
Mach Learn (2009) 76: 137–173
DOI 10.1007/s10994-009-5115-9

Learning block-preserving graph patterns and its
application to data mining

Hitoshi Yamasaki · Yosuke Sasaki · Takayoshi Shoudai ·
Tomoyuki Uchida · Yusuke Suzuki

Received: 15 November 2008 / Revised: 3 April 2009 / Accepted: 17 April 2009 /
Published online: 12 June 2009
Springer Science+Business Media, LLC 2009

Abstract Recently, due to the rapid growth of electronic data having graph structures such
as HTML and XML texts and chemical compounds, many researchers have been interested
in data mining and machine learning techniques for finding useful patterns from graph-
structured data (graph data). Since graph data contain a huge number of substructures and it
tends to be computationally expensive to decide whether or not such data have given struc-
tural features, graph mining problems face computational difficulties. Let C be a graph class
which satisfies a connected hereditary property and contains infinitely many different bi-
connected graphs, and for which a special kind of the graph isomorphism problem can be
computed in polynomial time. In this paper, we consider learning and mining problems for C.
Firstly, we define a new graph pattern, which is called a block preserving graph pattern (bp-
graph pattern) for C. Secondly, we present a polynomial time algorithm for deciding whether
or not a given bp-graph pattern matches a given graph in C. Thirdly, by giving refinement
operators over bp-graph patterns, we present a polynomial time algorithm for finding a min-
imally generalized bp-graph pattern for C. Outerplanar graphs are planar graphs which can
be embedded in the plane in such a way that all of vertices lie on the outer boundary. Many
pharmacologic chemical compounds are known to be represented by outerplanar graphs.

Editors: Filip Zelezny and Nada Lavrac.

H. Yamasaki · Y. Sasaki · T. Shoudai (�)
Department of Informatics, Kyushu University, Fukuoka 819-0395, Japan
e-mail: shoudai@i.kyushu-u.ac.jp

H. Yamasaki
e-mail: h-yama@i.kyushu-u.ac.jp

Y. Sasaki
e-mail: yosuke.sasaki@i.kyushu-u.ac.jp

T. Uchida · Y. Suzuki
Department of Intelligent Systems, Hiroshima City University, Hiroshima 731-3194, Japan

T. Uchida
e-mail: uchida@hiroshima-cu.ac.jp

Y. Suzuki
e-mail: y-suzuki@hiroshima-cu.ac.jp

mailto:shoudai@i.kyushu-u.ac.jp
mailto:h-yama@i.kyushu-u.ac.jp
mailto:yosuke.sasaki@i.kyushu-u.ac.jp
mailto:uchida@hiroshima-cu.ac.jp
mailto:y-suzuki@hiroshima-cu.ac.jp

138 Mach Learn (2009) 76: 137–173

The class of connected outerplanar graphs O satisfies the above conditions for C. Next, we
propose two incremental polynomial time algorithms for enumerating all frequent bp-graph
patterns with respect to a given finite set of graphs in O. Finally, by reporting experimental
results obtained by applying the two graph mining algorithms to a subset of the NCI dataset,
we evaluate the performance of the two graph mining algorithms.

Keywords Pattern discovery · Graph mining · Graph-structured pattern · Inductive
inference · Outerplanar graph

1 Introduction

Recently, due to the rapid growth of available data, there are growing expectations and de-
sires for discovering interesting and useful patterns which are hidden in datasets. Particu-
larly, many researchers are interested in knowledge discovery from data having structures
such as sequences, trees, or graphs (Agrawal and Srikant 1994; Cook and Holder 2007;
Han and Kamber 2001; Han et al. 2004). Graph-structured data (including tree structured
data) widely appears in various practical fields. For example, web documents such as HTML
and XML texts can be expressed by ordered trees, chemical compounds can be expressed
by graphs whose vertices and edges correspond to atoms and bonds between atoms respec-
tively, and glycans can be expressed by trees whose nodes and edges correspond to single
sugars and covalent bonds, respectively. Moreover, graphs are suitable for representation of
relationships between entities, such as link structures of the World Wide Web, gene regula-
tory networks, and so on. For such graph data, data mining and machine learning techniques
for finding their characteristic structures will be useful for many practical applications.

Many graph mining techniques of extracting frequently occurring subgraphs in graph
datasets have been proposed (see Cook and Holder 2007). In addition, many researchers
have developed frequent substructure mining methods for specific graph classes, e.g.
FreqT (Asai et al. 2002, 2003), Find_Freq_CPP (Uchida et al. 2004) and TreeMiner (Zaki
2002) for trees (typically rooted), SUBDUE (Cook and Holder 1994), AGM (Inokuchi
et al. 2000), FSG (Kuramochi and Karypis 2001), gSpan (Yan and Han 2002), and GBI
(Yoshida and Motoda 1995) for more general graphs than trees. Especially, Horváth et
al. (2006) proposed a frequent subgraph mining algorithm for outerplanar graphs, which
are planar graphs embedded in the plane in such a way that all of vertices lie on the
outer boundary. For graph mining algorithms, graph and subgraph isomorphisms play a
key role throughout the computations. It is known that the subgraph isomorphism prob-
lem for general graphs is NP-complete, and the graph isomorphism problem for general
graphs appears to be hard. Hence, compared with traditional data mining like frequent
itemset mining, graph mining problems face computational difficulties, because graph-
structured data have a huge number of substructures. However, for some special classes
of graphs such as trees, outerplanar graphs (Lingas 1989), planar graphs all of whose
blocks are triconnected (Hopcroft and Wong 1974), the graph isomorphism problem can
be decided efficiently. In this paper, we focus attention on such classes of graphs, de-
noted by C , for which a special kind of the graph isomorphism problem can be solved
in polynomial time. The purpose of this paper is to show an efficient graph mining al-
gorithm, based on computational and algorithmic learning theory, for solving a prob-
lem of extracting structural features from graph data which can be expressed by graphs
in C .

Graph mining strategies of extracting frequent maximal substructures contribute speed-
up and efficiency improvement of systems analyzing graph data. Consider the set D =

Mach Learn (2009) 76: 137–173 139

{G1,G2,G3,G4} of graphs given in Fig. 1. Any graph in D has both graphs F1 and F2

also shown in Fig. 1 as subgraphs. Since F2 has F1 as a subgraph and is a maximal subgraph
common to all graphs in D, F2 is considered a more meaningful structural feature of D

than F1. As other effective mining strategies, extracting frequent graph-structured patterns,
which can express not only frequent substructures but also associated structural relations
between substructures common to graph data, have been proposed, e.g., algorithms for term
graph patterns having tree structures (Shoudai et al. 2001) and for gap tree patterns under
into-matching semantics (Arimura et al. 2001).

As one of such graph-structured patterns, we proposed a graph pattern having edge la-
bels and internal structured variables, called a term graph pattern, in (Uchida et al. 1995).
A variable in a term graph pattern consists of some number of vertices and can be sub-
stituted by an arbitrary term graph pattern. We say that a term graph pattern g matches a
graph G if G is obtained from g by replacing all variables with certain graphs. In Fig. 1,
as an example of term graph patterns, we give a term graph pattern f having only one
variable labeled with x and a term graph pattern g having two graphs F1 and F2 as sub-
graphs and having variables (v1, v2) and (v3) labeled with x and y, respectively. The term
graph pattern g matches the graph G in Fig. 1 because G is obtained from g by re-
placing variables (v1, v2) and (v3) with graphs G1 and G2, respectively, Consider the set
D = {G1, G2, G3, G4} of graphs in Fig. 1 again. The term graph pattern f in Fig. 1
matches all of graphs in D. On the other hand, the term graph pattern g matches two
graphs G3 and G4, but matches neither G1 nor G2. Since f matches any graph, regard-
less of D, we can see that the structural feature expressed by f is meaningless. More-
over, since exactly one half of D has the structural feature expressed by g, we can see
that g is meaningful. In this paper, we define a new graph-structured pattern, called a
block preserving graph pattern (bp-graph pattern for short) as a special type of a con-
nected term graph pattern. Especially, a bp-graph pattern forming an outerplanar graph
structure is called a block preserving outerplanar graph pattern (bpo-graph pattern for
short). In Fig. 1, as an example of bpo-graph patterns, we give two bpo-graph patterns f

and g.
For considering learnabilities of bp-graph patterns, we use the framework of induc-

tive inference. Inductive inference is a process of hypothesizing a general rule from ex-
amples. Angluin (1980b) and Shinohara (1982) showed that if a class L has finite thick-
ness, and the matching problem and the minimal language (MINL, for short) problem
for L are computable in polynomial time then L is polynomial time inductively infer-
able from positive data. Based on this framework, in this paper, we consider the poly-
nomial time learnabilities of a graph class C . Let O be the set of connected outerplanar
graphs. In (Sasaki et al. 2008), we presented a polynomial time algorithm for deciding
whether or not a given bp-graph pattern matches a given graph in O. Let C be a graph
class which satisfies a connected hereditary property and contains infinitely many differ-
ent biconnected graphs, and for which a special kind of the graph isomorphism prob-
lem can be computed in polynomial time. In this paper, we consider a general frame-
work of the matching problem for bp-graph patterns and present a polynomial time al-
gorithm for deciding whether or not a given bp-graph pattern matches a given graph in
C . This follows up on our previous work where we presented polynomial time matching
algorithms for term graph patterns having tree structures (term tree patterns) (Miyahara
et al. 2000; Suzuki et al. 2003), having two-terminal series parallel (TTSP) graph struc-
tures (Takami et al. 2009), and having interval graph structures (Yamasaki and Shoudai
2007).

A bp-graph pattern p is said to be minimally generalized explaining a given finite set S

of graphs if S ⊆ L(p) and there is no bp-graph pattern q such that S ⊆ L(q) � L(p), where

140 Mach Learn (2009) 76: 137–173

Fig. 1 Graphs G,G1,G2,G3,G4 and bp-graph patterns g,f . A variable is drawn by a box with lines to its
elements. The label inside a box represents the variable label of the variable

for a bp-graph pattern g, L(g) denotes the set of all graphs obtained from g by replacing all
variables in g with arbitrary connected graphs. Hence, it is natural that a minimally gener-
alized bp-graph pattern is more suitable for explaining a given set of graphs. For example,
since there exist bp-graph patterns like g in Fig. 1 such that {G, G3, G4} ⊆ L(g) � L(f),
the bp-graph pattern f in Fig. 1 is not minimally generalized with respect to {G, G3, G4}.
An algorithm is said to be an MINL algorithm for C if it finds a minimally generalized
bp-graph pattern explaining a given finite set of graphs in C . In Yamasaki et al. (2008),
we presented a polynomial time MINL algorithm for O. In this paper, we give a polyno-
mial time MINL algorithm for C . Hence, we show that C is polynomial time inductively
inferable from positive data. As other related works, we proposed polynomial time MINL
algorithms for term graph patterns having ordered tree structures (Suzuki et al. 2006), TTSP
graph structures (Takami et al. 2009), and interval graph structures (Yamasaki and Shoudai
2007).

Many pharmacologic chemical compounds are known to be represented by outerplanar
graphs. For example, 94.3% of all elements in the NCI dataset (NCI 2000), which is one of
popular chemical databases, are expressed by outerplanar graphs. Let S be a finite subset of
O. Next, we give two graph mining algorithms that generate all frequent bp-graph patterns
for S. The first algorithm is based on an Apriori-like technique which is used in a subgraph
mining algorithm for outerplanar graphs presented by Horváth et al. (2006). The second
algorithm is a version of the first one substantially improved by using refinement operators

Mach Learn (2009) 76: 137–173 141

which are used in our MINL algorithm for bp-graph patterns. Both algorithms enumerate
all frequent bp-graph patterns for S in incremental polynomial time. In order to show the
performance of our graph mining algorithms, we report experimental results of applying our
graph mining algorithms to a data mining problem for enumerating all frequent bp-graph
patterns for a subset of the NCI dataset (NCI 2000) which are expressed by O.

This paper is organized as follows. In Sect. 2, we define a block preserving graph pattern
which is a special type of a term graph pattern. In Sect. 3, we propose a polynomial time
algorithm for the matching problem for C . In Sect. 4, we propose a polynomial time MINL
algorithm for C . In Sect. 5, we propose two graph mining algorithms for generating all
frequent bp-graph patterns in a set of graphs in O. Then, we evaluate the performance of our
graph mining algorithms. In Sect. 6, we conclude this work and show directions for future
work.

2 Block preserving graph pattern

A graph pattern is defined as a graph-structured pattern with internal variables, which rep-
resents characteristic common structures in graph data. In this section, we introduce a new
graph pattern which is called a block preserving graph pattern. For a connected undirected
graph G, the sets of all vertices and edges of G are denoted by V (G) and E(G), respec-
tively. For a subset U of V (G), the induced subgraph of G by U , denoted by G[U], is a
subgraph G[U] = (U, {{u,v} ∈ E(G) | u ∈ U and v ∈ U}) of G. For a vertex v in V (G), v

is called a cutpoint of G if G[V (G) − {v}] is disconnected. G is said to be biconnected
if G has no cutpoint. For a subset U of V (G), the induced subgraph G[U] is said to
be a biconnected component (or bicomponent) if it is biconnected and there is no proper
superset U ′ of U such that G[U ′] is biconnected. A biconnected component is called a
block if it contains at least 3 vertices, otherwise a bridge. For example, for the graph G3 in
Fig. 1, the vertices w4 and w12 are cutpoints, the induced subgraphs G3[{w3,w4,w5}] and
G3[{w12,w13,w14,w15,w16,w17}] are blocks and the induced subgraphs G3[{w4,w8}] and
G3[{w8,w12}] are bridges.

A list is denoted by a collection of elements enclosed in parentheses, e.g. (u1, u2, u3).
The k-th element in a list σ is denoted by σ [k]. For a set and a list S, we denote by |S|
the number of elements in S. Let � and � be two alphabets each of whose elements is
called a vertex label and an edge label, respectively. Let X be an infinite alphabet where
X ∩ (� ∪ �) = ∅. A symbol in X is called a variable label.

Definition 1 (Block preserving graph patterns) Let G be a connected undirected graph. Let
Eb be a subset of the set of bridges of G and V ′ a subset of V (G). A (�,�)-labeled block
preserving graph pattern p on an underlying graph G is defined as a triple (Vp,Ep,Hp)

where Vp = V (G), Ep = E(G) − Eb , and Hp = {(u) | u ∈ V ′} ∪ {(u, v) | {u,v} ∈ Eb}. The
elements in Vp , Ep , and Hp are called vertices, edges, and variables, respectively. In par-
ticular, a variable in Hp is called a bridge variable if it contains two vertices, otherwise
a terminal variable. All vertices and edges are labeled with symbols in � and �, respec-
tively, and all variables are labeled with mutually distinct symbols in X. The vertices in a
variable are called ports. A bicomponent is defined as one of a block, a bridge, or a bridge
variable.

Below, when the alphabets � and �, and an underlying graph G are clear from the
context, a (�,�)-labeled block preserving graph pattern on G is called a block preserving

142 Mach Learn (2009) 76: 137–173

graph pattern (a bp-graph pattern) simply. A bp-graph pattern is said to be ground if it con-
tains no variable. We regard all connected undirected graphs as ground bp-graph patterns.
For a bp-graph pattern p, we denote by V (p), E(p) and H(p) the sets of all vertices, edges
and variables of p, respectively, and denote by λp(v) the label of v ∈ V (p), by δp(e) the
label of e ∈ E(p) and by x(h) the label of h ∈ H(p). For a vertex v ∈ V (p), the degree of v,
denoted by dp(v), is the total sum of edges adjacent to v and bridge variables including v,
i.e., dp(v) = |{u ∈ V (p) | {u,v} ∈ E(p)}| + |{u ∈ V (p) | (u, v) ∈ H(p) or (v,u) ∈ H(p)}|.
For a set of bp-graph patterns D, we describe the total sum of the numbers of vertices of
graph patterns in D as the vertex size of D.

Let p and q be bp-graph patterns. We say that p is isomorphic to q , denoted by p ∼= q , if
there exists a bijection ψ : V (p) → V (q) such that (1) for any v ∈ V (p), λp(v) = λq(ψ(v)),
(2) {u,v} ∈ E(p) if and only if {ψ(u),ψ(v)} ∈ E(q), (3) for any {u,v} ∈ E(p), δp({u,v}) =
δq({ψ(u),ψ(v)}), (4) (u, v) ∈ H(p) if and only if (ψ(u),ψ(v)) ∈ H(q), and (5) (u) ∈
H(p) if and only if (ψ(u)) ∈ H(q). A bp-graph pattern p′ is said to be a bp-subgraph
pattern of p if V (p′) ⊆ V (p), E(p′) ⊆ E(p), and H(p′) ⊆ H(p). For a bp-graph pattern
p and a subset U of V (p), the induced bp-subgraph pattern of p by U , denoted by p[U],
is a bp-subgraph pattern p[U] = (U, {{u,v} | u ∈ U and v ∈ U}, {(u) ∈ H(p) | u ∈ U} ∪
{(u, v) ∈ H(p) | u ∈ U and v ∈ U}).

A planar graph is a graph which can be drawn in the plane in such a way that its edges
cross only at their endpoints. An outerplanar graph is a planar graph which can be drawn
in the plane in such a way that all vertices have a border with the outer face. The set of all
bp-graph patterns over a vertex label set � and an edge label set � is denoted by PΛ,Δ and
the set of all ground bp-graph patterns in PΛ,Δ is denoted by GΛ,Δ. Let C be a class of graphs
(e.g., trees, outerplanar graphs, planar graphs, etc). PΛ,Δ[C] denotes the set of all bp-graph
patterns p in PΛ,Δ such that all blocks of the underlying graph of p belong to C and GΛ,Δ[C]
denotes the set of all ground bp-graph patterns in PΛ,Δ[C].

Definition 2 (Binding) Let p and q be bp-graph patterns in PΛ,Δ[C] and x a variable label
in X. Let σ be a nonempty list of at most two distinct vertices in q . The form x := [q,σ]
is called a binding for x. Let h be a variable in p which has the variable label x. We can
apply a binding x := [q,σ] to a variable h if the binding x := [q,σ] satisfies that |σ | = |h|
and λq(σ [i]) = λp(h[i]) for all i (1 ≤ i ≤ |σ |). A new bp-graph pattern p{x := [q,σ]} is
obtained by applying the binding x := [q,σ] to the variable h in the following way. For the
variable h, we attach q to p by removing the variable h from H(p) and identifying σ [i]
with h[i] for each i (1 ≤ i ≤ |σ |).

We say that a graph class C has a connected hereditary property if every graph in C is
connected and its connected induced subgraphs are also contained in C . The classes of trees,
connected outerplanar graphs, and connected planar graphs have a connected hereditary
property.

Proposition 1 If C has a connected hereditary property, then p{x := [q,σ]} is a bp-graph
pattern in PΛ,Δ[C] for any p,q ∈ PΛ,Δ[C].

Definition 3 (Substitution) Let p,q1, . . . , qm be bp-graph patterns in PΛ,Δ[C]. A substitu-
tion is a finite collection of bindings {x1 := [q1, σ1], . . . , xm := [qm,σm]}, where x1, . . . , xm

are mutually distinct variable labels in X such that for each i = 1,2, . . . ,m, gi does not
have x1, x2, . . . , xm as variable labels. For a bp-graph pattern p and a substitution θ , pθ

denotes the graph pattern obtained from p and θ by applying all the bindings in θ to p

simultaneously.

Mach Learn (2009) 76: 137–173 143

As an example of bp-graph patterns, in Fig. 1, we give a bp-graph pattern g in PΛ,Δ

having variables (v1, v2) and (v3) labeled with x and y, respectively, so that the bp-graph
pattern g{x := [G1, (u1, u2)], y := [G2, (u3)]} is isomorphic to the graph G in Fig. 1 where
G1 and G2 are graphs in Fig. 1.

For a bp-graph pattern p ∈ PΛ,Δ[C] and a graph G ∈ GΛ,Δ[C], we say that p matches G

if there is a substitution θ such that pθ ∼= G.

Proposition 2 Let p be a bp-graph pattern in PΛ,Δ[C] and G a graph in GΛ,Δ[C]. If p

matches G, i.e., there is a substitution θ such that pθ ∼= G holds, then any cutpoint in p is
mapped to a cutpoint in G by an isomorphism which realizes pθ ∼= G.

For a bp-graph pattern p ∈ PΛ,Δ[C], the bp-graph pattern language of p with respect
to C is defined as LC(p) = {G ∈ GΛ,Δ[C] | p matches G}. The class of bp-graph pattern
languages with respect to C is defined as LΛ,Δ(C) = {LC(p) | p ∈ PΛ,Δ[C]}.

In Definition 1, we restrict the number of ports of variables in bp-graph patterns to at
most 2. It is because the matching problem, as is stated later, even for a tree-structured
pattern which has variables with more than 3 ports is NP-complete (Miyahara et al. 2000).
The time complexity of the matching problem for a bp-graph pattern all of whose variables
have at most 3 ports is not known. In this paper, we focus on outerplanar graphs particularly.
We denote by O the class of all outerplanar graphs. We call a bp-graph pattern in PΛ,Δ[O] a
block preserving outerplanar graph pattern (a bpo-graph pattern). For example, a bp-graph
pattern g in Fig. 1 is a bpo-graph pattern in PΛ,Δ[O].

3 A pattern matching algorithm for BP-graph patterns

3.1 General framework

In this section, we give a general framework of a pattern matching algorithm for solving the
following problem for any graph class C .

Matching Problem for PΛ,Δ[C]
Input: A bp-graph pattern p ∈ PΛ,Δ[C] and a graph G ∈ GΛ,Δ[C].
Problem: Decide whether or not p matches G.

For a bp-graph pattern p in PΛ,Δ[C] and a vertex r in V (p), let pr be a rooted bp-graph
pattern obtained by specifying r as the root. For bp-graph patterns p and q in PΛ,Δ[C],
and vertices r ∈ V (p) and r ′ ∈ V (q), we say that pr is isomorphic to qr ′

if there exists
an isomorphism ψ : V (p) → V (q) such that ψ(r) = r ′. Let G be a connected graph in
GΛ,Δ[C] and s a vertex in V (G). For a rooted bp-graph pattern pr and a rooted connected
graph Gs , we say that pr matches Gs if there exists a substitution θ such that prθ (= (pθ)r)

is isomorphic to Gs . It is easy to see the following lemma.

Lemma 1 Let p be a bp-graph pattern in PΛ,Δ[C], G a graph in GΛ,Δ[C] and r a vertex
of p. Then, p matches G if and only if there is a vertex s in V (G) such that pr matches Gs .

For a rooted graph pattern pr , we define the parent-child relationship of pr in a way
similar to a rooted tree. For a vertex u of pr , a vertex v of pr is called a child of u if (1) both
u and v belong to the same bicomponent, and (2) v becomes unreachable from the root r if

144 Mach Learn (2009) 76: 137–173

u is removed. A vertex v is called the parent of u if u is a child of v. A vertex v is called a
descendant of u if it is either u itself or a vertex which becomes unreachable from r if u is
removed. If u has no child, u is called a leaf of pr . For a rooted bp-graph pattern pr and a
cutpoint u of pr , we use the following notations.

Leaf (pr): The set of all leaves of pr .
Br (u): The set of all bicomponents of pr which contain u and children of u. For

a leaf v, Br (v) = ∅.
pr [u]: The bp-subgraph pattern rooted at u which is induced by all descendants

of u. For a leaf u in pr , pr [u] is the graph having only one vertex u and
possibly the terminal variable (u), i.e., pr [u] ∼= pr [{u}]. If u belongs to a
variable, without loss of generality, we assume that pr [u] has a terminal
variable (u).

pr [u,b]: The bp-subgraph pattern rooted at u which is induced by all vertices in
b ∈ Br (u) and all descendants of vertices in V (b) − {u}.

Consider the rooted graph G
w8
3 having the vertex w8 as the root, where G3 is a graph

given in Fig. 1. Then, w4,w9,w10,w11 and w12 are the children of the root w8. Since
both w3 and w5 are children of w4 and cutpoints of G

w8
3 , w3 and w5 are child-cutpoints

of w4 and w4 is the parent-cutpoint of both w3 and w5. We can see that Leaf (G
w8
3) =

V (G3) − {w3,w4,w5,w8,w12}, Bw8(w4) = {G3[{w3,w4,w5}]}, and both G
w8
3 [w4] and

G
w8
3 [w4,G3[{w3,w4,w5}]] are isomorphic to the induced subgraph G3[{w1,w2,w3,w4,w5,

w6,w7}].
Below we also use the above notations for a rooted connected graph Gs in the same

meanings.

Definition 4 Let pr be a rooted bp-graph pattern, Gs a rooted connected graph, and v a
vertex in V (Gs). The correspondence-set (C-set for short) of v is the set of all vertices u in
V (pr) such that pr [u] matches Gs[v].

Moreover we use the following notations for a vertex v ∈ V (Gs) and B ∈ Bs(v).

CS(v): The correspondence-set of v.
CS(v,B): The set of all pairs (u, b) such that u ∈ V (pr), b ∈ Br (u) and pr [u,b]

matches Gs[v,B].
IS(v): The set of all vertices u ∈ V (pr) such that there is a descendant w of v

which satisfies u ∈ CS(w). We call this set the inheritance-set (I-set for
short) of v.

Given a bp-graph pattern p ∈ PΛ,Δ[C] and a graph G ∈ GΛ,Δ[C], we can decide whether
or not p matches G in the following way. First of all, we specify a vertex r of p as the
root of p. Second, for each vertex s of G, compute all CS(v) for all vertices v of Gs with
respect to pr . Finally, if there is a vertex s ∈ V (Gs) whose C-set contains the root r of pr ,
we conclude that pr [r] matches Gs[s], i.e., p matches G. Hence, we give a pattern matching
algorithm MATCH-PΛ,Δ[C] in Fig. 2 by using a dynamic programming manner. The follow-
ing lemmas play important roles to show the correctness of our pattern matching algorithm
MATCH-PΛ,Δ[C].

Lemma 2 Let pr be a rooted bp-graph pattern and Gs a rooted connected graph. For any
leaf v in V (Gs), u ∈ CS(v) if and only if u is a leaf and λp(u) = λG(v).

Mach Learn (2009) 76: 137–173 145

Fig. 2 An algorithm MATCH-PΛ,Δ[C] for deciding whether or not a given bp-graph pattern matches a given
connected graph

146 Mach Learn (2009) 76: 137–173

Proof Since v is a leaf of Gs , Gs[v] contains only one vertex v. On the other hand, if u

is a leaf of pr , pr [u] is a rooted bp-graph pattern which consists of only one vertex u and
possibly contains a terminal variable (u). Therefore, if u is a leaf and λp(u) = λG(v), pr [u]
matches Gs[v]. Conversely, since Gs[v] consists of only one vertex v, if pr [u] matches
Gs[v], pr [u] has no vertex other than u. Then u is a leaf such that λp(u) = λG(v). �

Lemma 3 Let pr be a rooted bp-graph pattern and Gs a rooted connected graph. Let v be
a vertex which is not a leaf of Gs . Then, u ∈ CS(v) if and only if λp(u) = λG(v) and either
of the following three conditions holds.

(1) u is a leaf and a port of a terminal variable.
(2) 0 < |Br (u)| < |Bs(v)|, u is a port of a variable, and there is an injection ψ : Br (u) →

Bs(v) such that (u, b) ∈ CS(v,ψ(b)) for all b ∈ Br (u).
(3) 0 < |Br (u)| = |Bs(v)| and there is a bijection ψ : Br (u) → Bs(v) such that (u, b) ∈

CS(v,ψ(b)) for all b ∈ Br (u).

Proof Let Br (u) = {b1, . . . , b�} and Bs(v) = {B1, . . . ,Bk}. Suppose that the if-statement
holds. It is immediate for the case |Br (u)| = 0. Let θi (1 ≤ i ≤ �) be a substitution such
that pr [u,bi]θi

∼= Gs[v,ψ(bi)]. Let θ be the union of all θi (1 ≤ i ≤ �). If ψ is a bi-
jection and H(p) does not have a terminal variable (u), pr [u]θ ∼= Gs[v] holds. If ψ is
a bijection and there is a terminal variable h = (u) ∈ H(p), by adding a trivial binding
for x(h) to θ , pr [u]θ ∼= Gs[v] holds. If ψ is not a bijection, H(p) has a terminal vari-
able (u). Let Ḡ be the subgraph of Gs[v] induced by v and all vertices of bicomponents
in Bs(v) − {ψ(b1), . . . ,ψ(b�)}. In this case, by adding a binding x(h) := [Ḡ, (u)] to θ ,
pr [u]θ ∼= Gs[v] holds.

Conversely, we suppose that pr [u] matches Gs[v]. If u is a leaf of pr , since v is not
a leaf, there must be a terminal variable (u). Suppose that u is not a leaf of pr . There
exist a substitution θ and an isomorphism ϕ from pr [u]θ to Gs[v]. For any i (1 ≤ i ≤ �),
there is an index j (1 ≤ j ≤ k) such that the isomorphism ϕ maps the vertices in bi into
descendants of vertices in Bj . Let ψ be an injection from {b1, . . . , b�} to {B1, . . . ,Bk} such
that ψ(bi) = Bj if and only if for any u ∈ V (bi), ϕ(u) is a descendant of a vertex in V (Bj). If
|Br (u)| < |Bs(v)|, ψ is an injection which satisfies the statement (1). Otherwise ψ satisfies
the statement (2). �

Lemma 4 Let pr be a rooted bp-graph pattern and Gs a rooted connected graph. For any
v ∈ V (Gs), u ∈ IS(v) if and only if either of the following conditions holds.

(1) v is a leaf of Gs and u ∈ CS(v).
(2) v is not a leaf of Gs and u ∈ CS(v) ∪ (

⋃
all children c of v IS(c)).

Proof It is immediate from the definitions of C-sets and I-sets. �

Lemma 5 Let pr be a rooted bp-graph pattern and Gs a rooted connected graph. Let v

be a vertex which is not a leaf of Gs and B ∈ Bs(v). Then, (u, b) ∈ CS(v,B) if and only if
λp(u) = λG(v) and either of the following three conditions holds.

(1) b and B are bridges {u,u′} and {v, v′}, respectively, and δp({u,u′}) = δG({v, v′}) and
u′ ∈ CS(v′).

(2) b is a bridge variable (u,u′) and there is a child v′ of v such that u′ ∈ IS(v′).
(3) b and B are blocks and there is an isomorphism ψ : V (b) → V (B) such that v = ψ(u)

and w ∈ CS(ψ(w)) for all w ∈ V (b) − {u}.

Mach Learn (2009) 76: 137–173 147

Proof This is shown in a straightforward way from the definition of bp-graph patterns and
Proposition 2. �

The running time MATCH-PΛ,Δ[C] depends on the computation between lines 10 and 13
of procedure MATCHBICOMPONENTS. We formally define the following problem.

Block Isomorphism with Vertex Correspondence Sets for C
Input: Two blocks b and B in a specified class C , and correspondence sets CS(v) ⊆ V (b)

for all v ∈ V (B).
Problem: Decide whether or not there is a graph isomorphism ψ : V (b) → V (B) such that
w ∈ CS(ψ(w)) for all w ∈ V (b).

Since the size of any correspondence set is at most |V (b)|, the computational time of
the above problem depends only on |V (b)| and |V (B)|. We denote by MC(n,N) the worst
computational time of solving Block Isomorphism with Vertex Correspondence Sets for
C for blocks b and B whose numbers of vertices are n and N , respectively. Then we have
the following theorem.

Theorem 1 Let C be a class of graphs which satisfies a connected hereditary property. For
a given bp-graph pattern p ∈ PΛ,Δ[C] and a given graph G ∈ GΛ,Δ[C], algorithm MATCH-
PΛ,Δ[C] correctly solves Matching Problem for PΛ,Δ[C] in O(nN2 MC(n,N)) time, where
n = |V (p)| and N = |V (G)|.

Proof The correctness follows from Lemmas 1–5 and the fact that C has a connected
hereditary property. Let m and M be the total numbers of bicomponents in p and G, re-
spectively. At first we consider the running time to decide whether or not pr [u] matches
Gs[v] for u ∈ V (pr) and v ∈ V (Gs). Let � = |Br (u)| and k = |Bs(v)|. The foreach loop
at lines 14–17 of MATCH-PΛ,Δ[C] needs O(�k MC(n,N)) time. At line 19 of MATCH-
PΛ,Δ[C], we need O(�k

√
� + k) time to find a maximum bipartite graph matching for the

bipartite graph (Br (u), Bs(v),E) by Dinic’s algorithm (Dinic 1970; Hopcroft and Karp
1973). Then the running time needed for deciding whether or not pr [u] matches Gs[v] is
O(�kMC(n,N)) time, since MC(n,N) =
(N). Therefore the time for computing CS(v)

is O(mkMC(n,N)) time. Considering the two foreach loops at lines 2 and 8, the total run-
ning time is O(NmMMC(n,N)) time. Since m ≤ n and M ≤ N , we have this theorem. �

3.2 A pattern matching algorithm for bpo-graph patterns

For an outerplanar graph G, an outerplanar embedding of G is a planar embedding in which
all vertices have a border with the outer face. Any block B of G has a unique cycle consisting
of all vertices of B , which form the boundary of an outerplanar embedding of B . We call
the unique cycle of B the outer cycle of B . A diagonal is an edge which is contained in B

but not on the outer cycle of B .
For a block B in a bpo-graph pattern p, we can index all vertices of B in the clock-

wise or counterclockwise order of the outer cycle in an outerplanar embedding of B . That
is, by specifying a vertex in V (B), called a start vertex, and a rotation direction of the
outer cycle of B , we can easily construct a numbering function ρB from V (B) to the set
{1,2, . . . , |V (B)|}. Hereafter, for a vertex v of a block B , we also use the number ρB(v)

instead of v as a vertex identifier. For example, for a block B given in Fig. 3, ρB(wi) = i

for each i (1 ≤ i ≤ 7) if all vertices are numbered in the clockwise order of the Hamiltonian

148 Mach Learn (2009) 76: 137–173

Fig. 3 A block B and its block label

cycle in the plane embedding of B from the vertex w1. In the case of the counterclockwise
order, ρB(w1) = 1 and ρB(wi) = 9 − i for each i (2 ≤ i ≤ 7).

Let B be a block of a bpo-graph pattern p, v a start vertex of B and � = |V (B)|. We
suppose that all vertices in B are numbered in the clockwise order of the outer cycle in an
outerplanar embedding of B from v. For any i (1 ≤ i ≤ �), we suppose that the vertex i

is adjacent to ki diagonals {i, j1}, {i, j2}, . . . , {i, jki
} in B , where 0 ≤ ki ≤ � − 3 and i ≤

j1 < j2 < · · · < jki
≤ �. We assume that symbols “/”, “(”, “)”, and “|” are not included in

Λ ∪ Δ. The cycle label of B is defined as labelc(B, v) = δp({1,2})δp({2,3}) . . . δp({�,1}),
and the diagonal label of B is defined as labeld(B, v) = φp(1)/φp(2)/ . . . /φp(�), where for
each i (1 ≤ i ≤ �), φp(i) = i(j1, δp({i, j1}))(j2, δp({i, j2})) . . . (jki

, δp({i, jki
})). Then, we

define a block label of B , denoted by μp(B,v), as a label labelc(B, v) | labeld(B, v). We
denote by μp(B,v) the other block label of B in the case of the counterclockwise order. For
example, let p be a bpo-graph pattern having a block B given in Fig. 3 as a subgraph. For a
start vertex w1 in B , we give the block labels μp(B,w1) and μp(B,w1) of B in Fig. 3.

Lemma 6 Let pr be a rooted bpo-graph pattern and Gs a rooted connected outer-
planar graph. For any vertex v ∈ V (Gs), let B be a block in Bs(v). Let c′

1, . . . , c
′
�

be the children of v which lie on the outer cycle of B in this order. Then, (u, b) ∈
CS(v,B) if and only if λp(u) = λG(v) and u has just � children c1, . . . , c� which ap-
pear on the outer cycle of b in this order and satisfy either of the following condi-
tions.

(1) μp(b,u) = μG(B,v) and ci ∈ CS(c′
i) for all i (1 ≤ i ≤ �).

(2) μp(b,u) = μG(B,v) and ci ∈ CS(c′
�−i+1) for all i (1 ≤ i ≤ �).

Proof Since G is a connected outerplanar graph and B is a block of G, this is shown in a
straightforward way from the definition of C-sets. �

Corollary 1 For a bpo-graph pattern p ∈ PΛ,Δ[O] and a connected outerplanar graph
G ∈ GΛ,Δ[O], the problem of deciding whether or not p matches G is correctly solved in
O(nN2

√
D) time, where n = |V (p)|, N = |V (G)| and D is the maximum degree of vertices

in G.

Proof From Theorem 1, algorithm MATCH-PΛ,Δ[O] correctly solves the problem in
O(nN2 MC(n,N)) time. For any block B of an outerplanar graph, since |E(B)| ≤
2|V (B)| − 3, the length of a block label of B is O(|V (B)|). Moreover, since the outer
cycle of a block B is found in linear time (Lingas 1989), we compute a block label of B in
O(|V (B)|) time. Therefore we can decide whether or not a block b of p is isomorphic to

Mach Learn (2009) 76: 137–173 149

B in O(|V (B)|) time. Then we have MC(n,N) = O(N). Hence, MATCH-PΛ,Δ[O] solves
the problem in O(nN3) time.

Below we analyze the running time more accurately. Let u ∈ V (p) and v ∈ V (G). Let
Br (u) = {b1, . . . , b�} and Bs(v) = {B1, . . . ,Bk}. We decide whether or not pr [u,bi] matches
Gs[v,Bj] in O(|V (Bj)|) time by using conditions in Lemma 6. At lines 14–17 of algorithm
MATCH-PΛ,Δ[O], we need O(

∑�

i=1

∑k

j=1 |V (Bj)|) = O(�cv) time where cv is the num-
ber of children of v. The running time for deciding whether or not pr [u] matches Gs[v]
is O(�cv + �k

√
� + k) time. Let m and M be the total numbers of bicomponents in p

and G, respectively. Then CS(v) is computed in O(m(cv + k
√

k)) time. Considering the
two foreach-loops at lines 2 and 8, the total time is O(Nm(N + M

√
D)) time. Since m ≤ n

and M ≤ N , we have this theorem. �

4 An algorithm for finding a minimally generalized BP-graph pattern

4.1 Minimal language problem for bp-graph patterns

Let C be a class of graphs. For a bp-graph pattern p ∈ PΛ,Δ[C] and a finite set of connected
graphs S ⊂ GΛ,Δ[C], p is said to be a minimally generalized bp-graph pattern explaining S

if S ⊆ LC(p) and there is not a bp-graph pattern q ∈ PΛ,Δ[C] such that S ⊆ LC(q) � LC(p).
In this section, we give an algorithm for solving the following problem.

Minimal Language (MINL) Problem for LΛ,Δ(C)

Input: A finite set of graphs S ⊂ GΛ,Δ[C].
Output: A minimally generalized bp-graph pattern p ∈ PΛ,Δ[C] explaining S.

For the class of bp-graph pattern languages LΛ,Δ(C), from the theoretical result by An-
gluin (1980a) and Shinohara (1982), if LΛ,Δ(C) has finite thickness, i.e., for any nonempty
finite set S ⊂ GΛ,Δ[C], the cardinality of the set {L ∈ LΛ,Δ(C) | S ⊆ L} is finite, and the
membership problem and the minimal language problem for LΛ,Δ(C) are solvable in poly-
nomial time then LΛ,Δ(C) is polynomial time inductively inferable from positive data.

It is easy to see that the following lemma holds.

Lemma 7 Let C be a class of graphs. The class LΛ,Δ(C) has finite thickness.

Proof Let S be a nonempty finite subset of GΛ,Δ[C] and G a connected graph in S. If g is a
bp-graph pattern in PΛ,Δ[C] such that LC(g) includes G (i.e., g matches G), then |V (g)| ≤
|V (G)| and |E(g)| + |H(g)| ≤ |E(G)| + |V (G)|. Moreover, the number of all edge labels
and the number of all vertex labels appearing in G are finite. Therefore the set {g ∈ PΛ,Δ[C] |
G ∈ LC(g)} is finite, consequently LΛ,Δ(C) has finite thickness. �

4.2 A general algorithm for finding a minimally generalized bp-graph pattern

First of all, we give the four procedures in Fig. 4, which are used in algorithm MINL[C]
(Fig. 8) for finding a minimally generalized bp-graph pattern. These procedures are called
refinement operators. As for the correctness of algorithm MINL[C], we have the following
lemma.

150 Mach Learn (2009) 76: 137–173

Fig. 4 Refinement operators: These operators are used in algorithm MINL[C] (Fig. 8). �′ and �′ are finite
subsets of � and �, respectively. ϒ is the finite set of blocks

Lemma 8 Let C be a class of graphs which satisfies a connected hereditary property. If C
contains infinitely many different biconnected graphs or � has infinitely many edge labels,
for a given nonempty set of graphs S ⊂ GΛ,Δ[C], algorithm MINL[C] finds a minimally
generalized bp-graph pattern explaining S.

Proof Let p be a bp-graph pattern computed by algorithm MINL[C] for an input S. Let ΛS ,
ΔS , and ΥS be the sets of vertex labels, edge labels, and blocks, respectively, which appear
in all graphs in S. Let p2 and p3 be temporary bp-graph patterns of p immediately after
Steps 2 and 3 in algorithm MINL[C] respectively. Since no new vertex is added at Steps 3

Mach Learn (2009) 76: 137–173 151

Fig. 5 LABELEDVERTEXADDITION: The upper figure shows the case of a terminal variable and the lower
shows the case of a bridge variable

Fig. 6 BLOCKREPLACEMENT: The upper figure shows the case of a bridge variable and the lower shows
the case of a terminal variable

and 4 in the algorithm, |V (p)| = |V (p2)| = |V (p3)| holds. We show that if there exists a
bp-graph pattern q such that S ⊆ LC(q) ⊆ LC(p), q ∼= p holds.

Since LC(q) ⊆ LC(p), |V (q)| ≥ |V (p2)| holds. Let b be a biconnected graphs in
GΛ,Δ[C], which consists of either a single edge with an edge label in Δ − ΔS or a block
which does not belong to ΥS . Let θ be a substitution for p which replaces all bridge vari-
ables with copies of the biconnected graph b and all terminal variables with graphs con-
sisting of a single vertex. Since qθ ∈ LC(p) and LC(p) ⊆ LC(p2), there is a substitution
θ2 for p2 such that qθ ∼= p2θ2. We note that each occurrence of b in pθ has at most 2
cutpoints. Let θx

2 be a substitution which is obtained from θ2 by replacing all occurrences
of b and all bridges appearing in θ2 with bridge variables and removing all bindings for
terminal variables in θ2. Since S ⊆ LC(q) ⊆ LC(p2θ

x
2) ⊆ LC(p2) and refinement operators

�S -LABELEDVERTEXADDITION and ϒS -BLOCKREPLACEMENT cannot apply to p2 any
more, all bp-graph patterns in bindings in θx

2 are bp-graph patterns consisting of two vertices
and one bridge variable connecting the two vertices. Therefore |V (q)| = |V (p2)|, and then
we have |V (q)| = |V (p)|.

152 Mach Learn (2009) 76: 137–173

Fig. 7 Refinement operators Δ′-LABELEDEDGEREPLACEMENT and TERMINALVARIABLEDELETION

Since LC(q) ⊆ LC(p) ⊆ LC(p3), there is a substitution θ3 for p3 such that qθ ∼= p3θ3. Let
θx

3 be a substitution which is obtained from θ3 by replacing all occurrences of b in θ3 with
bridge variables and removing all bindings for terminal variables in θ3. We have p3

∼= p3θ
x
3 ,

and then there is a bijection ζ : V (q) → V (p3) satisfying the following conditions.

1. For all v ∈ V (q), λq(v) = λp3(ζ(v)).
2. If (v, v′) ∈ H(q) (v �= v′) then (ζ(v), ζ(v′)) ∈ H(p3) holds.
3. If {v, v′} ∈ E(q) then either (ζ(v), ζ(v′)) ∈ H(p3) or {ζ(v), ζ(v′))} ∈ E(p3) with

δp3({ζ(v), ζ(v′)}) = δq({v, v′}).
If {v, v′} ∈ E(q) and (ζ(v), ζ(v′)) ∈ H(p3), a bp-graph pattern obtained from p3 by sub-
stituting an edge of label δq({v, v′}) for (ζ(v), ζ(v′)) also explains S. Therefore since
�S -LABELEDEDGEREPLACEMENT can not apply to p3 any more, if {v, v′} ∈ E(q) then
{ζ(v), ζ(v′)} ∈ E(p3) and δp3({ζ(v), ζ(v′)}) = δq({v, v′}) hold.

Let b′ (b′ �∼= b) be a biconnected graph in GΛ,Δ[C], which consists of either a single edge
with an edge label in Δ − ΔS or a block not in ΥS . Let θ ′ be a substitution for q such
that it substitutes copies of b for all bridge variables and copies of b′ for all terminal vari-
ables. Since qθ ′ ∈ LC(p), there is a substitution θ4 for p such that qθ ′ ∼= pθ4. Since all
terminal variables which are adjacent to bridge variables are removed by TERMINALVARI-
ABLEDELETION, all bindings in θ4 which contain an occurrence of b′ are applied to terminal
variables. Let θx

4 be a substitution obtained from θ4 so that all occurrences of b in bindings
in θ4 are replaced with bridge variables, and all bindings to terminal variables are removed.
Then p ∼= pθx

4 . Moreover since at Step 4, terminal variables are removed from p as much
as possible while p explains S, we have q ∼= p. �

In Fig. 9, we give an example process of algorithm MINL[C] of finding a minimally
generalized bp-graph pattern explaining an example set of graphs in Fig. 10. The running
time of MINL[C] depends only on MC(n,N) defined in Sect. 3

Theorem 2 Let C be a class of graphs which satisfies a connected hereditary property.
If C contains infinitely many different biconnected graphs or � has infinitely many edge
labels, for a given nonempty set of graphs S ⊂ GΛ,Δ[C], the minimal language problem for
C is correctly computed in O(N5

min N 2 · MC(Nmin,Nmin)) time, where N is the total sum of
numbers of vertices of all graphs in S and Nmin = min{|V (G)| | G ∈ S}.

Mach Learn (2009) 76: 137–173 153

Fig. 8 Algorithm MINL[C]: This algorithm finds a minimally generalized bp-graph pattern in PΛ,Δ[C] for
a given finite set S of GΛ,Δ[C]

Proof The correctness of algorithm MINL[C] follows from Lemma 8. We analyze the
running time of algorithm MINL[C] (Fig. 8) for C . The sets of labels �S and �S can
be computed in O(Nmin N) time. By using a linear time algorithm for finding all blocks
in a graph (Aho et al. 1974), ϒS is computed in at most O(N · MC(Nmin,Nmin)) time.
Let ϒS = {B1, . . . ,B�} (� ≥ 0). It is easy to see that

∑�

i=1 |V (Bi)| = O(Nmin). Since the
number of vertices of the final output bp-graph pattern is not more than Nmin, during
Step 2, �S -LABELEDVERTEXADDITION and ϒS -BLOCKREPLACEMENT are applied to
p at most O(N2

min|�S |) = O(N3
min) times and O(N2

min

∑�

i=1 |V (Bi)|2) = O(N4
min) times,

respectively. During Steps 3 and 4, �S -LABELEDEDGEREPLACEMENT and TERMINAL-
VARIABLEDELETION are applied to p at most O(Nmin|�S |) = O(N2

min) times and O(Nmin)

times, respectively. For each refinement operation, we have to decide whether or not a tem-

154 Mach Learn (2009) 76: 137–173

Fig. 9 An example process of finding a minimally generated bp-graph pattern explaining an example set of
graphs in Fig. 10

Fig. 10 An example set of outerplanar graphs: We assume that the edges with no label have a unique edge
label except for α,β and γ

porary bpo-graph pattern explains S, and from Theorem 1, it needs at most O(Nmin N 2 ·
MC(Nmin,Nmin)) time. Then, the total computational time of algorithm MINL[C] is
O(N5

min N 2 · MC(Nmin,Nmin)). �

Mach Learn (2009) 76: 137–173 155

4.3 Minimal language problem for bpo-graph patterns

In this section, we show that algorithm MINL[O] finds a minimally generalized bpo-graph
pattern with respect to a given set of connected outerplanar graphs S ⊂ GΛ,Δ[O] in polyno-
mial time.

Corollary 2 The minimal language problem for LΛ,Δ(O) is correctly computed in polyno-
mial time.

Proof Since the class O contains finitely many different blocks, e.g., circles of arbitrary
length, algorithm MINL[O] correctly finds a minimally generalized bpo-graph pattern ex-
plaining a given set of connected outerplanar graphs S ⊂ GΛ,Δ[O].

For each refinement operation, we have to decide whether or not a temporary bpo-graph
pattern explains S. From Corollary 1, it needs at most O(Nmin N 2

√
dmax) time where dmax

is the maximum degree of outerplanar graphs in S. Therefore, in a similar argument to
Theorem 2, the total computational time of algorithm MINL[O] is O(N5

min N 2
√

dmax). �

Finally we have the following theorem and corollary.

Theorem 3 The class LΛ,Δ(C) is polynomial time inductively inferable from positive data
if the class C satisfies the following conditions.

1. C satisfies a connected hereditary property.
2. C contains infinitely many different biconnected graphs or � has infinitely many edge

labels.
3. MC(n,N) is polynomial with respect to n and N .

Proof This theorem follows from Lemma 7, Theorems 1 and 2. �

Corollary 3 The class LΛ,Δ(O) is polynomial time inductively inferable from positive data.

5 Pattern enumeration algorithms for frequent BPO-graph pattern problem

Let S be a finite subset of GΛ,Δ[O] and p a bpo-graph pattern in PΛ,Δ[O]. Then, we denote
by OS(p) the set of outerplanar graphs in S which are matched by p, called the occurrence
set of p with respect to S. The frequency of p with respect to S, denoted by suppS(p),
is defined as suppS(p) = |OS(p)|/|S|. Let t be a real number where 0 < t ≤ 1. A bpo-
graph pattern p ∈ PΛ,Δ[O] is t -frequent with respect to S if suppS(p) ≥ t . We call this real
number t a frequency threshold. In this section, we give an algorithm for computing the
following problem.

Frequent Block Preserving Outerplanar Graph Pattern Problem
(FBPOGP Problem)
Input: A finite set of connected outerplanar graphs S ⊂ GΛ,Δ[O] and a frequency
threshold t where 0 < t ≤ 1.
Output: The set of all t -frequent bpo-graph patterns in PΛ,Δ[O] with respect to S.

In this section, all vertices of the generated bpo-graph patterns are assumed to have ter-
minal variables connecting to each of them. This is because we avoid to generate a huge

156 Mach Learn (2009) 76: 137–173

number of patterns by the mining process. Then any generated bpo-graph pattern has termi-
nal variables (u) for all vertices u of the bpo-graph pattern and they are not removed from it
during the process of a pattern generation.

Let F t be the set of all t -frequent bpo-graph patterns with respect to S. Because the
number of F t may be exponential in the vertex size of S, we cannot solve the problem for
enumerating F t in polynomial time. We say that an algorithm solves the problem for enu-
merating F t in incremental polynomial time if the algorithm enumerates the first k patterns
in F t in polynomial time with respect to the vertex sizes of S and the set of these k patterns
for any k (1 ≤ k ≤ |F t |). In this section, we show that FBPOGP problem is computed in
incremental polynomial time.

5.1 An apriori-like algorithm

We give an Apriori-like algorithm for computing FBPOGP problem. The algorithm is sim-
ilar to the subgraph mining algorithm for outerplanar graphs described in (Horváth et al.
2006). For an integer k ≥ 0, a k-bpo-graph pattern is defined to be a bpo-graph pattern such
that the number of all bicomponents of it is equal to k. Let S be a set of outerplanar graphs in
GΛ,Δ[O] and t a real number where 0 < t ≤ 1. Let F t

k be the set of all t -frequent k-bpo-graph
patterns with respect to S. We give the pattern enumeration algorithm GENPATTERNS-1.0
in Fig. 11. The algorithm generates F t

k from F t
k−1 for any k ≥ 2 in a breadth-first manner.

First, we describe the detail of line 1 of GENPATTERNS-1.0 in which F t
0 and F t

1 are
computed, and then give explanations of line 4 (procedure GENCANDIDATES).

Construct F t
0 and F t

1 w.r.t. S: F t
0 is the set of t -frequent 0-bpo-graph patterns consisting of

a single vertex and a terminal variable connecting to the vertex. F t
1 is the set of t -frequent 1-

bpo-graph patterns p of the following three types: (a) p = (V (B),E(B), {(u) | u ∈ V (B)})
where B is a block, and for two vertices u and v, (b) p = ({u,v}, {(u, v)}, {(u), (v)}) and
(c) p = ({u,v},∅, {(u), (v), (u, v)}). F t

0 and F t
1 are computable in polynomial time with

respect to the vertex size of S. In Fig. 12, we give examples of 0-bpo-graph patterns and
1-bpo-graph patterns.

Procedure GENCANDIDATES: In the procedure we generate the set of candidate frequent
k-bpo-graph patterns. Each candidate is obtained from two (k−1)-bpo-graph patterns which
have an isomorphic (k − 2)-bpo-graph pattern.

For a k-bpo-graph pattern p (k ≥ 2), we say that a subgraph pattern p′ of p is said to be
terminal if p′ is a 1-bpo-graph pattern and contains exactly one cutpoint of p. The cutpoint
of p appearing in p′ is called the connected point of p′ to p. We denote by p � p′ the
(k − 1)-bpo-subgraph pattern obtained from p by removing all vertices of p′ except for the
connected point of p′. We denote by TB(p) the set of all terminal subgraph patterns of a bpo-
graph pattern p. For two (k − 1)-bpo-graph patterns p1 and p2, at line 4 we check whether
or not p1 � p′

1 is isomorphic to p2 � p′
2 for each pair p′

1 ∈ TB(p1) and p′
2 ∈ TB(p2). If it is

the case then we pick up all vertices of p2 which correspond to the connected point u1 of p′
1

to p1 (line 6). In order to obtain the set of vertices at line 6, for each vertex u ∈ V (p2 � p′
2)

we decide whether or not two rooted bpo-graph patterns (p2 � p′
2)

u and (p2 � p′
2)

ψ(u1) are
isomorphic where ψ is an isomorphism from p1 �p′

1 to p2 �p′
2. If (p2 �p′

2)
u is isomorphic

to (p2 � p′
2)

ψ(u1), we see that u corresponds to the connected point u1. For each vertex u

which are obtained at line 6, we attach p′
1 to p2 by identifying u1 with u and generate a

new k-bpo-graph pattern (line 8). At line 9, for every candidate pattern p we check that p

satisfies a necessary condition of the frequency pattern, that is, it decides whether or not

Mach Learn (2009) 76: 137–173 157

Fig. 11 An algorithm for generating all frequent bpo-graph patterns with respect to a given set of connected
outerplanar graphs

p � p′ is in F t
k−1 for each terminal subgraph pattern p′ of p. If p is t -frequent, p � p′ must

be in F t
k−1 for each vertex u ∈ V (p). This is a useful heuristic procedure to make a candidate

set for F t
k smaller.

In Fig. 13, we give an example process of generating candidate k-bpo-graph patterns
from two (k − 1)-bpo-graph patterns in the above way.

Lemma 9 For any k ≥ 2, procedure GENCANDIDATES in Fig. 11 computes a set of k-bpo-
graph patterns Ct

k which contains all t -frequent k-bpo-graph patterns in polynomial time
with respect to the vertex size of F t

k−1.

Proof Let N be the vertex size of F t
k−1 and n the maximum number of vertices of bpo-graph

patterns in F t
k−1. Then the maximum number of vertices of bpo-graph patterns in Ct

k is at

158 Mach Learn (2009) 76: 137–173

Fig. 12 Examples of 0-bpo-graph patterns and 1-bpo-graph patterns

Fig. 13 An example of a generation of k-bpo-graph patterns from two (k −1)-bpo-graph patterns p1 and p2.
In this case, the (k − 2)-bpo-graph pattern which is subgraph isomorphic to p1 and p2 has more than one
automorphisms, therefore, we can generate more than one k-bpo-graph patterns from p1 and p2. We omit
terminal variables in this figure

most 2n. The double foreach-loop at lines 2 and 3 iterates O(N 2) times. At line 4 we decide
in linear time whether or not the two bpo-graph patterns p1 �p′

1 and p2 �p′
2 are isomorphic

each other by using a linear time isomorphism algorithm for planar graphs in (Hopcroft and
Wong 1974). The set of vertices U at line 6 is computed in O(n2) time. In order to quickly
decide whether or not a bpo-graph pattern is included in a set of bpo-graph pattern, we adopt
a canonical string representation described in (Horváth et al. 2006), which satisfies that
two outerplanar graphs have the same canonical string if and only if they are isomorphic.
We transform a bpo-graph pattern p into its canonical string in O(|V (p)|2 log |V (p)|), and
computes the if-statement at line 9 in O(n log |Ct

k| + n(n2 logn + n log |F t
k−1|)) time. Since

the number of k-bpo-graph patterns obtained from two (k − 1)-bpo-graph patterns p1 and
p2 is at most |V (p1)| · |V (p2)|, the number of bpo-graph patterns in Ct

k is at most N 2. Then

Mach Learn (2009) 76: 137–173 159

the total time complexity of procedure GENCANDIDATES is O(n3 N 2(n logn + log N)). It
is polynomial time with respect to N . �

Frequency calculation: At line 6 of algorithm GENPATTERNS-1.0, we decide whether or
not a candidate k-bpo-graph pattern is t -frequent with respect to S. We use a well-known
heuristics to reduce the number of pattern matching operations. Let p be a candidate k-bpo-
graph pattern obtained from two (k − 1)-bpo-graph patterns p1 and p2. In order to compute
the occurrence set OS(p), it is enough to compute the occurrence set of p with respect to
OS(p1) ∩ OS(p2) because p satisfies that LO(p) ⊆ LO(p1) and LO(p) ⊆ LO(p2).

From Theorem 1 and Lemma 9, we have the following lemma.

Lemma 10 Let S be a finite set of connected outerplanar graphs in GΛ,Δ[O] and t a fre-
quency threshold where 0 < t ≤ 1. For any k ≥ 2, F t

k is computed from F t
k−1 in polynomial

time with respect to the vertex sizes of F t
k−1 and S by algorithm GENPATTERNS-1.0.

Finally we have the following theorem.

Theorem 4 Algorithm GENPATTERNS-1.0 correctly solves FBPOGP problem in incremen-
tal polynomial time.

5.2 A refinement-based algorithm

In this section, we give an improved version of algorithm GENPATTERNS-1.0 and describe
pattern enumeration algorithm GENPATTERNS-2.0 in Fig. 14. Algorithm GENPATTERNS-
2.0 consists of two main parts, a generation process of the most generalized bpo-graph
patterns and a refinement process of them. First we describe the detail of the generation
of most generalized bpo-graph patterns at lines 5–9 of GENPATTERNS-2.0 and then give
explanations of GENREFINEDPATTERNS at line 11 and COUNTFREQUENCY at line 12.

Generation of the most generalized bpo-graph patterns in F t
k . For a set of bpo-graph

patterns F and a bpo-graph pattern p ∈ F , we say that p is the most generalized bpo-graph
pattern in F if there does not exist a bpo-graph pattern q ∈ F such that LO(p) � LO(q).
We have the following lemma.

Lemma 11 A bpo-graph pattern p ∈ F t
k is the most generalized bpo-graph pattern in F t

k if
and only if p has no bridge and no block which has at most 2 cutpoints.

Proof If p has a bridge or a block which has at most 2 cutpoints, a bpo-graph pattern q

obtained from p by replacing the bridge or block with a bridge variable is in F t
k and satisfies

LO(p) � LO(q). Therefore p is not the most generalized bpo-graph pattern in F t
k .

Conversely we suppose that q is a k-bpo-graph pattern such that LO(p) � LO(q). Let
G be an outerplanar graph which is obtained from p by replacing all bridge variables with
cycles of length |V (p)|+1, and all terminal variables with single vertices. Since G ∈ LO(q),
there is a substitution θ such that G ∼= qθ . Since both p and q are k-bpo-graph patterns, any
binding for a bridge variable in θ is to replace it with either one labeled edge or one block.
If θ contains a binding for a bridge variable which is replaced with a graph having at most
|V (p)| vertices, from the construction of G, p has a bridge or a block which has at most 2
cutpoints. Otherwise p ∼= q holds. It contradicts that LO(p) � LO(q). �

160 Mach Learn (2009) 76: 137–173

Fig. 14 An algorithm for generating all frequent bpo-graph patterns with respect to a given set of connected
outerplanar graphs

From Lemma 11, any (k − 1)-bpo-graph pattern which is a subgraph pattern of the most
generalized bpo-graph patterns in F t

k satisfies that (1) there is no bridge and (2) each block
has at least 2 cutpoints. At line 5 of GENPATTERNS-2.0 we extract the set FM of all bpo-
graph patterns satisfying (1) and (2) from F t

k .
At line 7, we generate candidates of the most generalized bpo-graph patterns in F t

k+1 from
FM . We use a similar method to procedure GENCANDIDATES in algorithm GENPATTERNS-
1.0 in order to generate candidates, but we note that for an input set FM , procedure GEN-
CANDIDATES generates extra bpo-graph patterns which have a block having at most 2 cut-
points. So, we use procedure GENCANDIDATES-R which is improved so as to generate only
bpo–graph patterns which meet the requirements to be most generalized. The set of all most
generalized bpo-graph patterns is computable in polynomial time with respect to the vertex
sizes of FM and S. It is the same time complexity as that of algorithm GENPATTERNS-1.0.

Procedure GENREFINEDPATTERNS. We describe procedure GENREFINEDPATTERNS in
Fig. 15. The procedure is based on the following lemma.

Lemma 12 For any t -frequent k-bpo-graph pattern p ∈ F t
k , there exists the most general-

ized bpo-graph pattern pM in F t
k and a substitution θ such that p ∼= pMθ .

Proof Let pM be a bpo-graph pattern which is obtained from p by replacing all bridges
and blocks containing at most 2 cutpoints by bridge variables. It is clear that pM is the
most generalized bpo-graph pattern in F t

k . Let θ be a substitution which replaces all vari-
ables made by the above operation with the original bridges and blocks, then p ∼= pMθ

holds. �

Mach Learn (2009) 76: 137–173 161

Fig. 15 Procedure GENREFINEDPATTERNS: We denote by TB(p) the set of all terminal bpo-subgraph pat-
terns of p

GENREFINEDPATTERNS receives one of the most generalized t -frequent k-bpo-graph
patterns pM , F t

k−1 and the set Fb of t -frequent 1-bpo-graph patterns which have no bridge
variable. And it returns a superset of the set of t -frequent k-bpo-graph patterns p such that
LO(p) ⊆ LO(pM). For a bpo-graph pattern p which has � bridge variables (� ≥ 1), pro-
cedure REPLACEVARIABLE proceeds to generate bpo-graph patterns q which have � − 1
bridge variables, in a similar way to refinement operators LABELEDEDGEREPLACEMENT

and BLOCKREPLACEMENT in Sect. 4.

Procedure COUNTFREQUENCY. We describe this procedure in Fig. 16. The procedure
exactly selects all t -frequent k-bpo-graph patterns from the output of procedure GENRE-
FINEDPATTERNS. Let pM be the most generalized k-bpo-graph pattern in F t

k and U =
OS(pM). Let C be the output set of GENREFINEDPATTERNS for an input pM . Since any
bpo-graph pattern p ∈ C satisfies LO(p) ⊆ LO(pM), the occurrence set of p with respect
to S is computed from U . If there is a bpo-graph pattern q ∈ C such that LO(q) ⊆ LO(p)

and the occurrence set of q has already been computed, the occurrence set of p is computed
only from U −OS(q). In this way, we reduce the number of pattern matchings in this proce-
dure. First of all, COUNTFREQUENCY computes all occurrence sets of bpo-graph patterns
in C which have no variable, and decide whether or not they are frequent (lines 3–6). Next,
for all i ≥ 1, the procedure computes the occurrence sets of all bpo-graph patterns in C

162 Mach Learn (2009) 76: 137–173

Fig. 16 An algorithm for counting frequencies of given bpo-graph patterns

which have i variables by using the occurrence sets of bpo-graph patterns which have i − 1
variables (lines 7–14). To be precise, in order to compute the occurrence set of a bpo-graph
pattern p, first we compute the union W of occurrence sets of bpo-graph patterns which are
obtained by applying procedure REPLACEVARIABLE to p (line 10). Then we compute the
occurrence set of p with respect to U − W and obtain OU(p) (line 11).

We have the following lemma.

Lemma 13 Let S be a finite set of connected outerplanar graphs in GΛ,Δ[O], t a frequency
threshold where 0 < t ≤ 1, and Fb a set of t -frequent 1-bpo-graph patterns which have no
bridge variable. For any k ≥ 2, F t

k is computed from F t
k−1 in polynomial time with respect

to the vertex sizes of F t
k−1, Fb and S by algorithm GENPATTERNS-2.0.

Proof Let N be the vertex size of F t
k−1, n the maximum number of vertices of bpo-graph

patterns in F t
k−1, and Nb the vertex size of Fb . All (k−1)-bpo-subgraph patterns of each can-

didate k-bpo-graph pattern generated by GENREFINEDPATTERNS are t -frequent because of
the reduction method at line 6 of REPLACEVARIABLE. Therefore, because each candidate is
also obtained from two (k − 1)-bpo-graph patterns, the number of all k-bpo-graph patterns
outputted by GENREFINEDPATTERNS during the foreach-loop at line 10 of GENPATTERNS-
2.0 is less than the number of k-bpo-graph patterns outputted by procedure GENCANDI-
DATES in algorithm GENPATTERNS-1.0, that is, at most N 2. In procedure REPLACEVARI-
ABLE, the double loop at lines 2 and 3 iterates O(kN 2

b) time, and the if-statement at line 4 is
computed in polynomial time with respect to n and N . Hence, procedure GENREFINEDPAT-
TERNS works in polynomial time with respect to n, N and Nb . From Theorem 1, procedure
COUNTFREQUENCY works in polynomial time with respect to N and the vertex size of S.
Consequently, algorithm GENPATTERNS-2.0 outputs F t

k in polynomial time with respect to
N , Nb and the vertex size of S. �

From Lemma 13, we have the following theorem.

Mach Learn (2009) 76: 137–173 163

Theorem 5 Algorithm GENPATTERNS-2.0 correctly solves FBPOGP problem in incremen-
tal polynomial time.

5.3 Maximal frequent bpo-graph pattern problem

A bpo-graph pattern p ∈ PΛ,Δ[O] is said to be a maximal t -frequent bpo-graph pattern
with respect to a set of connected outerplanar graphs S ⊆ GΛ,Δ[O] if p is t -frequent with
respect to S and there is no t -frequent bpo-graph pattern q with respect to S satisfying
LO(q) � LO(p). In this section, we give procedures for computing the following problem.

Maximal Frequent BPO-Graph Pattern Problem (MFBPOGP Problem)
Input: A finite set of connected outerplanar graphs S ⊂ GΛ,Δ[O] and a frequency threshold t

where 0 < t ≤ 1.
Output: The set of all maximal t -frequent bpo-graph patterns in PΛ,Δ[O] with respect to S.

Let Mt
k be the set of all maximal t -frequent k-bpo-graph patterns with respect to S. For

a t -frequent bpo-graph pattern p, we decide whether or not p is maximal t -frequent by us-
ing LABELEDVERTEXADDITION, BLOCKREPLACEMENT and LABELEDEDGEREPLACE-
MENT in Sect. 4. For each bridge variable h of p, if at least one bpo-graph pattern q which
is obtained from p by applying either of the three refinement operators to h is t -frequent,
p is not maximal t -frequent. For more details, we computes Mt

k by applying the following
three maximality tests on F t

k and F t
k+1 generated by GENPATTERNS-2.0.

Maximality Test 1: For a t -frequent k-bpo-graph pattern p, let R(p) be the set of k-bpo-
graph patterns generated by procedure REPLACEVARIABLE in Fig. 15. If F t

k ∩ R(p) �= ∅,
we conclude that p is not maximal t -frequent. Let Δt

S and Υ t
S be the sets of all edge labels

and blocks appearing in at least t |S| graphs in S, respectively. This maximality test cor-
responds to Δt

S -LABELEDEDGEREPLACEMENT and Υ t
S -BLOCKREPLACEMENT for each

bridge variable of p. This maximality test are executed in procedure COUNTFREQUENCY.

Let Λt
S be the set of all vertex labels appearing in at least t |S| graphs in S. The following

two maximality tests correspond to Λt
S -LABELEDVERTEXADDITION to each variable of p.

For these maximality tests, we need only a subset of Λt
S .

Maximality Test 2: For a k-bpo-graph pattern p ∈ F t
k , if there exists a (k + 1)-bpo-graph

pattern p′ ∈ F t
k+1 which has p as its bpo-subgraph pattern, p is not maximal t -frequent. Let

Λ1 be the set of all vertex labels appearing in F t
1 . This maximality test corresponds to Λ1-

LABELEDVERTEXADDITION for each terminal variable of p. In order to do this maximality
test easily, we make the bidirectional links between p and all (k + 1)-bpo-graph patterns p′
which have p as its bpo-subgraph pattern. These links are added when the if-statement at
line 6 of every REPLACEVARIABLE application is executed.

Maximality Test 3: Let �2 be the set of all vertex labels of cutpoints of bpo-graph pat-
terns in F t

2 consisting of exactly two bridge variables. For each bridge variable h of
p, if at least one of (k + 1)-bpo-graph patterns p′ obtained from p by applying Λ2-
LABELEDVERTEXADDITION to h is in F t

k+1, p is not maximal t -frequent.

The next theorem is proved in a similar way to Lemma 8.

Theorem 6 Let p be a t -frequent bpo-graph pattern with respect to a given set of con-
nected outerplanar graphs S ⊆ GΛ,Δ[O]. Procedures Maximality Tests 1–3 correctly decide
whether or not p is maximal t -frequent with respect to S.

164 Mach Learn (2009) 76: 137–173

5.4 Experimental results

We have implemented our frequent bpo-graph pattern mining algorithms and tested on
chemical datasets. In our experiments, we used a dataset containing 250,251 chemical com-
pounds, which is available from National Cancer Institute (NCI) (NCI 2000). The NCI
dataset contains 236,180 compounds which can be expressed by connected or disconnected
outerplanar graphs. In particular, we used a set of 223,912 compounds which can be ex-
pressed by connected outerplanar graphs. In the dataset, there are 81 distinct vertex labels
which correspond to types of atoms, three distinct edge labels which correspond to types of
bonds, and 10,374 pairwise non-isomorphic blocks. Though, there are only 6 atom types and
one block, that is, C, Cl, H, N, O, S, and the benzene ring, whose frequencies are beyond 0.1.
We experimented on various subsets of the original dataset of 223,912 compounds, however
frequent atom types and blocks of datasets used in our experiments are almost the same as
those of the original dataset. The implementation is by javac 1.5.0_07 and on an Intel Core 2
Duo E6300 (1.86 GHz) machine with 2.00 GB RAM, running the Linux operating system.
All the running times reported as follows are in seconds.

5.4.1 Apriori-like algorithm versus refinement-based algorithm

First, we carried out experiments to compare performances of algorithm GENPATTERNS-
1.0 with performances of algorithm GENPATTERNS-2.0. We used a dataset consisting of
100 outerplanar molecular graphs, which are chosen from NSC number 1 to 100. We set
frequency thresholds to be 0.5, 0.4, 0.3, 0.2 and 0.1, and tested on the dataset with respect to
the frequencies. We show the results with frequency thresholds 0.5 and 0.4 in Table 1, with
frequency thresholds 0.3 and 0.2 in Table 2, and with frequency threshold 0.1 in Table 3.
We only show experimental results obtained by experiments which finished in about 250,000
seconds (about 70 hours). For frequencies 0.3, 0.2 and 0.1, algorithm GENPATTERNS-1.0
did not complete within the time frame.

In the tables, Ct
k means the set of all candidate k-bpo-graph patterns outputted by

GENCANDIDATES-R and GENREFINEDPATTERNS during the k-th iteration of the while-
loop at lines 4–16 in algorithm GENPATTERNS-2.0 (see Fig. 14). In the tables we omit the
number of candidates of algorithm GENPATTERNS-1.0 (i.e., the number of candidate k-bpo-
graph patterns generated by GENCANDIDATES), since it was almost the same as the number
of candidates of algorithm GENPATTERNS-2.0. This is because both algorithms apply the
same reduction method at line 9 in GENCANDIDATES and line 6 in REPLACEVARIABLE.
The average of |Ct

k|/|F t
k | is very close to 1. If the reduction method does not applied, the

numbers of candidates rise about 3–7 times. Therefore, we succeed to reduce candidate
bpo-graph patterns and the running time for computing the frequencies of candidates.

We utilize only the most generalized (k − 1)-bpo-graph patterns from F t
k−1 to gener-

ate candidates of t -frequent k-bpo-graph patterns. Therefore GENPATTERNS-2.0 becomes
faster than GENPATTERNS-1.0. For example, for frequency threshold 0.3, the total running
time of GENPATTERNS-1.0 for the generation of F 0.3

10 from F 0.3
0 is 122,015 seconds. On

the other hand, the total running time of GENPATTERNS-2.0 is 426 seconds, which is re-
duced to about 1/286 of that of GENPATTERNS-1.0. For frequency 0.1, GENPATTERNS-2.0
could find as many as 48 million frequent bpo-graph patterns. The column specified with Mt

k

shows the numbers of bpo-graph patterns in Mt
k , which are found to be extremely smaller

than |F t
k | for any frequency threshold. The numbers of frequent patterns and maximal fre-

quent patterns depend on an input dataset. In this case it would appear that the dataset does
not contain scattering data and there are many graphs which have large common structures.

Mach Learn (2009) 76: 137–173 165

Table 1 Experimental results on a dataset containing 100 outerplanar molecular graphs with frequency
thresholds 0.5 and 0.4. T1 (resp. T2) is the running time in seconds for the generation of F t

k
from F t

k−1
by GENPATTERNS-1.0 (resp. GENPATTERNS-2.0) and TM is the running time for the generation of Mt

k

from F t
k

and F t
k+1 by maximality tests

k |S| = 100, t = 0.5

|Ct
k
| |F t

k
| |Mt

k
| T1 T2 TM

0 10 4 0 0.09 0.07 0

1 53 10 0 0.7 0.2 0.02

2 32 23 0 1 2 0.02

3 154 96 3 3 3 0.08

4 314 280 8 7 2 0.15

5 753 713 4 16 5 0.15

6 1368 1332 15 35 6 0.23

7 1714 1696 15 68 6 0.23

8 1373 1367 18 96 5 0.18

9 606 606 34 69 3 0.04

10 107 107 13 19 1 0

11 0 0 0 1 0 0

12 0 0 0 0 0 0

13 0 0 0 0 0 0

14 0 0 0 0 0 0

15 0 0 0 0 0 0

Total 6484 6234 110 316 34 1

k |S| = 100, t = 0.4

|Ct
k
| |F t

k
| |Mt

k
| T1 T2 TM

0 10 4 0 0.1 0.1 0

1 53 13 1 0.6 0.5 0.01

2 51 31 5 1 1 0.03

3 216 122 2 4 3 0.05

4 463 231 5 9 3 0.25

5 1293 1233 13 27 8 0.25

6 3010 2961 16 82 10 0.55

7 6290 6261 32 277 15 1.3

8 11042 11026 23 1261 32 2.8

9 15326 15326 26 6590 64 3.5

10 15781 15781 30 18013 81 3.0

11 11540 11540 29 38740 60 1.7

12 5596 5596 8 30777 25 0.57

13 1556 1556 6 10942 6 0.08

14 170 170 2 1231 1 0.01

15 0 0 0 29 0 0

Total 72397 72051 198 107984 308 14

166 Mach Learn (2009) 76: 137–173

Table 2 Experimental results on a dataset containing 100 outerplanar molecular graphs with frequency
thresholds 0.3 and 0.2

k |S| = 100, t = 0.3
|Ct

k
| |F t

k
| |Mt

k
| T1 T2 TM

0 10 4 0 0.1 0.1 0
1 53 15 0 0.6 0.7 0.02
2 72 39 5 1 1 0.06
3 250 146 2 3 3 0.09
4 622 555 6 8 3 0.19
5 1871 1798 16 34 8 0.46
6 5057 4996 21 127 13 1.1
7 12432 12390 39 564 27 3.4
8 26350 26330 67 2451 61 5.3
9 46706 46677 27 16624 107 12

10 67938 67938 41 102200 202 17
11 80945 80945 50 – 256 19
12 77220 77220 27 – 240 16
13 56164 56164 3 – 160 9.7
14 28744 28744 0 – 70 3.5
15 9112 9112 5 – 21 0.6
16 1360 1360 4 – 3 0.01
17 0 0 0 – 0.05 0
18 0 0 0 – 0.05 0
19 0 0 0 – 0.05 0

Total 414906 414433 313 122015 1176 89

k |S| = 100, t = 0.2
|Ct

k
| |F t

k
| |Mt

k
| T1 T2 TM

0 10 4 0 0.1 0.07 0
1 53 17 1 0.6 0.2 0.03
2 89 58 11 1 2 0.02
3 316 185 7 4 3 0.06
4 816 728 10 10 4 0.17
5 2753 2574 17 40 9 0.59
6 8129 7921 46 166 17 1.9
7 22258 22151 68 782 33 6.4
8 55359 55303 113 5839 98 13
9 123632 123547 126 43091 178 31

10 242757 242754 67 – 424 63
11 412249 412249 57 – 977 108
12 585305 585305 78 – 2002 140
13 666128 666128 75 – 2795 139
14 575174 575174 12 – 2562 94
15 352960 352960 1 – 1339 48
16 139752 139752 4 – 505 14
17 29912 29912 8 – 127 1.2
18 2048 2048 1 – 13 0.02
19 0 0 0 – 0 0

Total 3219682 3218770 702 49933 11088 661

Mach Learn (2009) 76: 137–173 167

Table 3 Experimental results on a dataset containing 100 outerplanar molecular graphs with frequency
threshold 0.1

k |S| = 100, t = 0.1

|Ct
k
| |F t

k
| |Mt

k
| T1 T2 TM

0 10 5 0 0.07 0.08 0

1 63 24 0 0.7 0.2 0.02

2 150 99 8 1 2 0.04

3 499 296 17 5 3 0.07

4 1202 1041 8 9 4 0.25

5 4412 4128 17 36 9 0.91

6 15369 15010 19 177 23 3.6

7 49739 49379 60 1379 43 15

8 147809 147461 114 14431 133 47

9 401598 401296 248 188536 491 154

10 978266 978153 233 – 1968 307

11 2100702 2100696 171 – 5687 884

12 3909387 3909387 116 – 11624 1464

13 6206092 6206092 182 – 27025 2191

14 8225737 8225737 230 – 49285 2944

15 8889001 8889001 80 – 89743 2724

16 7673045 7673045 20 – 42183 2028

17 5215896 5215896 10 – 16588 1202

18 2751960 2751960 26 – 4354 426

19 1087072 1087072 7 – 1649 164

20 290560 290560 0 – 387 25

21 39776 39776 1 – 67 0.17

22 0 0 0 – 1 0

Total 47988345 47986114 1193 204575 251269 14582

5.4.2 Scalability

We carried out experiments to test the scalability of algorithm GENPATTERNS-2.0. First, we
evaluated the scalability with respect to the dataset size. We used four datasets which contain
1,000, 2,000, 5,000, and 10,000 outerplanar molecular graphs, respectively. Each dataset
was randomly chosen from the original dataset, so that the average number of vertices of
graphs is about 30. We set frequency thresholds to be 0.5, 0.4, 0.3 and 0.2, and tested on
each dataset with respect to the frequencies. The results are given in Table 4. As expected,
as the dataset size increases the running time increases. For example, for frequency 0.2, on
datasets of 1,000, 2,000, 5,000, and 10,000 compounds, the times needed for generation per
pattern are 12, 23, 52 and 95 milliseconds, respectively. We can see that the time needed per
pattern scales linearly with respect to the dataset size.

Next, we evaluated the scalability with respect to the graph size, i.e., the number of
vertices. We created three datasets which contain 1,000 outerplanar molecular graphs re-
spectively, so that each dataset has a different average graph size. The average graph sizes
of datasets we created are 21, 29 and 38, respectively. We modulated the frequency thresh-

168 Mach Learn (2009) 76: 137–173

Table 4 Dataset size and running time. t is the frequency threshold, kmax is the maximum level (i.e., the

number of bicomponents) of t -frequent bpo-graph patterns, F t = ⋃kmax
k=0 F t

k
, Mt = ⋃kmax

k=0 Mt
k

, and T is the

running time in seconds for the generation of all t -frequent bpo-graph patterns by GENPATTERNS-2.0

t |S| = 1,000 |S| = 2,000

kmax |F t | |Mt | T kmax |F t | |Mt | T

0.5 8 612 64 33 7 505 48 52

0.4 9 2429 216 95 9 1887 187 147

0.3 13 13468 850 326 12 10148 732 429

0.2 16 133202 5454 1618 15 101130 4917 2369

t |S| = 5,000 |S| = 10,000

kmax |F t | |Mt | T kmax |F t | |Mt | T

0.5 8 543 55 134 8 846 73 403

0.4 9 2090 211 430 10 3629 281 947

0.3 12 11349 824 1293 13 20972 1447 4297

0.2 15 130812 7102 6809 16 275710 13703 26198

Table 5 Average graph size and running time. t is the frequency threshold, kmax is the maximum level of

t -frequent bpo-graph patterns, F t = ⋃kmax
k=0 F t

k
, Mt = ⋃kmax

k=0 Mt
k

, and T is the running time in seconds for
the generation of all t -frequent bpo-graph patterns by GENPATTERNS-2.0

t |S| = 1,000, Avg = 21 |S| = 1,000, Avg = 29 |S| = 1,000, Avg = 38

kmax |F t | |Mt | T kmax |F t | |Mt | T kmax |F t | |Mt | T

0.5 6 189 22 11 8 807 83 45 11 8149 502 348

0.4 7 435 61 18 9 2914 208 90 13 39718 2137 1065

0.3 8 1331 163 31 11 11375 695 210 16 257329 10455 3698

0.2 10 6532 516 76 14 67017 2893 658 19 3263868 61891 22446

old from 0.5 to 0.2, and tested on each dataset with respect to the frequency threshold. The
results are given in Table 5. The table shows that as we increase the average graph size
the number of frequent bpo-graph patterns increases, but the time needed for generation
per pattern does not increase. For example, for frequency 0.2, on datasets whose average
graph sizes are 21, 29 and 38, the times needed per pattern are 12, 10 and 7 milliseconds,
respectively. For each dataset and frequency threshold, more than 90% of the total time is
the time for counting frequency. From Theorem 1, if we naively counted frequencies, the
time needed per pattern would vary directly with the square of the average graph size. The
reason why it was not the case is that as the number of bpo-graph patterns generated from
one most generalized bpo-graph pattern increases, the occurrence sets of bpo-graph patterns
overlaps more often and the number of pattern matching operations in COUNTFREQUENCY

decreases.

5.4.3 Study with respect to bridge variables

We divided sets of frequent bpo-graph patterns discovered in experiments on the dataset
containing 10,000 compounds with respect to the number of bridge variables. The results

Mach Learn (2009) 76: 137–173 169

Table 6 The number of frequent bpo-graph patterns with respect to the number of bridge variables, which
are discovered in the experiment on the dataset containing 10,000 compounds. F t (r) (resp. Mt(r)) means the
set of all t -frequent bpo-graph patterns (resp. maximal t -frequent bpo-graph patterns) with r bridge variables
where r ≥ 0

r t = 0.5 t = 0.4 t = 0.3 t = 0.2

|F t (r)| |Mt(r)| |F t (r)| |Mt(r)| |F t (r)| |Mt(r)| |F t (r)| |Mt(r)|

0 12 0 27 0 48 1 122 2

1 55 3 145 12 339 15 1104 35

2 126 10 367 39 1115 96 4552 173

3 194 28 622 56 2321 159 12052 562

4 200 16 780 77 3569 314 23873 1251

5 147 12 731 52 4200 318 37266 2189

6 78 3 533 35 3889 286 47046 2684

7 28 1 284 6 2841 158 48743 2690

8 6 0 107 4 1621 78 41697 1969

9 0 0 28 0 730 21 29526 1247

10 0 0 5 0 235 1 17227 649

11 0 0 0 0 56 0 8240 171

12 0 0 0 0 7 0 3130 69

13 0 0 0 0 1 0 921 9

14 0 0 0 0 0 0 185 3

15 0 0 0 0 0 0 25 0

16 0 0 0 0 0 0 1 0

are given in Table 6. For any frequency threshold, the number of frequent bpo-graph patterns
with no bridge variable is relatively smaller than the total number of frequent bpo-graph
patterns. Our method succeeds in generating many frequent bpo-graph patterns in which
some frequent subgraphs are connected to one another with bridge variables.

For frequency 0.2, we counted pairs of bpo-graph patterns with no bridge variable which
appear in the same bpo-graph pattern with one bridge variable, and found out 644 distinct
pairs. Since there are 1,104 bpo-graph patterns with one bridge variable whose frequencies
are over 0.2, it means that there exists 1104/644 � 1.7 bpo-graph patterns with one bridge
variable with respect to one pair of bpo-graph patterns with no bridge variable. Figure 17
shows some of discovered bpo-graph patterns whose frequencies are over 0.2. The upper in
Fig. 17 are bpo-graph patterns with no bridge variable, and the lower are bpo-graph patterns
with one bridge variable which are obtained from the upper bpo-graph patterns by con-
necting with a bridge variable. By using graph pattern with internal variables, our method
successfully generates graph patterns representing more characteristic common structures
compared to subgraph mining.

6 Conclusion and future work

In this paper, from the viewpoint of computational and algorithmic learning theory, we have
considered a graph mining problem of extracting structural features from graph data. Firstly,
we have defined a block preserving graph pattern, called a bp-graph pattern, as a new graph

170 Mach Learn (2009) 76: 137–173

Fig. 17 Examples of discovered bpo-graph patterns in the experiment on the dataset containing 10,000
compounds and frequency 0.2. In the figure, edges with label d mean double bonds between atoms, and
edges with no label mean single bonds

pattern having structured variables. Secondly, we have presented a polynomial time algo-
rithm for solving a pattern matching problem of deciding whether or not a given bp-graph
pattern matches a given connected graph in a special graph class C . C is defined as the set
of graphs that satisfies a connected hereditary property, contains infinitely many different
biconnected graphs, and for which a special kind of the graph isomorphism problem can be
computed in polynomial time. Thirdly, by giving refinement operators over bp-graph pat-
terns, we have presented a polynomial time algorithm for finding a minimally generalized
bp-graph pattern explaining a given set of connected graphs in C . Therefore, we have shown
that the class of graph languages generated by bp-graph patterns for C is polynomial time
inductively inferable from positive data. The set of connected outerplanar graphs O satis-

Mach Learn (2009) 76: 137–173 171

fies the above conditions for C . Based on these results, we have proposed two incremental
polynomial time algorithms for enumerating all frequent bp-graph patterns with respect to
a given finite set of graphs in O. One is an Apriori-like algorithm GENPATTERNS-1.0 and
the other is a refinement-based algorithm GENPATTERNS-2.0. Finally, in order to evaluate
the performance of the two algorithms, we have reported experimental results obtained by
applying the two graph mining algorithms to a subset of the NCI dataset (NCI 2000), almost
of whose elements are expressed by graphs in O.

A bpo-graph pattern represents an expressive graph structure among blocks. However, it
cannot represent internal structures common to different blocks if the blocks are not isomor-
phic. Hence, we are also considering extensions of representational power of bp-graph pat-
terns. In (Yamasaki and Shoudai 2008), we introduced a more expressive outerplanar graph
pattern than bpo-graph patterns, called an externally extensible outerplanar graph pattern
(eeo-graph pattern for short). Unlike bpo-graph patterns, eeo-graph patterns have variables
which are contained in blocks. We have proposed a polynomial time matching algorithm for
eeo-graph patterns (Yamasaki and Shoudai 2008). An eeo-graph pattern is one of extensions
of bp-graph patterns, but eeo-graph patterns are applied only to outerplanar graphs. Based
on the concept of term graph patterns (Uchida et al. 1995), we will study more expressive
graph patterns.

The pattern matching problem for a tree-structured pattern which has variables with more
than 3 ports is NP-complete (Miyahara et al. 2000). However, it is open whether or not there
is a polynomial time matching algorithm for the class of bpo-graph patterns all of whose
variables have at most 3 ports. In the framework of exact learning model, Okada et al. (2007)
showed polynomial time learnabilities of finite unions of some kinds of term graph patterns.
We will consider polynomial time learnabilities of finite unions of bp-graph patterns for C
using queries.

As other future works, we will study practical applications of graph mining algorithms
proposed in this paper. In the field of frequent itemset mining, several efficient methods for
document clustering using frequent itemsets are proposed (Fung et al. 2003; Kryszkiewicz
and Skonieczny 2006). In the field of graph classification, several efficient classifiers using
kernel methods or boosting methods are proposed (Kashima and Koyanagi 2002; Kuboyama
et al. 2006; Kudo et al. 2004). Using the learning algorithms, we will propose efficient graph
mining techniques of clustering graph data.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the 20th
VLDB conference (pp. 487–499).

Aho, A. V., Hopcroft, J. D., & Ullman, J. D. (1974). The design and analysis of computer algorithms. Reading:
Addison-Wesley.

Angluin, D. (1980a). Finding patterns common to a set of strings. Journal of Computer and System Science,
21, 46–62.

Angluin, D. (1980b). Inductive inference of formal languages from positive data. Information and Control,
45, 117–135.

Arimura, H., Sakamoto, H., & Arikawa, S. (2001). Efficient learning of semi-structured data from queries.
In LNCS(LNAI): Vol. 2225. Proceedings of the 12th workshop on algorithmic learning theory (pp. 315–
331). Berlin: Springer.

Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., & Arikawa, S. (2002). Efficient substructure
discovery from large semi-structured data. In Proceedings of the second SIAM international conference
on data mining (SDM-2002) (pp. 158–174).

Asai, T., Arimura, H., Uno, T., & Nakano, S. (2003). Discovering frequent substructures in large unordered
trees. In LNCS(LNAI): Vol. 2843. Discovery science (DS-2003) (pp. 47–61). Berlin: Springer.

172 Mach Learn (2009) 76: 137–173

Cook, D. J., & Holder, L. (1994). Substructure discovery using minimum description length and background
knowledge. Journal of Artificial Intelligence Research, 1, 231–255.

Cook, D. J., & Holder, L. (2007). Mining graph data. New York: Wiley-Interscience.
Dinic, E. A. (1970). Algorithm for solution of a problem of maximum flow in a network with power estima-

tion. Soviet Mathematics Doklady, 11, 1277–1280.
Fung, B. C. M., Wang, K., & Ester, M. (2003). Hierarchical document clustering using frequent itemsets. In

Proceedings of the 3rd SIAM international conference on data mining (SDM-2003) (pp. 59–70).
Han, J., & Kamber, M. (2001). Data mining: concepts and techniques. San Mateo: Morgan Kaufmann.
Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-

pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53–87.
Hopcroft, J., & Karp, R. (1973). An n5/2 algorithm for maximum matching in bipartite graphs. SIAM Journal

on Computing, 2, 225–231.
Hopcroft, J. E., & Wong, J. K. (1974). Linear time algorithm for isomorphism of planar graphs. In Proceed-

ings of the 6th annual ACM symposium on theory of computing (pp. 172–184).
Horváth, T., Roman, J., & Wrobel, S. (2006). Frequent subgraph mining in outerplanar graphs. In Proceedings

of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 197–
206).

Inokuchi, A., Washio, T., & Motoda, H. (2000). An apriori-based algorithm for mining frequent substructures
from graph data. In LNCS: Vol. 1910. Proceedings of the 4th European conference on principles of data
mining and knowledge discovery (PKDD-2000) (pp. 12–23). Berlin: Springer.

NCI (2000). The NCI Open Database, Release 2, August 2000 2D file. National Cancer Institute. http://cactus.
nci.nih.gov/ncidb2/download.html. Accessed 1 November 2008.

Kashima, H., & Koyanagi, T. (2002). Kernels for semi-structured data. In Proceedings of the 19th interna-
tional conference on machine learning (ICML-2002) (pp. 291–298).

Kryszkiewicz, M., & Skonieczny, L. (2006). Hierarchical document clustering using frequent closed sets.
In Advances in soft computing. Proceedings of the international conference on intelligent information
systems 2006: new trends in intelligent information processing and web mining (pp. 489–498). Berlin:
Springer.

Kuboyama, T., Hirata, K., Aoki, K. F., Kashima, H., & Yasuda, H. (2006). A gram distribution kernel applied
to glycan classification and motif extraction. In Proceedings of the 17th international conference on
genome informatics (GIW-2006) (pp. 25–34).

Kudo, T., Maeda, E., & Matsumoto, Y. (2004). An application of boosting to graph classification. In Proceed-
ings of the 18th annual conference on neural information processing systems (NIPS-2004).

Kuramochi, M., & Karypis, G. (2001). Frequent subgraph discovery. In Proceedings of the 2001 IEEE inter-
national conference on data mining (pp. 313–320).

Lingas, A. (1989). Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theoretical
Computer Science, 63, 295–302.

Miyahara, T., Shoudai, T., Uchida, T., Takahashi, K., & Ueda, H. (2000). Polynomial time matching algo-
rithms for tree-like structured patterns in knowledge discovery. In LNCS(LNAI): Vol. 1805. Proceedings
of the 4th Pacific-Asia conference on knowledge discovery and data mining (PAKDD-2000) (pp. 5–16).
Berlin: Springer.

Okada, R., Matsumoto, S., Uchida, T., Suzuki, Y., & Shoudai, T. (2007). Exact learning of finite unions of
graph patterns from queries. In LNCS(LNAI): Vol. 4754. Proceedings of the 18th international confer-
ence on algorithmic learning theory (ALT-2007) (pp. 298–312). Berlin: Springer.

Sasaki, Y., Yamasaki, H., Shoudai, T., & Uchida, T. (2008). Mining of frequent block preserving outerplanar
graph structured patterns. In LNCS(LNAI): Vol. 4894. Proceedings of the 17th international conference
on inductive logic programming (ILP 2007) (pp. 239–253). Berlin: Springer.

Shinohara, T. (1982). Polynomial time inference of extended regular pattern languages. In LNCS(LNAI):
Vol. 147. RIMS symposia on software science and engineering (pp. 115–127). Berlin: Springer.

Shoudai, T., Uchida, T., & Miyahara, T. (2001). Polynomial time algorithms for finding unordered tree pat-
terns with internal variables. In LNCS: Vol. 2138. Proceedings of the 13th international symposium on
fundamentals of computation theory (FCT-2001) (pp. 335–346). Berlin: Springer.

Suzuki, Y., Shoudai, T., Miyahara, T., & Uchida, T. (2003). A polynomial time matching algorithm of struc-
tured ordered tree patterns for data mining from semistructured data. In LNCS(LNAI): Vol. 2583. Pro-
ceedings of the 12nd international workshop on inductive logic programming (ILP-2002) (pp. 270–284).
Berlin: Springer.

Suzuki, Y., Shoudai, T., Uchida, T., & Miyahara, T. (2006). Ordered term tree languages which are polynomial
time inductively inferable from positive data. Theoretical Computer Science, 350, 63–90.

Takami, R., Suzuki, Y., Uchida, T., & Shoudai, T. (2009). Polynomial time inductive inference of TTSP graph
languages from positive data. IEICE Transactions on Information and Systems, E92-D(2), 181–190.

http://cactus.nci.nih.gov/ncidb2/download.html
http://cactus.nci.nih.gov/ncidb2/download.html

Mach Learn (2009) 76: 137–173 173

Uchida, T., Mogawa, T., & Nakamura, Y. (2004). Finding frequent structural features among words in tree-
structured documents. In LNCS(LNAI): Vol. 3056. Proceedings of the 8th Pacific-Asia conference on
knowledge discovery and data mining (PAKDD-2004) (pp. 351–360). Berlin: Springer.

Uchida, T., Shoudai, T., & Miyano, S. (1995). Parallel algorithm for refutation tree problem on formal graph
systems. IEICE Transactions on Information and Systems, E78-D(2), 99–112.

Yamasaki, H., & Shoudai, T. (2007). A polynomial time algorithm for finding linear interval graph patterns. In
LNCS: Vol. 4484. Proceedings of the 4th international conference of theory and applications of models
of computation (TAMC-2007) (pp. 67–78). Berlin: Springer.

Yamasaki, H., & Shoudai, T. (2008). Mining of frequent externally extensible outerplanar graph patterns.
In Proceedings of the 7th international conference on machine learning and applications (ICMLA’08)
(pp. 871–876). Los Alamitos: IEEE Computer Society.

Yamasaki, H., Sasaki, Y., Shoudai, T., Uchida, T., & Suzuki, Y. (2008). Learning block-preserving outerplanar
graph patterns and its application to data mining. In LNCS(LNAI): Vol. 5194. Proceedings of the 18th
international conference on inductive logic programming (ILP 2008) (pp. 330–347). Berlin: Springer.

Yan, X., & Han, J. (2002). gSpan: Graph-based substructure pattern mining. In Proceedings of the third SIAM
international conference on data mining (SDM03) (pp. 721–724).

Yoshida, K., & Motoda, H. (1995). Clip: concept learning from inference patterns. Artificial Intelligence,
75(1), 63–92.

Zaki, M. J. (2002). Inductive inference by stepwise pair expansion. In Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery and data mining (pp. 71–80).

	Learning block-preserving graph patterns and its application to data mining
	Abstract
	Introduction
	Block preserving graph pattern
	A pattern matching algorithm for BP-graph patterns
	General framework
	A pattern matching algorithm for bpo-graph patterns

	An algorithm for finding a minimally generalized BP-graph pattern
	Minimal language problem for bp-graph patterns
	A general algorithm for finding a minimally generalized bp-graph pattern
	Minimal language problem for bpo-graph patterns

	Pattern enumeration algorithms for frequent BPO-graph pattern problem
	An apriori-like algorithm
	A refinement-based algorithm
	Maximal frequent bpo-graph pattern problem
	Experimental results
	Apriori-like algorithm versus refinement-based algorithm
	Scalability
	Study with respect to bridge variables

	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

