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Abstract
Random forest (RF) is one of the most popular parallel ensemble methods, using decision 
trees as classifiers. One of the hyper-parameters to choose from for RF fitting is the node-
size, which determines the individual tree size. In this paper, we begin with the observation 
that for many data sets (34 out of 58), the best RF prediction accuracy is achieved when the 
trees are grown fully by minimizing the nodesize parameter. This observation leads to the 
idea that prediction accuracy could be further improved if we find a way to generate even 
bigger trees than the ones with a minimum nodesize. In other words, the largest tree cre-
ated with the minimum nodesize parameter may not be sufficiently large for the best per-
formance of RF. To produce bigger trees than those by RF, we propose a new classification 
ensemble method called double random forest (DRF). The new method uses bootstrap on 
each node during the tree creation process, instead of just bootstrapping once on the root 
node as in RF. This method, in turn, provides an ensemble of more diverse trees, allowing 
for more accurate predictions. Finally, for data where RF does not produce trees of suffi-
cient size, we have successfully demonstrated that DRF provides more accurate predictions 
than RF.
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1  Introduction

The ensemble method combines multiple different models to achieve better prediction 
accuracy for classification and regression (Dietterich 2000). Ensemble methods gener-
ally perform better than single fitted models  (Hansen and Salamon 1990). Because of 
the good performance, ensemble methods are widely used in machine learning and sta-
tistics community (Breiman 1996; Freund and Schapire 1996; Bauer and Kohavi 1999; 
Amaratunga et al. 2008; Wolf et al. 2010). Classification ensemble methods consist of 
several classifiers, typically decision trees. The well-known methodologies of classifi-
cation ensemble are Boosting  (Freund and Schapire 1996; Schapire 1990; Freund and 
Schapire 1997), Bagging  (Breiman 1996), Random Forest  (Breiman 2001), Gradient 
Boosting  (Mason et  al. 1999; Hastie et  al. 2009), and XGBoost (Chen and Guestrin 
2016).

Random forest (RF) is a widely used method in various fields because it has many 
advantages over other classification ensemble methods. RF is fast in both training and pre-
diction, resistant to label noise and outliers, has multi-class capabilities, is well suited for 
parallel processing and delivers superior performance for high-dimensional data  (Hastie 
et al. 2013; Friedman et al. 2001).

Choosing appropriate hyper-parameters is critical for improving RF performance. Typi-
cal parameters are number of trees (ntree), number of candidate features (mtry), sample 
size (samplesize), and tree size (nodesize). Various studies have been carried out on the 
effect of different parameters on RF performance. Probst and Boulesteix (2018), Freeman 
et al. (2015) and Huang and Paul (2016) examined the sensitivity of the parameters. Ban-
field et al. (2007), Hernandez-Lobato et al. (2013) and Oshiro et al. (2012) tested the effect 
of the number of trees. Boulesteix et al. (2012) and Han and Kim (2019) proposed methods 
for selecting the appropriate number of candidate features.  Martínez-Muñoz and Suárez 
(2010) studied on the estimation of sample size for Bagging. Lin and Jeon (2012) devel-
oped the idea of combining RF with the adaptive nearest neighbors to estimate the tree 
size.

This paper is about developing a new ensemble method that surpass RF. The idea stems 
from the question whether a tree of sufficiently large size is being generated during the RF 
process. The classification ensemble method proposed in this paper is called DRF, which 
will be explained in detail in subsequent sections. Section 2 reviews the original RF and 
provides motivation for this research. The novel algorithm of the new classification ensem-
ble method is described in Sect. 3. In Sect. 4, we extend the previous motivational experi-
ments to compare the performance of DRF and RF in terms of accuracy and tree size. 
We compare the prediction accuracy of DRF and other classification ensemble methods in 
Sect. 5. Section 6 concludes this study.

2 � Motivation

2.1 � Random forest

Random forest (RF)  (Breiman 2001) completes the ensemble by creating trees on the 
bootstrap data. When constructing the trees, the RF algorithm chooses the optimal split 
among a randomly selected set of features for every intermediate nodes. It is well known 
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that RF improves prediction accuracy because it produces more diverse and less correlated 
trees (Breiman 2001; Banfield et al. 2007). Algorithm 1 describes the RF algorithm.

2.2 � The tree size effect on random forest

Trees created with RF are usually made to full size without pruning (Breiman 2001). This 
is because usually the lower bias is obtained when each tree grows to its maximum size. 
Along with the variance reduction effect of the ensemble, the bias reduction is expected to 
ultimately improve the classification accuracy.

In the randomForest package of R program, nodesize and maxnodes parameters control 
the tree size of RF, where nodesize is the minimum number of cases a terminal node should 
hold and maxnodes is the maximum number of terminal nodes allowed in a tree. Thus, if 
nodesize is small and maxnodes is large, the tree will grow large. The default value for 
nodesize is 1 in classification and 5 in regression, and maxnodes defaults to NULL which 
means that there is no limit on the maximum number of nodes. It is empirically known that 
using these defaults yields good RF performance (Huang and Paul 2016).

As a motivational example, an experiment was conducted to investigate the effect of tree 
size on RF performance using ‘mnist’ data, which is often used for classification problems 
in the field of machine learning. The ‘mnist’ data consist of images of handwritten digits 
0–9, represented by a grid of 28 × 28 pixels. From the modeling point of view, this data is 
interpreted as having 10 classes and 784 variables. The training and test sets have 60,000 
and 10,000 instances, respectively. Figure 1 is an example of the ‘mnist’ dataset.

The design of the experiment is as follows. Using the approach of Larochelle et  al. 
(2012), we fit and evaluate the RF model. That is, the training data is divided into six 
pieces, each consisting of 10,000 instances. Five pieces are collected to construct a learning 
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sample for fitting, and the original test set is used for evaluation. This process is repeated 
six times, in which all combinations are formed.

To investigate the effect of tree size on RF performance, various nodesize values were 
used, namely nodesize = (0.1n, 0.09n,… , 0.01n , 0.005n, 0.001n, default), where n is the 
number of instances in the training set, and the default is 1. The number of trees in RF is 
set to 200 to allow sufficient model fit. Other parameters in the randomForest R package 
were left at their default values.

The result of the experiment was summarized in Fig. 2. The horizontal axis represents 
nodesize value and the vertical axis represents the accuracy of the test data. The boxplot in 
the figure is drawn using the test accuracy obtained from six repeated experiments.

First, we noticed that RF performance was heavily influenced by the nodesize option. 
Second, as the value of nodesize decreases, that is, as the tree size increases, the test accu-
racy gradually improves. Thus, in the case of the ‘mnist’ dataset, the best RF performance 
was when the tree size is maximized. If RF is able to construct even bigger trees, can the 
prediction accuracy be further improved? If so, the current RF algorithm has a limitation 

Fig. 1   Examples of ‘mnist’ data
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Fig. 2   Box-plot of the test accuracy of random forest for each nodesize using ‘mnist’ data
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that the tree size is not large enough for the ‘mnist’ dataset. In other words, even the largest 
fitting provided by RF is under-fitting in the ‘mnist’ dataset. This question motivated us to 
develop a new classification ensemble method to overcome the limitation of the RF algo-
rithm in terms of tree size.

3 � Double random forest (DRF)

We propose a new classification ensemble method called “Double Random Forest” (DRF) 
to improve the RF performance when RF under-fits the data.

First, DRF uses the whole training data to grow a decision tree at each stage of ensem-
ble. This is in contrast to RF that constructs individual trees using random bootstrap sam-
ples from the training set. This means that in DRF, all trees are created with the same data 
from the beginning, whereas in RF, the trees are created with different data having fewer 
unique instances. Note that the number of unique instances of the bootstrap sample is about 
1 − e−1 ≈ 0.632 times of the training data. It is obvious that the more unique instances you 
have, the easier it is to create larger trees. Therefore, the DRF ensemble tends to consist of 
larger trees, compared to RF.

Second, DRF uses the bootstrap sampling momentarily for each intermediate node, 
including the root node, only to find the partitioning rule. In addition, a random subset of 
the features is also selected as in RF. Finally, DRF searches for the best partitioning rules 
by using a random bootstrap of instances and a random subset of features on each node of 
the tree. Once the partitioning rule is found, it recovers the original data in the node and 
sends the instances down to the child nodes.

In summary, DRF uses more instances to create trees, which increases the size of the 
trees, thereby reducing the bias in classification prediction. It also adds randomness to the 
partitioning rules by bootstrap and feature subset, allowing more diverse ensemble of trees.

Using the bootstrap near the terminal node may not be appropriate because there are 
considerably fewer unique instances. Therefore, we chose not to use bootstrap on nodes 
with instances less than 10% of the total number of instances. Algorithm 2 explains the 
DRF algorithm.
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4 � Case study (‘mnist’ data)

The motivational experiments discussed in Sect. 2.2 show that even if the RF algorithm 
uses hyper-parameters that allow a maximum tree, it may under-fit the data. We extend the 
experiment to see that the proposed DRF algorithm relaxes the under-fitting problem. The 
design of the experiment is the same as described in Sect. 2.2, except that nodesize was set 
to the default value 1 to compare both methods at the maximum tree size.

The results of the experiment are summarized in Fig. 3 and Table 1. In Fig. 3, we com-
pared the test accuracy of both methods. Boxplots in the figure are drawn using the test 
accuracy obtained from six repeated experiments following Larochelle et al. (2012). DRF 
seems significantly more accurate than RF because the boxplot of DRF does not overlap 
and is well above the boxplot of RF.

In Table 1, we compared the tree sizes of both methods. The values in the table are the 
mean and standard deviation (parenthesis) of the number of terminal nodes in 200 trees of 
the ensemble. The trees in DRF are on average larger than those in RF as expected. Also 
note that the DRF tree has higher standard deviation than the RF tree in the number of ter-
minal nodes. This is due to the randomness that comes from bootstraps and feature subsets 
that occur during split rule exploration. This will eventually lead to more diverse trees.

In conclusion, for ‘mnist’ data, the DRF ensemble method seems to overcome the 
under-fitting problem of the RF ensemble method. In addition, the DRF ensemble method 
produces more diverse trees, which is one of the factors that make the ensemble method 
successful.
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5 � Experimental study

In this section, more data are used to compare the prediction accuracy of the proposed DRF 
method with other ensemble methods. First, we will divide 58 datasets into two groups, 
one for which RF may under-fit and the other for which it does not. Then, the comparison 
will only proceed in the data group where RF may under-fit. More details are given below.

5.1 � Effect of the tree size

This section expands the discussion of the tree size effect in Sect. 2.2 with a larger number 
of data. The experiment was conducted on 58 real and artificial datasets that are suitable 
for classification problems. They mostly came from UCI data repository  (Asuncion and 
Newman 2007) and the mlbench R package (Dimitriadou and Leisch 2010). The datasets 
are listed in Table 2.
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Fig. 3   Box-plot of the test accuracy of RF and DRF using ‘mnist’ data

Table 1   Tree size comparison 
between RF and DRF

Mean and standard deviation (parenthesis) of the number of terminal 
nodes of 200 trees in the ensemble

Experiments 1 2 3 4 5 6

RF 4334.9 4324.1 4336.6 4327.7 4326.7 4332.2
(87.7) (92.2) (101.3) (87.8) (91.3) (95.5)

DRF 5979.6 5987.7 5991.7 5977.4 5955.1 5994.9
(123.2) (122.8) (116.2) (123.5) (120.4) (105.6)
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Table 2   Descriptions of the 58 datasets

Datasets Observations Classes Variables Sources

aba 4177 2 8 UCI (Abalone)
ail 13,750 2 12  Loh (2009)
aus 690 2 14 UCI (Australian credit approval)
bal 625 3 4 UCI (Balance scale)
ban 1372 2 4 UCI (Bank note authentication)
bcw 683 2 9  Lim et al. (2000)
bld 345 2 6 UCI (BUPA liver disorders)
blo 748 2 4 UCI (Blood transfusion center)
bod 507 2 24  Kerk et al. (2003)
bos 506 3 13 UCI (Boston housing)
bre 699 2 9 UCI (Wisconsin Breast Cancer)
cir 1000 2 10 R library mlbench (Circle in a square)
cmc 1473 3 9 UCI (Contraceptive method choice)
col 366 3 23 UCI (Horse Colic)
cre 690 2 15 UCI (Credit approval)
cyl 540 2 30 UCI (Cylinder bands)
der 358 6 34 UCI (Dermatology)
dia 768 2 8  Loh (2009)
dna 3186 3 60 UCI (StatLog DNA)
ech 131 2 6 UCI (Echocardiogram)
eco 336 4 7  Loh (2009)
fis 159 7 6  Kim and Loh (2003)
ger 1000 2 20 UCI (German credit)
gla 214 6 9 UCI (Glass)
hea 270 2 13 UCI (StatLog heart disease)
hep 155 2 19 UCI (Hepatitis)
hil 606 2 100 UCI (Hill-valley)
imp 205 6 23 UCI (Auto imports)
int 1000 2 9  Kim et al. (2010)
ion 351 2 33 UCI (Ionosphere)
iri 150 3 4 UCI (Iris)
lak 259 6 14  Loh (2009)
led 6000 10 7 UCI (LED display)
lib 360 15 90 UCI (Libras movement)
mam 961 2 5 UCI (Mammographic mass)
mar 8777 10 4  Loh (2009)
pid 532 2 7 UCI (PIMA Indian diabetes)
pks 195 2 22 UCI (Parkinsons)
pov 97 6 6  Kim and Loh (2001)
rng 1000 2 10 R library mlbench (Ringnorm)
sat 6435 6 36 UCI (StatLog satellite image)
sea 3000 3 7  Terhune (1994)
seg 2310 7 18 UCI (Image segmentation)
smo 2855 3 8 UCI (Attitude towards smoking restrictions)
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For the experiment, we used a random 50% dataset as the training set for the fitting and 
a random 50% dataset as the test set for the evaluation. For a reliable comparison, the entire 
experimental process was repeated 100 times to reduce the impact of some specific training 
or test sets. It can also reduce the sampling bias that can occur with an unbalanced number 
of class instances. All other design settings are the same as in Sect. 2.2.

The results of the experiment are summarized in Figs. 4, 5, 6, and 7 where the horizon-
tal axis represents nodesize values and the vertical axis represents the relative test accuracy. 
Relative test accuracy is defined as (the accuracy of RF under the given nodesize) / (the 
accuracy of RF when nodesize is set to its default 1). Therefore, if this value is greater than 
1, the RF with smaller trees is more accurate than that with the largest trees. After all, this 
means that RF does not under-fit. Similarly, if the value is less than 1, the RF with the larg-
est trees is the best, which means that RF may under-fit.

Of the 58 data sets in total, we can divide the 34 data sets shown in Figs. 4 and 5 into 
one group and the 24 data sets shown in Figs. 6 and 7 into another. Figures 4 and 5 show 
that the relative test accuracies are lower than 1 for all nodesize values. In such datasets, the 
tree size of the RF is likely not large enough to provide the best performance, and there is 
room for further improvement. In contrast, relative test accuracy exceeds 1 in the Figs. 6 
and 7. In this case, the tree size does not need to be maximum for best RF performance. In 
these cases, a certain level of pruning can be beneficial to RF when building the trees.

5.2 � Comparison between DRF and other ensemble methods

This section compares the proposed DRF method and other classification ensemble meth-
ods, such as Bagging (Breiman 1996), Samme (a modified version of AdaBoost) (Zhu et al. 
2009) and RF using the 34 datasets shown in Figs. 4 and 5. A single tree model (Therneau 
and Atkinson 2019) is also included in the comparison as a baseline.

The design of the experiment is as follows. As in Sect.  5.1, we used a random 50% 
dataset as the training set for the fitting and a random 50% dataset as the test set for evalu-
ation. The maximum tree size without pruning was used for all ensemble methods except 

Table 2   (continued)

Datasets Observations Classes Variables Sources

snr 208 2 60 R library mlbench (Sonar)
soy 307 7 28  Loh (2009)
spa 4601 2 57 UCI (Spambase)
spe 267 2 44 UCI (SPECTF heart)
thy 7200 3 21 UCI (Thyroid disease)
trn 1000 2 10 R library mlbench (Threenorm)
twn 1000 2 10 R library mlbench (Twonorm)
usn 1302 3 27 Statlib (2010)
veh 846 4 18 UCI (StatLog vehicle silhouette)
vol 1521 6 5 Loh (2009)
vot 435 2 16 UCI (Congressional voting records)
vow 990 11 10 UCI (Vowel recognition)
wav 3600 3 21 UCI (Waveform)
zoo 101 7 16 R library mlbench (Zoo)
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Samme. For Samme, tree growth is limited by the maximum tree depth as the number of 
classes. as in Kim et al. (2010). The number of trees generated in the ensemble was set to 
200. The single tree model uses pruning for a better accuracy. Other parameters were left 
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to their default values. The whole experimental process was also repeated 100 times for a 
reliable result.

Table 3 compares the test accuracy of DRF with other methods. The values in the table 
are the number of times that the vertical method is more accurate than the horizontal 
method. For example, a value of 32(32) in the first and fifth columns means that DRF 
is more accurate than a single tree for 32 of 34 data sets, and the number in parentheses 
means the number of times it is statistically significant. On the other hand, the values in the 
fifth row and the first column, 2(2), indicate that there were 2 datasets for which the single 
tree performed better than DRF and both were statistically significant.

Table 4 indicates the ranking of the methods based on the results in Table 3. The domi-
nance rank is defined as the number of significant wins minus the number of significant 
losses. For example, DRF has a dominance rank of 87 given that it had 104 significant 
wins and 17 significant losses. The number of significant wins for DRF is the sum of the 
values in the parentheses in the DRF column. Similarly, the number of significant losses 
for DRF is the sum of the values in the parentheses in the DRF row.

Tables   3 and  4 show that the DRF method significantly outperforms other methods 
when using 34 datasets whose RF tree size is not large enough. Since the RF method is the 
closest competitor, we conducted a more detailed comparison between DRF and RF.

Figure 8 shows the confidence interval for the difference in accuracy between DRF and 
RF. Of the 34 confidence intervals, 19 are above zero, which means that for 19 of the 34 
datasets, DRF is significantly better than RF. Only 6 confidence intervals are located below 
zero.

Table 5 shows the results of the randomized complete block design (RCBD) performed 
to test the overall difference in accuracy between DRF and RF. The P-value for the differ-
ence between the two methods is very low, 0.0009, which means that DRF is statistically 
more accurate than RF.

Table 3   Pairwise comparison of prediction accuracies. In each cell, results are summarized as “a(b)”, 
where a is the number of dataset that the method in the column outperforms the method in the row and b is 
the number of dataset that the difference is statistically significant in the one-sided paired t-test

Single tree Bagging Samme RF DRF

Single tree 32(30) 30(28) 32(31) 32(32)
Bagging 2(1) 18(16) 29(29) 32(30)
Samme 4(4) 16(9) 23(20) 26(23)
RF 2(2) 5(3) 11(8) 23(19)
DRF 2(2) 2(2) 8(7) 11(6)

Table 4   Dominance ranks of the 
methods using the significant 
differences from the results in 
Table 3

Dominance rank is defined as the number of significant wins minus 
the number of significant losses

Dominance rank Wins Losses

DRF 87 104 17
RF 54 86 32
Samme 3 59 56
Bagging −32 44 76
Single tree −112 9 121
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The results so far have been compared with the prediction accuracy using test data. A 
comparison result was also generated using F1-score, an index that considers sensitivity 
and precision. F1-score is defined as 2 × Precision×Recall

Precision+Recall
 . The comparison with F1-score 

showed little difference from previous results with test accuracy. For those interested, 
comparison results using F1-score are given in Appendix.

5.3 � Comparison of computing times

The DRF algorithm requires more computation time, because the bootstrap technique 
must be used on each node of every tree in the ensemble. It also takes longer to com-
plete, because the tree of DRF is larger than that of RF, which further increases the 
number of times the bootstrap must be performed.
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Fig. 8   Confidence intervals of accuracy differences between DRF and RF. If the confidence interval does 
not contain zero, the difference is statistically significant

Table 5   ANOVA table of the randomized complete block design

Df Sum squares Mean squares F value Pr(> F)

DRF versus RF 
(treatment)

1 0.034 0.034 10.92 0.0009

Data (block) 33 175.43 5.316 1692.26 < 0.0001
Errors 6765 21.25 0.003
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Figure 9 shows the runtime of the two methods for each of the 34 data sets. The runtime 
did not make a big difference in small data sets, but the gap is widening in large data sets 
as expected.

5.4 � Comparison of DRF and tuned RF (instance size)

Is there any other way to make the trees bigger in RF method? If so, it may exhibit similar 
accuracy to DRF. One possible way is to use instances which is sampled without replace-
ment, instead of using bootstrap (sampling with replacement) in each tree. Bootstrap-
ping gets n instances, but since it uses sampling with replacement, the number of unique 
instances is about 0.632 × n . If 0.9 × n instances are sampled without replacement, the 
trees of RF will be larger because there are more unique instances. However, as the number 
of unique instances increases, the pool of data used to construct each tree becomes more 
similar. This may lead to weaken the diversity of the RF trees. As a related study, Martínez-
Muñoz and Suárez (2010) reported the effect of instance size on Bagging and showed that 
sampling without replacement, rather than bootstrap, is more effective on some data set.

In the experiment of this section, when fitting the RF method, bootstrapping was disa-
bled and the samplesize parameter was set to 0.9 × n to make the RF trees bigger. As a 
result, it was found that trees are about 1.26 times larger than those of the typical RF. How-
ever, this method was more accurate on only 18 of the 34 datasets. In the rest of the data 
set, the typical RF was more accurate. In short, the accuracy of RF has not improved just 
for the reason that the generated trees are larger. This is because the diversity of classifiers 
is weakened by creating trees with more similar instances throughout the ensemble (Mar-
tínez-Muñoz and Suárez 2010).
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Fig. 9   Computing times of DRF and RF
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It is of interest to compare the accuracy of DRF and the tuned RF (instance size), where 
the tuned RF is using sampleize which gives more accurate results for each data. As shown 
in Table 6, if the RF is tuned to the instance size, the difference in accuracy from DRF is 
reduced. However, DRF is still superior to tuned RF (instance size). The reason may be 
that in the case of DRF, the diversity of classifier is not weakened because bootstrapping is 
performed at every node of each tree.

5.5 � Comparison of tuned RF and tuned DRF

It is known that the number of candidate features in each node of a tree affects the accuracy 
of the RF ensemble. The number of candidate features, known as mtry in the randomForest 
package of R, is a hyper-parameter that users can choose. In general, the most commonly 
used value for mtry is 

√

p , where p is the number of all features (Han and Kim 2019). The 
results shown in Sects. 5.2 and 5.4 were completed using 

√

p as the default value. How-
ever, the default does not always guarantee the highest accuracy, and depending on the 
data, more favorable values may exist.

In this section, we compare the performance of tuned RF and tuned DRF under the situ-
ation where their performances are maximized by appropriately selecting the mtry values 
for each data. The grid search method was used to select mtry values. In addition, for RF, 
tuning for instance size was also performed as in Sect. 5.4.

The pairwise comparison of prediction accuracy is given in Table  7. When compar-
ing RF and tuned RF, data with the same accuracy were excluded from counting. This is 
the same for DRF. According to Table 7, the tuned DRF exceeds the performances of RF, 
tuned RF, and DRF.

Table 6   Pairwise comparison 
of tuned RF (instance size) and 
DRF

In each cell, results are summarized as “a(b)”, where a is the num-
ber of dataset that the method in the column outperforms the method 
in the row and b is the number of dataset that the difference is sta-
tistically significant in the one-sided paired t-test. Data with the same 
accuracy were excluded from the counting

RF Tuned RF (instance 
size)

DRF

RF 18(15) 23(19)
Tuned RF (instance 

size)
0(0) 20(12)

DRF 11(6) 14(7)

Table 7   Pairwise comparison of 
tuned RF and tuned DRF

In each cell, results are summarized as “a(b)”, where a is the num-
ber of dataset that the method in the column outperforms the method 
in the row and b is the number of dataset that the difference is sta-
tistically significant in the one-sided paired t-test. Data with the same 
accuracy were excluded from the counting

RF Tuned RF DRF Tuned DRF

RF 28(22) 23(19) 27(22)
Tuned RF 0(0) 16(11) 20(12)
DRF 11(6) 18(12) 15(11)
Tuned DRF 7(3) 14(7) 0(0)
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6 � Conclusion

Random forest (RF) is known to better predict when using larger trees without pruning. 
Therefore, it is common to create trees of the maximum size possible. In this paper, we found 
that the maximum sized tree produced by RF may not be large enough for some dataset. This 
indicates that RF may underfit, even with the most favorable option. To cope with this, we 
developed a method called double random forest (DRF) that creates trees larger than RF.

The DRF ensemble method has two distinctions from RF. First, DRF uses the whole 
training data to grow a decision tree. Since whole training data has more unique instances 
than the bootstrap data, it tends to make the tree bigger than the tree in RF. For data where 
RF under-fits, this approach can remedy the problem, reducing the prediction bias. Second, 
DRF uses the bootstrap sampling only to find the partitioning rule for each intermediate 
node. That is, it searches for the best partitioning rules by using a random bootstrap of 
instances and a random subset of features on each node of the tree. Once the partitioning 
rule is found, the bootstrap data is restored to the original data and the instances are sent 
down to the child node. We can argue that DRF creates more diverse tree ensemble by add-
ing randomness to the partitioning rules with a bootstrap and a feature subset.

Experimental studies using 34 real or artificial data sets where RF under-fit show that 
the proposed DRF method is far superior to other classification ensemble. Moreover, we 
found that DRF is statistically better than RF in terms of test accuracy through the analysis 
of randomized complete block design (RCBD). This trend was the same for both RF and 
DRF tuned for mtry values. However, it is true that the DRF algorithm is more complex 
and takes longer time to fit the model compared to RF.

For those datasets where the ideal nodesize is not 1, the accuracy of the DRF and RF 
methods was similar and no statistical difference was found. That is, when RF does not 
under-fit, we do not think that DRF is needed because trees do not need to be longer.

Acknowledgements  Hyunjoong Kim’s work was supported by Basic Science Research program through 
the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Tech-
nology (No. 2016R1D1A1B02011696). Yung-Seop Lee’s work was supported by National Research Foun-
dation of Korea, Grant Number 2017R1E1A1A03070102.

Appendix

The pairwise comparison result with F1-score is given in Table 8. It can be seen that using 
the F1-score leads to the same conclusions as in Sect. 5.2.

Table 8   Pairwise comparison of 
F1-scores

In each cell, results are summarized as “a(b)”, where a is the number 
of dataset that the method in the column outperforms the method in 
the row and b is the number of dataset that the difference is statisti-
cally significant in the one-sided paired t-test

Single tree Bagging Samme RF DRF

Single tree 31(30) 29(28) 30(30) 31(31)
Bagging 3(2) 17(15) 27(26) 30(26)
Samme 5(5) 17(14) 24(17) 24(20)
RF 4(3) 7(3) 10(9) 23(18)
DRF 3(3) 4(2) 10(7) 11(6)
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Software: The R code that implements the method and experiments presented in this 
article is provided in ’https​://githu​b.com/shan-stat/DRF’.
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