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Abstract

A proximity theorem is a statement that, given an optimization problem and its
relaxation, an optimal solution to the original problem exists in a certain neighbor-
hood of a solution to the relaxation. Proximity theorems have been used successfully,
for example, in designing efficient algorithms for discrete resource allocation prob-
lems. After reviewing the recent results for L-convex and M-convex functions, this
paper establishes proximity theorems for larger classes of discrete convex functions,
Ls-convex functions and Mj-convex functions, that are relevant to the polymatroid

intersection problem and the submodular flow problem.

1 Introduction

In the area of discrete optimization, nonlinear optimization problems have been investi-
gated as well as linear optimization problems. Submodular (set) functions and separable
convex functions are well-known examples of tractable nonlinear functions, in that the sub-
modular function minimization problem can be solved in polynomial time (see [13, 14, 24]),
and separable convex functions have been treated successfully in many different discrete
optimization problems (see [11]).

Recently, certain classes of “discrete convex functions” were proposed: {L,M,L;,M,}-
convex functions of Murota [18, 19]. L-convex functions contain the class of submodular
set functions. M-convex functions possess structures of matroids and polymatroids. Sep-
arable discrete convex functions can be characterized as functions with both L-convexity
and M-convexity (in their variants). Lp-convex functions and M,-convex functions con-
stitute larger classes of discrete convex functions that are relevant to the polymatroid
intersection problem, where an Lj-convex function is, by definition, the infimal convolu-
tion of two L-convex functions and an Ms-convex function is the sum of two M-convex
functions. The Ms-convex function minimization problem is equivalent to the M-convex
submodular flow problem [20] which is an extension of the submodular flow problem (3].

Those classes C of discrete convex functions f possess the following features in com-



Discreteness: f is defined on an integral lattice Z™, i.e., f : Z" — R U {+o00}, where Z
and R denote the sets of integers and reals, respectively.

Convex Extendibility: There exists a continuous convex function f such that f(r) =
f(z) for all x € Z".

Optimality Criterion: There exists a neighborhood N¢(z*) C Z™ with center z* such
that
f(g*) < f(z) (Vz € Z") & f(z") < f(z) (Vz € Ne(z")).

Optimality criterion says that global minimality is implied by local minimality defined in
terms of the neighborhood N¢c(z*). This is a significant feature inherited from continuous
convex functions. ‘

Moreover, L-/M-convex functions have a “proximity property” described as

Proximity Property: Given a positive integer o and a point z* € Z", there exists a
function d¢(n, o) such that '

f(z®) < f(z) (Vz € N§(z*)) = 3Fz* € argmin f: ||z* — 2| < dc(n, @),

where N&(z%) = {2® + a(r — %) | £ € Nc(z*)} and argmin f denotes the set of
all minimizers of f, i.e., :

argmin f = {z € Z" | f(z) < f(y) (Vy € Z")}.
The proximity property says that a locally minimal solution z* of a “scaled” function "
f%(z) = f(z* + ox) (rezV)

is close to a minimizer z* of f in terms of d¢(n, @). For L-/M-convex functions, d¢(n, a) =
(n —1)(a — 1) is a valid choice ([15] and [16], respectively). The proximity property can
be exploited in developing an efficient scaling algorithm for minimizing f. In fact, the
L-convex function minimization problem can be solved in polynomial-time by combining
submodular set function minimization algorithms and the proximity property [12] (see
also [21]). For the M-convex function minimization, polynomial-time scaling algorithms
based on the proximity property and its generalization are known [25, 26]. Proximity the-
orems for separable discrete convex functions are found in [8, 9, 17] in developing efficient
algorithms for resource allocation problems. Different types of theorems on proximity
have also been investigated: proximity between integral and real optimal solutions in
[1,2,7,9, 10] and proximity for a number of resource allocation problems with min-max
type objective functions in [5].

This paper addresses proximity properties of L,-/Mj-convex functions. Our main
results say:




e for an essentially bounded Ly-convex function f and a positive integer a, if z* €
dom f satisfies

f(z*) < f(&* + axs)

for all S C V, then there exists z* € argmin f such that

llz* — 2%l < 2(n—1)(e—1),

e for an M,-convex function f represented as the sum of two M-convex functions h

and f,, and a positive integer o, if z* € dom f satisfies

k k
Z(fl(xa—axui+axwi) - fl(xa)) + Z(f2(xa_axuz'+1 +axw¢') - fZ(xa)) 2 0
i=1

i=1
for any ordered sets U={uy, ..., ux}, W={wq,...,ux} CV with UNW = @ where
Ug+1 = 1, then there exists z* € arg min f such that

2
n
lo* = 220 < - (a=1).

Section 2 states definitions, optimality criteria and proximity properties for several classes
of discrete convex functions. '

2 Definitions, Optimality Criteria and Proximity Theorems

In this section, we introduce four classes of discrete convex functions, namely, {L, M,
Ly, M;}-convex functions with respect to definitions, optimality criteria and proximity
theorems. While other variants of these classes, e.g., L'-/Li-convex functions due to [6]
and M"-/Mli-convex functions due to [22], are known, we concentrate on the above four
classes because the results can be easily extended to the variants.

Subsections 2.3 and 2.4 present new results, an optimality criterion (Theorem 2.8)
and a proximity property (Theorem 2.9) for Lj-convex functions, and proximity proper-
ties (Theorems 2.12 and 2.13) for M,-convex functions. Subsection 2.2 also gives a new
proximity property (Theorem 2.6) for M-convex functions in terms of ¢;-norm. Subsec-
tions 2.1 and 2.2 explain known results, optimality criteria and proximity theorems for
L-convexity and M-convexity, respectively. Subsection 2.4 introduce optimality criteria
for Ma-convexity, which are direct consequences of results for the M-convex submodular
flow problem.

We first introduce notations. Let V be a nonempty finite set and put n = [V]|. We
denote by ZV the set of all integral vectors z = (z(v) : v € V) indexed by V, and by
Z. . the set of all positive integers. Given a function f : ZV — R U {£oo}, the effective
domasin of f is defined by

dom f = {z € ZV | f(z) # %o0}.



For each S C V, we denote by xs the characteristic vector of S defined by

)1 (ved)
Xs('U)—{O (v S) (veV)

and write simply x,, instead of x(.) for each u € V. We also denote by 0 and 1 the vectors
of all zeros and ones, respectively. For two vectors =,y € ZV with r < y, [z, y]z denotes
theset {z€ Z" |z < z < y}.

2.1 L-convex Functions

For any z,y € ZY, the vectors x Ay and z V y in ZY are such that

(z Ay)(v) = min{z(v),y(v)}, (zVy)(v) = max{z(v),y(v)} (veV).

A function f : Z¥Y — R U {400} is said to be L-conver if dom f # @ and it satisfies the
following two conditions:

(SBF) f is submodular, i.e.,
f@) +f) 2 fzAy)+flzvy) (Vz,y€ZY),
(TRF) 3r € R such that f(z+1) = f(z)+r (VzeZV).
Global optimality of an L-convex function is characterized by local optimality.

Theorem 2.1 (L-optimality criterion, [21])

For an L-conver function f : ZV — R U {+oo} and z* € dom f, we have
fl@*) < f(z* +xs) (VSCV),
flz* +1) = f(z*).

The above local optimality criterion can be checked in polynomial time because the first

fz*) < f(z) (Vze€Z') <= {

condition can be verified by using submodular function minimization algorithms and the
second condition is easy.
We next introduce a proximity theorem of L-convex functions.

Theorem 2.2 (L-proximity theorem, [15])
Let f : ZV — R U {+oo} be an L-convez function with f(z + 1) = f(z) (Vz € ZV)
and let o € Z .. If z* € dom f satisfies

f(z®) £ f(=* +axs) (VSCV),
then argmin f # 0 and there erists z* € argmin f with
z*<z*<z*+(n-1)(a-1)1

Remark 2.3 Theorems 2.1 and 2.2 are extended to a more general class of “quasi” L-

convex functions [23].




2.2 M-convex Functions

We define the positive support and negative support of a vector z = (z(v) :v € V) € zv
by
suppt(z) = {v e V |z(v) >0} and supp (z)={veV|z(v) <0}

A function f : ZV — R U {400} is called M-convez if dom f # 0 and it satisfies

(M-EXC) for z,y € dom f and u € supp*(x —y), there exists v € supp™ (z —y) such that
f(x)+f(y) 2> f(x_Xu+Xv)+f(y+Xu_Xv)°
We note that (M-EXC) is also represented as: for ,y € dom f,

f(z)+ f(y) > max min [ f(z = xu+X0) +FH+xu—X0) |,
u€supp*t(z—y) vEsupp~ (z—y)

where the maximum and the minimum over an empty set are —oo and 400, respectively.
From (M-EXC), the effective domain dom f lies on a hyperplane {z € RY | z(V) =
constant}, where (V) = Y,ev z(v). It is also known that dom f is the set of integer
points of the base polyhedron of an integral submodular system (see [4] for submodular
systems). '

The minimizers of an M-convex function have a nice characterization which can be
checked efficiently.

Theorem 2.4 (M-optimality criterion, [18, 19])
For an M-convez function f : ZV — R U {+o00} and z* € dom f, we have

f@E) < flx) VzeZV) <= [fE)<fl&*—xut+x) (u,veV).
We next introduce a proximity theorem of M-convex functions.

Theorem 2.5 (M-proximity theorem, [16])
Let f : ZV — RU {+00} be an M-convez function and let o € Z,,. If z* € dom f
satisfies
f(z®) < f(z® — axu + axw) (Yu,v CV),

then argmin f # 0 and there ezrists z* € argmin f with
|z%(v) —z*(v)| < (n - 1)(a—1) (Vv e V).

By slightly modifying the proof of [16], we also obtain the following proximity theorem in
terms of ¢;-norm.



Theorem 2.6 Let f : ZY — R U {+00} be an M-convez function and let « € Z . If
x® € dom f satisfies

f(z®) < f(z* — oxu + axy) (Yu,v CV), (1)

then arg min f # () and there erists x* € arg min f with
n2
le* = 2%l < (e~ 1), ©

Remark 2.7 Theorems 2.4 and 2.5 are extended to a more general class of “quasi” M-

convex functions [23].

2.3 Ls-convex Functions

For any functions fi, fa : ZV — R U {+o00}, the infimal convolution of f, and f,, denoted
by fi0f; : ZV — R U {£o00}, is defined by

(f10f)(z) = inf{fi(z1) + fo(z2) | 21 + 22 = 7, 71,2, € Z"} (z € ZV).

It is easy to show that if fi0f; > —oo then the effective domain of f;0f, coincides with
the Minkowski sum of the effective domains of f; and f,, that is,

dom (f10f;) = (dom f;) + (dom f5) = {z1 + z2 | z; € dom f1, z3 € dom f5}.

It is known that the infimal convolution of two M-convex functions is also M-convex, but
the infimal convolution of two L-convex functions may not be L-convex [18]. A function
f :ZV — RU {+oo} is said to be Ly-convez if dom f # @ and f = f;0f, for some
L-convex functions fi, fa : Z¥ — R U {+o00}. We say that an L-/Lj-convex function f
is essentially bounded if dom f N {z € ZV | z(v) = 0} is bounded for some v € V. If an
Ly-convex function f = f;0f; is essentially bounded, then f; and f, are also essentially
bounded, because dom f = (doni f1) + (dom f;) holds for Ls-convex function f.

The following optimality criterion and the proximity theorem for Lj-convex functions
are new results. We emphasize that the optimality criterion is the same as that for L-
convex functions stated in Theorem 2.1 and that the proximity theorem is almost the
same as that stated in Theorem 2.2.

Theorem 2.8 (Lp-optimality criterion)
For an Lj-convez function f : ZV — R U {+o00} and z* € dom f, we have

f(@*) < fz*+xs) (VSCV),

* |
@) < f) (rer’) { A D) e




Theorem 2.9 (L,-proximity theorem)
Let f : ZV — RU{+00} be an essentially bounded Ly-convex function with f(z+1) =
f(x) (Vz € ZV) and let o € Z, . If z* € dom f satisfies

f(z*) < f(z* +axs) (VSCV),
then argmin f # 0 and there exists £* € arg min f with

*<z*<z*+2(n-1)(a-1)L

2.4 M,-convex Functions

It is known that the sum of two M-convex functions is not necessarily M-convex. A func-
tion f : ZV — R U {+oo} is said to be M-convez if domf # @ and f = fi + f, for
some M-convex functions fi, f, : Z¥ — R U {+o0o}. It is easy to show that dom f =
(dom f;) N (dom f,). Obviously, if dom f; = dom f, and f; is identically zero, then f = fi
is M-convex, and hence, the class of M,-convex functions includes that of M-convex func-
tions. The M,-convex function minimization problem contains the polymatroid inter-
section problem as a special case. Thus, optimality criteria for M,-convexity below are
extensions of known results for the matroid intersection problem and the polymatroid
intersection problem.
For a vector p € RV, let us define functions (p, z) and f[p|(z) by

(p,x) = Evp(v)z(v) and  flpl(z) = f(2) + (p3)  (z€Z").

If f is M-convex, then f[p] is also M-convex.
Several results on optimality of Ms-convexity are known.

Theorem 2.10 (M-convex intersection theorem, [18])
For M-convez functions fi, fo : ZY — R U {+oo} and a point * € dom f; N dom f,
we have

fi(@) + fo(z*) < fi(@) + fo(z) (Vz € ZY)
if and only if there exists p* € RV such that

AP < Al-P)@) (Y2 eZY),
AP < AlH@) (Y el),

IA A

and furthermore, we have

argmin(f, + f;) = arg min(f;[—p*]) N arg min( f>[+p*])

for such p*.



Optimality criteria of My-convex functions can be transformed from those of the M-
convex submodular flow problem in [19], because the My-convex function minimization
and the M-convex submodular flow problem are equivalent to each other. The following
theorem is a direct consequence of the results in [19].

Theorem 2.11 (M,-optimality criteria, see [19])
For M-convez functions fi, f, : Z¥ — R U {+o0} and a point z* € dom f; N dom f5,
three conditions below are equivalent:

(a) z* € argmin(f; + fa).

(b) For any ordered sets U={uy,...,ux}, W={wy,...,wx} CV withUNW =0,

k k _
Y (@ =Xt xw) = [1(27) + D (f2(8" = Xussr +Xws) — f2(27)) 20,
i=1 i=1
where ugy1 = ;.

() (i+)e) S (h+ )& —xw+xw) (UWCV |U=|W]).

The optimality for M,-convexity can be checked in polynomial time by transforming
(b) of Theorem 2.11 to a network problem (see Remark 2.14), although checking condition
(c) of Theorem 2.11 seems to be a hard problem. In view of polynomial time verifiability,
we relax (b) of Theorem 2.11 to formulate a proximity theorem of M-convex functions.
This is the main result of this paper.

Theorem 2.12 (M,-proximity theorem)
Let fi,f, : ZV — R U {+00} be M-convez functions and let « € Z,,. If z° €

dom f; Ndom f,> satisfies

k k
E(fl(xa—aXuﬁan.-) - fl(xa)) + Z(fz(xa—aXu,-H +an,-) - f2(xa)) Z 0
i=1

=1
for any ordered sets U={u,...,ux}, W={wy,...,wr} CV withUNW = @ where ux;; =

uy, then argmin(f; + fo) # 0 and there exists x* € arg min(f, + f2) with

2
* o n

|z* = 2% < 5~ (@ —1). (3)
2

The proof of Theorem 2.12 relies heavily on the following result.

Theorem 2.13  Let fy, fo : Z¥ — RU{+o00} be M-convez functions with arg min(f +
f2) # 0. For a given point z € ZV with z(V) = y(V) for any y € dom f; N dom f,, and
for d € Z, if there exist x* € argmin f; and z? € arg min f, such that

|zt 2zl <d |lz® ~al < d, (4)
then there exists £* € argmin(f1 + f;) with

l|z* — z||oo < d.



Remark 2.14 Condition (b) of Theorem 2.11 can be checked in polynomial time. Given
two M-convex functions fi, fo : Z¥ — R U {+o0}, a point z € dom f; N dom f; and a
positive integer a € Z,,, we construct a directed graph G2 = (V1 U V3, A) and an arc
length £2 € R4 as follows. Let V; and V; be copies of V, i.e.,

Vi={n|veV}, Va={v|veV}
where v; and v, are the copies of v € V. Arc set A consists of three disjoint parts:

Ay = {(v1,v2) |veE V}IU{(v, 1) | vEVY}
A = {(u,n) |uw,v €V, u#v, T—ax,+ax, €dom At (5)
Ay = {(vo,u2) |v,veV, u#v, —oxu+ax, € dom f,}.

We define £ € R4 by

0 (a € Ab)
6(a) = filz — oxu+axy) — fi(z) (a=(u1,01) € A1) (6)
fo(x — axu + axe) — fo(z) (a = (vo,u2) € Ay).

Lemma 2.15 below guarantees that (b) of Theorem 2.11 can be checked in polynomial
time by applying shortest path algorithms.

Lemma 2.15  For two M-convezr functions fi,f, : ZV — R U {+o0}, a point z €
dom f; Ndom f, and o € Z ., two conditions below are equivalent: -

(a) There erists no negative cycle in G with length (5.

(b) For any ordered sets U={uy, ..., uc}, W={wy,...,wx} CV with UNW = §,

k k .
Z—:(fl (x—axui+axwi) - fl(x)) + 2(f2(x"aXui+1+ani) - fZ(x)) 2> 07 (7)

where ug41 = U;.
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