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Abstract
A critical problem for several real world applications is class imbalance. Indeed, in con-
texts like fraud detection or medical diagnostics, standard machine learning models fail 
because they are designed to handle balanced class distributions. Existing solutions typi-
cally increase the rare class instances by generating synthetic records to achieve a balanced 
class distribution. However, these procedures generate not plausible data and tend to create 
unnecessary noise. We propose a change of perspective where instead of relying on resam-
pling techniques, we depend on unsupervised features engineering approaches to represent 
records with a combination of features that will help the classifier capturing the differ-
ences among classes, even in presence of imbalanced data. Thus, we combine a large array 
of outlier detection, features projection, and features selection approaches to augment the 
expressiveness of the dataset population. We show the effectiveness of our proposal in a 
deep and wide set of benchmarking experiments as well as in real case studies.
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1  Introduction

A wide variety of important applications where Machine Learning (ML) models are typi-
cally applied, such as fraud detection, medical diagnosis, and oil spill (Japkowicz & Ste-
phen, 2002) suffer from the problem of class imbalance. The class imbalance problem cor-
responds to domains where some classes are represented by a large number of instances, 
while others are represented by only a few. Prior research has shown that class imbalance 
has a negative impact on the performance of the learned ML models that tend to be over-
whelmed by the large classes and ignore the small ones. This typically happens because 
ML classifiers operate on data drawn from the same distribution as the training data, adopt-
ing the same data representation, and assume that maximizing accuracy is the primary 
goal (Chawla et al., 2004). Given the frequency of imbalanced learning problems in real 
applications and the issues it raises on learning ML models, the research of methods for 
handling it has become a significant research topic (Japkowicz & Stephen, 2002; Branco 
et al., 2016).

The approaches proposed by the research community to solve the class imbalance 
problem include pre-processing methods, as well as the definition of learning methods 
specifically designed for this problem (Japkowicz & Stephen, 2002; Chawla et al., 2004; 
He & Garcia, 2009; Chawla, 2010; Branco et  al., 2016). Pre-processing and resampling 
approaches are more widely studied as they enable the subsequent adoption of any stand-
ard ML classification model. The main ideas consist in transforming the original train-
ing set, making it more suitable for learning the important class(es) either by reducing 
the number of instances belonging to the majority classes, or by augmenting the num-
ber of rare instances through synthetic data generation procedures  (He & Garcia, 2009). 
Well known examples are the Random Undersampling (Kubat & Matwin, 1997) and the 
Condensed Nearest Neighbors  (Hart, 1968) procedures for data reduction, or the Ran-
dom Oversampling  (Kubat & Matwin, 1997) and the Synthetic Minority Oversampling 
Technique  (Chawla et  al., 2002) for data augmentation. Many proposals in the literature 
try to refine such basic approaches by combining the aforementioned solutions in differ-
ent fashions or by resorting to advanced Automated Machine Learning  (He et al., 2021) 
approaches. Unfortunately, despite handling somewhat with the class imbalance problem, 
many of the most widely used pre-processing approaches suffer from issues related to the 
removal of majority class instances from sparse regions, and to the generation of noisy/
erroneous synthetic minority instances (He et al., 2008; Bellinger et al., 2019, 2021; Has-
sanat et al., 2022). A further limitation of the majority - if not the entirety - of the state-
of-the-art approaches is that they (implicitly) exploit the number of instances belonging to 
a specific class to characterize differences and similarities among instances, even though 
features should be the ones capturing these differences/similarities.

To overcome the weaknesses of state-of-the-art approaches, we propose froid a pre-
processing framework for Features Reduction and OutlIer Detection that allows solving the 
imbalanced learning problem through unsupervised representation learning. froid handles 
imbalanced learning by facing the problem from a different perspective. Indeed, instead of 
augmenting the instances of the minority classes or reducing the instances of the majority 
classes, froid analyzes the relationships among the records in the dataset through unsuper-
vised approaches. The goal of froid is to design attributes creating an unsupervised data 
representation that enhance the differences between records belonging to minority and 
majority classes such that a ML model can achieve outstanding performance regardless of 
the class imbalance.
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In particular, froid exploits two families of methods to augment the expressiveness of 
the records in a dataset. The first family of methods is the one of Outlier Detection (OD) 
approaches (Chandola et al., 2009; Hodge & Austin, 2004). An unsupervised OD approach 
is meant to identify outliers, i.e., instances which deviate significantly from the majority of 
the data and do not conform to a notion of normal behavior (Chandola et al., 2009). Our 
intuition is that records belonging to minority classes should be considered as outliers with 
respect to records belonging to majority classes. Therefore, the usage of unsupervised OD 
methods can create attributes capturing the level of outlierness of a record with respect 
to other records concerning a certain OD criterion. A similar intuition to solve the task 
of supervised OD was proposed in Zhao and Hryniewicki (2018). However, in Zhao and 
Hryniewicki (2018) unsupervised OD methods are used to boost a supervised OD problem. 
Thus, it is known form the problem definition that there are outliers in the data. On the 
other hand, in our case, we are just making a supposition that instances belonging to minor-
ity class can be recognized as outliers by unsupervised OD approaches. The second family 
of methods comprehends Features Reduction (FR), also known as features projection, fea-
tures extraction, or dimensionality reduction. FR methods transform the data from a high-
dimensional space to a space of fewer dimensions. The data transformation may be linear, 
as in Principal Component Analysis  (Pearson, 1901), but many nonlinear dimensionality 
reduction techniques also exist (Cox & Cox, 2008; Van der Maaten & Hinton, 2008; Tenen-
baum et al., 2000). Similar to the reasons that brought us to rely on OD approaches, our 
idea is that unsupervised FR techniques might unveil a data representation that better sepa-
rates among instances belonging to different classes. Indeed, rare instances should acquire 
a reduced data representation substantially different from that of the instances belonging to 
the regular class that, on the other hand, should fall in denser areas of the reduced repre-
sentation. In the literature, there is a limited set of methods relying on FR to address imbal-
anced learning problems (Naseriparsa & Kashani, 2014; Gopi et al., 2016). However, these 
approaches only rely on a unique FR method and combine it with resampling techniques. 
On the other hand, we adopt a large array of FR approaches, and we do not augment the 
number of records in the dataset. Also, froid subsequently combines the outcomes of OD 
and FR approaches through several workflows to create more and more expressive features 
to separate records of different classes for the classification task.

We experimented with froid on 64 benchmarking datasets and 2 case studies by train-
ing 5 different ML models after pre-processing the data with froid. First, we observed 
which type of classifier benefits more from the pre-processed data returned by froid. Sec-
ond, we performed an ablation study of froid showing which is the impact of every set of 
features extracted by the various OD and FR approaches. Third, we compared froid with 
some state-of-the-art techniques to deal with imbalanced learning. The results show that 
(i) on average LigthGBM  (Ke et  al., 2017) is the best classifier exploiting the unsuper-
vised representation returned by froid, (ii) the more features are extracted through froid, 
the higher are the performance of the classifier, and (iii) froid outperform all the state-of-
the-art approaches at the cost of a not negligible running time required to extract all the 
features. Finally, we highlight that, besides imbalanced learning, froid also succeeds in the 
supervised outlier detection task.

The rest of the paper is organized as follows. Section 2 reviews related works of imbal-
anced learning and of supervised outlier detection. In Sect.  3 we illustrate our proposal 
to solve imbalanced learning through outlier detection and features projection approaches. 
Section  4 reports the experimental results on benchmarking datasets as well as on two 
case studies. Finally, Sect.  5 summarizes our contributions and discusses open research 
directions.
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2 � Related works

A large array of approaches have been proposed to face imbalanced learning. In the last 
twenty years, several surveys and literature reviews have categorized and discussed peculi-
arities and characteristics of the various approaches (Japkowicz & Stephen, 2002; Chawla 
et  al., 2004; Su & Tsai, 2011; He & Garcia, 2009; Chawla, 2010; Branco et  al., 2016). 
Recently, most of these approaches have been implemented and are freely available in 
Python open-source libraries like imblearn  (Lemaitre et  al., 2017). The two principal 
strategies to recover from the challenges raised by imbalanced learning contexts consist in 
modifying the data used to train the classifier, or altering the classification algorithm itself 
to account for misclassification costs of the different classes during the learning process. 
Random undersampling and oversampling (Kubat & Matwin, 1997) are the two most clas-
sic approaches to handling imbalance. It is well known that they suffer from the risk of dis-
carding informative instances and overfitting the minority instances, respectively. Refine-
ment of undersampling techniques like the Condensed Nearest Neighbors (CNN)  (Hart, 
1968) or the Edited Nearest Neighbors (ENN) (Wilson, 1972) brought slight improvements 
to such issues but not effective solutions. Nowadays, the Synthetic Minority Oversampling 
Technique (SMOTE)  (Chawla et  al., 2002) is probably the most widely used, exploited, 
and extended oversampling approach. For instance, ADASYN  (He et  al., 2008) is very 
similar to SMOTE, but it generates a different number of samples depending on an esti-
mate of the local distribution of the class to be oversampled. SVMSMOTE (Nguyen et al., 
2011) exploits an SVM algorithm to detect the samples to use for generating the synthetic 
instances for oversampling the minority class.

Besides improving the procedure of these first resampling approaches, one of the 
most pursued research directions consists in combining them with other Data Mining or 
Machine Learning approaches such as clustering algorithms or simple classification mod-
els. For instance, the ClustFirstClass undersampling approach (Sobhani et al., 2014) tries 
to overcome the problem of discarding informative instances by first running the k-Means 
clustering (Tan, 2005) on the majority class and then at least one instance is maintained 
from each cluster. In Sundarkumar and Ravi (2015), the majority class outliers are removed 
with Reverse k-Nearest Neighborhood (RkNN) (Achtert et al., 2006). Then, the selection 
of support vectors using the One-Class Support Vector Machine (OCSVM)  (Schölkopf 
et al., 1999) is used to undersample the majority class. In Sanguanmak and Hanskunatai 
(2016) is presented the DBSM approach for simultaneous undersampling and oversam-
pling. The oversampling is performed with SMOTE, while the undersampling is realized 
by selecting half of the data which are present in the clusters returned by the DBSCAN 
method (Ester et al., 1996). A similar solution is presented in Branco et al. (2018) with the 
idea of biasing the strategies to reinforce some regions of the datasets instead of sampling 
uniformly. Such biases are applied through random undersampling and SMOTE. In Douzas 
et al. (2018) is presented k-SMOTE a refinement of SMOTE that exploits k-Means to avoid 
the generation of noisy synthetic minority instances which are erroneously close to a dense 
area of records belonging to the majority class. SMOTEFUNA is a further refinement of 
SMOTE presented in Tarawneh et al. (2020). SMOTEFUNA generates synthetic records 
between a randomly selected instance and its furthest neighbor of the minority class which 
have not a nearest neighbor of the majority class. Instances of the majority class are con-
sidered also in Koziarski and Wozniak (2017); Koziarski et al. (2021). Indeed, in Koziar-
ski and Wozniak (2017) is proposed the CCR algorithm that Combines Cleaning of the 
decision border around minority objects with guided synthetic Resampling to re-balance 
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the dataset. In Koziarski et al. (2019) is proposed the Radial-Based Oversampling method 
(RBO) that discovers regions in which the synthetic objects from minority class should 
be generated with radial basis functions. An extension of CCR and RBO is presented in 
Koziarski et al. (2021): Radial-Based CCR exploits the class potential to locate sub-regions 
of the data-space for synthetic oversampling and adopts radial basis functions. The ClUs-
tered REsampling (CURE) method (Bellinger et al., 2019) uses hierarchical clustering and 
a newly defined distance measure to guide the resampling procedure. Such clusters take 
into account the structure of the data. This aspect enables CURE to avoid the generation 
of synthetic instances in “wrong” regions, and allows the undersample of non-borderline 
regions of the majority class. In Bellinger et al. (2021) is proposed ReMix, a pre-process-
ing approach that leverages batch resampling and instance mixing to enable the induction 
of robust deep models from imbalanced and long-tailed datasets by expanding the minority 
class to reduce predictive bias. The objective of ReMix is not only to improve the predic-
tive performance but also to increase model calibration. In Sharma et  al. (2018) SWIM 
(Sampling WIth the Majority) is presented as a method for synthetic oversampling that 
exploits the information inherent in the majority class to synthesize minority class records. 
In a certain sense, we use an idea similar to SWIM because the objective of froid is to 
enhance discriminative aspects among minority an majority records by looking to both 
of them and not only to minority records. Finally, the most widely studied case study for 
imbalanced learning is fraud detection  (Padmaja et  al., 2007; Makki et  al., 2019; Tran 
et al., 2021, 2021; Esenogho et al., 2022). In all these works, besides experimenting with 
existing techniques, further refinements and extensions are proposed but all focusing on 
data resampling.

From the analysis of these approaches, we noticed the following aspects. First, they all 
focus only on recovering issues of previous versions. Second, the usage of additional min-
ing or learning techniques brings some benefits but also problems related to the hyper-
parameter tuning. Third, and most importantly, all these methods account only for the 
“number of instances” dimension of a dataset and leave unaltered the features used to 
represent the records in the dataset. In this paper, we define an approach to modify the 
data used to train the classifier, therefore falling in this aforementioned category of papers. 
However, we focus on the features used instead of the instances that should be present in 
the training set, and we avoid any hyper-parameter tuning.

As stated at the beginning of this section, the second and less followed line of research 
is relative to making crucial changes in the classification algorithm in order to account 
for imbalanced class scenarios. In Akbani et  al. (2004) is proposed an upgrade of SVM 
based on a variant of SMOTE and combined with the error costs presented in Veropoulos 
et al. (1999) which penalizes more misclassifications w.r.t. minority instances than misclas-
sifications to majority instances. The DataBoost-IM method (Guo & Viktor, 2004) identi-
fies instances which are hard to classify through boosting approaches. Then it trains an 
ensemble-based boosting algorithm by generating synthetic instances with biased informa-
tion toward the hard instances on which the next classifier in the boosting procedures needs 
to focus. In Wang et al. (2014) is presented an instance-weighted variant of the SVM with 
both 1-norm and 2-norm formats to deal with imbalanced learning. Also none of these 
approaches account for the features describing the records.

Conversely, the following approaches also account for this delicate aspect. In Naseri-
parsa and Kashani (2014), the Principal Component Analysis (PCA) (Tan, 2005) feature 
projection approach is combined with SMOTE in a case study on a single dataset. The 
procedure first applies PCA to the dataset, then SMOTE for each of the minority features 
before applying the classification algorithm. In Gopi et  al. (2016) is defined a Support 
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Vector Machine-Recursive Feature Elimination (SVM-RFE) wrapper for feature selection. 
The Automated Imbalanced Classification (ATOMIC) method presented in Moniz and 
Cerqueira (2021) is an Automated Machine Learning (AutoML (He et al., 2021)) approach 
for imbalanced classification that extends the features describing the data with additional 
statistical features. In Ksieniewicz (2019), an ensemble of classifiers is trained on datasets 
obtained as random subspace and augmented through SMOTE. In Korycki and Krawczyk 
(2021), a similar methodology is applied to find the most discriminative low-dimensional 
representation instead of a random one. Since all these approaches do not increase the num-
ber of features and yet improve the performance of “traditional” approaches for imbalanced 
learning, our idea is to follow this intuition but augment the features used to represent the 
data in order to maximize the difference between instances belonging to different classes.

Another research field related to our proposal is outlier detection  (Hodge & Austin, 
2004; Chandola et al., 2009). Indeed, our intuition is that instances belonging to the minor-
ity class can be considered to some extent as outliers w.r.t. instances belonging to the major-
ity class. In supervised outlier detection, a predictive model is trained on a dataset that has 
labeled instances for normal as well as anomaly classes. Thus, our intuition is in line with 
the XGBOD method presented in Zhao and Hryniewicki (2018). Indeed, XGBOD uses 
multiple unsupervised outlier detection algorithms to extract an alternative representation 
of the instances that augment the predictive capabilities of XGBOOST (Chen & Guestrin, 
2016) to solve supervised outlier detection. The same intuition is followed by the geodesic-
based outlier detection method which considers Global Disconnectivity score and Local 
real Degree (GDLD) as measures of outlierness presented in Shi et  al. (2020). Indeed, 
GDLD is evaluated in the imbalanced learning setting considering records belonging to 
the minority class as outliers. In Shimauchi (2021) is presented a semi-supervised outlier 
detection algorithm that extends XGBOD through the augmentation of the representations 
with a Generative Adversarial Network (GAN)  (Goodfellow et  al., 2014). In Fernández 
et al. (2022) is proposed a framework for supervised outlier detection that is formed by a 
pipeline with an unsupervised outlier detection followed by a supervised predictive model 
that is used to tune the hyper-parameters of the unsupervised outlier detection algorithm. 
Finally, it is worth mentioning the approach illustrated in Loureiro et al. (2004) that applies 
in a case study, an unsupervised outlier detection method based on hierarchical clustering. 
From our perspective, the interesting aspect of Loureiro et  al. (2004) is that it employs 
an unsupervised clustering-based strategy similarly to works previously discussed to solve 
imbalanced learning. Thus, it supports our intuition that solving imbalanced learning also 
through approaches used for outlier detection is a viable path. ODBOT, an alternative to 
XGBOD, i.e., an outlier detection-based oversampling technique for imbalanced datasets 
learning is presented in Ibrahim (2021). ODBOT handles multi-class imbalanc by find-
ing clusters within the minority class(es), and then, generating synthetic samples by con-
sideration the outliers detected in these clusters. Finally, we underline how in Hassanat 
et al. (2022) is shown that oversampling methods are not reliable. Indeed, the authors of 
Hassanat et al. (2022) reports an experimentation on more than 70 oversampling methods 
that reveal that the oversampling methods studied generate minority samples that are most 
likely to be majority. Hence, oversampling methodologies are quite likely to be unreliable 
in imbalanced learning settings and should be avoided in real-world applications.

While works like  (Shi et  al., 2020; Ibrahim, 2021; Ksieniewicz, 2019; Korycki & 
Krawczyk, 2021) already introduced the idea of boosting imbalanced learning methods 
through outlier detection or feature reduction, we stress the fact that, to the best of our 
knowledge, our proposal is the first in which they are used simultaneously and into subse-
quent iterations. Furthermore, our proposal departs from Shi et al. (2020); Ibrahim (2021); 
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Ksieniewicz (2019); Korycki and Krawczyk (2021) because they always augment the num-
ber of instances, while froid leaves their number unaltered and plays only with the different 
data representations in order to leverage the discriminative power of ML models.

3 � Methodology

In this paper we present froid, a Features Reduction and OutlIer Detection pre-processing 
framework for solving imbalanced learning through unsupervised representation learning. 
froid is a pre-processing framework that takes as input a dataset X and returns a trans-
formed version of it to be used as training for a ML classification algorithm. The main idea 
of froid is to represent the instances in X through alternative representations aimed at fos-
tering the differences among instances belonging to different classes. Thus, froid relies on 
Outlier Detection (OD) and on Features Reduction (FR) approaches.

In Fig.  1 we illustrate an example that visualizes our intuition of representing the 
imbalanced input data through unsupervised techniques of OD and FR. The first plot (top 
left) depicts a synthetically generated imbalanced dataset with two dimensions and two 
classes with frequencies.95 and.05, respectively. In the second plot (top right), is illus-
trated the decision boundary learned by a Decision Tree classifier (Tan, 2005) trained on 
the imbalanced dataset. We immediately notice how most of the instances belonging to 
the minority class and located in the range X0 ∈ [−1, 2] and X1 ∈ [−1, 1] , highlighted by 
the yellow rectangle, are wrongly classified as majority instances by the Decision Tree. 
The third plot (bottom left) represents the synthetic dataset using as features the Local 
Outlier Factor  (Breunig et  al., 2000) score (LOF), an unsupervised OD approach, and 
the first Principal Component returned by the Principal Component Analysis  (Pearson, 
1901) (PCA) approach that is a FR method. We notice how the instances of the minor-
ity class are now displaced along two parallel horizontal directions. The fourth plot (bot-
tom right) shows the decision boundary of a Decision Tree trained on this novel repre-
sentation with the same parameter setting as the previous one. The rare instances inside 
the yellow rectangle in the second plot are represented with yellow squares in the fourth 
plot and are located approximately in the ranges LOF ∈ [−.8,−.4],PCA ∈ [1.0, 1.5] and 
LOF ∈ [−.8,−.46],PCA ∈ [−2.5,−.5] . Among these rare instances, we notice that only 
three are not covered by decision rules labelling instances as minority class, i.e., green 
decision boundaries areas, and are therefore misclassified as majority class instances. 
Hence, by representing a two-dimensional dataset through an OD score and an FR dimen-
sion, we have improved the performance of an ML model, passing from an F1 measure 
of.60 to an F1 measure of.64. This simple example simultaneously explains and proves the 
intuition behind the proposed idea.

3.1 � Imbalanced learning pre‑processing framework

In this section, we define the Features Reduction and OutlIer Detection pre-process-
ing framework froid to solve imbalanced learning through unsupervised representation 
learning.

Problem setting The froid framework is depicted in Fig.  2 and highlighted with the 
dashed box. froid works as detailed in the following. Let X ∈ R

n×m denote the original 
input dataset as a set of n instances with m records. Each record xi ∈ X has attached a 
label yi ∈ [0,… , l] indicating the class of the record where l is the number of the classes. 
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However, since froid is an unsupervised representation learning framework, the class y is 
not used. On the other hand, froid makes usage of:

•	 A set of u Outlier Detection (OD) functions Θ = {�1,… , �u}

•	 A set of v Feature Reduction (FR) functions P = {�1,… , �v}

•	 A features selection function �

Outlier detection transformation We define an OD function �j as a mapping function 
where the output can be a real-valued vector �j(X) ∈ R

n×1 that describes the degree of out-
lierness of each instance xi ∈ X . Outliers are instances that deviate significantly from the 
majority of the data and do not conform to a notion of normal behavior (Chandola et al., 
2009). We include in this representation the cases in which the OD function �j returns a 
binary-valued vector �j(X) ∈ {0, 1}n×1 that indicates if the ith instance is an outlier or not. 
We indicate with Xo ∈ R

n×u the result of the application of the u OD functions on X, 
i.e., Xo = [�1(X),… , �u(X)] . Details of the OD approach implementing the OD functions 
adopted are provided in the next section.

Features reduction transformation We define an FR function �j as a mapping func-
tion where the output �j(X) ∈ R

n×p describes the representation of each instance xi ∈ X 
into a p-dimensional space. FR methods transform the data from a high-dimensional to 
a low-dimensional space. The lower dimensionality aims to capture salient aspects of the 
higher dimensionality. We indicate with Xr ∈ R

n×(vp) the result of the application of the v 
FR functions on X, i.e., Xr = [�1(X),… , �v(X)] . Details of the FR methods implementing 
the functions adopted are in the next section.

Features selection transformation We define a features selection function � as a 
mapping function � (X) ∶ R

n×c
→ R

n×k that reduces the dimensionality of a given input 
X ∈ R

n×c to an output X� ∈ R
n×k where k < c , i.e., � remove some of the c columns from 

the input X, i.e., X� = � (X).
Workflow description Given the input dataset X, the OD functions Θ , the FR func-

tion P, and the features selection function � , we can recognize three phases in the pre-
processing performed by froid. We define an OD function �j as a mapping function where 
the output can be a real-valued vector �j(X) ∈ R

n×1 that describes the degree of outlier-
ness of each instance xi ∈ X . Outliers are instances that deviate significantly from the 
majority of the data and do not conform to a notion of normal behavior (Chandola et al., 
2009). We include in this representation the cases in which the OD function �j returns a 
binary-valued vector �j(X) ∈ {0, 1}n×1 that indicates if the ith instance is an outlier or not. 
We indicate with Xo ∈ R

n×u the result of the application of the u OD functions on X, 
i.e., Xo = [�1(X),… , �u(X)] . Details of the OD approach implementing the OD functions 
adopted are provided in the next section.

In the first phase, the OD and FR functions Θ and P are applied to X obtaining Xo and 
Xr , respectively. In the second phase, the OD and FR functions Θ and P are applied subse-
quently on Xo and Xr obtaining the following representations:

•	 Xoo = [�1(Xo),… , �u(Xo)]

•	 Xro = [�1(Xo),… , �v(Xo)]

•	 Xrr = [�1(Xr),… , �v(Xr)]

•	 Xor = [�1(Xr),… , �u(Xr)]

In the third phase, all the data representation obtained together with the input data-
set X are concatenated and passed again to the features selection operator resulting in 
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Xa = � ([X,Xo,Xr,Xoo,Xro,Xrr,Xor]) . We highlight how froid never augments the num-
ber of records in the dataset along with the various phases and data transformation, i.e., 
|X| = |Xa| , differently from all the other state-of-the-art approaches for the class imbalance 

Fig. 1   Utility of representing a dataset through OD and FR scores. Top left: synthetically generated imbal-
anced dataset with two dimensions and with two classes. Top right: decision boundary learned by a Deci-
sion Tree trained on the imbalanced dataset. Bottom left: synthetic dataset represented through LOF and 
PCA. Fourth plot: decision boundary of a Decision Tree trained on the unsupervised alternative representa-
tion (Color figure online)

Fig. 2   Illustration of froid framework for features extraction. The input dataset X is passed through a set 
of unsupervised outlier detection functions �

i
 (in blue) and through a set of unsupervised features reduc-

tion functions �
i
 (in yellow) originating the datasets X

o
 and X

r
 , respectively. Such datasets are passed again 

through the functions �
i
 and �

i
 originating the datasets X

oo
,X

or
,X

rr
,X

ro
 , respectively. Finally, all the datasets 

are combined and the best features are selected from the combination with � (Color figure online)
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problem. On the other hand, the result of the unsupervised pre-processing Xa ∈ R
n×m�

 is 
a data representation using several features m′ that is unknown a priori because it strictly 
depends on the data transformation functions Θ,P, � employed. In the end, any ML model 
can be trained on Xa, y . We underline that when selecting a heterogeneous sets of OD 
methods Θ and FR methods P, we can guarantee that every record in X will be represented 
w.r.t. different data-driven criteria. In addition, the risk of creating correlated features is 
effectively minimized, if not entirely eliminated, through (i) the utilization of a feature 
selection function, denoted as � , and (ii) the adoption of tree-based approaches as final 
classifiers. Thus, through this approach, we are able to guarantee that the representation of 
each record in Xa is diverse and distinct, enabling ML models to capture various aspects 
and characteristics of the data to amplify the separation between records of majority and 
minority classes.

In the rest of this section, we illustrate the OD and FR methods we considered to imple-
ment the functions of the froid pre-processing framework.

3.2 � Outlier detection methods

We consider a large set of OD methods to implement the OD functions Θ . In particular, we 
rely on u=14 OD methods based on different ideas and strategies to assign an outlier score/
label to a given instance. In the following, we briefly describe the selected OD methods, 
which are highlighted in bold.

A large family of OD methods relies on the notion of locality, i.e., the outlier score is 
assigned by comparing a record with its neighbors with respect to a distance function and 
neighborhood size k. kNN, k-Nearest Neighbor (Tan, 2005) is a supervised ML algorithm 
frequently used for classification problems. However, it can also be used as an OD method 
by returning as outlier score of a record the largest distance from the instances in its kNN. 
LOF, Local Outlier Factor (Breunig et al., 2000) assigns an outlier score by comparing the 
local density of a record with the local densities of its kNN. If a record lies in an area with a 
density substantially lower than its neighbors, then it is considered an outlier. LoOP, Local 
Outlier Probability (Kriegel et al., 2009) is a local density-based OD method that extends 
LOF by measuring the local deviation of the density of a given instance with respect to 
its neighbors as LOF scores. It can work directly on the input data or on the result of a 
clustering algorithm by relating the outlier score calculus to the distances of the clusters’ 
centroids. COF, Connectivity-Based Outlier Factor (Pokrajac et al., 2008), overcome some 
limitations of LOF by calculating the outlier score of a record as its degree of connectivity. 
COF differs from LOF as it uses the chaining distance to calculate the kNN. The chaining 
distances are the minimum of the total sum of the distances linking all neighbors. The con-
nectivity is then calculated as the ratio between the average chaining distance of the record 
and the mean average chaining distance of the records in the kNN. An additional possibil-
ity we explored for implementing the OD functions is to employ clustering approaches that 
highlight instances not belonging to any cluster as outliers (Khan et al., 2014). CBLOF, 
Cluster-Based Local Outlier Factor (He et al., 2003) takes as input both the dataset and a 
clustering algorithm and labels each cluster as “small” or “large” with respect to two � and 
� parameters. The outlier score of a certain instance is then calculated w.r.t. the size of the 
cluster the point belongs to and the distance to the nearest “large” cluster.

Another family of OD approaches exploits global statistical tests and global models 
to discover anomalous behaviors. The Elliptical Envelope  (Rousseeuw & van Driessen, 
1999) algorithm (EllEnv) creates a global elliptical area that surrounds input data. Values 
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that fall inside the envelope are considered normal data, and anything outside is considered 
an outlier. OCSVM, One-Class SVM  (Schölkopf et  al., 1999) is a variation of Support 
Vector Machines (SVM) (Tan, 2005) that can be used in an unsupervised setting for OD. 
The idea of OCSVM is to find a function that is positive for regions with a high density 
of points, and negative for small densities, considering the records that fall into negative 
regions of the hyperplane as outliers. MCD, Minimum Covariance Determinant (Hubert & 
Debruyne, 2010) is commonly applied on Gaussian-distributed data. MCD fits a minimum 
covariance determinant model (Hubert et al., 2018) and computes the outlier score through 
the Mahalanobis distance calculation. HBOS, Histogram-Based Outlier Detection (Gold-
stein & Dengel, 2012) assumes feature independence and calculates the outlier scores by 
building histograms. COPOD, Copula-Based Outlier Detection method (Li et al., 2020), 
instead, creates an empirical copula and uses it to predict each record’s tail probabilities to 
determine its outlier score.

An efficient and effective OD approach consists of using an ensemble of “weak” OD 
methods. The Feature Bagging (FeaBag) (Lazarevic & Kumar, 2005) exploits a set of OD 
methods, each of them applied on a random set of features selected from the original fea-
ture space. Each OD method identifies different outliers and assigns to all instances out-
lier scores that correspond to their probability of being outliers. The combination of such 
scores is returned as the final output. Isolation Forest (Liu et al., 2008) (IsoFor) is one of 
the most famous OD approaches. IsoFor isolates instances by randomly selecting a feature 
and then randomly selecting a split value in the range of the feature. This process is repre-
sented through a tree where the number of splittings required to isolate a record equals the 
path length from the root node to the leaf. Hence, an instance is considered an outlier when 
a forest collectively produces shorter path lengths for that instance. An extension of HBOS 
is LODA, Lightweight On-line Detector of Anomalies (Pevný, 2016). LODA approxi-
mates the joint probability using a collection of one-dimensional histograms, where every 
one-dimensional histogram is efficiently constructed on an input space projected onto a 
randomly generated vector. Even though one-dimensional histograms are weak OD meth-
ods, their collection yields a strong OD approach. SUOD, Scalable Unsupervised Outlier 
Detection (Zhao et al., 2020) is another OD ensemble method. Given in input a dataset and 
a set of unsupervised OD methods, SUOD randomly projects the original input onto lower-
dimensional spaces and speeds up the training through a balanced parallel scheduling to 
assign averaged outliers scores.

3.3 � Features reduction methods

We consider a wide set of FR methods to implement the FR functions P. We rely on v = 8 
FR methods described in the following and highlighted in bold.

Most of the approaches in the literature are based on the idea of finding novel directions 
along which the original data should be projected. The various techniques differ on how 
these directions are built or derived. PCA, Principal Component Analysis (Pearson, 1901; 
Hasan & Abdulazeez, 2021) is the process of computing the principal components and 
using them to perform a feature projection of the data along with these principal directions. 
Indeed, a principal component is the direction of the line that best fits the data while being 
orthogonal to the previous component. Principal components, therefore, are the derived 
variables formed as a linear combination of the original variables that explains the most 
variance. MDS, MultiDimensional Scaling (Cox & Cox, 2008) is a process that translates 
the records of a given high-dimensional dataset into a low-dimensional representation with 
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respect to the pairwise distances observed in the original space: instances which are close 
in the original space should be close also in the reduced space, and vice-versa. IsoMap, 
Isometric Features Mapping (Tenenbaum et al., 2000) is a nonlinear dimensionality reduc-
tion method. IsoMap estimates the intrinsic geometry of a data manifold by estimating the 
geodesic distance between all pairs of instances on a weighted graph built with respect to 
the nearest neighbor identified through a fixed radius. The top eigenvectors of the geodesic 
distance matrix represent the coordinates in the new reduced space. LLE, Locally Linear 
Embedding (Roweis & Saul, 2000) is similar to IsoMap, but instead of using the geodesic 
distance, it uses a distance based on the ability to reconstruct a record with respect to its 
neighbors. A well-known issue of LLE is the regularization problem. A way to address it is 
to use different methods for LLE, for instance the Modified LLE (Zhang & Wang, 2006), 
or the HLLE, Hessian eigenmapping LLE (Donoho & Grimes, 2003). SpectEmb, Spectral 
Embedding (Bengio et al., 2006) is exploited for non-linear dimensionality reduction using 
a spectral decomposition of a the graph modeling the dataset. Although SE is similar to 
IsoMap and LLE, it differs in how the weights are calculated, and it adopts the eigenvectors 
returned from a Laplacian Matrix as reduced dimensionality. Finally, we employed t-SNE, 
t-distributed Stochastic Neighbor Embedding (Van der Maaten & Hinton, 2008) is a form 
of MDS that, besides preserving the distances, also aims at preserving the neighborhoods 
of the instances by modeling the distances as probability distributions belonging to a cer-
tain neighborhood.

4 � Experiments

We report here the experiments carried out to validate froid. First, we illustrate the experi-
mental setting with the datasets used, the classifiers adopted, the implementations and 
parameters employed, the competitors analyzed, and the evaluation measures tested. Sec-
ond, we show which is the best ML classifier among the various datasets and the improve-
ment of froid w.r.t. training the models on the original data. Third, we report an ablation 
study of the unsupervised features adopted by froid. Fourth, we compare froid with state-
of-the-art solutions. Fifth, we prove that the pre-processing of froid is beneficial also for 
supervised outlier detection. Finally, we discuss which are the most important features 
adopted by froid in two real case studies.

4.1 � Experimental setting

In this section, we illustrate the experimental setting with the datasets used, the classifiers 
adopted, the implementations and parameters employed, the competitors analyzed, and the 
evaluation measures tested.

4.1.1 � Datasets and machine learning classifiers

We ran experiments on a selection of 64 binary classification datasets widely referenced 
and used for imbalanced learning experiments publicly available from the UCI, Kaggle, 
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ODDS, KEEL and imblearn repositories and a fraud detection challenge.1 For each 
dataset, the following pre-processing is applied. First, we remove records with null val-
ues without replacement not to compromise the originality of the data. Next, we eliminate 
columns with poor explanatory potential, such as IDs, names, etc. Categorical columns 
are encoded through one-hot encoding to preserve the semantic meaning of the variables 
for usage with OD and FR methods based on distances or vectors and also for the correct-
ness w.r.t. the ML models.2 Datasets description after this pre-processing, as well as some 
data complexity measures (Sotoca et al., 2005; Cano, 2013), are available in Table 11 in 
the Appendix.3 We summarize the information contained in Table 11 by running K-Means 
with k = 4 to group the different types of datasets analyzed and provide a brief description 
of the datasets. Indeed, in Table 1, we report a summary of the datasets through the cen-
troids of the four clusters. We observe that the majority of the datasets is “small-sized” and 
with the lowest FDR (cluster A). In contrast, the other larger datasets are further separated 
either w.r.t. the dimensionality or w.r.t. FBP.

Before training the ML models or running the imbalanced learning pre-processing solu-
tions, we applied to the datasets the Robust Scaler that normalizes the features using statis-
tics that are robust to outliers.4 The Robust Scaler removes the median and scales the data 
with respect to the Interquartile Range (IQR), i.e., the difference between the 3rd quartile 
( 75th quantile) and the 1st quartile ( 25th quantile). This choice is tied with better discrimina-
tion among instances belonging to minority or majority classes. Indeed, the Robust Scaler 
normalizes values, and those far away from the median value and outside the IQR will get 
values markedly greater/smaller than zero. If datasets still have to be partitioned into train-
ing and test, we split them using a stratified hold-out partitioning based on the target class, 
with 70% of the data used for the training and 30% for the test. Otherwise, we keep the 
original train-test partitioning. To guarantee a statistically valid evaluation, as proposed in 
Rajkomar et al. (2018), we bootstrapped each test set 100 times, and we report in the manu-
script the mean values obtained by the various classifiers over these runs.

As ML classifiers, due to the proven empirical superiority of ensemble models  (Brei-
man, 2001; Shwartz-Ziv & Armon, 2022), we decided to experiment with Decision 
Tree (Breiman et al., 1984) (DT), Random Forest (Breiman, 2001) (RF), XGBoost (Chen 
& Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018) 
as implemented by the sklearn, xgboost, catboost, and lightgbm Python librar-
ies.5 If not differently specified, we adopted the default parameter setting proposed by the 
various libraries to assess to which extent different pre-processing techniques are more 
effective for solving imbalanced learning with the same hyperparameter values.

1  https://​archi​ve.​ics.​uci.​edu/, https://​www.​kaggle.​com/​datas​ets, http://​odds.​cs.​stony​brook.​edu/, https://​gener​
ali.​datac​halle​nge.​it/, https://​sci2s.​ugr.​es/​keel/​datas​ets.​php, https://​imbal​anced-​learn.​org/​stable/​datas​ets/​
index.​htm.
2  We highlight that, even though the input domain of OD and FR methods is typically continuous and not 
binary as the one returned by one-hot encoding, we are satisfied as far as it positively contributes to helping 
in separating instances belonging to different classes in the imbalanced learning scenario.
3  The ecoli glass, and satal datasets are used both for imbalanced learning and for supervised out-
lier detection.
4  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​prepr​ocess​ing.​Robus​tScal​er.​html.
5  https://​scikit-​learn.​org/, https://​catbo​ost.​ai/, https://​xgboo​st.​readt​hedocs.​io/.

https://archive.ics.uci.edu/
https://www.kaggle.com/datasets
http://odds.cs.stonybrook.edu/
https://generali.datachallenge.it/
https://generali.datachallenge.it/
https://sci2s.ugr.es/keel/datasets.php
https://imbalanced-learn.org/stable/datasets/index.htm
https://imbalanced-learn.org/stable/datasets/index.htm
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/
https://catboost.ai/
https://xgboost.readthedocs.io/
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4.1.2 � Experimental details

We implemented froid in Python6 by relying on the following libraries. The core of the 
algorithm is realized following the scikit-learn style and adopting the notion of pipe-
line such that every OD or FR method can be subsequently enabled or disabled. For the OD 
methods we relied on the implementations of the Python libraries sklearn, pyod (Zhao 
et al., 2019), and PyNomaly,7 while for FR methods on the implementations offered by 
the Python library sklearn. The mapping between OD and FR methods and the selected 
implementations with the parameters varied is reported in Table 2. For instance, the LoOP 
method is implemented with the pynomaly library and used with the parameter number 
of neighbors k ∈ [1, 5, 10, 20] . Among the selected implementations of OD functions Θ , 
given an instance xi , all of them can be used both for returning a binary value indicating if 
xi is an outlier or not and for returning the degree of outlierness of xi . Hence, the number 
of features extracted by froid through OD methods is theoretically 2u where u = |Θ| . How-
ever, in practice, such a number is higher than 2u and depends on the parameter combina-
tions used for each OD method.8 On the other hand, with all the FR methods we projected 
the input data into p = 2 dimensions.9 Finally, if not differently specified, the features 
selection function � is implemented with the sklearn library10 that trains a LightGBM 
model on the dataset and selects only the features having importance higher than the aver-
age. As an alternative, we also implement � with the variance threshold function11 that 
removes from the input dataset all low-variance features below a certain threshold.12

We underline that, for every dataset, a different number of features might be generated 
by froid because some parameters configurations for OD and FR methods might be invalid 
depending on the dataset characteristics. Also, some of the classifiers implementations are 
not able to handle missing and/or too large values. In this case, froid drops all the gener-
ated featured that meet one of these conditions. On average, we observed that froid gener-
ates about 508 features per dataset.

7  https://​pyod.​readt​hedocs.​io/https://​github.​com/​vc149​2a/​PyNom​aly.
8  For OD methods we varied the following parameters: for LoOP and COF we used 
k ∈ {1, 5, 10, 20} - due to computational reasons - while for kNN and LOF we used 
k ∈ {1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250} ; for kNN we also considered 
different method for distance - method ∈ {mean,median, largest} - and for IsoFor we employed differ-
ent number of estimators, i.e. n ∈ {0, 20, 50, 70, 100, 150, 200, 250} ; the contamination parameter � con-
trols the percentage of outliers that we expect in the dataset and affects the binary value returned by OD 
functions � ∈ {.001, .01, .1, .2, .5} ; the extent parameter controls the probabilistic distance of a instance 
to a context set  (Kriegel et  al., 2009) extent ∈ {1, 2, 3} ; the � parameter controls the upper bound on the 
fraction of training errors and a lower bound of the fraction of support vectors  (Schölkopf et  al., 1999) 
� ∈ {.01, .1, .2, .3, .4, .5, .6, .7, .8, .9, .99}.
9  For FR methods we varied the following parameters: the kernel parameter controls the kernel type (Pear-
son, 1901) kernel ∈ {rbf , cosine, sigmoid, poly} . For the MDS we used max_iter = 100 , for LLE we also 
considered method = hessian and method = modified . We used default values for the parameters not speci-
fied in the above lists and table.
10  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​featu​re_​selec​tion.​Selec​tFrom​Model.​html.
11  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​featu​re_​selec​tion.​Varia​nceTh​resho​ld.​html.
12  Some of the classifiers implementations can not handle missing and too large values. In this case, we 
dropped all the generated featured meeting one of these conditions.

6  The code of froid is available here https://​github.​com/​andre​pugni/​FROID.

https://pyod.readthedocs.io/
https://github.com/vc1492a/PyNomaly
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFromModel.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
https://github.com/andrepugni/FROID


5287Machine Learning (2024) 113:5273–5330	

1 3

4.1.3 � Imbalanced learning competitors

In order to establish to which extent froid is in line with state-of-the-art approaches 
for solving the imbalanced learning problem, we compared the performance of froid 
against the following competitors.13 Besides standard approaches for imbalanced learn-
ing such as Random Undersampling (rund)  (Kubat & Matwin, 1997), Random Over-
sampling (rove)  (Kubat & Matwin, 1997), Synthetic Minority Oversampling Technique 
(smote) (Chawla et al., 2002), and Adaptive Synthetic (adasyn) (He et al., 2008), we com-
pared froid also against ClUstered REsampling (cure)  (Bellinger et  al., 2019), Radial-
Based Oversampling  (Koziarski et  al., 2019) (rbo), Combines Cleaning and Resampling 
(ccr)  (Koziarski & Wozniak, 2017), SVMSMOTE (svmsmt)  (Nguyen et  al., 2011), and 
Sampling WIth the Majority (swim)  (Sharma et  al., 2018). Finally, we adopted and re-
implemented the eXtreme Gradient Boosting Outlier Detector (xgbod)  (Zhao & Hrynie-
wicki, 2018) for the tasks of both imbalanced learning and supervised outlier detection for 
which the algorithm is designed.14

Table 1   Dataset description aggregated through K-Means clustering: ntrain instances training set; ntest 
instances test set; m number of features; mnum number numerical features; p+

train
 positive rate training; p+

test
 

positive rate test set; FDR Maximum Fisher’s Discriminant Ratio, FBP Fraction of Borderline Points, ECP 
Entropy of Class Proportions and IR Imbalance Ratio

Cluster ntrain ntest m mnum p+
train

p+
test

FDR FBP ECP IR Size

A 1439.75 617.73 23.37 18.92 .062 .062 .759 .062 .731 .894 56
B 8782.00 3764.33 29.66 29.66 .051 .053 .919 .114 .710 .890 3
C 5457.00 234.00 617.00 617.00 .076 .076 .953 .064 .608 .834 1
D 19323.50 9773.75 11.75 11.75 .042 .042 .952 .048 .754 .909 4

Table 2   Mapping between OD and FR methods used by froid and the selected implementations with the 
parameters varied: sklrn means sklearn, pynomaly means pynml 

OD OD FR

Name Library Params Name Library Params Name Library Params

kNN pyod k, �,method SUOD pyod � PCA sklrn p = 2

LOF sklrn k LODA pyod � IsoMap sklrn p = 2

LoOP pynml k, extent FeatureBagging pyod � MDS sklrn p = 2

COF pyod k, � IsoFor pyod � KPCA sklrn p = 2, kernel

CBLOF pyod k, � COPOD pyod � TSNE sklrn p = 2

EllEnv sklrn � MCD pyod � RSP sklrn p = 2

OCSVM sklrn �, � HBOS pyod � LLE sklrn p = 2,method

SE sklrn p = 2

13  Unfortunately, we were not able to compare froid against the following methods either because their 
code was not publicly available or because it was available in other not comparable languages such as Mat-
lab, C#, and old Python versions: ODBOT, GDLD.
14  We highlight that, for froid we selected the same OD method applied by xgbod (Zhao & Hryniewicki, 
2018) - i.e., kNN with all methods and k, IsoFor with different n, LoOP with all k, LOF and LoOP with 
multiple k neighbors, OCSVM with different �.
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4.1.4 � Evaluation measures

As evaluation measures, we considered the following metrics (Tan, 2005). Precision is the 
fraction of relevant instances among the retrieved instances, while Recall, also known as 
True Positive Rate or Sensitivity, is the fraction of relevant instances that were retrieved, 
i.e., Precision =

tp

tp+fp
 and Recall = TPR = Sensitivity =

tp

tp+fn
 where tp is the number of 

true positives, fp is the number of false positives, and fn is the number of false negatives. 
The F1-measure is the harmonic mean of Precision and Recall, i.e., F1 = 2

Precision⋅Recall

Precision+Recall
 . 

Another widely used operator to judge the performance of ML classifier is the Area Under 
the ROC Curve AUC , i.e., the area under the curve described by FPR and TPR , where 
FPR =

fp

fp+tn
 . An index typically used to evaluate the performance of credit score mod-

els  (Torrent et  al., 2020) is the GINI coefficient defined as GINI = 2AUC − 1 . It ranges 
from 0 (chance results) to 1.0, which corresponds to perfect discrimination between 
classes. The Precision-Recall Area Under the Curve PRA is typically used to judge the per-
formance of ML models on heavily imbalanced datasets because it cares less about the 
major negative class (Saito & Rehmsmeier, 2015). The PRA curve and can be viewed as 
the average of Precision calculated for each Recall threshold. We highlight that all the 
aforementioned metrics are designed to evaluate binary classifiers with respect to the posi-
tive class. Hence, in our experiments, we report the average score obtained considering 
every class of the various datasets analyzed as positive if not differently specified. Finally, 
we also evaluated the Geometric mean ( GM ) as the root of the product of class-wise Sensi-
tivity. This measure tries to maximize the accuracy on each of the classes while keeping 
these accuracies balanced. We judge the classification results with this long list of meas-
ures in order to assess the goodness of the various pre-processing techniques with respect 
to different and complementary objective evaluation perspectives.15 For all measures, the 
higher the values, the better the results. In the rest of the paper, we report aggregated 
results in terms of average score of the evaluation metric, average ranking position w.r.t. a 
certain evaluation metric, and number of wins. Detailed results on the various datasets can 
be found in the Appendix. We base our observations mainly on PRA as it is the evaluation 
measure most widely used for assessing the goodness of imbalanced learning tasks.

Furthermore, we evaluated the time required by the various pre-processing competitors 
and froid versions to prepare the dataset (P-Time), and its subsequent impact on the train-
ing T-Time.

4.2 � Performance analysis of different ML models

In Tables 12, 13, 14, 15 in the Appendix we show the detailed comparison of the perfor-
mance among different ML models16 w.r.t. PRA by comparing the performance obtained on 
the original data X with those obtained on the pre-processing returned by froid indicated 
with Xa . Table 3 summarizes these results for PRA, GINI, GM, and F1 by reporting the 
average scores, average ranks, and the number of wins (between considering Xa and not 

15  We adopted the sklearn and imblearn libraries to calculate such scores, or we re-implemented the 
evaluation measures when necessary.
16  For every table, we show the scores up to three-digit after the comma. Best performers are highlighted 
considering all the digits that are not shown for space reasons.
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considering X froid preprocessing).17 We notice that for PRA, LightGBM achieves the best 
performance overall and significantly overcomes the model not using froid. Besides PRA, 
LightGBM with froid is ranked second for GINI, and F1. We also observe how CatBoost 
and Random Forest do not benefit from the usage of froid reporting the overall best per-
formance w.r.t GINI and GM. Since we consider PRA as the most reliable indicator for the 
class imbalance setting and in order to avoid the repetition of results due to multiple ML 
models, if not differently specified, in the rest of the paper, we only report the performance 
related to the LightGBM classifier that we assume to be the best ML model for the data-
sets analyzed and also because it is notoriously faster than XGBoost (Ke et al., 2017). The 
non-parametric Friedman test that compares the average ranks of learning methods over 
multiple datasets w.r.t. the various evaluation measures guarantees that these results are 
statistically significant, i.e., the null hypothesis that all methods are equivalent is rejected 
( p-value < .001 ). This result is verified for every table presented in this paper. Thus, we 
avoid repeating the statistical significance of the experiments in the following sections.

4.3 � Pre‑processing with different features combinations

In this section, we analyze the impact of the different features adopted by froid. Table 4 
reports the average PRA, GINI, F1, GM, the corresponding average ranks, and number of 
wins among all datasets classified with LightGBM on the various datasets analyzed for dif-
ferent pre-processing inputs:18

•	 X is the original dataset,
•	 Xa is the output of froid,
•	 X¬� is not using the features selection function �,
•	 X� is using variance threshold as feature selection � with threshold set as.2,
•	 Xf  is not using the original features of X, but only all the unsupervised features learned 

by froid,
•	 Xl is considering Xo and Xr besides X,
•	 Xfo is only considering Xo , Xoo , Xor,
•	 Xfr is only considering Xr , Xrr , and Xro,
•	 XO is considering X, and Xfo,
•	 XR is considering X and Xfr,

where Xo , Xr , Xoo , Xrr , Xro , Xor are defined as in Sect.  3. What emerges is that froid is 
firmly ranked first w.r.t. the four measures, it has the best performance w.r.t. GM and F1 
and it is runner up for PRA and GINI. Also regarding the number of wins is always placed 

18  We tested these semantically-meaningful combinations because (i) testing all the possible randomly 
selected combinations would have led to an explosion of the total number of possibilities, and (ii) we did 
not remove the features one of them after the other because their individual absence is not impactful for the 
performance.

17  For each of the different classifiers, we also performed a pairwise Wilcoxon test to assess whether there 
is a statistically significant difference in performance between froid and the classifier trained on the original 
dataset. For the Decision Tree, the Random Forest and CatBoost we do not observe statistically significant 
differences, while for LightGBM and XGBoost we have statistically significant results for PRA and Gini at 
.05 significance level.
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second. The overall champion regarding the number of dataset for which it is first is the 
LightGBM on the original data X. However, the performance for the remaining datasets 
place it among the last positions w.r.t. to the rank indicator, and constantly and statistically 
worse than various alternatives using froid.

From the comparison between Xa , X¬� and X� emerges that (i) the usage of a feature 
selection method contributes in increasing the performance, and (ii) that the usage of more 
efficient but less adaptive feature selection functions like variance threshold impact nega-
tively the performance of the model. Thus, the impact of the class imbalance on the model 
used by the feature selection method, is the aspect that contributes in the increase of the 
performance and the appropriate usage of the most reliable set of features.

Detailed performance on the various datasets are available in Tables 16, 17, 18, 19 in 
the Appendix. Here, among the other evaluation measures, we can observe that, in many 
cases, froid boosts the PRA on the original dataset with an improvement ranging from.1% 
to 81.2%, with an average boost of 12%. Therefore, this experiment confirms that it makes 
sense to consider all the alternative unsupervised features created by froid together with 
the original ones and appropriately selected and not only a subset of them.

Furthermore, in Table 5 we report the average features importance obtained by froid 
( Xa ) over all the datasets paired with the rank of the features importance19 w.r.t. the dif-
ferent categories of unsupervised features adopted. We notice that the features involving 
FR not mixed with OD, i.e., Xr and Xrr are, on average, the most beneficial for the clas-
sification, followed by single OD Xo and by the original features X. However, we notice 
that there is no marked discrepancy in the usage of the features and that the boost of froid 
is given by the simultaneous usage of all the categories of features created. The detailed 
relative importance of the various datasets is available in Table  20 in the Appendix. In 
Table 6, we report the average relative features importance grouped by category of features 

Table 3   Average scores, ranks and number of wins of PRA, GINI, F1, GM among various datasets and ML 
models trained on original data X or on data pre-processed with froid Xa

The rank and wins are calculated for the couples X and X
a
 for each ML model. Best performer in bold

Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

PRA avg .435 .437 .693 .683 .626 .675 .655 .644 .637 .693
rank 1.39 1.39 1.44 1.38 1.53 1.30 1.34 1.50 1.50 1.34
wins 39/64 39/64 36/64 40/64 30/64 45/64 42/64 32/64 32/64 42/64

GINI avg .513 .526 .842 .834 .805 .832 .809 .806 .792 .825
rank 1.42 1.44 1.28 1.53 1.53 1.30 1.41 1.44 1.47 1.38
wins 37/64 36/64 46/64 30/64 30/64 45/64 38/64 36/64 34/64 40/64

GM avg .647 .659 .636 .602 .604 .639 .564 .587 .624 .660
rank 1.36 1.42 1.28 1.41 1.39 1.36 1.28 1.39 1.34 1.38
wins 41/64 37/64 46/64 38/64 39/64 41/64 46/64 39/64 42/64 40/64

F1 avg .530 .536 .587 .556 .546 .584 .520 .531 .563 .607
rank 1.41 1.38 1.28 1.41 1.41 1.34 1.27 1.41 1.36 1.36
wins 38/64 40/64 46/64 38/64 38/64 42/64 47/64 38/64 41/64 41/64

19  We remark that the rank in Table 5 is related to the features importance and not to the performance.
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for froid for the clusters of similar datasets described in Sect. 4.1. The insights of this table 
are the following: for datasets in cluster A, we have the general behavior already discussed 
for Table 5. The original features are consistently more important for datasets in cluster D, 
while for datasets in cluster B are beneficial features in Xrr . Finally, for datasets in cluster 
C, the features in Xoo are not used at all, while are more important those in Xro . Hence, we 
can infer that the effectiveness of froid is given by the massive production of unsupervised 
descriptive features that can be helpful in every situation, independently from the data-
set characteristics. This improvement can be effectively exploited only by ML models like 
LightGBM that can appropriately select the most discriminative and informative features 
and are not harmed by the course of dimensionality issue.

Finally, we studied if there are sets of features in Xo , Xoo , Xor , Xr , Xrr , and Xro that 
are never or scarcely used by the classifiers adopted. An analysis performed at the data-
set level highlighted that for all the analyzed datasets, froid uses original features X in 
∼ 97% of the datasets, while the features generated by froid, i.e., Xo , Xr , Xrr , Xro , Xor , and 
Xoo are instead used in ∼ 92% , ∼ 84% , ∼ 87% , ∼ 80% , ∼ 80% and ∼ 71% of the datasets, 
respectively. Thus, all the types of features are consistently used in more than half of the 
datasets analyzed. This result emphasizes how froid self-adapts promptly to each dataset’s 
peculiarities.

Table 4   Average scores, ranks and number of wins of PRA, GINI, F1, GM among various datasets obtained 
by LightGBM trained on different features combinations

Best performer in bold

X Xa X¬� X� Xf Xl Xfo Xfr XO XR

PRA avg .626 .675 .676 .670 .642 .671 .553 .628 .663 .667
rank 5.08 3.67 3.83 4.17 4.56 4.56 7.44 5.31 4.86 3.75
wins 23/64 18/64 18/64 17/64 15/64 16/64 10/64 18/64 18/64 17/64

GINI avg .805 .832 .834 .825 .803 .815 .739 .801 .811 .815
rank 4.77 3.34 3.64 4.06 5.21 4.61 7.28 5.31 4.69 4.35
wins 20/64 18/64 20/64 18/64 12/64 18/64 11/64 16/64 18/64 19/64

GM avg .604 .639 .638 .634 .610 .638 .494 .610 .619 .641
rank 4.09 3.19 3.42 3.72 3.95 3.84 6.52 4.66 4.39 3.22
wins 27/64 22/64 24/64 25/64 22/64 23/64 14/64 18/64 19/64 26/64

F1 avg .546 .585 .584 .581 .550 .578 .435 .542 .564 .581
rank 4.09 3.19 3.33 3.52 3.87 4.00 6.56 4.75 4.42 3.27
wins 26/64 23/64 23/64 26/64 22/64 23/64 14/64 18/64 19/64 26/64

Table 5   Average relative importance and ranks of importances by category of features for froid: X original 
features, Xo OD over original, Xr FR over original, Xrr FR over FR, Xro OD over FR, Xoo OD over OD, Xrr 
FR over FR

X Xo Xr Xrr Xro Xor Xoo

Rank 3.156 3.141 3.195 2.719 5.453 4.789 5.547
Avg 0.256 0.192 0.182 0.226 0.045 0.063 0.037
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4.4 � Comparison with state‑of‑the‑art approaches

In this section we compare froid against state-of-the-art approaches for imbalanced 
learning. In Table 7, are reported the average PRA, GINI, F1, GM, the corresponding 
average ranks among all datasets classified with LightGBM for the various competitors 
and the number of wins. What emerges is that, overall, froid is the best pre-processing 
method with respect to the four evaluation measures. Also, there is not a clear second-
best performer, even though svmsmt and swim are the best ones for some indicators. 
Thus, froid appears to be markedly better than the other approaches. The comparison of 
the ranks of all methods against each other is visually represented in Fig. 3 with Critical 
Difference (CD) diagrams (Demsar, 2006). Two methods are tied if the null hypothesis 
that their performance is the same cannot be rejected using the Nemenyi test at � = .05 . 
For PRA, froid is the only pre-processing method not tied with other approaches ranked 
less than seventh. This means that w.r.t. PRA, it is statistically insignificant to use froid 
or other sate-of-the-art approaches like svmsmt, swim or rbo. Furthermore, even though 
the results show that froid is always statistically tied with other methods, independently 
from the evaluation measure considered, it has always the highest number of wins, it 
is in the top three with respect to the rank for PRA, GM, and F1, and it has the high-
est average PRA and GINI. No other method guarantees such stability across different 
evaluation measures. To further enhance the improvement of froid vs orig, froid vs 
svmsmt, and froid vs swim w.r.t PRA we report in Fig.  4 scatter plots in which every 
point represent a dataset and along the x-axis and y-axis we have the performance in 
terms of PRA for the method reported in the label. The closer the point is to the diago-
nal, the more similar the performance. The leftmost scatter plot highlights that only in a 
few cases not using froid is better than using it and that, in some cases, its usage brings 
a considerable boost in terms of PRA. The central scatter plot signals that froid is never 
markedly worse than svmsmt as all the points below the diagonal are close to it, but in 
some cases, the performance of froid are markedly better than those of svmsmt. The 
rightmost scatter plot highlights how the performance of froid are correlated to those of 
swim but the majority of the points lies above the diagonal signaling the superiority of 
our proposal.

The drawback of using froid is the markedly higher time required to prepare the data-
set. Indeed, while the training time T  remains in the same order of magnitude for all 
the methods (except xgbod and rbo), the pre-processing time P becomes consistently 
higher, being in the order of hours instead of in the order of seconds for froid. However, 
we underline that the standard deviation of the time required by froid is 6,436.18 while 
the median time is 231.22 s. The great variability in the pre-processing time P indicates 
that froid pre-processing time is markedly impacted by the dimensionality of the dataset 
analyzed. We recall that froid is designed as a pre-processing method to be used when a 
good and reliable model should be deployed, and the time required to build this model is 

Table 6   Average relative features 
importance grouped by category 
of features for froid for different 
clusters of similar datasets

Cluster X Xo Xr Xrr Xro Xor Xoo

A .241 .205 .190 .212 .042 .067 .040
B .250 .024 .071 .600 .028 .012 .012
C .233 .042 .107 .299 .311 .005 .000
D .469 .155 .168 .116 .027 .039 .023
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Fig. 3   Critical difference plots with Nemenyi at 95% confidence level for PRA (top-left), GINI (top right), 
F1 (bottom-left), GM (bottom-right)

Fig. 4   Scatter plots comparing the performance in terms of PRA between couples of methods. Every point 
is a dataset, the closer is to the diagonal, the more similar the performance

Table 8   Average scores, average 
ranks and wins of PRA, GINI, 
F1, GM for LightGBM trained 
after different pre-processing 
methods with/without hyper-
parameter tuning (-hpt) or 
calibration (-cal)

Best performer in bold, best performer runner up in italic

orig orig-cal orig-ht froid froid -cal froid -ht

PRA Avg .626 .633 .610 .675 .��� .657
Rank 3.61 3.43 4.21 3.05 �.�� 3.73
Wins 16/64 21/64 15/64 22/64 25/64 20/64

GINI avg .805 .797 .774 .��� .824 .798
Rank 3.44 3.62 4.26 �.�� 2.96 3.83
Wins 18/64 19/64 14/64 24/64 25/64 19/64

GM avg .604 .567 .001 .639 .��� .000
Rank 2.68 2.96 5.11 2.63 �.�� 5.12
Wins 33/64 26/64 7/64 27/64 33/64 7/64

F1 avg .546 .523 .015 .585 .��� .014
Rank 2.66 2.99 5.11 2.55 �.�� 5.12
Wins 33/64 25/64 7/64 29/64 32/64 7/64
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typically not an issue. Details of the performance on the various datasets are available in 
Tables 21, 22, 23, 24 in the Appendix. In order to recover from the high computational 
time required by the froid framework, we have developed a streamlined variant that focuses 
solely on the most efficient OD and FR methods. Compared to the original froid, this light-
weight version demonstrates a remarkable performance boost, being approximately an 
order of magnitude faster. However, its effectiveness in addressing the imbalanced learn-
ing problem falls short in terms of PRA and GINI when compared to both froid and other 
state-of-the-art approaches. The average rank for the PRA and GINI metrics was approxi-
mately 10th and 9th, respectively. Regrettably, due to the limitations of this lightweight 
version in achieving comparable accuracy without utilizing the full range of OD and FR 
methods employed by froid, we have made the decision not to include it in our experimen-
tation. We believe that the complete froid framework remains the most reliable option for 
achieving optimal performance in solving the imbalanced learning problem. Therefore, we 
have chosen not to report the results obtained using the lightweight version.

Furthermore, we analyzed which is the impact of procedures of hyper-parameter tuning 
and calibration (Niculescu-Mizil & Caruana, 2005; Zadrozny & Elkan, 2002) on the per-
formance of the LightGBM for the various datasets.20 We use the suffix -hpt and -cal to indicate 
a training procedure involving hyper-parameter tuning or calibration, respectively. Table 8 
illustrates the average PRA, GINI, F1, GM, the corresponding average ranks and number 
of wins among all datasets classified with LightGBM on the original dataset (orig), after 
froid pre-processing with and without hyper-parameter tuning (-hpt) or calibration (-cal). 
The results show that hyper-parameter or calibration approaches alone do not reach the 
performance achieved by froid. Also, calibration on top of the models trained after froid 
pre-processing further improves the performance.

4.5 � Results on supervised outlier detection

In this section, we demonstrate that the pre-processing of froid is beneficial not only for 
imbalanced learning but also for supervised outlier detection. As competitors, we report 
the same approaches used in the previous section, with xgbod being the actual state-of-the-
art in this field (Zhao & Hryniewicki, 2018). Table 9 reports the PRA w.r.t. the label “is 
outlier” on the datasets having the ground truth for the outliers. We observe that froid is 
the best performer for satellite and second best performer for glass. This result fur-
ther stress the breakthrough idea we introduced in this paper about representing instances 
towards a variegate composition of unsupervised OD and FR approaches.

4.6 � Features importance on real case studies

In this section, we experimented with the effectiveness of froid in two real case studies.21 

In particular, the diva dataset is a privately released dataset on fraud evasion, periodi-
cally issued by the Italian Ministry of Economics. In diva, financial activities for 11,187 

20  For calibration we employed a 5-fold cross calibration classifier as implemented in scikit-
learn using as a base classifier a LightGBM. For tuning, we employed a 5-fold grid search CV as 
implemented in scikit-learn, using LightGBM. The parameter space we tested is the following: 
learning_rate ∶ [.01, .1, 1], n_estimators ∶ [50, 100, 200], reg_alpha ∶ [0, 1e − 1, 1], reg_lambda ∶ [0, 1e − 1, 1]   . 
We selected the best performing combination w.r.t AUC.
21  Due to privacy and legal concerns, we are not allowed to publicly release these datasets.
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citizens are recorded. The 18 features describe different aspects of the taxpayers, including 
their past financial credit score, declared income and property value, debt, and detailed 
taxation info. The positive label mark 35 relevant tax evaders, accounting for less than 
.3% of the total labels. The hospital dataset collects 14,390 records describing patients 
through 15 features after a data cleaning phase, including demographic variables, hospital 
usage aspects, and past medical history. The positives indicate the 130 discharged patients, 
accounting for roughly .9% of the patients. We applied to these datasets the same pre-
processing described in Sect. 4.1. The comparison of the performance between the Light-
GBM obtained on the original dataset and those obtained after running froid are reported 
in Table 10. The last line reports the relative improvement of froid over the performance 
on the original datataset. We observe how by using froid, we can correctly identify many 
more fraudulent citizens and discharged patients. Indeed, the GINI22 obtained by froid 
increases up to .97 and .84, an increase by 7.8% and 1.2% respectively compared to orig.

In Fig. 5 is reported the normalized features importance of the ten most important fea-
tures for both datasets. We immediately notice that for both cases, among the ten most 
important features, we have many features generated by froid. In particular, we notice how 
using OD approaches is quite an effective procedure to design highly discriminative fea-
tures over the diva dataset. Moreover, for hospital, we see beneficial effects of FR 
methods: KPCA is among the top 10 most informative features when applied not only 
on original data but also on scores derived from OD and FR methods. This analysis con-
firms that froid’s idea of making inception among FR and OD methods (and vice-versa) is 
indeed a winning one as it helps to derive the most discriminative and important features 
for the classification in the setting of imbalanced learning. We highlight from this analysis 
also emerging weaknesses w.r.t. the usage of froid. Indeed, while the overall performance 
improves, the usage of froid leads to an inevitable loss of interpretability (Guidotti et al., 

Table 9   PRA for supervised outlier detection datasets obtained by LightGBM trained after different pre-
processing methods.

The best approach is highlighted in bold

dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

ecoli .247 .503 .515 .698 .034 .555 .542 .699 .582 .550 .705 .698
glass .629 .828 .316 .573 .048 .335 .573 .840 .520 .491 .397 .573
satellite .968 .970 .964 .966 .963 .964 .967 .970 .964 .968 .968 .967

Table 10   Performance on the 
case study datasets with and 
without froid 

diva hospital

PRA GINI PRA GINI

orig .41 .90 .24 .83
froid .42 .97 .27 .84
↑ 2.44% 7.78% 12.5% 1.20%

22  GINI is the main measure required by the stakeholders involved.
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2018). In fact, if the original dataset is used the features used by the classifier selected 
are only those belonging to the original domain, and therefore their meaning is perfectly 
understandable by any domain expert. On the other hand, when features created by froid 
becomes fundamental for the classification, only machine learning experts can understand 
their meaning (Tomsett et al., 2018). On the contrary, this weakness is not held by classic 
approaches like smote or adasyn, which do not modify the features describing the dataset.

5 � Conclusion

We have presented froid an unsupervised pre-processing framework for solving imbal-
anced learning problems through outlier detection and features reduction methods. froid 
augments the dimensions used to represent the input data combining in different ways a 
wide variety of outlier detection and dimensionality reduction methods. This dimension-
ality augmentation boosts ML classification models in solving the classification task for 
imbalanced data. A wide and deep experimentation shows that froid overcomes state-of-
the-art pre-processing approaches for imbalanced learning at the price of a not negligible 
time required to build all the novel dimensions. Our insight for such boost in performance 
is that froid does not generate any novel synthetic data but only amplify the expressiveness 
of the existing records. The effectiveness of froid in its current form is that it is creating a 
mass of descriptive discriminative features that can be suitable to any dataset, i.e., maybe 
a subset might not be helpful for datasets with specific characteristics, but they might be 
useful for other datasets. Indeed, we might see froid as a sort of “brute-force approach” 
generating a massive number of descriptive features in the hope that one of them, or bet-
ter, a combination of some of them, together with the original feature, bring a boost to the 
discriminative power of a ML model.

Starting from the results obtained with froid, several future research directions can 
be pursued. First, we would like to design a pre-processing step to be applied before 
froid that is responsible for which is the most appropriate subset of features to generate 

Fig. 5   Normalized LightGM features importance for diva (left) and hospital (right)
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while simultaneously improving the performance and reducing the running time. Sec-
ond, inspired by Shi et al. (2020); Ibrahim (2021), we would like to experiment which 
would be the performance obtained by combining froid with one of the state-of-the-art 
oversampling and/or undersampling approaches as well as with cost-sensitive classifi-
ers. For instance, if smote is applied after froid, then it will generate synthetic minor-
ity instances approximating the features learned by froid. On the one hand, this might 
boost the discriminative power of ML models learned on top of these datasets enriched 
both in terms of features and in terms of records. However, on the other hand, there is 
the risk that smote would not be able to appropriately generate synthetic instances with 
the features learned by froid, leading to a degradation of the performance. Third, we 
would like to design an extremely randomized version of froid that adopts bootstrap 
samples and random features selection to simultaneously accelerate the procedure and 
also exploit a sort of ensemble strategy. Finally, we would like to check if the froid 
approach can be used to solve the imbalanced learning problem also for multi-class 
problem settings and for other data types such as images or time series through the 
usage of autoencoder approaches.

Appendix A: Additional results

For the sake of completeness, we report in this section the detailed experimental results 
obtained. Tables are placed after References. (See Tables 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24).
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Table 11   Datasets description: ntrain instances training set; ntest instances test set; m number of features; 
mnum number numerical features; p+

train
 positive rate training; p+

test
 positive rate test set; FDR Maximum 

Fisher’s Discriminant Ratio, FBP Fraction of Borderline Points, ECP Entropy of Class Proportions and IR 
Imbalance Ratio

Dataset ntrain ntest m mnum p+
train

p+
test

FDR FBP ECP IR

abalone1 2921 1253 8 7 .008 .008 .994 .022 .936 .985
abalone2 1135 487 8 7 .019 .021 .994 .048 .862 .960
abalone3 1341 575 8 7 .013 .014 .955 .028 .897 .973
abalone4 406 175 8 7 .025 .023 .795 .044 .833 .950
abalone5 351 151 8 7 .028 .033 .564 .011 .813 .941
abalone6 511 220 8 7 .057 .059 .875 .114 .686 .880
arrhythmia 316 136 278 278 .054 .059 .874 .149 .698 .887
avila 10430 10437 10 10 .010 .010 .994 .011 .920 .980
bank 3164 1357 42 7 .115 .115 .840 .216 .484 .744
careval1 1209 519 21 21 .078 .077 .930 .100 .606 .833
careval2 1209 519 21 21 .037 .039 .923 .076 .771 .923
cardio 25914 11107 11 11 .054 .054 .984 .142 .697 .886
coil1 6875 2947 85 85 .060 .060 .979 .152 .674 .874
covtype 26950 11551 10 10 .071 .071 .950 .037 .629 .847
derma1 250 108 34 0 .056 .056 .087 .000 .689 .882
drybean 9527 4084 16 16 .038 .038 .329 .000 .766 .920
ecoli1 235 101 7 7 .085 .089 .812 .077 .580 .816
ecoli2 232 100 6 6 .073 .080 .820 .047 .622 .843
ecoli3 235 101 7 7 .060 .059 .748 .038 .674 .874
isolet 5457 2340 617 617 .077 .077 .954 .065 .609 .834
kddcup1 1563 670 38 15 .013 .013 .191 .001 .897 .973
kddcup2 1149 493 38 15 .032 .032 .115 .003 .795 .934
kddcup3 742 319 38 15 .020 .019 .184 .003 .857 .959
kddcup4 1127 483 38 15 .013 .012 .200 .002 .898 .973
kddcup5 1557 668 38 15 .010 .010 .241 .003 .922 .981
led7digit1 310 133 7 7 .084 .083 .846 .126 .584 .818
letter 14000 6000 16 16 .037 .037 .882 .006 .773 .924
libras 252 108 90 90 .067 .065 .916 .067 .644 .856
machine 7000 3000 7 5 .034 .034 .965 .053 .787 .930
mgraphy 7828 3355 6 6 .023 .023 .776 .028 .841 .952
oil 655 282 49 49 .044 .043 .812 .063 .738 .908
ozone 1775 761 72 72 .029 .029 .968 .061 .812 .941
page1 330 142 10 4 .061 .056 .580 .030 .670 .872
poker1 1033 444 10 0 .012 .011 .999 .000 .909 .976
poker2 1452 623 10 0 .012 .013 .996 .000 .908 .976
poker3 1039 446 10 0 .016 .018 .997 .000 .880 .967
scene 1684 723 294 294 .074 .073 .956 .160 .621 .842
shuttle1 2321 995 9 0 .015 .015 .406 .000 .890 .970
shuttle2 1280 549 9 0 .067 .067 .273 .000 .645 .857
solar1 972 417 32 32 .049 .048 .928 .086 .716 .896
spect 371 160 93 93 .084 .088 .752 .049 .585 .819
stars 579 249 3 3 .862 .859 .480 .059 .421 .687
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Table 11   (continued)

Dataset ntrain ntest m mnum p+
train

p+
test

FDR FBP ECP IR

thyroid 2640 1132 52 52 .061 .061 .916 .089 .667 .870
uscrime 1395 599 100 100 .075 .075 .736 .127 .615 .838
vowel 691 297 13 10 .091 .091 .756 .033 .560 .801
webpage 24346 10434 300 300 .028 .028 .930 .035 .815 .942
wine1 483 208 11 11 .014 .014 .952 .027 .891 .971
wine2 1119 480 11 11 .033 .033 .967 .085 .790 .932
wine3 598 257 11 11 .022 .019 .977 .059 .849 .956
wine4 630 270 11 11 .022 .022 .948 .040 .846 .955
yeast1 1038 446 8 8 .035 .034 .916 .066 .783 .928
yeast2 1691 726 103 103 .074 .073 .994 .182 .620 .841
yeast3 702 302 8 8 .098 .099 .876 .134 .536 .785
yeast4 702 302 8 8 .098 .099 .769 .085 .536 .785
yeast5 354 152 8 8 .099 .099 .860 .184 .535 .783
yeast6 369 159 8 8 .098 .094 .818 .173 .539 .786
yeast7 321 138 7 7 .065 .065 .948 .137 .651 .861
yeast8 662 285 8 8 .032 .032 .967 .077 .797 .935
yeast9 485 208 8 8 .043 .043 .982 .105 .743 .910
yeast10 359 155 8 8 .100 .097 .715 .097 .530 .780
yeast11 337 145 8 8 .042 .041 .489 .047 .751 .913
yeast12 1038 446 8 8 .035 .034 .905 .074 .783 .928
yeast13 1038 446 8 8 .030 .029 .862 .037 .806 .938
yeast14 1038 446 8 8 .023 .025 .928 .046 .841 .953
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Table 12   PRA among various datasets and ML models trained on original data X or on data pre-processed 
with froid Xa

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

abalone1 .028 .021 .060 .085 .115 .098 .050 .106 .146 .134
abalone2 .062 .039 .388 .569 .630 .521 .422 .436 .438 .610
abalone3 .108 .363 .695 .684 .596 .665 .567 .534 .495 .885
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
abalone5 .008 .008 .071 .092 .043 .105 .135 .042 .070 .058
abalone6 .080 .075 .420 .540 .380 .515 .395 .489 .377 .556
arrhythmia .645 .789 .919 .988 .924 .979 .649 .988 .941 .988
avila .970 .883 .997 .972 .992 .983 .984 .811 .989 .964
bank .222 .238 .516 .523 .517 .511 .490 .436 .540 .511
careval1 .743 .314 .949 .914 .944 .909 .932 .636 .962 .911
careval2 .952 .244 1.00 .833 1.00 .820 .981 .823 1.00 .765
cardio .071 .078 .197 .191 .203 .188 .181 .169 .188 .168
coil1 .073 .075 .126 .132 .130 .132 .122 .119 .133 .132
covtype .713 .649 .964 .957 .955 .957 .942 .934 .964 .955
derma1 .612 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
drybean1 .994 .994 1.00 1.00 .999 1.00 1.00 1.00 .994 1.00
ecoli1 .491 .718 .853 .882 .870 .895 .845 .849 .877 .901
ecoli2 .229 .575 .805 .821 .528 .778 .752 .803 .630 .809
ecoli3 .708 .589 .958 1.00 .936 .949 .958 1.00 .973 .982
isolet .364 .665 .960 .979 .961 .969 .935 .971 .951 .961
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
led7digit1 .484 .199 .650 .691 .615 .725 .626 .659 .624 .732
letter .905 .775 .996 .995 .996 .996 .995 .986 .998 .995
libras .274 1.00 .985 1.00 .895 1.00 .914 1.00 .877 1.00
machine .468 .300 .791 .725 .788 .734 .770 .541 .814 .731
mgraphy .359 .288 .776 .741 .752 .712 .755 .681 .737 .715
oil .157 .129 .389 .417 .390 .350 .437 .361 .399 .370
ozone .062 .067 .262 .294 .276 .313 .183 .198 .233 .258
page1 1.00 .537 1.00 1.00 1.00 1.00 1.00 .865 1.00 1.00
poker1 .102 .123 .475 .478 .350 .438 .322 .395 .346 .440
poker2 .108 .222 1.00 .911 .078 .890 .508 .854 .052 .867
poker3 .066 .012 1.00 .858 .188 .906 .776 .864 .098 .951
scene .092 .142 .363 .421 .331 .431 .283 .330 .374 .431
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
solar1 .106 .053 .159 .134 .136 .128 .106 .094 .184 .117
spect .582 .614 .877 .880 .865 .898 .815 .785 .865 .932
stars .968 .977 .999 .998 .998 .997 .998 .997 .998 .997
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Best between X and X
a
 for each ML model highlighted in italic. Best for each dataset highlighted in bold

Table 12   (continued)

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

thyroid .752 .750 .981 .963 .975 .960 .967 .829 .971 .968
uscrime .232 .206 .534 .550 .512 .529 .561 .539 .538 .580
vowel .783 .865 1.00 1.00 1.00 1.00 .995 1.00 .999 1.00
webpage .455 .487 .866 .861 .810 .848 .816 .829 .817 .851
wine1 .015 .015 .483 .118 .208 .391 .134 .097 .302 .706
wine2 .032 .032 .114 .082 .088 .125 .108 .044 .064 .125
wine3 .021 .021 .079 .140 .069 .122 .050 .078 .041 .105
wine4 .269 .197 .691 .710 .520 .586 .686 .666 .560 .675
yeast1 .391 .216 .649 .658 .611 .601 .704 .696 .605 .564
yeast2 .541 .547 .914 .926 .815 .915 .928 .900 .836 .913
yeast3 .196 .304 .516 .462 .410 .393 .483 .454 .504 .471
yeast4 .194 .567 .788 .729 .592 .733 .699 .727 .755 .765
yeast5 .196 .115 .386 .484 .246 .418 .327 .327 .283 .385
yeast6 .043 .043 .240 .127 .188 .114 .121 .168 .115 .091
yeast7 .366 .156 .595 .574 .403 .491 .610 .571 .460 .565
yeast8 .494 .396 .924 .925 .907 .946 .928 .835 .886 .908
yeast9 .090 .335 .527 .639 .114 .554 .672 .561 .520 .583
yeast10 .156 .087 .533 .358 .446 .321 .522 .335 .436 .397
yeast11 .464 .345 .797 .800 .731 .812 .806 .751 .715 .896
yeast12 .183 .307 .650 .513 .663 .493 .574 .694 .648 .563
yeast13 .084 .135 .353 .285 .301 .240 .315 .296 .374 .308
yeast14 .072 .078 .109 .123 .096 .110 .075 .091 .101 .099
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Table 13   GINI among various datasets and ML models trained on original data X or on data pre-processed 
with froid Xa

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

abalone1 .053 -.023 .323 .375 .131 .348 .201 .249 .206 .360
abalone2 .123 .102 .903 .943 .968 .901 .904 .820 .884 .888
abalone3 .210 .705 .977 .968 .967 .963 .959 .968 .864 .989
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
abalone5 -.004 -.002 .752 .590 .582 .647 .370 .347 .658 .563
abalone6 .056 .076 .583 .749 .642 .735 .665 .718 .509 .728
arrhythmia .623 .875 .968 .998 .986 .997 .932 .998 .985 .998
avila .990 .850 1.00 .998 1.00 1.00 1.00 .986 1.00 .999
bank .298 .350 .814 .792 .801 .779 .775 .732 .807 .755
careval1 .809 .536 .992 .982 .990 .988 .990 .870 .994 .980
careval2 .998 .584 1.00 .981 1.00 .987 .999 .979 1.00 .974
cardio .120 .147 .588 .581 .588 .578 .536 .545 .565 .548
coil1 .100 .107 .414 .426 .409 .420 .366 .309 .384 .376
covtype .839 .781 .990 .989 .984 .989 .981 .985 .988 .990
derma1 .807 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
drybean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ecoli1 .726 .860 .794 .808 .848 .818 .809 .804 .927 .877
ecoli2 .247 .534 .820 .870 .699 .832 .674 .904 .794 .851
ecoli3 .837 .669 .992 1.00 .991 .990 .994 1.00 .996 .997
isolet .548 .811 .991 .995 .990 .988 .981 .994 .990 .987
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
led7digit1 .590 .433 .886 .853 .849 .841 .814 .749 .861 .836
letter .943 .851 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00
libras .281 1.00 .998 1.00 .938 1.00 .985 1.00 .936 1.00
machine .694 .518 .967 .949 .952 .952 .941 .898 .953 .950
mgraphy .516 .514 .944 .925 .931 .919 .932 .901 .931 .915
oil .302 .188 .814 .740 .774 .793 .798 .734 .702 .696
ozone .153 .200 .826 .794 .794 .754 .651 .687 .787 .796
page1 1.00 .633 1.00 1.00 1.00 1.00 1.00 .980 1.00 1.00
poker1 .235 .240 .922 .931 .731 .909 .656 .944 .806 .929
poker2 .259 .272 1.00 .991 .720 .991 .960 .976 .441 .962
poker3 .197 -.008 1.00 .992 .914 .996 .994 .989 .543 .998
scene .122 .288 .665 .709 .640 .675 .526 .641 .634 .693
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
solar1 .229 .019 .415 .399 .410 .423 .383 .298 .434 .464
spect .695 .876 .933 .970 .887 .957 .875 .883 .944 .958
stars .796 .854 .986 .971 .977 .965 .973 .971 .972 .966
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Best between X and X
a
 for each ML model highlighted in italic. Best for each dataset highlighted in bold

Table 13   (continued)

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

thyroid .899 .871 .998 .995 .997 .994 .995 .957 .996 .995
uscrime .411 .385 .794 .799 .762 .791 .780 .777 .786 .803
vowel .906 .884 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00
webpage .756 .694 .963 .962 .944 .961 .940 .942 .943 .953
wine1 -.014 -.018 .683 .608 .737 .871 .728 .682 .703 .823
wine2 -.020 -.023 .538 .398 .433 .449 .469 .175 .222 .315
wine3 -.011 -.008 .636 .613 .568 .715 .460 .579 .328 .595
wine4 .464 .465 .871 .964 .852 .901 .766 .959 .753 .940
yeast1 .623 .356 .669 .642 .593 .638 .743 .754 .659 .664
yeast2 .692 .725 .964 .963 .873 .936 .976 .954 .963 .957
yeast3 .303 .438 .582 .564 .503 .536 .489 .554 .438 .494
yeast4 .253 .626 .858 .814 .770 .802 .775 .759 .838 .798
yeast5 .336 .314 .642 .525 .606 .393 .557 .655 .568 .512
yeast6 -.039 -.046 .367 .341 .345 .418 .336 .080 .211 .147
yeast7 .544 .266 .797 .849 .753 .643 .826 .861 .741 .799
yeast8 .740 .558 .981 .978 .976 .986 .980 .959 .970 .978
yeast9 .125 .589 .538 .467 .100 .490 .805 .425 .621 .464
yeast10 .333 .194 .838 .863 .857 .786 .842 .782 .819 .786
yeast11 .611 .589 .978 .976 .964 .973 .978 .977 .962 .961
yeast12 .320 .626 .873 .790 .842 .774 .790 .862 .691 .784
yeast13 .198 .344 .843 .867 .809 .846 .849 .858 .841 .844
yeast14 -.018 -.004 .237 .152 .150 .215 .038 .150 .151 .148
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Table 14   GM among various datasets and ML models trained on original data X or on data pre-processed 
with froid Xa

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

abalone1 .228 .000 .000 .000 .244 .000 .000 .000 .244 .000
abalone2 .286 .253 .286 .576 .584 .441 .000 .279 .286 .255
abalone3 .341 .809 .343 .602 .350 .598 .342 .601 .601 .814
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
abalone5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
abalone6 .222 .325 .361 .431 .517 .510 .361 .339 .430 .512
arrhythmia .780 .934 .783 .996 .685 .939 .000 .792 .544 .996
avila .995 .922 1.00 .935 .976 .957 1.00 .393 1.00 .929
bank .586 .632 .544 .555 .615 .551 .455 .427 .622 .530
careval1 .900 .746 .924 .845 .951 .907 .906 .580 .901 .800
careval2 .999 .773 1.00 .768 1.00 .884 .856 .764 1.00 .801
cardio .408 .437 .139 .092 .121 .105 .133 .113 .170 .161
coil1 .378 .399 .130 .088 .219 .176 .227 .190 .264 .177
covtype .917 .886 .950 .936 .940 .939 .922 .883 .947 .932
derma1 .893 1.00 .902 1.00 1.00 1.00 1.00 1.00 .902 1.00
drybean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ecoli1 .854 .927 .872 .877 .734 .877 .802 .802 .816 .877
ecoli2 .471 .719 .724 .724 .476 .581 .680 .724 .473 .805
ecoli3 .911 .805 .917 .809 .804 .917 .809 .917 .911 .917
isolet .750 .903 .906 .955 .914 .949 .751 .913 .899 .957
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup5 1.00 1.00 1 .00 1.00 .908 1.00 1.00 1.00 1.00 1.00
led7digit1 .789 .656 .789 .654 .789 .735 .789 .654 .792 .734
letter .971 .922 .964 .966 .966 .984 .942 .883 .966 .970
libras .484 1.00 .833 1.00 .922 1.00 .620 1.00 .740 1.00
machine .835 .724 .811 .701 .821 .670 .713 .493 .821 .727
mgraphy .777 .720 .799 .710 .774 .735 .715 .660 .788 .744
oil .545 .449 .544 .545 .459 .459 .547 .546 .546 .468
ozone .403 .468 .000 .000 .000 .000 .000 .000 .000 .000
page1 1.00 .790 1.00 .860 1.00 .996 1.00 .699 1.00 1.00
poker1 .448 .442 .000 .442 .280 .264 .000 .442 .443 .443
poker2 .474 .474 .474 .474 .000 .863 .000 .583 .000 .845
poker3 .356 .000 1.00 .000 .000 .751 .000 .761 .000 .751
scene .431 .583 .270 .385 .270 .410 .229 .270 .303 .473
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
solar1 .361 .195 .312 .000 .311 .000 .000 .000 .384 .000
spect .834 .937 .837 .953 .882 .949 .837 .953 .837 .949
stars .894 .925 .918 .899 .918 .902 .937 .933 .903 .919
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Best between X and X
a
 for each ML model highlighted in italic. Best for each dataset highlighted in bold

Table 14   (continued)

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

thyroid .949 .934 .969 .958 .952 .957 .915 .692 .945 .960
uscrime .662 .647 .649 .626 .612 .643 .631 .576 .660 .659
vowel .952 .940 .982 1.00 .961 1.00 .941 1.00 .982 .961
webpage .862 .835 .844 .841 .789 .843 .839 .811 .794 .853
wine1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .781
wine2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine4 .658 .662 .662 .331 .330 .537 .518 .509 .536 .662
yeast1 .801 .635 .693 .759 .761 .664 .743 .764 .758 .656
yeast2 .837 .856 .926 .887 .862 .888 .909 .868 .906 .870
yeast3 .582 .676 .421 .419 .550 .189 .483 .419 .651 .418
yeast4 .526 .789 .624 .484 .606 .704 .332 .602 .677 .544
yeast5 .567 .561 .459 .276 .275 .430 .275 .238 .279 .428
yeast6 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
yeast7 .739 .526 .541 .541 .417 .539 .420 .541 .419 .541
yeast8 .864 .753 .837 .883 .917 .924 .883 .843 .911 .951
yeast9 .290 .749 .625 .625 .000 .625 .625 .625 .625 .625
yeast10 .581 .443 .452 .351 .423 .525 .528 .361 .479 .350
yeast11 .779 .766 .780 .777 .780 .721 .723 .778 .780 .670
yeast12 .550 .787 .553 .000 .557 .431 .553 .000 .552 .479
yeast13 .447 .595 .364 .000 .455 .212 .226 .321 .455 .339
yeast14 .247 .255 .000 .000 .000 .000 .000 .000 .000 .000
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Table 15   F1 Score among various datasets and ML models trained on original data X or on data pre-pro-
cessed with froid Xa

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

abalone1 .061 .000 .000 .000 .154 .000 .000 .000 .167 .000
abalone2 .159 .105 .191 .510 .520 .361 .000 .203 .209 .188
abalone3 .202 .531 .254 .478 .196 .364 .225 .425 .425 .677
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
abalone5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
abalone6 .105 .127 .245 .299 .355 .364 .245 .243 .283 .382
arrhythmia .752 .877 .757 .942 .641 .935 .000 .766 .474 .942
avila .985 .869 .985 .917 .961 .946 .985 .269 .985 .912
bank .384 .415 .392 .415 .480 .407 .314 .276 .486 .381
careval1 .851 .524 .854 .807 .904 .869 .845 .472 .840 .757
careval2 .975 .452 1.00 .684 1.00 .758 .845 .660 1.00 .688
cardio .162 .185 .037 .017 .029 .022 .034 .025 .053 .047
coil1 .144 .156 .035 .020 .081 .055 .078 .063 .109 .055
covtype .838 .797 .914 .901 .899 .900 .886 .852 .908 .893
derma1 .753 1.00 .891 1.00 1.00 1.00 1.00 1.00 .891 1.00
drybean .997 .997 .994 1.00 .997 .997 .997 .997 .997 .997
ecoli1 .662 .831 .814 .866 .696 .866 .778 .778 .796 .866
ecoli2 .338 .677 .684 .684 .396 .518 .634 .684 .362 .782
ecoli3 .819 .720 .910 .786 .708 .910 .786 .910 .819 .910
isolet .575 .786 .885 .924 .880 .919 .714 .896 .866 .926
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup5 1.00 1.00 1.00 1.00 .901 1.00 1.00 1.00 1.00 1.00
led7digit1 .615 .494 .615 .477 .615 .564 .615 .477 .644 .558
letter .950 .883 .963 .966 .965 .984 .936 .876 .964 .967
libras .382 1.00 .816 1.00 .917 1.00 .569 1.00 .704 1.00
machine .674 .530 .751 .615 .760 .582 .634 .365 .738 .651
mgraphy .588 .525 .718 .619 .680 .643 .635 .579 .706 .647
oil .324 .197 .375 .394 .326 .310 .439 .412 .416 .349
ozone .180 .197 .000 .000 .000 .000 .000 .000 .000 .000
page1 1.00 .765 1.00 .847 1.00 .936 1.00 .655 1.00 1.00
poker1 .252 .277 .000 .335 .204 .179 .000 .294 .366 .366
poker2 .262 .366 .400 .400 .000 .808 .000 .523 .000 .830
poker3 .169 .000 1.00 .000 .000 .723 .000 .736 .000 .723
scene .178 .300 .141 .257 .139 .278 .108 .141 .170 .342
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
solar1 .175 .062 .161 .000 .154 .000 .000 .000 .223 .000
spect .737 .762 .763 .890 .813 .856 .763 .890 .763 .856
stars .973 .978 .984 .976 .984 .981 .988 .984 .983 .986
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Best between X and X
a
 for each ML model highlighted in italic. Best for each dataset highlighted in bold

Table 15   (continued)

Dataset Decision tree CatBoost LightGBM Random forest XGBoost

X Xa X Xa X Xa X Xa X Xa

thyroid .862 .840 .935 .874 .899 .878 .887 .624 .894 .902
uscrime .431 .395 .498 .477 .454 .491 .495 .436 .504 .522
vowel .878 .922 .982 1.00 .960 1.00 .939 1.00 .982 .959
webpage .657 .691 .794 .768 .726 .772 .766 .732 .732 .774
wine1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .764
wine2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine4 .462 .382 .615 .267 .244 .435 .452 .454 .398 .621
yeast1 .589 .390 .603 .673 .683 .560 .675 .668 .658 .530
yeast2 .712 .717 .881 .838 .788 .853 .889 .817 .861 .832
yeast3 .344 .489 .319 .302 .400 .098 .375 .302 .515 .287
yeast4 .327 .712 .565 .386 .486 .635 .232 .510 .607 .438
yeast5 .380 .273 .372 .202 .170 .350 .183 .170 .181 .319
yeast6 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
yeast7 .557 .297 .463 .463 .261 .422 .301 .463 .282 .463
yeast8 .671 .585 .719 .814 .804 .858 .814 .767 .758 .817
yeast9 .164 .518 .575 .575 .000 .575 .575 .575 .575 .575
yeast10 .345 .219 .329 .216 .293 .353 .419 .233 .329 .198
yeast11 .657 .558 .687 .680 .687 .650 .650 .628 .687 .618
yeast12 .369 .519 .476 .000 .450 .327 .476 .000 .445 .341
yeast13 .214 .313 .199 .000 .305 .099 .118 .184 .304 .201
yeast14 .065 .072 .000 .000 .000 .000 .000 .000 .000 .000
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Table 16   PRA among various datasets obtained by LightGBM trained on different features combinations

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

abalone1 .115 .098 .089 .096 .092 .161 .239 .090 .224 .121
abalone2 .630 .521 .535 .538 .545 .529 .440 .529 .484 .446
abalone3 .596 .665 .674 .708 .861 1.00 .576 .829 .774 .829
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 .837 1.00 1.00 1.00
abalone5 .043 .105 .094 .125 .131 .110 .115 .107 .145 .070
abalone6 .380 .515 .547 .461 .573 .559 .459 .531 .521 .511
arrhythmia .924 .979 1.00 1.00 .896 1.00 .891 .896 .896 .896
avila .992 .983 .966 .966 .584 .986 .335 .498 .994 .993
bank .517 .511 .494 .456 .511 .487 .336 .492 .472 .519
careval1 .944 .918 .890 .674 .978 .978 .366 .961 .926 .962
careval2 1.00 .802 .825 .704 .921 .884 .260 .980 .793 .974
cardio .203 .188 .177 .194 .185 .180 .170 .187 .178 .202
coil1 .130 .132 .129 .127 .130 .135 .103 .138 .125 .139
covtype .955 .957 .955 .955 .931 .957 .764 .927 .948 .956
derma1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
drybean1 .999 1.00 1.00 1.00 .000 1.00 1.00 1.00 1.00 .000
ecoli1 .870 .895 .882 .872 .867 .863 .683 .822 .834 .822
ecoli2 .528 .778 .778 .778 .849 .822 .443 .763 .590 .763
ecoli3 .936 .949 .949 .903 1.00 1.00 .941 1.00 .857 1.00
isolet .961 .969 .973 .973 .982 .973 .895 .965 .969 .974
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .979 1.00 1.00
kddcup5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
led7digit1 .615 .725 .723 .696 .783 .621 .566 .785 .574 .781
letter .996 .996 .995 .995 .983 .995 .822 .980 .996 .989
libras .895 1.00 1.00 1.00 .946 .946 1.00 .946 .980 .946
machine .788 .734 .727 .705 .572 .771 .327 .542 .780 .718
mgraphy .752 .712 .707 .711 .675 .720 .553 .622 .707 .730
oil .390 .350 .402 .379 .474 .530 .322 .477 .357 .484
ozone .276 .313 .300 .270 .248 .294 .085 .212 .305 .297
page1 1.00 1.00 1.00 1.00 .975 1.00 .658 .975 1.00 .975
poker1 .350 .438 .482 .576 .506 .375 .449 .495 .442 .481
poker2 .078 .890 .800 .862 .859 .859 .912 .868 .929 .868
poker3 .188 .906 .911 .942 .869 .838 .892 .951 .811 .951
scene .331 .431 .403 .409 .486 .544 .274 .462 .361 .503
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
solar1 .136 .128 .107 .110 .124 .120 .109 .104 .113 .117
spect .865 .898 .907 .892 .944 .946 .768 .962 .837 .916
stars .998 .997 .997 .997 .998 .998 .998 .998 .996 .997
thyroid .975 .960 .961 .949 .662 .972 .362 .585 .967 .959
uscrime .512 .529 .562 .579 .603 .582 .360 .621 .522 .566
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Best among different features combinations highlighted in bold

Table 16   (continued)

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

vowel 1.00 1.00 1.00 1.00 1.00 1.00 .989 1.00 .994 1.00
webpage .810 .848 .850 .848 .854 .855 .759 .871 .819 .862
wine1 .208 .391 .428 .401 .354 .416 .183 .140 .401 .155
wine2 .088 .125 .099 .080 .183 .125 .091 .249 .110 .174
wine3 .069 .122 .123 .133 .125 .136 .076 .168 .174 .149
wine4 .520 .586 .561 .703 .679 .585 .475 .712 .635 .526
yeast1 .611 .601 .604 .563 .582 .617 .662 .569 .690 .543
yeast2 .815 .915 .917 .921 .897 .898 .839 .878 .889 .909
yeast3 .410 .393 .385 .413 .495 .535 .377 .522 .410 .472
yeast4 .592 .733 .730 .709 .720 .716 .480 .740 .600 .764
yeast5 .246 .418 .449 .370 .296 .310 .105 .239 .315 .416
yeast6 .188 .114 .094 .135 .121 .088 .161 .158 .105 .111
yeast7 .403 .491 .485 .485 .575 .459 .266 .597 .340 .558
yeast8 .907 .946 .954 .894 .884 .938 .680 .878 .875 .937
yeast9 .114 .554 .586 .622 .636 .641 .476 .638 .553 .642
yeast10 .446 .321 .363 .356 .350 .417 .226 .330 .352 .393
yeast11 .731 .812 .825 .810 .770 .800 .588 .814 .782 .813
yeast12 .663 .493 .515 .486 .563 .651 .315 .649 .508 .642
yeast13 .301 .240 .258 .228 .246 .266 .255 .303 .378 .278
yeast14 .096 .110 .121 .107 .156 .134 .097 .172 .103 .149
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Table 17   GINI among various datasets obtained by LightGBM trained on different features combinations

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

abalone1 .131 .348 .329 .272 .380 .421 .402 .409 .392 .501
abalone2 .968 .901 .928 .951 .930 .845 .612 .907 .762 .890
abalone3 .967 .963 .966 .973 .978 .955 .973 .967 .981 .964
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 .993 1.00 1.00 1.00
abalone5 .582 .647 .688 .536 .634 .465 .648 .551 .642 .590
abalone6 .642 .735 .711 .633 .649 .736 .649 .635 .687 .718
arrhythmia .986 .997 1.00 1.00 .997 .984 .806 .997 .888 .997
avila 1.00 1.00 .999 .999 .922 1.00 .845 .897 1.00 1.00
bank .801 .779 .785 .762 .684 .756 .574 .675 .769 .755
careval1 .990 .985 .983 .915 .905 .985 .652 .912 .988 .982
careval2 1.00 .987 .986 .975 .973 .992 .707 .974 .986 .990
cardio .588 .578 .580 .592 .558 .571 .504 .575 .576 .581
coil1 .409 .420 .386 .392 .328 .422 .215 .294 .389 .369
covtype .984 .989 .988 .988 .982 .987 .935 .980 .983 .986
derma1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
drybean 1.00 1.00 1.00 1.00 .000 1.00 1.00 1.00 1.00 .000
ecoli1 .848 .818 .806 .800 .769 .769 .764 .781 .795 .768
ecoli2 .699 .832 .833 .833 .815 .787 .737 .710 .759 .739
ecoli3 .991 .990 .990 .964 .994 .996 .990 .994 .974 .991
isolet .990 .988 .988 .988 .989 .988 .965 .980 .994 .992
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 .00
kddcup5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
led7digit1 .849 .841 .901 .848 .841 .756 .744 .713 .713 .782
letter 1.00 1.00 1.00 1.00 .998 1.00 .951 .996 1.00 1.00
libras .938 1.00 1.00 1.00 1.00 .995 1.00 1.00 .997 1.00
machine .952 .952 .946 .948 .919 .946 .801 .913 .952 .960
mgraphy .931 .919 .913 .905 .881 .898 .842 .876 .916 .932
oil .774 .793 .812 .788 .710 .768 .665 .686 .779 .773
ozone .794 .754 .775 .810 .546 .787 .371 .604 .779 .811
page1 1.00 1.00 1.00 1.00 .993 1.00 .925 1.00 1.00 1.00
poker1 .731 .909 .880 .916 .894 .929 .864 .880 .904 .892
poker2 .720 .991 .972 .979 .977 .980 .995 .830 .995 .738
poker3 .914 .996 .997 .998 .997 .993 .997 .972 .994 .920
scene .640 .675 .665 .641 .625 .659 .324 .619 .624 .645
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
solar1 .410 .423 .386 .372 .421 .386 .346 .421 .404 .392
spect .887 .957 .957 .959 .972 .934 .923 .979 .883 .953
stars .977 .965 .964 .964 .970 .956 .970 .965 .954 .970
thyroid .997 .994 .995 .991 .792 .996 .728 .687 .995 .995
uscrime .762 .791 .780 .774 .773 .771 .693 .741 .787 .777
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Best among different features combinations highlighted in bold

Table 17   (continued)

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

vowel 1.00 1.00 1.00 1.00 1.00 .999 .997 1.00 .999 1.00
webpage .944 .961 .961 .961 .960 .943 .928 .962 .948 .960
wine1 .737 .871 .881 .886 .917 .383 .809 .836 .889 .695
wine2 .433 .449 .462 .423 .442 .435 .504 .449 .473 .418
wine3 .568 .715 .698 .641 .505 .734 .370 .717 .637 .708
wine4 .852 .901 .870 .953 .879 .921 .890 .934 .824 .954
yeast1 .593 .638 .637 .635 .627 .623 .604 .626 .683 .617
yeast2 .873 .936 .954 .944 .927 .935 .873 .920 .899 .924
yeast3 .503 .536 .509 .505 .470 .736 .319 .479 .400 .508
yeast4 .770 .802 .781 .786 .767 .815 .491 .879 .586 .784
yeast5 .606 .393 .461 .414 .496 .422 .293 .360 .410 .406
yeast6 .345 .418 .371 .228 .271 .245 .438 .067 .181 .113
yeast7 .753 .643 .696 .717 .571 .623 .443 .731 .608 .770
yeast8 .976 .986 .989 .974 .983 .984 .879 .970 .972 .967
yeast9 .100 .490 .486 .748 .580 .280 .340 .635 .367 .627
yeast10 .857 .786 .812 .725 .674 .809 .587 .795 .807 .836
yeast11 .964 .973 .971 .975 .977 .975 .886 .980 .968 .983
yeast12 .842 .774 .834 .786 .768 .779 .597 .714 .911 .718
yeast13 .809 .846 .848 .769 .789 .832 .792 .851 .859 .846
yeast14 .150 .215 .245 .244 .201 .263 .123 .232 .234 .178
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Table 18   GM among various datasets obtained by LightGBM trained on different features combinations

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

abalone1 .244 .000 .000 .000 .000 .000 .000 .000 .000 .000
abalone2 .584 .441 .441 .441 .582 .441 .576 .255 .441 .446
abalone3 .350 .598 .598 .598 .602 .601 .000 .602 .638 .600
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 .997 1.00 1.00 1.00
abalone5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
abalone6 .517 .510 .509 .512 .513 .499 .338 .337 .516 .589
arrhythmia .685 .939 .939 .939 .996 .685 .447 .934 .872 .939
avila .976 .957 .916 .906 .406 .980 .352 .450 .966 .956
bank .615 .551 .575 .545 .497 .526 .390 .476 .562 .517
careval1 .951 .911 .883 .640 .621 .897 .310 .674 .870 .907
careval2 1.00 .917 .915 .862 .867 .914 .000 .830 .913 .887
cardio .121 .105 .089 .135 .127 .074 .091 .089 .094 .107
coil1 .219 .176 .192 .190 .140 .205 .175 .163 .217 .165
covtype .940 .939 .936 .935 .898 .939 .701 .895 .931 .939
derma1 1.00 1.00 1.00 1.00 1.00 .902 1.00 1.00 1.00 1.00
drybean 1.00 1.00 1.00 1.00 .000 1.00 .997 1.00 1.00 .000
ecoli1 .734 .877 .877 .872 .877 .877 .792 .802 .799 .877
ecoli2 .476 .581 .724 .724 .805 .704 .472 .805 .476 .805
ecoli3 .804 .917 .917 .809 .917 .917 .809 .804 .911 .917
isolet .914 .949 .949 .949 .946 .946 .789 .942 .907 .937
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup5 .908 1.00 1.00 1.00 1.00 1.00 1.00 .908 1.00 .908
led7digit1 .789 .735 .657 .657 .735 .734 .503 .734 .580 .734
letter .966 .984 .979 .976 .965 .982 .700 .965 .959 .981
libras .922 1.00 1.00 1.00 1.00 .833 1.00 1.00 .922 1.00
machine .821 .670 .706 .705 .600 .719 .328 .567 .781 .781
mgraphy .774 .735 .718 .710 .735 .766 .619 .705 .751 .758
oil .459 .459 .459 .459 .457 .459 .466 .456 .458 .544
ozone .000 .000 .000 .000 .000 .173 .000 .000 .000 .000
page1 1.00 .996 1.00 1.00 .780 1.00 .575 .920 1.00 1.00
poker1 .280 .264 .264 .567 .264 .264 .280 .428 .442 .252
poker2 .000 .863 .776 .777 .922 .777 .862 .746 .922 .749
poker3 .000 .751 .751 .751 .751 .751 .583 .373 .583 .365
scene .270 .410 .412 .512 .447 .359 .341 .484 .356 .456
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00
solar1 .311 .000 .000 .000 .187 .297 .000 .284 .000 .283
spect .882 .949 .949 .952 .920 .815 .840 .956 .836 .953
stars .918 .902 .885 .902 .915 .903 .887 .913 .887 .959
thyroid .952 .957 .951 .936 .481 .981 .376 .419 .944 .942
uscrime .612 .643 .664 .626 .643 .664 .328 .664 .594 .679
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Best among different features combinations highlighted in bold

Table 18   (continued)

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

vowel .961 1.00 1.00 1.00 .979 .996 .941 .979 .998 .979
webpage .789 .843 .842 .845 .838 .769 .797 .846 .806 .834
wine1 .000 .000 .000 .000 .000 .446 .000 .000 .000 .000
wine2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine4 .330 .537 .537 .662 .331 .537 .331 .538 .538 .537
yeast1 .761 .664 .663 .638 .665 .693 .672 .680 .740 .681
yeast2 .862 .888 .888 .888 .888 .888 .852 .884 .870 .905
yeast3 .550 .189 .308 .308 .419 .511 .419 .308 .558 .308
yeast4 .606 .704 .664 .704 .704 .608 .491 .756 .547 .671
yeast5 .275 .430 .238 .430 .429 .000 .000 .429 .000 .428
yeast6 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
yeast7 .417 .539 .539 .536 .539 .537 .000 .539 .420 .541
yeast8 .917 .924 .945 .805 .767 .920 .672 .837 .845 .837
yeast9 .000 .625 .625 .625 .625 .625 .625 .625 .625 .625
yeast10 .423 .525 .581 .526 .443 .442 .000 .524 .227 .439
yeast11 .780 .721 .707 .657 .658 .732 .667 .838 .541 .869
yeast12 .557 .431 .341 .341 .341 .564 .205 .341 .341 .432
yeast13 .455 .212 .348 .000 .212 .000 .000 .317 .429 .334
yeast14 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
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Table 19   F1 score among various datasets obtained by LightGBM trained on different features combina-
tions

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

abalone1 .154 .000 .000 .000 .000 .000 .000 .000 .000 .000
abalone2 .520 .361 .361 .361 .420 .361 .510 .188 .361 .369
abalone3 .196 .364 .364 .364 .468 .425 .000 .484 .606 .402
abalone4 1.00 1.00 1.00 1.00 1.00 1.00 .904 1.00 1.00 1.00
abalone5 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
abalone6 .355 .364 .346 .384 .404 .338 .225 .217 .351 .465
arrhythmia .641 .935 .935 .935 .942 .641 .369 .877 .860 .935
avila .961 .946 .902 .891 .273 .964 .219 .332 .955 .940
bank .480 .407 .432 .393 .348 .363 .231 .319 .415 .356
careval1 .904 .831 .808 .529 .506 .805 .184 .529 .816 .798
careval2 1.00 .829 .788 .709 .761 .807 .000 .704 .807 .799
cardio .029 .022 .016 .036 .031 .012 .017 .016 .018 .023
coil1 .081 .055 .065 .061 .040 .070 .053 .050 .075 .052
covtype .899 .900 .901 .899 .849 .899 .623 .842 .891 .901
derma1 1.00 1.00 1.00 1.00 1.00 .891 1.00 1.00 1.00 1.00
drybean .997 .997 .997 1.00 .000 .997 .994 .997 1.00 .000
ecoli1 .696 .866 .866 .814 .866 .866 .675 .778 .728 .866
ecoli2 .396 .518 .684 .684 .782 .658 .338 .782 .396 .782
ecoli3 .708 .910 .910 .786 .910 .910 .786 .712 .819 .910
isolet .880 .919 .920 .919 .919 .908 .757 .907 .872 .904
kddcup1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
kddcup5 .901 1.00 1.00 1.00 1.00 1.00 1.00 .901 1.00 .901
led7digit1 .615 .564 .505 .505 .564 .558 .334 .558 .412 .558
letter .965 .984 .979 .976 .960 .981 .654 .956 .956 .979
libras .917 1.00 1.00 1.00 1.00 .816 1.00 1.00 .917 1.00
machine .760 .582 .619 .618 .469 .630 .178 .429 .713 .702
mgraphy .680 .643 .627 .610 .647 .685 .486 .597 .664 .661
oil .326 .310 .326 .312 .286 .313 .298 .264 .297 .376
ozone .000 .000 .000 .000 .000 .084 .000 .000 .000 .000
page1 1.00 .936 1.00 1.00 .753 1.00 .430 .914 1.00 1.00
poker1 .204 .179 .195 .501 .179 .179 .188 .350 .312 .185
poker2 .000 .808 .712 .752 .918 .709 .793 .586 .872 .720
poker3 .000 .723 .723 .723 .723 .723 .540 .307 .479 .302
scene .139 .278 .268 .390 .315 .217 .208 .335 .225 .326
shuttle1 1.00 1.00 1.00 1.00 1.00 1.00 .961 1.00 1.00 1.00
shuttle2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .987 1.00 1.00
solar1 .154 .000 .000 .000 .076 .102 .000 .127 .000 .120
spect .813 .856 .856 .884 .882 .590 .793 .921 .758 .890
stars .984 .981 .979 .981 .981 .982 .981 .977 .981 .984
thyroid .899 .878 .886 .872 .335 .929 .234 .256 .876 .871
uscrime .454 .491 .520 .482 .503 .504 .175 .551 .427 .532
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Best among different features combinations highlighted in bold

Table 19   (continued)

Dataset X Xa X¬� X� Xf Xl Xfo Xfr XO XR

vowel .960 1.00 1.00 1.00 .979 .959 .938 .979 .977 .979
webpage .726 .772 .768 .773 .763 .693 .701 .767 .725 .759
wine1 .000 .000 .000 .000 .000 .411 .000 .000 .000 .000
wine2 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine3 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
wine4 .244 .435 .435 .621 .267 .435 .267 .477 .475 .435
yeast1 .683 .560 .549 .528 .568 .584 .601 .576 .663 .542
yeast2 .788 .853 .853 .853 .853 .853 .826 .810 .832 .858
yeast3 .400 .098 .192 .192 .302 .399 .302 .192 .456 .192
yeast4 .486 .635 .587 .635 .635 .540 .382 .697 .430 .594
yeast5 .170 .350 .170 .350 .323 .000 .000 .320 .000 .277
yeast6 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
yeast7 .261 .422 .422 .390 .422 .394 .000 .424 .301 .463
yeast8 .804 .858 .834 .724 .680 .808 .513 .715 .771 .717
yeast9 .000 .575 .575 .575 .575 .575 .575 .575 .575 .575
yeast10 .293 .353 .398 .380 .251 .312 .000 .339 .109 .261
yeast11 .687 .650 .664 .568 .603 .661 .472 .722 .408 .821
yeast12 .450 .327 .233 .233 .237 .440 .125 .237 .233 .328
yeast13 .305 .099 .191 .000 .094 .000 .000 .136 .277 .178
yeast14 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000
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Table 20   Average relative 
importance and ranks by 
category of features for froid: 
X original features, Xo OD over 
original, Xr FR over original, Xrr 
FR over FR, Xro OD over FR, Xoo 
OD over OD, Xrr FR over FR

Dataset X Xo Xr Xrr Xro Xor Xoo

abalone1 .09 .15 .14 .21 .12 .11 .19
abalone2 .09 .25 .03 .42 .08 .09 .04
abalone3 .15 .32 .09 .38 .01 .02 .03
abalone4 .42 .35 .00 .00 .23 .00 .00
abalone5 .06 .28 .12 .14 .11 .18 .11
abalone6 .11 .32 .05 .27 .06 .15 .05
arrhythmia .09 .00 .00 .91 .00 .00 .00
avila .45 .36 .02 .13 .02 .02 .01
bank .31 .19 .17 .13 .07 .08 .06
careval1 .15 .17 .24 .16 .06 .14 .09
careval2 .39 .04 .33 .17 .03 .03 .00
cardio .09 .06 .15 .55 .10 .02 .02
coil1 .17 .16 .15 .25 .04 .15 .07
covtype .58 .06 .21 .13 .02 .00 .00
derma1 .30 .00 .00 .70 .00 .00 .00
drybean .65 .00 .13 .22 .00 .00 .00
ecoli1 .22 .14 .24 .37 .00 .01 .00
ecoli2 .05 .04 .27 .61 .01 .02 .00
ecoli3 .16 .01 .57 .16 .00 .08 .01
isolet .23 .04 .11 .30 .31 .01 .00
kddcup1 .02 .98 .00 .00 .00 .00 .00
kddcup2 1.00 .00 .00 .00 .00 .00 .00
kddcup3 .68 .32 .00 .00 .00 .00 .00
kddcup4 .00 1.00 .00 .00 .00 .00 .00
kddcup5 .01 .99 .00 .00 .00 .00 .00
led7digit1 .00 .09 .56 .29 .04 .02 .00
letter .70 .03 .20 .05 .01 .01 .00
libras .01 .00 .00 .97 .00 .01 .00
machine .39 .20 .21 .11 .01 .05 .03
mgraphy .25 .09 .44 .07 .03 .09 .02
oil .34 .08 .39 .11 .04 .02 .03
ozone .75 .11 .02 .04 .00 .06 .02
page1 .27 .02 .36 .35 .00 .00 .00
poker1 .00 .57 .08 .03 .14 .08 .09
poker2 .01 .26 .03 .01 .01 .52 .17
poker3 .01 .64 .01 .07 .01 .24 .02
scene .61 .01 .09 .21 .05 .01 .02
shuttle1 1.00 .00 .00 .00 .00 .00 .00
shuttle2 1.00 .00 .00 .00 .00 .00 .00
solar1 .00 .20 .30 .26 .08 .13 .01
spect .30 .19 .20 .21 .09 .01 .01
stars .08 .09 .03 .68 .07 .02 .02
thyroid .70 .07 .09 .12 .02 .00 .01
uscrime .45 .06 .03 .35 .03 .06 .02
vowel .07 .58 .22 .10 .01 .03 .00
webpage .06 .05 .13 .68 .03 .03 .02
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Table 20   (continued) Dataset X Xo Xr Xrr Xro Xor Xoo

wine1 .11 .25 .05 .38 .03 .09 .09
wine2 .24 .24 .11 .18 .05 .13 .05
wineq3 .27 .25 .08 .12 .04 .12 .12
wine4 .15 .33 .09 .21 .07 .09 .05
yeast1 .02 .12 .41 .26 .05 .11 .03
yeast2 .04 .06 .56 .19 .03 .10 .01
yeast3 .04 .23 .33 .20 .05 .08 .07
yeast4 .13 .20 .40 .14 .02 .04 .08
yeast5 .10 .12 .25 .24 .12 .10 .08
yeast6 .11 .17 .21 .17 .01 .12 .21
yeast7 .10 .11 .26 .24 .03 .11 .16
yeast8 .25 .01 .31 .35 .01 .03 .04
yeast9 .02 .03 .51 .08 .24 .07 .05
yeast10 .16 .19 .24 .28 .04 .05 .04
yeast11 .30 .04 .47 .11 .03 .02 .02
yeast12 .04 .08 .53 .18 .03 .12 .03
yeast13 .27 .11 .35 .10 .03 .10 .04
yeast14 .59 .12 .07 .11 .03 .04 .05
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Table 21   PRA for various datasets obtained by LightGBM trained after different pre-processing methods

Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

abalone1 .115 .098 .078 .��� .031 .048 .036 .042 .111 .107 .103 .072
abalone2 .��� .521 .564 .508 .014 .345 .330 .416 .327 .359 .343 .366
abalone3 .596 .665 .475 .589 .022 .��� .718 .644 .765 .816 .832 .579
abalone4 �.�� �.�� �.�� �.�� .032 �.�� �.�� �.�� �.�� .837 �.�� �.��

abalone5 .043 .105 .074 .061 .067 .117 .054 .037 .056 .052 .��� .063
abalone6 .380 .��� .441 .457 .197 .386 .396 .401 .403 .411 .323 .400
arrhythmia .924 .��� .901 .923 .058 .891 .881 .892 .890 .890 .895 .899
avila .992 .983 .985 .984 .518 .991 .974 .��� .994 .995 .989 .974
bank .517 .511 .482 .511 .497 .462 .507 .487 .504 .492 .��� .522
careval1 .944 .909 .923 .��� .820 .932 .941 .959 .959 .960 .��� .959
careval2 �.�� .820 .949 �.�� .638 .967 �.�� �.�� �.�� �.�� �.�� �.��

cardio .��� .188 nan .200 .184 .160 .201 .202 .176 .181 .186 .200
coil .130 .132 .130 .118 .106 .126 .131 .129 .126 .125 .126 .���

covtype .955 .��� .951 .947 .889 .941 .931 .949 .923 .948 .946 .934
derma1 �.�� �.�� �.�� .956 .055 .956 .956 �.�� .956 .956 �.�� .956
drybean .999 �.�� .994 .983 �.�� �.�� �.�� �.�� �.�� �.�� .994 .977
ecoli1 .870 .��� .840 .874 .138 .765 .849 .852 .830 .776 .849 .878
ecoli2 .528 .778 .641 .647 .084 .668 .789 .695 .696 .745 .799 .���

ecoli3 .936 .949 .��� .922 .062 .��� .950 .948 .937 .946 .946 .939
isolet .961 .��� .951 .958 .884 .934 .959 .955 .945 .955 .961 .956
kddcup1 �.�� �.�� �.�� �.�� .665 .665 �.�� .955 �.�� �.�� �.�� �.��

kddcup2 �.�� �.�� �.�� �.�� �.�� .890 �.�� �.�� nan �.�� �.�� �.��

kddcup3 �.�� �.�� �.�� �.�� .019 �.�� �.�� �.�� nan �.�� �.�� �.��

kddcup4 �.�� �.�� �.�� �.�� .012 �.�� �.�� �.�� �.�� �.�� �.�� �.��

kddcup5 �.�� �.�� �.�� �.�� .010 .558 �.�� �.�� �.�� �.�� �.�� �.��

led7digit1 .615 .��� .520 .582 .230 .496 .569 .505 .564 .595 .634 .571
letter .996 .996 .995 .992 .985 .��� .995 .994 .995 .��� .996 .996
libras .895 �.�� .954 .893 .064 .884 .902 .894 .875 .887 .883 .889
machine .788 .734 .798 .817 .589 .668 .796 .��� .800 .780 .821 .793
mgraphy .752 .712 .766 .743 .553 .267 .��� .035 .729 .766 .770 .764
oil .390 .350 .397 .423 .237 .��� .413 .409 .478 .439 .463 .434
ozone .276 .��� .252 .177 .183 .173 .197 .206 .274 .253 .265 .213
page1 �.�� �.�� �.�� �.�� .201 �.�� �.�� �.�� �.�� �.�� �.�� �.��

poker1 .350 .��� .409 .229 .013 .116 .302 .224 .094 .078 .207 .302
poker2 .078 .890 .813 .102 .018 .771 .332 �.�� .958 .938 .381 �.��

poker3 .188 .906 .787 .737 .012 .936 �.�� �.�� �.�� �.�� �.�� �.��

scene .331 .��� .355 .313 .240 .322 .342 .353 .329 .325 .341 .337
shuttle1 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

shuttle2 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

solar1 .136 .128 .090 .095 .��� .106 .105 .151 .124 .118 .127 .164
spect .865 .898 .835 .863 .800 .790 .871 .883 .793 .843 .��� .753
stars .998 .997 .996 .997 .996 .997 .998 .997 .998 .��� .��� .998
tyroid .975 .960 .966 .974 .897 .944 .980 .��� .977 .970 .975 .981
uscrime .512 .529 .524 .531 .460 .545 .525 .536 .518 .533 .539 .���
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The best approach for each dataset is highlighted in bold

Table 21   (continued)

Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

vowel0 �.�� �.�� .989 .995 .989 �.�� .992 .999 �.�� �.�� .985 �.��

webpage .810 .848 .811 .831 .587 .727 .��� .856 .754 .788 .787 .873
wine1 .208 .391 .��� .193 .015 .284 .137 .143 .307 .266 nan .127
wine2 .088 .125 .098 .077 .118 .079 .077 .069 .��� .131 .120 .090
wine3 .069 .122 .115 .084 .021 .125 .107 .063 .��� .126 .090 .129
wine4 .520 .586 .��� .292 .023 .264 .371 .435 .380 .334 .573 .760
yeast1 .611 .601 .681 .632 .610 .618 .697 .663 .557 .583 .654 .���

yeast2 .815 .915 .��� .865 .696 .776 .853 .830 .828 .883 .866 .833
yeast3 .410 .393 .465 .522 .435 .��� .523 .545 .511 .504 .481 .522
yeast4 .592 .��� .632 .664 .704 .664 .730 .690 .635 .674 .675 .723
yeast5 .246 .418 .��� .250 .131 .211 .323 .423 .298 .236 .335 .249
yeast6 .188 .114 .083 .��� .092 .086 .149 .206 .148 .128 .116 .147
yeast7 .403 .491 .437 .467 .190 .304 .419 .424 .383 .395 .��� .429
yeast8 .907 .��� .892 .875 .850 .845 .891 .890 .889 .849 .907 .915
yeast9 .114 .554 .476 .532 .042 .519 .544 .517 .537 .565 .��� .553
yeast10 .446 .321 .408 .509 .187 .496 .485 .��� .500 .518 .405 .411
yeast11 .731 .812 .833 .771 .601 .786 .774 .723 .817 .800 .804 .���

yeast12 .663 .493 .414 .664 .246 .635 .��� .610 .570 .549 .652 .575
yeast13 .301 .240 .328 .258 .196 .��� .320 .307 .240 .291 .370 .317
yeast14 .096 .110 .091 .101 .141 .129 .110 .��� .102 .100 .098 .110
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Table 22   GINI for various datasets obtained by LightGBM trained after different pre-processing methods

Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

abalone1 .131 .348 .��� .194 .118 .192 .172 .273 .232 .314 .239 .211
abalone2 .��� .901 .869 .627 .000 .841 .796 .874 .768 .772 .913 .834
abalone3 .967 .963 .958 .891 .000 .��� .982 .957 .926 .974 .980 .969
abalone4 �.�� �.�� �.�� �.�� .000 �.�� �.�� �.�� �.�� .993 �.�� �.��

abalone5 .582 .647 .575 .422 .591 .701 .623 .584 .��� .710 .640 .588
abalone6 .642 .��� .643 .709 .632 .582 .486 .592 .545 .600 .465 .698
arrhythmia .986 .��� .921 .975 .000 .807 .876 .943 .788 .782 .878 .907
avila �.�� �.�� �.�� �.�� .992 �.�� �.�� �.�� �.�� �.�� �.�� .999
bank .801 .779 .782 .803 .770 .782 .803 .807 .786 .785 .801 .���

careval1 .990 .985 .987 .��� .973 .989 .992 .993 .993 .992 .��� .���

careval2 �.�� .987 .995 �.�� .971 .997 �.�� �.�� �.�� �.�� �.�� �.��

cardio .588 .578 nan .578 .571 .541 .��� .600 .557 .564 .575 .595
coil .409 .420 .383 .372 .354 .420 .��� .411 .393 .403 .417 .409
covtype .984 .��� .987 .984 .979 .981 .980 .987 .983 .983 .986 .981
derma1 �.�� �.�� �.�� .993 .000 .993 .993 �.�� .993 .993 �.�� .993
drybean �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

ecoli1 .848 .818 .826 .840 .314 .780 .838 .859 .��� .794 .864 .862
ecoli2 .699 .832 .817 .662 .000 .833 .835 .835 .637 .732 .839 .���

ecoli3 .991 .990 .��� .988 .000 .��� .990 .990 .986 .989 .989 .987
isolet .990 .988 .990 .991 .971 .986 .990 .990 .986 .991 .��� .989
kddcup1 �.�� �.�� �.�� �.�� .993 .993 �.�� .999 �.�� �.�� �.�� �.��

kddcup2 �.�� �.�� �.�� �.�� �.�� .996 �.�� �.�� nan �.�� �.�� �.��

kddcup3 �.�� �.�� �.�� �.�� .000 �.�� �.�� �.�� nan �.�� �.�� �.��

kddcup4 �.�� �.�� �.�� �.�� .000 �.�� �.�� �.�� �.�� �.�� �.�� �.��

kddcup5 �.�� �.�� �.�� �.�� .000 .992 �.�� �.�� �.�� �.�� �.�� �.��

led7digit1 .849 .841 .625 .831 .621 .851 .838 .��� .823 .855 .850 .841
letter �.�� �.�� �.�� .999 .998 �.�� .999 .999 �.�� �.�� �.�� �.��

libras .938 �.�� .992 .933 .000 .890 .953 .936 .772 .907 .886 .917
machine .952 .952 .954 .962 .937 .928 .954 .962 .950 .943 .958 .���

mgraphy .931 .919 .913 .898 .915 .520 .945 .355 .922 .��� .942 .909
oil .774 .793 .735 .662 .698 .��� .710 .785 .751 .743 .806 .804
ozone .794 .754 .802 .726 .675 .786 .724 .708 .��� .801 .812 .789
page1 �.�� �.�� �.�� �.�� .690 �.�� �.�� �.�� �.�� �.�� �.�� �.��

poker1 .731 .��� .863 .425 .000 .450 .662 .589 .727 .779 .863 .739
poker2 .720 .991 .985 .197 .000 .963 .847 �.�� .998 .996 .916 �.��

poker3 .914 .996 .993 .986 .000 .998 �.�� �.�� �.�� �.�� �.�� �.��

scene .640 .��� .637 .595 .636 .587 .625 .662 .626 .645 .658 .665
shuttle1 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

shuttle2 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

solar1 .410 .��� .324 .310 .410 .404 .361 .420 .374 .340 .397 .���

spect .887 .957 .910 .861 .917 .823 .851 .946 .832 .��� .956 .899
stars .977 .965 .950 .962 .958 .962 .974 .969 .980 .981 .��� .973
tyroid .997 .994 .996 .996 .986 .992 .997 .��� .997 .996 .997 .997
uscrime .762 .791 .778 .801 .750 .789 .763 .797 .802 .794 .782 .���
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The best approach for each dataset is highlighted in bold

Table 22   (continued)

Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

vowel0 �.�� �.�� .998 .999 .997 �.�� .998 �.�� �.�� �.�� .995 �.��

webpage .944 .961 .963 .966 .927 .960 .��� .968 .950 .956 .951 .970
wine1 .737 .��� .859 .494 .000 .703 .402 .659 .761 .780 nan .620
wine2 .433 .449 .447 .321 .286 .346 .402 .293 .452 .��� .375 .453
wine3 .568 .715 .533 .617 .000 .698 .��� .454 .742 .607 .584 .745
wine4 .852 .901 .��� .815 .000 .529 .804 .913 .721 .782 .891 .887
yeast1 .593 .638 .679 .704 .540 .714 .��� .714 .638 .653 .708 .735
yeast2 .873 .936 .924 .949 .837 .940 .��� .950 .946 .953 .954 .948
yeast3 .503 .536 .479 .481 .��� .576 .502 .508 .467 .522 .521 .510
yeast4 .770 .802 .694 .795 .��� .831 .807 .770 .851 .832 .758 .842
yeast5 .606 .393 .461 .��� .394 .511 .596 .655 .646 .570 .595 .494
yeast6 .345 .��� .215 .346 .408 .192 .327 .369 .345 .319 .317 .328
yeast7 .753 .643 .697 .765 .278 .459 .782 .766 .606 .584 .��� .715
yeast8 .976 .��� .977 .972 .964 .958 .975 .973 .974 .967 .978 .980
yeast9 .100 .490 .402 .581 .000 .580 .625 .546 .663 .692 .��� .635
yeast10 .857 .786 .��� .724 .765 .840 .854 .837 .835 .785 .839 .852
yeast11 .964 .973 .956 .844 .958 .969 .840 .966 .975 .974 .974 .���

yeast12 .842 .774 .696 .725 .749 .882 .828 .850 .829 .841 .648 .���

yeast13 .809 .846 .��� .760 .768 .752 .812 .800 .773 .752 .796 .827
yeast14 .150 .215 .188 .187 .284 .207 .278 .275 .174 .152 .218 .���
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Table 23   GM for various datasets obtained by LightGBM trained after different pre-processing methods

Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

abalone1 .��� .000 .000 .000 .000 .000 .000 .000 .��� .000 .243 .000
abalone2 .584 .441 .441 .584 .000 .��� .254 .255 .439 .254 .254 .255
abalone3 .350 .598 .601 .604 .000 .��� .344 .602 .807 .807 .807 .602
abalone4 �.�� �.�� �.�� �.�� .000 �.�� �.�� .997 �.�� .997 �.�� �.��

abalone5 .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .���

abalone6 .517 .510 .500 .433 .000 .440 .431 .224 .635 .��� .429 .224
arrhythmia .685 .��� .706 .544 .000 .938 .691 .427 .706 .796 .427 .691
avila .976 .957 .950 .971 .��� .966 .976 .967 .966 .980 .961 .000
bank .615 .551 .553 .407 .��� .464 .224 .237 .325 .351 .427 .235
careval1 .951 .911 .828 .951 .832 .��� .915 .887 .927 .939 .885 .903
careval2 �.�� .917 .915 �.�� .000 .942 .973 .973 .971 �.�� .915 .973
cardio .121 .105 nan .000 .��� .000 .055 .000 .000 .000 .035 .000
coil .219 .176 .217 .091 .��� .085 .000 .000 .000 .000 .000 .000
covtype .940 .939 .930 .904 .939 .891 .��� .743 .825 .884 .891 .681
derma1 �.�� �.�� .902 .902 .000 .902 .902 �.�� .902 .902 .984 .902
drybean �.�� �.�� �.�� �.�� .999 �.�� �.�� .997 �.�� �.�� �.�� �.��

ecoli1 .734 .��� .816 .872 .000 .793 .872 .738 .798 .798 .872 .648
ecoli2 .476 .581 .473 .474 .000 .597 .��� .474 .600 .597 .600 .724
ecoli3 .804 .��� .��� .809 .000 .911 .809 .��� .809 .��� .��� .809
isolet .914 .��� .912 .870 .948 .929 .919 .849 .856 .851 .898 .818
kddcup1 �.�� �.�� �.�� �.�� .997 .997 �.�� .865 �.�� �.�� �.�� �.��

kddcup2 �.�� �.�� �.�� �.�� �.�� .998 �.�� �.�� nan �.�� �.�� �.��

kddcup3 �.�� �.�� �.�� �.�� .000 �.�� �.�� �.�� nan �.�� �.�� �.��

kddcup4 �.�� �.�� �.�� �.�� .000 �.�� �.�� �.�� �.�� �.�� �.�� �.��

kddcup5 .908 �.�� �.�� �.�� .000 .996 �.�� �.�� .999 �.�� �.�� �.��

led7digit1 .��� .735 .734 .734 .000 .��� .416 .786 .414 .737 .��� .414
letter .966 .��� .964 .959 .963 .943 .940 .906 .932 .940 .950 .905
libras .922 �.�� .739 .739 .000 .919 .833 .833 .837 .918 .922 .837
machine .821 .670 .792 .766 .��� .532 .527 .564 .731 .722 .767 .527
mgraphy .774 .735 .759 .695 .��� .600 .687 .426 .630 .658 .715 .596
oil .459 .459 .466 .459 .539 .��� .459 .459 .557 .460 .459 .459
ozone .000 .000 .275 .000 .��� .162 .000 .000 .169 .163 .000 .149
page1 �.�� .996 �.�� �.�� .000 �.�� �.�� �.�� .996 .996 �.�� .996
poker1 .280 .264 .��� .000 .000 .000 .000 .000 .000 .000 .000 .000
poker2 .000 .863 .699 .000 .000 .281 .000 .250 .821 .��� .000 .611
poker3 .000 .751 .583 .891 .000 .744 .583 .340 .875 .875 .340 �.��

scene .270 .410 .383 .270 .��� .482 .270 .270 .338 .302 .305 .229
shuttle1 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

shuttle2 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

solar1 .311 .000 .000 .000 .000 .��� .000 .000 .000 .000 .000 .000
spect .882 .��� .834 .830 .745 .856 .784 .784 .832 .878 .875 .781
stars .918 .902 .851 .932 .912 .906 .899 .917 .932 .922 .��� .���

tyroid .952 .957 .945 .960 .��� .942 .947 .940 .953 .960 .946 .893
uscrime .612 .643 .625 .617 .��� .685 .595 .614 .612 .627 .629 .534
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The best approach for each dataset is highlighted in bold

Table 23   (continued)

Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

vowel0 .961 �.�� .976 .980 .975 .998 .980 .982 .982 .999 .976 �.��

webpage .789 .��� .767 .723 .757 .663 .835 .563 .445 .521 .569 .535
wine1 .000 .000 .��� .000 .000 .000 .000 .000 .000 .000 nan .000
wine2 .000 .000 .000 .000 .195 .��� .000 .000 .000 .000 .197 .000
wine3 .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .���

wine4 .330 .537 .��� .000 .000 .319 .331 .515 .000 .330 .331 .662
yeast1 .761 .664 .759 .722 .746 .714 .642 .589 .692 .691 .��� .615
yeast2 .862 .888 .��� .906 .894 .896 .799 .865 .859 .882 .886 .906
yeast3 .550 .189 .556 .506 .660 .��� .421 .508 .421 .418 .418 .419
yeast4 .606 .��� .547 .510 .664 .667 .510 .437 .569 .560 .560 .625
yeast5 .275 .430 .��� .457 .000 .456 .279 .000 .279 .000 .��� .279
yeast6 .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .���

yeast7 .417 .539 .539 .532 .000 .392 .419 .419 .415 .415 .��� .417
yeast8 .917 .��� .921 .917 .764 .867 .840 .886 .880 .921 .914 .840
yeast9 .000 .��� .��� .293 .000 .��� .��� .��� .000 .293 .��� .���

yeast10 .423 .525 .577 .418 .595 .��� .350 .205 .520 .524 .515 .205
yeast11 .780 .721 .868 .780 .442 .��� .780 .735 .868 .828 .725 .868
yeast12 .557 .431 .341 .658 .205 .��� .473 .473 .346 .528 .552 .197
yeast13 .455 .212 .363 .365 .204 .��� .226 .000 .365 .454 .455 .226
yeast14 .000 .000 .000 .000 .��� .114 .000 .000 .000 .000 .000 .000
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Table 24   F1 for various datasets obtained by LightGBM trained after different pre-processing methods

Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

abalone1 .��� .000 .000 .000 .000 .000 .000 .000 .144 .000 .125 .000
abalone2 .��� .361 .361 .��� .000 .395 .164 .188 .281 .163 .149 .188
abalone3 .196 .364 .425 .��� .000 .536 .307 .478 .491 .493 .491 .478
abalone4 �.�� �.�� �.�� �.�� .000 �.�� �.�� .904 �.�� .904 �.�� �.��

abalone5 .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .���

abalone6 .355 .364 .354 .317 .000 .249 .300 .138 .438 .��� .269 .128
arrhythmia .641 .��� .661 .474 .000 .934 .645 .346 .661 .771 .346 .645
avila .961 .946 .934 .960 .457 .937 .��� .961 .946 .��� .950 .000
bank .480 .407 .403 .266 .��� .315 .094 .104 .176 .203 .282 .103
careval1 .��� .831 .780 .��� .756 .895 .878 .847 .891 .891 .845 .864
careval2 �.�� .829 .847 �.�� .000 .895 .972 .972 .971 �.�� .911 .972
cardio .029 .022 nan .000 .��� .000 .007 .000 .000 .000 .004 .000
coil .081 .055 .074 .021 .��� .019 .000 .000 .000 .000 .000 .000
covtype .899 .��� .891 .873 .844 .856 .857 .708 .791 .858 .864 .630
derma1 �.�� �.�� .891 .891 .000 .891 .891 �.�� .891 .891 .775 .891
drybean .997 .997 .997 .997 .987 �.�� .997 .991 .997 �.�� .997 .997
ecoli1 .696 .��� .796 .814 .000 .681 .814 .704 .729 .729 .814 .592
ecoli2 .396 .518 .362 .366 .000 .490 .��� .366 .536 .496 .536 .684
ecoli3 .708 .��� .��� .786 .000 .819 .786 .��� .786 .��� .��� .786
isolet .880 .��� .871 .843 .783 .874 .885 .821 .827 .826 .877 .794
kddcup1 �.�� �.�� �.�� �.�� .791 .791 �.�� .796 �.�� �.�� �.�� �.��

kddcup2 �.�� �.�� �.�� �.�� �.�� .940 �.�� �.�� nan �.�� �.�� �.��

kddcup3 �.�� �.�� �.�� �.�� .000 �.�� �.�� �.�� nan �.�� �.�� �.��

kddcup4 �.�� �.�� �.�� �.�� .000 �.�� �.�� �.�� �.�� �.�� �.�� �.��

kddcup5 .901 �.�� �.�� �.�� .000 .704 �.�� �.�� .928 �.�� �.�� �.��

led7digit1 .615 .564 .558 .558 .000 .��� .321 .592 .300 .585 .615 .300
letter .965 .��� .959 .958 .933 .941 .938 .901 .930 .938 .948 .901
libras .917 �.�� .703 .703 .000 .861 .816 .816 .820 .857 .917 .820
machine .��� .582 .722 .718 .554 .419 .432 .483 .693 .669 .710 .429
mgraphy .��� .643 .672 .621 .546 .071 .610 .037 .535 .574 .639 .520
oil .326 .310 .311 .326 .306 .��� .326 .326 .430 .331 .326 .326
ozone .000 .000 .154 .000 .��� .053 .000 .000 .079 .073 .000 .073
page1 �.�� .936 �.�� �.�� .000 �.�� �.�� �.�� .940 .940 �.�� .936
poker1 .204 .179 .��� .000 .000 .000 .000 .000 .000 .000 .000 .000
poker2 .000 .808 .659 .000 .000 .209 .000 .177 .804 .��� .000 .551
poker3 .000 .723 .540 .711 .000 .719 .526 .277 .865 .865 .277 �.��

scene .139 .278 .248 .141 .267 .��� .141 .141 .197 .163 .171 .108
shuttle1 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

shuttle2 �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

solar1 .154 .000 .000 .000 .000 .��� .000 .000 .000 .000 .000 .000
spect .813 .��� .738 .755 .660 .679 .702 .702 .757 .780 .806 .678
stars .984 .981 .976 .984 .961 .956 .979 .968 .969 .974 .��� .975
tyroid .899 .878 .891 .902 .791 .868 .��� .913 .��� .913 .908 .874
uscrime .454 .491 .454 .��� .493 .483 .456 .468 .472 .490 .469 .425
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Dataset orig froid xgbod rove rund cure rbo ccr adasyn smote svmsmt swim

vowel0 .960 �.�� .924 .967 .919 .984 .967 .982 .982 .986 .927 �.��

webpage .726 .772 .699 .670 .615 .576 .��� .482 .328 .424 .485 .446
wine1 .000 .000 .��� .000 .000 .000 .000 .000 .000 .000 nan .000
wine2 .000 .000 .000 .000 .079 .��� .000 .000 .000 .000 .111 .000
wine3 .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .��� .���

wine4 .244 .435 .��� .000 .000 .172 .267 .338 .000 .222 .267 .621
yeast1 .683 .560 .682 .636 .591 .503 .552 .496 .580 .589 .��� .528
yeast2 .788 .853 .��� .861 .778 .780 .728 .802 .749 .797 .790 .860
yeast3 .400 .098 .435 .399 .496 .��� .319 .419 .319 .287 .287 .303
yeast4 .486 .��� .428 .424 .586 .524 .421 .337 .423 .464 .464 .541
yeast5 .170 .350 .��� .316 .000 .279 .183 .000 .179 .000 .��� .167
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yeast10 .293 .353 .��� .313 .241 .381 .239 .116 .359 .362 .374 .116
yeast11 .687 .650 .��� .687 .329 .743 .687 .666 .��� .742 .623 .���

yeast12 .450 .327 .233 .��� .111 .��� .385 .385 .231 .423 .446 .128
yeast13 .305 .099 .180 .219 .102 .��� .118 .000 .219 .279 .305 .134
yeast14 .000 .000 .000 .000 .��� .037 .000 .000 .000 .000 .000 .000
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