by a max-flow

min-cut algorithm.

A recent paper [22] addresses a more general problem to find an integral feasible flow that is

dec-min on an arbitrarily specified edge set.

3.4 Further applications

3.4.1 Root-vectors of arborescences

A graph-example comes from packing arborescences. Let D = (V, A) be a digraph and k > 0 an

integer. We say that a non-negative integral vector m : V → Z+ is a root-vector if there are k edge-

disjoint spanning arborescences such that each node v ∈ V is the root of m(v) arborescences. Edmonds

[10] classic result on disjoint arborescences implies that m is a root-vector if and only if m̃(V) = k and

m̃(X) ≥ k − ̺(X) holds for every subset X with ∅ ⊂ X ⊂ V . Define set-function p by p(X) := k − ̺(X)

if ∅ ⊂ X ⊆ V and p(∅) := 0. Then p is intersecting supermodular, so B′(p) is an integral base-

polyhedron. The intersection B of B′(p) with the non-negative orthant is also a base-polyhedron, and

the theorem of Edmonds is equivalent to stating that a vector m is a root-vector if and only if m is in
....
B.

Therefore the general results on base-polyhedra can be specialized to obtain k disjoint spanning

arborescences whose root-vector is decreasingly minimal.
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3.4.2 Connectivity augmentations

Let D = (V, A) be a directed graph and k > 0 an integer. We are interested in finding a so-called

augmenting digraph H = (V, F) of γ arcs for which D + H is k-edge-connected or k-node-connected.

In both cases, the in-degree vectors of the augmenting digraphs are the integral elements of an inte-

gral base-polyhedron [15], [17]. Obviously, the in-degree vectors of the augmented digraphs are the

integral elements of an integral base-polyhedron.

Again, our results on general base-polyhedra can be specialized to find an augmenting digraph

whose in-degree vector is decreasingly minimal.

4 Orientations of graphs

The literature is quite rich in graph orientation problems where the task is to orient the edges of an

undirected graph such that the resulting digraph meet some expected properties. For an overview of

graph orientation problems, see, for example, Chapter 61 of the book of Schrijver [53] or Chapter 9 of

the book of Frank [16]. This latter one illuminates the deep connection between orientation problems

and submodular optimization. Although quite general and efficient tools are exhibited in these books

to manage graph orientation problems, they do not say anything about the orientation problem inves-

tigated first in a recent paper of Borradaile et al. [7], which is the decreasingly minimal orientation

problem in our terms. It was actually their paper that triggered the whole research behind our present

work. In this section, we exhibit how the theoretical background developed in [21] and the algorithms

of Section 2 can be used to obtain major extensions of results in [7].

Let G = (V, E) be an undirected graph. For X ⊆ V , let iG(X) denote the number of edges induced

by X while eG(X) is the number of edges with at least one end-node in X. Then iG is supermodular,

eG is submodular, and they are complementary functions, that is, iG(X) = eG(V) − eG(V − X). Let

BG := B(eG) = B′(iG) denote the base-polyhedron defined by eG or iG .

We say that a function m : V → Z is the in-degree vector of an orientation D of G if ̺D(v) = m(v)

for each node v ∈ V . An in-degree vector m obviously meets the equality m̃(V) = |E|. The following

basic result, sometimes called the Orientation lemma, is due to Hakimi [29].

Lemma 4.1 (Orientation lemma). Let G = (V, E) be an undirected graph and m : V → Z an integral

vector for which m̃(V) = |E|. Then G has an orientation with in-degree vector m if and only if

m̃(X) ≤ eG(X) for every subset X ⊆ V , (4.1)

which is equivalent to

m̃(X) ≥ iG(X) for every subset X ⊆ V . (4.2)

This immediately implies the following claim.

Claim 4.2. The in-degree vectors of orientations of G are precisely the integral elements of base-

polyhedron BG (= B(eG) = B′(iG)), that is, the set of in-degree vectors of orientations of G is the

M-convex set
....
BG.

The proof of Lemma 4.1 is algorithmic (see, e.g., Theorem 2.3.2 of [16]) and the orientation

corresponding to a given m can be constructed easily.

4.1 Decreasingly minimal orientations

Due to Claim 4.2, we can apply the results on dec-min elements to the special base-polyhedron BG.

Borradaile et al. [7] called an orientation of G egalitarian if its in-degree vector is decreasingly min-

imal but we prefer the term dec-min orientation since an orientation with an increasingly maximal
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in-degree vector also has an intuitive egalitarian feeling. Such an orientation is called inc-max. The-

orem 2.1 immediately implies the following.

Corollary 4.3. An orientation of G is dec-min if and only if it is inc-max.

Note that the term dec-min orientation is asymmetric in the sense that it refers to in-degree vectors.

One could also aspire for finding an orientation whose out-degree vector is decreasingly minimal. But

this problem is clearly equivalent to the in-degree version and hence in the present work we do not

consider out-degree vectors, apart from a single exception in Section 4.5.

By Theorem 2.1, an element m of
....
BG is decreasingly minimal if and only if there is no 1-tightening

step for m. What is the meaning of a 1-tightening step in terms of orientations?

Claim 4.4. Let D be an orientation of G with in-degree vector m. Let t and s be nodes of G. The

vector m′ := m + χs − χt is in BG if and only if D admits a dipath from s to t.

Proof. m′ ∈ BG holds precisely if there is no ts-set X which is tight with respect to iG, that is,

m̃(X) = iG(X). Since ̺(Y) + iG(Y) =
∑

[̺(v) : v ∈ Y] = m̃(Y) holds for any set Y ⊆ V , the tightness of

X is equivalent to requiring that ̺(X) = 0. Therefore m′ ∈ BG if and only if ̺(Y) > 0 holds for every

ts-set Y , which is equivalent to the existence of a dipath of D from s to t.

Recall that a 1-tightening step at a member m of BG consists of replacing m by m′ provided

that m(s) ≥ m(t) + 2 and m′ ∈ BG. By Claim 4.4, a 1-tightening step at a given orientation of G

corresponds to reorienting an arbitrary dipath from a node s to node t for which ̺(s) ≥ ̺(t) + 2.

Therefore, Theorem 2.1 immediately implies the following basic theorem of Borradaile et al. [7].

Theorem 4.5 (Borradaile et al. [7]). An orientation D of a graph G = (V, E) is decreasingly minimal

if and only if no dipath exists from a node s to a node t for which ̺(t) ≥ ̺(s) + 2.

Note that this theorem also implies Corollary 4.3. It immediately gives rise to an algorithm for

finding a dec-min orientation. Namely, we start with an arbitrary orientation of G. We call a dipath

feasible if ̺(t) ≥ ̺(s) + 2 holds for its starting node s and end-node t. The algorithm consists of

reversing feasible dipaths as long as possible. Since the sum of the squares of in-degrees always

drops when a feasible dipath is reversed, and originally this sum is at most |E|2, the dipath-reversing

procedure terminates after at most |E|2 reversals. By Theorem 4.5, when no more feasible dipath

exists, the current orientation is dec-min. The basic algorithm concerning general base-polyhedra in

Section 2.1 is nothing but an extension of the algorithm of Borradaile et al.

It should be noted that they suggested to choose at every step the current feasible dipath in such a

way that the in-degree of its end-node t is as high as possible, and they proved that the algorithm in

this case terminates after at most |E||V | dipath reversals.

Note that we obtained Corollary 4.3 as a special case of a result on M-convex sets but it is also a

direct consequence of Theorem 4.5.

4.2 Capacitated orientation

Consider the following capacitated version of the basic dec-min orientation problem of Borradaile et

al. [7]. Suppose that a positive integer ℓ(e) is assigned to each edge e of G. Denote by G+ the graph

arising from G by replacing each edge e of G with ℓ(e) parallel edges. Our goal is to find a dec-min

orientation of G+. In this case, an orientation of G+ is described by telling that, among the ℓ(e) parallel

edges connecting the end-nodes u and v of e how many are oriented toward v (implying that the rest

of the ℓ(e) edges are oriented toward u). In principle, this problem can be solved by applying the

algorithm described above to G+, and this algorithm is satisfactory when ℓ is small in the sense that its

largest value can be bounded by a power of |E|. The difficulty in the general case is that the algorithm

will be polynomial only in the number of edges of G+, that is, in ℓ̃(E), and hence this algorithm is not

polynomial in |E|.
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We show how the algorithm in Section 3.3.1 can be used to solve the decreasingly minimal ori-

entation problem in the capacitated case in strongly polynomial time. To this end, let D = (V, A) be

an arbitrary orientation of G serving as a reference orientation. Define a capacity function g on A by

g(~e) := ℓ(e), where ~e denotes the arc of D obtained by orienting e.

We associate an orientation of G+ with an integral vector z : A → Z+ with z ≤ g as follows. For

an arc uv of D, orient z(uv) parallel copies of e = uv ∈ E toward v and g(uv) − z(uv) parallel copies

toward u. Then the in-degree of a node v is mz(v) := ̺z(v) + δg−z(v) = ̺z(v) − δz(v) + δg(v). Therefore

our goal is to find an integral vector z on A for which 0 ≤ z ≤ g and the vector mz on V is dec-min.

Consider the set of net-in-flow vectors {(Ψz(v) : v ∈ V) : 0 ≤ z ≤ g}. In Section 3.3.1, we proved that

this is a base-polyhedron B1. Therefore the set of vectors (mz(v) : v ∈ V) is also a base-polyhedron B

arising from B1 by translating B1 with the vector (δg(v) : v ∈ V).

As remarked at the end of Section 3.3.1, a dec-min element of
....
B can be computed in strongly

polynomial time by a variant (Section 6.1.3 in [16]) of the push-relabel subroutine for network flows

(and not using a general-purpose submodular function minimizer).

4.3 Canonical chain and essential value-sequence for orientations

In Section 2.2, we described Algorithm 2.3 for an arbitrary M-convex set
....
B that computes, from a

given dec-min element m of
....
B, the canonical chain and essential value-sequence belonging to

....
B. That

algorithm needed an oracle for computing the smallest m-tight set Tm(u) containing u. Here we show

how this general algorithm can be turned into a pure graph-algorithm in the special case of dec-min

orientations.

To this end, consider the special M-convex set, denoted by
....
BG, consisting of the in-degree vectors

of the orientations of an undirected graph G = (V, E). By the Orientation lemma, BG = B′(iG) where

iG(X) denotes the number of edges induced by X. Recall that iG is a fully supermodular function.

For an orientation D of G with in-degree vector m, the smallest m-tight set Tm(t) (with respect to iG)

containing a node t will be denoted by TD(t).

Claim 4.6. Let D be an arbitrary orientation of G with in-degree vector m. (A) A set X ⊆ V is m-tight

(with respect to iG) if and only if ̺D(X) = 0. (B) The smallest m-tight set TD(t) containing a node t is

the set of nodes from which t is reachable in D.

Proof. We have

̺D(X) + iG(X) =
∑

[̺D(v) : v ∈ X] = m̃(X) ≥ iG(X),

from which X is m-tight (that is, m̃(X) = iG(X)) precisely if ̺D(X) = 0, and Part (A) follows. Therefore

the smallest m-tight set TD(t) containing t is the smallest set containing t with in-degree 0, and hence

TD(t) is indeed the set of nodes from which t is reachable in D, as stated in Part (B).

By Claim 4.6, TD(t) is easily computable, and hence Algorithm 2.3 for general M-convex sets can

easily be specialized to graph orientations. By applying Theorem 2.4 to p := iG and recalling from

Claim 4.6 that Ci is m-tight, in the present case, precisely if ̺D(Ci) = 0, we obtain the following.

Theorem 4.7. An orientation of D of G is dec-min if and only of ̺D(Ci) = 0 for each member Ci of

the canonical chain and βi − 1 ≤ ̺D(v) ≤ βi holds for every node v ∈ S i (i = 1, . . . , q).

We remark that the members of the canonical partition computed by our algorithm for
....
BG is

exactly the non-empty members of the so-called density decomposition of G introduced by Borradaile

et al. [8]. We also remark that by combining the approach of the present section with Section 4.2,

the canonical partition and the essential value-sequence can be computed in strongly polynomial time

even in the capacitated orientation problem.
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4.4 Cheapest dec-min orientations

It is indicated in [21] that, in decreasing minimization on an M-convex set in general, we can construct

an algorithm to compute a cheapest dec-min element with respect to a given (linear) cost-function on

the ground-set. In the special case of dec-min orientations, this means that if c is a cost-function on the

node-set of G = (V, E), then we have an algorithm to compute a dec-min orientation of G for which∑
[c(v)̺(v) : v ∈ V] is minimum.

But the question remains: what happens if, instead of a cost-function on the node-set, we have

a cost-function c on ~E2, where ~E2 arises from E by replacing each element e = uv (= vu) of E by

two oppositely oriented arcs uv and vu, and we are interested in finding a cheapest orientation with

specified properties? (As an orientation of e consists of replacing e by one of the two arcs uv and vu

and the cost of its orientation is, accordingly, c(uv) or c(vu). Therefore we can actually assume that

min{c(uv), c(vu)} = 0.)

It is important to remark that the standard minimum cost in-degree specified orientation problem

can be easily reduced, with a straightforward technique, to a minimum cost flow problem in a digraph

with small integral capacities (see, e.g. Section 3.6.1 in book [16]). The same reduction works for

min-cost in-degree constrained orientations, as well. Note that already the min-cost flow algorithm

of Ford and Fulkerson [13] is strongly polynomial when the capacities are small integers (that is, we

do not need here the significantly more sophisticated min-cost flow algorithm of Tardos [54] which

is strongly polynomial for arbitrary capacities.) Actually, we shall need a version of this minimum

cost orientation problem when some of the edges are already oriented, and this slight extension is also

tractable by network flows.

Theorem 4.7 implies that the problem of finding a cheapest dec-min orientation is equivalent to

finding a cheapest in-degree constrained orientation by orienting edges connecting Ci and V − Ci

toward V −Ci (i = 1, . . . , q). Here the in-degree constraints are given by βi − 1 ≤ ̺D(v) ≤ βi for v ∈ S i

(i = 1, . . . , q).

Note that Harada et al. [30] provided a direct algorithm for the minimum cost version of the

so-called semi-matching problem, which problem includes the minimum cost dec-min orientation

problem. For this link, see Section 5.4.

We remark that by combining the approach of the present section with Section 4.2, a cheapest

dec-min orientation can be computed in strongly polynomial time even in the capacitated orientation

problem. In this case, however, one needs a strongly polynomial subroutine to compute a minimum

cost feasible circulation. The first such algorithm is due to Tardos [54].

4.5 Orientation with dec-min in-degree vector and dec-min out-degree vector

We mentioned that dec-min and inc-max orientations always concern in-degree vectors. As an exam-

ple to demonstrate the advantage of the general base-polyhedral view, we outline here one exception

when in-degree vectors and out-degree vectors play a symmetric role. The problem is to characterize

undirected graphs admitting an orientation which is both dec-min with respect to its in-degree vector

and dec-min with respect to its out-degree vector.

For the present purposes, we let dG denote the degree vector of G, that is, dG(v) is the number of

edges incident to v ∈ V . (This notation differs from the standard set-function meaning of dG .)

Let Bin denote the convex hull of the in-degree vectors of orientations of G, and Bout the convex

hull of out-degree vectors of orientations of G. (Earlier Bin was denoted by BG but now we have to deal

with both out-degrees and in-degrees.) As before,
....
Bin is the set of in-degree vectors of orientations

of G, and
....

Bout is the set of out-degree vectors of orientations of G. Let
....

B•
in

denote the set of dec-min

in-degree vectors of orientations of G, and
....

B•out the set of dec-min out-degree vectors of orientations

of G. By Theorem 2.5, both
....

B•
in

and
....

B•out are matroidal M-convex sets.

Note that the negative of a (matroidal) M-convex set is also a (matroidal) M-convex set, and the

translation of a (matroidal) M-convex set by an integral vector is also a (matroidal) M-convex set.
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Therefore dG −
....

B•out is a matroidal M-convex set. Clearly, a vector min is the in-degree vector of an

orientation D of G precisely if dG − min is the out-degree vector of D.

We are interested in finding an orientation whose in-degree vector is dec-min and whose out-

degree vector is dec-min. This is equivalent to finding a member min of
....

B•
in

for which the vector

mout := dG − min is in the matroidal M-convex set
....

B•out. But this latter is equivalent to requiring that

min is in the M-convex set dG −
....

B•out. That is, the problem is equivalent to finding an element of the

intersection of the matroidal M-convex sets
....

B•
in

and dG −
....

B•out. This latter problem can be solved by

Edmonds matroid intersection algorithm [11].

5 In-degree constrained orientations of graphs

In this section we first describe an algorithm to find a dec-min in-degree constrained orientation.

Second, we develop a complete description of the set of dec-min in-degree constrained orientations,

which gives rise to an algorithm to compute a cheapest dec-min in-degree constrained orientation.

5.1 Computing a dec-min in-degree constrained orientation

Let f : V → Z ∪ {−∞} be a lower bound function and g : V → Z ∪ {+∞} an upper bound function for

which f ≤ g. We are interested in in-degree constrained orientations D of G, by which we mean that

f (v) ≤ ̺D(v) ≤ g(v) for every v ∈ V . Such an orientation is called ( f , g)-bounded, and we assume that

G has such an orientation. By a well-known theorem (see, Theorem 2.3.5 in [16]), such an orientation

exists if and only if iG ≤ g̃ and f̃ ≤ eG.

As before, let
....
BG denote the M-convex set of the in-degree vectors of orientations of G, and let

....
B�

G

denote the intersection of
....
BG with the integral box T ( f , g). That is,

....
B�

G
is the set of in-degree vectors

of ( f , g)-bounded orientations of G. Let D be an ( f , g)-bounded orientation of G with in-degree vector

m. We denote the smallest tight set containing a node t by T �
D

(t) (= T �m(t)). By applying Claim 2.6 to
....
B�

G
, we obtain that

T �D(t) =


{t} if ̺D(t) = f (t),

TD(t) − {s : ̺D(s) = g(s)} if ̺D(t) > f (t),
(5.1)

implying that, in case ̺D(t) > f (t), the set T �
D

(t) consists of those nodes s from which t is reachable

and for which ̺D(s) < g(s).

Formula (5.1) implies for distinct nodes s and t that the vector m′ := m + χs − χt belongs to
....
B�

G

precisely if there is an st-dipath (i.e. a dipath from s to t) for which ̺D(s) < g(s) and ̺D(t) > f (t).

We call such a dipath P of D reversible. Note that the dipath P′ of D′ obtained by reorienting P is

reversible in D′.

If P is a reversible st-dipath of D for which ̺D(t) ≥ ̺D(s) + 2, then the orientation D′ is de-

creasingly smaller than D. We call such a dipath improving. Therefore, reorienting an improving

st-dipath corresponds to a 1-tightening step. Hence Theorem 2.1 implies the following extension of

Theorem 4.5.

Theorem 5.1. An ( f , g)-bounded orientation D of G is dec-min if and only if there is no improving

dipath, that is, a dipath from a node s to a node t for which ̺D(t) ≥ ̺D(s) + 2, ̺D(s) < g(s), and

̺D(t) > f (t).

In Section 2.1 we have presented an algorithm that computes a dec-min element of an arbitrary

M-convex set. By specializing it to
....
B�

G
, we conclude that in order to construct a dec-min ( f , g)-

bounded orientation of G, one can start with an arbitrary ( f , g)-bounded orientation, and then reorient

(currently) improving dipaths one by one, as long as such a dipath exists. As we pointed out after
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Theorem 4.5, after at most |E|2 improving dipath reorientations, the algorithm terminates with a dec-

min ( f , g)-bounded orientation of G.

Canonical chain and essential value-sequence for ( f , g)-bounded orientations In Section 2.2, we

indicated that Algorithm 2.3 can immediately be applied to compute the canonical chain, the canonical

partition, and the essential value-sequence belonging to the intersection
....
B� of an arbitrary M-convex

set
....
B with an integral box T ( f , g).

This algorithm needs only the original subroutine to compute Tm(u) since, by Claim 2.6, T �m(u)

is easily computable from Tm(u). As we indicated above, in the special case of orientations, the

corresponding sets TD(t) and T �
D

(t) are immediately computable from D. Therefore this extended

algorithm can be used in the special case when we are interested in dec-min ( f , g)-bounded orientations

of G = (V, E). The algorithm starts with a dec-min ( f , g)-bounded orientation D of G and outputs the

canonical chain C� = {C�
1
, . . . ,C�q}, the canonical partition P� = {S �

1
, . . . , S �q}, and the essential value-

sequence β�
1
> · · · > β�q. In view of Theorem 2.4, we also define bounding functions f ∗ and g∗

as

f ∗(v) := β�i − 1 if v ∈ S i (i = 1, . . . , q),

g∗(v) := β�i if v ∈ S i (i = 1, . . . , q).

We say that the small box

T ∗ := T ( f ∗, g∗) (5.2)

belongs to
....
B�

G
. Clearly, f ≤ f ∗ and g∗ ≤ g, and hence T ( f ∗, g∗) ⊆ T ( f , g). In Section 5.2 below we

assume that these data are available.

Remark 5.1. A special case of in-degree constrained orientations is when we have a prescribed subset

T of V and a non-negative function mT : T → Z+ serving as an in-degree specification on T , and we

are interested in orientations of G for which ̺(v) = mT (v) holds for every t ∈ T . We call such an

orientation T -specified. This notion will have applications in Section 5.4.

5.2 Cheapest dec-min in-degree constrained orientations

We are given a cost-function c on the possible orientations of the edges of G and our goal is to find a

cheapest dec-min ( f , g)-bounded orientation of G. This will be done with the help of a purely graphical

description of the set of all dec-min ( f , g)-bounded orientations, which is given in Theorem 5.3.

As a preparation, we derive the following claim as an immediate consequence of the structural

result stated in Theorem 2.5. Let m be a dec-min element of an M-convex set
....
B on ground-set S .

Suppose that m′ := m + χs − χt is in
....
B (that is, s ∈ Tm(t)). Since m is dec-min, m(t) ≤ m(s) + 1. If

m(t) = m(s) + 1, then m′ and m are value-equivalent and hence m′ is also a dec-min element of
....
B. We

say that m′ is obtained from m by an elementary step.

Claim 5.2. Any dec-min element of
....
B can be obtained from a given dec-min element m by a sequence

of at most |S | elementary steps.

Proof. By Theorem 2.5, the set of dec-min elements of
....
B is a matroidal M-convex set in the sense that

it can be obtained from a matroid M∗ by translating the incidence vectors of the bases of M∗ by the

same integral vector ∆∗. A simple property of matroids is that any basis can be obtained from a given

basis through a sequence of at most |S | bases such that each member of the series can be obtained from

the preceding one by taking out one element and adding a new one. The corresponding change in the

translated vector is exactly an elementary step.
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Theorem 5.3. Let G = (V, E) be an undirected graph admitting an ( f , g)-bounded orientation. Let
....
B�

G

denote the M-convex set consisting of the in-degree vectors of ( f , g)-bounded orientations of G, and

let T ∗ be the small box, belonging to
....
B�

G
, as defined in (5.2). There is a chain Z of subsets of V such

that an ( f , g)-bounded orientation D of G is a dec-min ( f , g)-bounded orientation if and only if D is

an orientation of G whose in-degree vector belongs to T ∗ and δD(Z) = 0 holds for each Z ∈ Z.

Proof. Let D be a dec-min ( f , g)-bounded orientation of G, and let m denote its in-degree vector.

Consider the canonical chain C� = {C�
1
, . . . ,C�q}, the canonical partition P� = {S �

1
, . . . , S �q}, and the

essential value-sequence β�
1
> · · · > β�q belonging to

....
B�

G
.

For i ∈ {1, . . . , q}, define

Fi := {v : v ∈ S �i , f (v) = β�i }.

Since f (v) ≤ m(v) ≤ β�
i

holds for every element v of S �
i
, we obtain that f (v) = m(v) = β�

i
for v ∈ Fi.

Note that Fi does not depend on D.

Claim 5.4. For every h = 1, . . . , i, there is no dipath P from a node s ∈ V − C�
h

with m(s) < g(s) to a

node t ∈ S �
h

with β�
h
> f (t).

Proof. Suppose indirectly that there is such a dipath P. If m(t) = β�
h
, then P would be an improving

dipath which is impossible since D is dec-min ( f , g)-bounded. Therefore m(t) = β�
h
−1. But a property

of the canonical partition is that there is an element t′ of S �
h
− Fh for which m(t′) = β�

h
and t ∈ T �

D
(t′).

This means that t′ is reachable from t in D, and therefore there is a dipath from s to t′ in D which is

improving, a contradiction again.

We are going to define a chainZ of subsets Z1 ⊇ Z2 ⊇ · · · ⊇ Zq (= ∅) of V with the help of D, and

will show that this chain actually does not depend on D. Let

Zi := {t : t is reachable in D from a node s ∈ V −C�
i

with ̺D(s) < g(s)}. (5.3)

Note that Zi−1 ⊇ Zi follows from the definition, where equality holds precisely if ̺D(s) = g(s) for each

s ∈ S i.

Lemma 5.5. Every dec-min ( f , g)-bounded orientation defines the same family Z.

Proof. By Claim 5.2, it suffices to prove that a single elementary step does not change Z. An elemen-

tary step in
....
B�

G
corresponds to the reorientation of an st-dipath P in D where s, t ∈ S �

h
− Fh, m(t) = β�

h

and m(s) = β�
h
− 1 hold for some h ∈ {1, . . . , q}. We will show for i ∈ {1, . . . , q} that the reorientation

of P does not change Zi.

If h ≤ i, then Claim 5.4 implies that Zi ∩ S �
h
⊆ Fh. Since δD(Zi) = 0, the dipath P is disjoint from

Zi, implying that reorienting P does not affect Zi.

Suppose now that h ≥ i + 1. Since reorienting P results in a dec-min ( f , g)-bounded orientation

D′, we get that m(s) + 1 ≤ g(s) and hence s ∈ Zi − C�
i
. Since δD(Zi) = 0, we obtain that t ∈ Zi − C�

i
.

Since ̺D′(t) = ̺D(t) − 1 < g(t) and the set of nodes reachable from s in D is equal to the set of nodes

reachable from t in D′, it follows that the reorientation of P does not change Zi.

Lemma 5.6. The chain Z defined above meets the requirements of the theorem.

Proof. Consider first an arbitrary dec-min ( f , g)-bounded orientation D of G. Lemma 5.5 and the

definition of Zi in (5.3) imply that no arc of D can leave any Zi ∈ Z, that is, δD(Zi) = 0. Furthermore,

by applying Theorem 2.4 to the present base-polyhedron
....
B�, we obtain that the in-degree vector of D

belongs to T ∗.

Conversely, let D be an orientation of G for which δD(Z) = 0 holds for every Z ∈ Z and the

in-degree vector of D belongs to T ∗, that is,

f ∗(v) ≤ ̺D(v) ≤ g∗(v) for every v ∈ V .

Then D is clearly ( f , g)-bounded. The following claim makes complete the proof of the lemma.
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Claim 5.7. There is no improving dipath in D.

Proof. Suppose, indirectly, that P is an improving st-dipath, that is, a dipath from s to t such that

̺D(t) ≥ ̺D(s) + 2, ̺D(t) > f (t), and ̺D(s) < g(s). Suppose that t is in S �
i

for some i ∈ {1, . . . , q}. If s

is in S �
k

for some k ∈ {1, . . . , q}, then

β�k − 1 ≤ ̺D(s) ≤ ̺D(t) − 2 ≤ β�i − 2,

that is, β�
k
< β�

i
, and hence k > i, implying that s is in V −C�

i
. This and ̺D(s) < g(s) imply that s is in

Zi. Furthermore, β�
i
≥ ̺D(t) > f (t) implies that t is not in Fi, and since S �

i
∩ Zi ⊆ Fi, we obtain that t

is not in Zi. On the other hand, we must have t ∈ Zi, since there is a dipath from s ∈ V − C�
i

to t and

̺D(s) < g(s). This is a contradiction.

By proving Claim 5.7, we have shown Lemma 5.6. Thus the proof of Theorem 5.3 is completed.

Algorithm for computing a cheapest dec-min ( f , g)-bounded orientation First we compute a

dec-min ( f , g)-bounded orientation D of G with the help of the algorithm outlined in Section 5.1.

Second, by applying the algorithm described in the same section, we compute the canonical chain and

partition belonging to
....
B�

G
along with the essential value-sequence. Once these data are available, the

sets Zi (i = 1, . . . , q) defined in (5.3) are easily computable. Lemma 5.5 ensures that these sets Zi

do not depend on the starting dec-min ( f , g)-bounded orientation D. Let E0 be the union of the set

of edges connecting some Zi with V − Zi, and define the orientation A0 of E0 by orienting each edge

between Zi and V − Zi toward Zi.

Theorem 5.3 implies that, once E0 and its orientation A0 are available, the problem of computing

a cheapest dec-min ( f , g)-bounded orientation of G reduces to finding cheapest in-degree constrained

(namely, ( f ∗, g∗)-bounded) orientation of a mixed graph. We indicated already in Section 4.4 that such

a problem is easily solvable by the strongly polynomial min-cost flow algorithm of Ford and Fulkerson

in a digraph with identically 1 capacities.

Remark 5.2. In Section 4.2 we have considered the capacitated dec-min orientation problem in the

basic case where no in-degree constraints are imposed. With the technique presented there, we can

cope with the capacitated, min-cost, in-degree constrained variants as well. Furthermore, the algo-

rithms above can easily be extended, with a slight modification, to the case when one is interested in

orientations of mixed graphs.

5.3 Dec-min ( f , g)-bounded orientations minimizing the in-degree of T

In this section, we discuss a rather specific orientation problem in full detail. The reason is that this

framework is an indispensable tool for solving in Section 5.4 a common generalization of several pre-

viously investigated resource allocation problems. Our approach permits us to manage algorithmically

even the minimum cost version of these problems.

One may consider ( f , g)-bounded orientations of G when the additional requirement is imposed

that the in-degree of a specified subset T of nodes be as small as possible. We shall show that these

orientations of G can be described as ( f ′, g′)-bounded orientations of a mixed graph arising from G by

orienting the edges between a certain subset XT of nodes and its complement V − XT toward V − XT .

It is more comfortable, however, to show the analogous statement for a general M-convex set
....

B′(p) ⊆ ZV defined by a (fully) supermodular function p for which
....
B� :=

....

B′(p) ∩ T ( f , g) is non-

empty. (Here, instead of the usual S , we use V to denote the ground-set of the general M-convex set.

We are back at the special case of graph orientations when p = iG.) We assume that each of p, f , and

g is finite-valued.
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Let p� denote the unique (fully) supermodular function defining B�. This function can be ex-

pressed with the help of p, f , and g, as follows (see, for example, Theorem 14.3.9 in [16]):

p�(Y) = max{p(X) + f̃ (Y − X) − g̃(X − Y) : X ⊆ V} (Y ⊆ V). (5.4)

As B� is defined by the supermodular function p� (that is, B� = B′(p�)), we have

min{m̃(T ) : m ∈
....

B�} = p�(T ). (5.5)

This implies that the set of elements of
....
B� minimizing m̃(T ) is itself an M-convex set. Namely, it

is the set of integral elements of the base-polyhedron arising from B� by taking its face defined by

{m ∈ B� : m̃(T ) = p�(T )}. The next theorem shows how this M-convex set can be described in terms

of f , g, and p, without referring to p�.

Theorem 5.8. There is a box T ( f ′, g′) ⊆ T ( f , g) and a subset XT ⊆ V such that an element m ∈
....
B�

minimizes m̃(T ) if and only if m̃(XT ) = p(XT ) and m ∈
....
B ∩ T ( f ′, g′).

Proof. Let XT be a set maximizing the right-hand side of (5.4) for the definition of p�(Y).

Claim 5.9. An element m ∈
....
B� is a minimizer of the left-hand side of (5.5) if and only if the following

three optimality criteria hold:

m̃(XT ) = p(XT ),

v ∈ T − XT implies m(v) = f (v),

v ∈ XT − T implies m(v) = g(v).

Proof. For any m ∈
....
B� and X ⊆ V , we have m̃(T ) = m̃(X) + m̃(T − X) − m̃(X − T ) ≥ p(X) +

f̃ (T − X) − g̃(X − T ). Here we have equality if and only if m̃(X) = p(X), m̃(T − X) = f̃ (T − X), and

m̃(X − T ) = g̃(X − T ), implying the claim.

Define f ′ and g′ as follows:

f ′(v) :=


g(v) if v ∈ XT − T,

f (v) if v ∈ V − (XT − T ),
(5.6)

g′(v) :=


f (v) if v ∈ T − XT ,

g(v) if v ∈ V − (T − XT ).
(5.7)

The claim implies that T ( f ′, g′) and XT meet the requirement of the theorem.

As the set of elements of
....
B� minimizing m̃(T ) is itself an M-convex set, all the algorithms de-

veloped earlier can be applied once we are able to compute set XT occurring in Theorem 5.8. (By

definitions (5.6) and (5.7), XT immediately determines f ′ and g′).

The following straightforward algorithm computes an element m ∈
....
B� minimizing the left-hand

side of (5.5) and a subset XT maximizing the right-hand side of (5.4). Start with an arbitrary element

m ∈
....
B�. By an improving step we mean the change of m to m′ := m + χs − χt for some elements

s ∈ V − T, t ∈ T for which m(s) < g(s), m(t) > f (t), and s ∈ Tm(t), where Tm(t) is the smallest m-tight

set (with respect to p) containing t. Clearly, m′ ∈
....
B�, and m̃′(T ) = m̃(T ) − 1. The algorithm applies

improving steps as long as possible. When no more improving step exists, the set XT := ∪(Tm(t) : t ∈

T,m(t) > f (t)) meets the three optimality criteria. The algorithm is polynomial if |p(X)| is bounded by

a polynomial of |V |.

By applying Theorem 5.8 to the special case of p = iG, we obtain the following.
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Corollary 5.10. Let G = (V, E) be a graph admitting an ( f , g)-bounded orientation. There is a box

T ( f ′, g′) ⊆ T ( f , g) and a subset XT ⊆ V such that an ( f , g)-bounded orientation of G minimizes the

in-degree of T if and only if D is an ( f ′, g′)-bounded orientation for which ̺D(XT ) = 0.

In this case, the algorithm above to compute XT starts with an ( f , g)-bounded orientation D of

G, whose in-degree vector is denoted by m. As long as there is an st-dipath P with s ∈ V − T, t ∈

T,m(s) < g(s), and m(t) > f (t), reorient P. When no such a dipath exists anymore, the set XT of nodes

from which a node t ∈ T with m(t) > f (t) is reachable in D, along with the bounding functions f ′ and

g′ defined in (5.6) and in (5.7), meet the requirement in the corollary.

Minimum cost version It follows that, in order to compute a minimum cost dec-min ( f , g)-bounded

orientation for which the in-degree of T is minimum, we can apply the algorithm described in Sec-

tion 5.2 for the mixed graph obtained from G by orienting each edge between XT and V − XT toward

V − XT .

Remark 5.3. Instead of a single subset T of V , we may consider a chain T of subsets T1 ⊂ T2 ⊂ · · · ⊂

Th of V . Then T defines a face B�
face

of the base-polyhedron B�. Namely, an element m of B� belongs

to B�
face

precisely if m̃(Ti) = p�(Ti) for each i ∈ {1, . . . , h}. This implies that the integral elements

of B�
face

simultaneously minimize m̃(Ti) for each i ∈ {1, . . . , h} (over the elements of
....
B�). Therefore,

we can consider ( f , g)-bounded orientations of G with the additional requirement that each of the in-

degrees of T1, T2, . . . , Th is (simultaneously) minimum. Corollary 5.10 can be extended to this case,

implying that we have an algorithm to compute a minimum cost dec-min ( f , g)-bounded orientation

of G that simultaneously minimizes the in-degree of each member of the chain {T1, T2, . . . , Th}.

5.4 Application in resource allocation: semi-matchings

For a general M-convex set
....
B, it is known (see Theorem 2.2 in Section 2.1) that an element m of

....
B

is dec-min if and only if m is a minimizer of the square-sum of the components over
....
B. Therefore

the corresponding equivalences hold in the special case of in-degree constrained (in particular, T -

specified) orientations of undirected graphs.

As an application of this equivalence, we show first how a result of Harvey et al. [31] concerning

a resource allocation problem follows immediately. They introduced the notion of a semi-matching of

a simple bipartite graph G = (S , T ; E) as a subset F of edges for which dF(t) = 1 holds for every node

t ∈ T , and solved the problem of finding a semi-matching F for which
∑

[dF(s)(dF (s) + 1) : s ∈ S ] is

minimum. (Here dF(v) denotes the number of edges in F for which v is an end-node.) The problem

was motivated by practical applications in the area of resource allocation in computer science. Note

that

∑
[dF(s)(dF (s) + 1) : s ∈ S ] =

∑
[dF(s)2 : s ∈ S ] +

∑
[dF(s) : s ∈ S ]

=
∑

[dF(s)2 : s ∈ S ] + |F| =
∑

[dF(s)2 : s ∈ S ] + |T |,

and therefore the problem of Harvey et al. is equivalent to finding a semi-matching F of G that mini-

mizes the square-sum of degrees in S .

By orienting each edge in F toward S and each edge in E − F toward T , a semi-matching can be

identified with the set of arcs directed toward S in an orientation of G = (S , T ; E) in which the out-

degree of every node t ∈ T is 1 (that is, ̺(t) = dG(t) − 1), and dF(s) = ̺(s) for each s ∈ S . Since ̺(t)

for t ∈ T is the same in these orientations, it follows that the total sum of ̺(v)2 over S ∪T is minimized

precisely if
∑

[̺(s)2 : s ∈ S ] =
∑

[dF(s)2 : s ∈ S ] is minimized. Therefore the semi-matching problem

of Harvey et al. is nothing but a special dec-min T -specified orientation problem. Note that not only

semi-matching problems can be managed with graph orientations, but conversely, an orientation of

a graph G = (V, E) can also be interpreted as a semi-matching of the bipartite graph obtained from
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G by subdividing each edge by a new node (where subdividing an edge e = uv formally means that

we replace e by a path (uze, zev) of length two with a new node ze). This implies, for example, that

the algorithm of Harvey et al. to compute a semi-matching minimizing
∑

[dF(v)2 : v ∈ S ] is able

to compute an orientation of a graph G for which
∑

[̺(v)2 : v ∈ S ] is minimum. Furthermore, an

orientation of a hypergraph means that we assign an element of each hyper-edge Z to Z as its head. In

this sense, semi-matchings of bipartite graphs and orientations of hypergraphs are exactly the same.

Several graph orientation results have been extended to hypergraph orientation, for an overview, see,

e.g. [16].

Bokal et al. [6] extended the results to subgraphs of G meeting a more general degree-specification

on T when, rather than the identically 1 function, one imposes an arbitrary degree-specification mT

on T satisfying 0 ≤ mT (t) ≤ dG(t) (t ∈ T ). The same orientation approach applies in this more

general setting. We may call a subset F of edges an mT -semi-matching if dF(t) = mT (t) for each

t ∈ T . The extended resource allocation problem is to find an mT -semi-matching F that minimizes∑
[dF(s)2 : s ∈ S ]. This is equivalent to finding a T -specified orientation of G for which the square-

sum of the in-degrees is minimum and the in-degree specification in t ∈ T is m′
T

(t) := dG(t) − mT (t).

Therefore this extended resource allocation problem is equivalent to finding a dec-min T -specified

orientation of G.

The same orientation approach, when applied to in-degree constrained orientations, allows us to

extend the mT -semi-matching problem when we have upper and lower bounds imposed on the nodes

in S . This may be a natural requirement in practical applications where the elements of S correspond

to available resources (e.g. computers), the elements of T correspond to users, and we are interested

in a fair (= dec-min = square-sum minimizer) distribution (=mT -semi-matchings) of the resources

when the load (or burden) of each resource is requested to meet a specified upper and/or lower bound.

Note that in the resource allocation framework, the degree dF(s) of node s ∈ S may be interpreted

as the burden of s, and hence a difference-sum minimizer semi-matching minimizes the total sum of

burden-differences.

Katrenič and Semanišin [40] investigated the problem of finding a dec-min “maximum ( f , g)-semi-

matching” problem where there is a lower-bound function fT on T and an upper bound function gS

on S (in the present notation) and one is interested in maximum cardinality subgraphs of G meeting

these bounds. They describe an algorithm to compute a dec-min subgraph of this type. With the help

of the orientation model discussed in Section 5.3 (where, besides the in-degree bounds on the nodes,

the in-degree of a specified subset T was requested to be minimum), we have a strongly polynomial

algorithm for an extension of the model of [40] when there may be upper and lower bounds on both S

and T . Actually, even the minimum cost version of this problem was solved in Section 5.3.

In another variation, we also have degree bounds ( fS , gS ) on S and ( fT , gT ) on T , but we impose

an arbitrary positive integer γ for the cardinality of F. We consider degree-constrained subgraphs

(S , T ; F) of G for which |F| = γ, and want to find such a subgraph for which
∑

[dF(s)2 : s ∈ S ]

is minimum. (Notice the asymmetric role of S and T .) This is equivalent to finding an in-degree

constrained orientation D of G for which ̺D(S ) = γ and
∑

[̺D(s)2 : s ∈ S ] is minimum. Here the

corresponding in-degree bound ( f , g) on S is the given ( fS , gS ) while ( f , g) on T is defined for t ∈ T

by

f (t) := dG(t) − gT (t) and g(t) := dG(t) − fT (t).

Let B denote the base-polyhedron spanned by the in-degree vectors of the degree-constrained

orientations of G. Then the restriction of B to S is a g-polymatroid Q. By intersecting Q with the

hyperplane {x : x̃(S ) = γ}, we obtain an integral base-polyhedron BS in RS , and then the elements of
....
BS are exactly the in-degree vectors of the requested orientations restricted to S . That is, the elements

of
....
BS are the restriction of the degree-vectors of the requested subgraphs of G to S . Since BS is

a base-polyhedron, a dec-min element of
....
BS will be a solution to our minimum degree-square sum

problem.

We briefly indicate that a capacitated version of the semi-matching problem can also be formu-
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lated as a dec-min in-degree constrained and capacitated orientation problem (cf., Section 4.2 and

Remark 5.2). Let G = (S , T ; E) be again a bipartite graph, γ a positive integer, and fV and gV integer-

valued bounding functions on V := S ∪ T for which fV ≤ gV . In addition, an integer-valued capacity

function gE is also given on the edge-set E, and we are interested in finding a non-negative integral

vector z : E → Z+ for which z̃(E) = γ, z ≤ gE and fV (v) ≤ dz(v) ≤ gV (v) for every v ∈ V . (Here

dz(v) :=
∑

[z(uv) : uv ∈ E].) We call such a vector feasible. The problem is to find a feasible vector z

whose degree vector restricted to S (that is, the vector (dz(s) : s ∈ S ) is decreasingly minimal.

By replacing each edge e with gE(e) parallel edges, it follows from the uncapacitated case above

that the vectors {(dz(s) : s ∈ S ) : z is a feasible integral vector} form an M-convex set. In this case,

however, the basic algorithm is not necessarily polynomial since the values of gE may be large. There-

fore we need the general strongly polynomial algorithm described in Section 2.4. In this case the

general Subroutine (2.4) can be realized via max-flow min-cut computations.

Minimum edge-cost dec-min semi-matchings Harada et al. [30] developed an algorithm to solve

the minimum edge-cost version of the original semi-matching problem of Harvey et al. [31]. As

the dec-min in-degree bounded orientation problem covers all the extensions of semi-matching prob-

lems mentioned above, the minimum edge-cost version of these extensions can also be solved with

the strongly polynomial algorithms developed in Section 5.2 for minimum cost dec-min in-degree

bounded orientations.

We close this section with some historical remarks. The problem of Harvey et al. is closely re-

lated to earlier investigations in the context of minimizing a separable convex function over (integral

elements of) a base-polyhedron. For example, Federgruen and Groenevelt [12] provided a polynomial

time algorithm in 1986. Hochbaum and Hong [33] in 1995 developed a strongly polynomial algo-

rithm; their proof, however, included a technical gap, which was fixed by Moriguchi, Shioura, and

Tsuchimura [45] in 2011. For an early book on resource allocation, see the one by Ibaraki and Katoh

[35] while three more recent surveys are due to Katoh and Ibaraki [38] from 1998, to Hochbaum [32]

from 2007, and to Katoh, Shioura, and Ibaraki [39] from 2013. Algorithmic aspects of minimum

degree square-sum problems for general graphs were discussed by Apollonio and Sebő [1].

6 Orientations of graphs with edge-connectivity requirements

In this section, we investigate various edge-connectivity requirements for the orientations of G. The

main motivation behind these investigations is a conjecture of Borradaile et al. [7] on decreasingly

minimal strongly connected orientations. Our goal is to prove their conjecture in a more general form.

6.1 Strongly connected orientations

Suppose that G is 2-edge-connected, implying that it has a strong orientation by a theorem of Robbins

[51]. We are interested in dec-min strong orientations, meaning that the in-degree vector is decreas-

ingly minimal over the strong orientations of G. This problem of Borradaile et al. was motivated by a

practical application concerning optimal interval routing schemes.

Analogously to Theorem 4.5, they described a natural way to improve a strong orientation D to

another one whose in-degree vector is decreasingly smaller. Suppose that there are two nodes s and t

for which ̺(t) ≥ ̺(s) + 2 and there are two edge-disjoint dipaths from s to t in D. Then reorienting

an arbitrary st-dipath of D results in another strongly connected orientation of D which is clearly

decreasingly smaller than D.

Borradaile et al. [7] conjectured the truth of the converse (and this conjecture was the starting

point of our investigations). The next theorem states that the conjecture is true.

Theorem 6.1. A strongly connected orientation D of G = (V, E) is decreasingly minimal if and only if

there are no two arc-disjoint st-dipaths in D for nodes s and t with ̺(t) ≥ ̺(s) + 2.
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Proof. Suppose first that there are nodes s and t with ̺(t) ≥ ̺(s) + 2 such that there are two arc-

disjoint st-dipaths of D. Let P be any st-dipath in D and let D′ denote the digraph arising from D by

reorienting P. Then D′ is strongly connected, since if it had a node-set Z (∅ ⊂ Z ⊂ V) with no entering

arcs, then Z must be a ts-set and P enters Z exactly once. But then 0 = ̺D′(Z) = ̺D(Z)−1 ≥ 2−1 = 1,

a contradiction. Therefore D′ is indeed strongly connected and its in-degree vector is decreasingly

smaller than that of D.

To see the non-trivial part, define a set-function p1 as follows:

p1(X) :=



0 if X = ∅,

|E| if X = V,

iG(X) + 1 if ∅ ⊂ X ⊂ V.

Then p1 is crossing supermodular and hence B1 := B′(p1) is a base-polyhedron.

Claim 6.2. An integral vector m is the in-degree vector of a strong orientation of G if and only if m is

in
....
B1.

Proof. If m is the in-degree vector of a strong orientation of G, then m̃(V) = |E| = p1(V), m̃(∅) = 0 =

p1(∅), and

m̃(Z) =
∑

[̺(v) : v ∈ Z] = ̺(Z) + iG(Z) ≥ 1 + iG(Z) = p1(Z)

for ∅ ⊂ Z ⊂ V , that is, m ∈
....
B1.

Conversely, let m ∈
....
B1. Then m ∈ BG and hence by Claim 4.2, G has an orientation D with

in-degree vector m. We claim that D is strongly connected. Indeed,

̺(Z) =
∑

[̺(v) : v ∈ Z] − iG(Z) = m̃(Z) − iG(Z) ≥ p1(Z) − iG(Z) = 1

whenever ∅ ⊂ Z ⊂ V .

Claim 6.3. Let D be a strong orientation of G with in-degree vector m. Let t and s be nodes of G. The

vector m′ := m + χs − χt is in B1 if and only if D admits two arc-disjoint dipaths from s to t.

Proof. m′ ∈ B1 holds precisely if there is no ts-set X which is m-tight with respect to p1, that is,

m̃(X) = iG(X) + 1. Since ̺(Y)+ iG(Y) =
∑

[̺(v) : v ∈ Y] = m̃(Y) holds for any set Y ⊂ V , the tightness

of X (that is, m̃(X) = iG(X)+ 1) is equivalent to requiring that ̺(X) = 1. Therefore m′ ∈ B1 if and only

if ̺(Y) > 1 holds for every ts-set Y , which is, by Menger’s theorem, equivalent to the existence of two

arc-disjoint st-dipaths of D.

By Theorem 2.1, m is a dec-min element of
....
B1 if and only if there is no 1-tightening step for m.

By Claim 6.3 this is just equivalent to the condition in the theorem that there are no two arc-disjoint

st-dipaths in D for nodes s and t for which ̺(t) ≥ ̺(s) + 2.

We remark that a recent work of Zhou and Hou [56] describes a proof of the conjecture of Bor-

radaile et al. that uses purely graph-theoretical concepts and does not rely on any knowledge of base-

polyhedra or supermodular functions. An immediate consequence of Claim 6.2 and Theorem 2.1 is

the following.

Corollary 6.4. A strong orientation of G is dec-min if and only if it is inc-max.

We indicated in Section 5.1 how in-degree constrained dec-min orientations can be managed due

to the fact that the intersection of an integral base-polyhedron B with an integral box T is an integral

base-polyhedron. The same approach works for degree-constrained strong orientations. For example,

in this case dec-min and inc-max again coincide and one can formulate the in-degree constrained

version of Theorem 6.1. In Section 6.3, we overview more general cases.
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Figure 2: A mixed graph for the second variant

6.2 Counterexample for mixed graphs

Although Robbins’ theorem on strong orientability of undirected graphs easily extends to mixed

graphs, as was pointed out by Boesch and Tindell [5], it is not true anymore that a decreasingly mini-

mal strong orientation of a mixed graph is always increasingly maximal. Actually, one may consider

two natural variants.

In the first one, decreasing minimality and increasing maximality are defined for the total in-

degree vector of the directed graph obtained from the initial mixed graph orienting its undirected

edges. Consider the mixed graph M = (V, A + E) in the left of Figure 1. Here V = {a, b, c, d} while

the set E of undirected edges (to be oriented) has just two elements: ab and dc. There are two strong

orientations of M. In the first one (the middle digraph in Figure 1), these are the arcs ba and dc, in

which case the total in-degree vector is (3, 1, 3, 3). In the second one (the digraph in the right of Figure

1), the orientations of the elements of E are ab and cd, in which case the total in-degree vector is

(2, 2, 2, 4). Now (3, 1, 3, 3) is dec-min while (2, 2, 2, 4) is inc-max.

In the second variant, we are interested in the in-degree vector of the digraph obtained by orienting

the originally undirected part E. For this version, the counterexample mixed graph is demonstrated in

Figure 2. In any strong orientations of M, parallel edges in E must be oriented oppositely. Therefore

the contribution of the actual orientations of these four pairs of parallel undirected edges (in the order

of a, b, c, d, u, v, x, y) is (2, 1, 0, 1, 1, 1, 1, 1).

Therefore there are essentially two distinct strong orientations of M. In the first one, the undirected

edges ab, cd are oriented as ba, dc, while in the second one the undirected edges ab, cd are oriented

as ab, cd. Hence the in-degree vector of the first strong orientation corresponding to the orientation

of G (in the order of a, b, c, d, u, v, x, y) is (3, 1, 1, 1, 1, 1, 1, 1). The in-degree vector of second strong

orientation corresponding to the orientation of G is (2, 2, 0, 2, 1, 1, 1, 1). The first vector is inc-max

while the second vector is dec-min.

These examples give rise to the question: what is behind the phenomenon that while dec-min and

inc-max coincide for strong orientations of undirected graphs, they differ for strong orientations of

mixed graph? The explanation is, as we pointed out earlier, that for an M-convex set the two notions

coincide and the set of in-degree vectors of strong orientations of an undirected graph is an M-convex

set, while the corresponding set for a mixed graph is, in general, not an M-convex set. It is actually the
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intersection of two M-convex sets. An algorithm for computing a dec-min element of the intersection

of two M-convex sets is described in [23].

6.3 Higher edge-connectivity

An analogous approach works in a much more general setting. We say that a digraph covers a set-

function h if ̺(X) ≥ h(X) holds for every set X ⊆ V . The following result was proved in [14].

Theorem 6.5 ([14]). Let h be a finite-valued, non-negative crossing supermodular function with

h(∅) = h(V) = 0. A graph G = (V, E) has an orientation covering h if and only if

eP ≥

q∑

i=1

h(Vi) and eP ≥

q∑

i=1

h(V − Vi)

hold for every partition P = {V1, . . . ,Vq} of V, where eP denotes the number of edges connecting

distinct parts of P.

This theorem easily implies the classic orientation result of Nash-Williams [48] stating that a graph

G has a k-edge-connected orientation precisely if G is 2k-edge-connected. Namely, by defining h to

be identically equal to k on non-empty proper subsets of V while h(∅) := h(V) := 0, and observing

that eP =
∑

[dG(X)/2 : X ∈ P], we can see that both inequalities in the theorem are equivalent to∑
[dG(X)/2 : X ∈ P] ≥ kq. But this latter inequality follows from the (2k)-edge-connectivity of G

since
∑

[dG(X)/2 : X ∈ P] ≥
∑

[k : X ∈ P] = kq.

Even more, call a digraph (k, ℓ)-edge-connected (ℓ ≤ k) (with respect to a root-node r0) if ̺(X) ≥ k

whenever ∅ ⊂ X ⊆ V − r0 and ̺(X) ≥ ℓ whenever r0 ∈ X ⊂ V . (By Menger’s theorem, (k, ℓ)-edge-

connectedness is equivalent to requiring that there are k arc-disjoint dipaths from r0 to every node and

there are ℓ arc-disjoint dipaths from every node to r0.) Then Theorem 6.5 implies:

Theorem 6.6. A graph G = (V, E) has a (k, ℓ)-edge-connected orientation if and only if

eP ≥ k(q − 1) + ℓ

holds for every q-partite partition P of V.

Note that an even more general special case of Theorem 6.5 can be formulated to characterize

graphs admitting in-degree constrained and (k, ℓ)-edge-connected orientations.

It is important to emphasize that however general Theorem 6.5 is, it does not say anything about

strong orientations of mixed graphs. In particular, it does not imply the pretty but easily provable the-

orem of Boesch and Tindell [5]. The problem of finding decreasingly minimal in-degree constrained

k-edge-connected orientation of mixed graphs can be solved as a special case of decreasing minimiza-

tion over the intersection of two M-convex sets.

The next lemma shows why the set of in-degree vectors of orientations of G covering the set-

function h appearing in Theorem 6.5 is an M-convex set, ensuring in this way the possibility of apply-

ing the results on decreasing minimization over M-convex sets to general graph orientation problems.

Lemma 6.7. An orientation D of G covers h if and only if its in-degree vector m is in the base-

polyhedron B = B′(p), where p := h + iG is a crossing supermodular function.

Proof. Suppose first that m is the in-degree vector of a digraph covering h. Then h(X) ≤ ̺(X) =

m̃(X) − iG(X) for X ⊂ V and h(V) = 0 = ̺(V) = m̃(V) − iG(V), that is, m is indeed in B.

Conversely, suppose that m ∈ B. Since h is finite-valued and non-negative, we have m̃(X) ≥ p(X) ≥

iG(X) for X ⊂ V and m̃(V) = iG(V) and hence, by the Orientation lemma, there is an orientation D

of G with in-degree vector m. Moreover, this digraph D covers h since ̺D(X) = m̃(X) − iG(X) ≥

p(X) − iG(X) = h(X) holds for X ⊂ V .
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By Lemma 6.7, Theorem 2.1 can be applied again to the general orientation problem covering

a non-negative and crossing supermodular set-function h in the same way as it was applied in the

special case of strong orientation above, but we formulate the result only for the special case of in-

degree constrained and k-edge-connected orientations.

Theorem 6.8. Let G = (V, E) be an undirected graph endowed with a lower bound function f : V →

Z ∪ {−∞} and an upper bound function g : V → Z ∪ {+∞} with f ≤ g. A k-edge-connected and

in-degree constrained orientation D of G is decreasingly minimal if and only if there are no two nodes

s and t for which ̺(t) ≥ ̺(s) + 2, ̺(t) > f (t), ̺(s) < g(s), and there are k + 1 arc-disjoint st-dipaths.

The theorem can be extended even further to in-degree constrained and (k, ℓ)-edge-connected ori-

entations (ℓ ≤ k).

Locally k-edge-connected orientations For a subset S of nodes of a digraph D = (V, A), we say

that D is locally k-edge-connected in S if there are k arc-disjoint dipaths in D from any node s of S

to any other node t of S . This is equivalent to requiring (by Menger’s theorem) that ̺D(X) ≥ k holds

for each subset X ⊂ V for which neither X ∩ S nor S − X is empty. Clearly, when S = V , we are back

at ordinary k-edge-connectivity. Király and Lau [41] considered a closely related concept when the

requirement for D is that there are k edge-disjoint dipaths from a specified root-node r of S to every

other node of S . Such a digraph may be called locally rooted k-edge-connected in S .

By relying on a base-polyhedral approach, Király and Lau [41] proved (Theorem 1.3) that there

exists a polynomial algorithm for finding an orientation of G which is locally rooted k-edge-connected

in S and the orientation meets an in-degree specification m
S

on the nodes in V − S . By using an

analogous approach, we can solve the orientation problem in which, beside the in-degree specification

on V − S , the requirement is local k-edge-connectivity in S . To this end, define a set-function h on S

as follows:

h(Z) :=



0 if Z = ∅,

|E| − m̃
S

(V − S ) if Z = S ,

max{k + iG(Z ∪ X) − m̃
S

(X) : X ⊆ V − S } if ∅ ⊂ Z ⊂ S .

It is not difficult to see that h is a non-negative, crossing supermodular function on S . Let BS := B′(h)

denote the integral base-polyhedron defined by h. By relying on Lemma 6.7, one can derive the

following.

Theorem 6.9. Let G = (V, E) be an undirected graph with a specified subset S of V. Let m
S

be

an in-degree specification on V − S . The set of in-degree vectors of those orientations of G which

are locally k-edge-connected in S and in-degree specified in V − S is an M-convex set
....
B, namely,

....
B = {(mS ,mS

) : mS ∈
....
BS }.

By this theorem, we can determine a decreasingly minimal orientation among those which are

k-edge-connected in S and in-degree specified in V − S . Even additional in-degree constraints can be

imposed on the elements of S .

Remark 6.1. One may consider the orientation problem (∗) where, beside local k-edge-connectivity

in S , we impose upper and lower bounds on the in-degrees of nodes outside S (instead of exact val-

ues). Bernáth et al. [4] proved that the in-degree constrained version of Nash-Willams’ well-balanced

orientation problem [48] is NP-complete. By using a similar method, Bernáth [3] recently proved that

already the problem (∗) is NP-complete, even in the special case with k = 1.
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Hypergraph orientation Let H = (V,E) be a hypergraph for which we assume that each hyperedge

has at least 2 nodes. Orienting a hyperedge Z means that we designate an element z of Z as its head-

node. A hyperedge Z with a designated head-node z ∈ Z is a directed hyperedge denoted by (Z, z).

Orienting a hypergraph means the operation of orienting each of its hyperedges. We say that a directed

hyperedge (Z, z) enters a subset X of nodes if z ∈ X and Z − X , ∅. A directed hypergraph is called

k-edge-connected if the in-degree of every non-empty proper subset of nodes is at least k.

The following result was proved in [19] (see, also Theorem 2.22 in the survey paper [18]).

Theorem 6.10. The set of in-degree vectors of k-edge-connected and in-degree constrained orienta-

tions of a hypergraph forms an M-convex set.

Therefore we can apply the general results obtained for decreasing minimization over M-convex

sets.
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