
ar
X

iv
:1

80
7.

06
33

6v
2 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
2 

Fe
b 

20
19

Diffusion across semi-permeable barriers: spectral properties, efficient
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Abstract We present an efficient method to compute the eigenvalues and eigenmodes of the diffusion
operator ∇(D∇) on one-dimensional heterogeneous structures with multiple semi-permeable barriers.
This method allows us to calculate the diffusion propagator and related quantities such as diffusion MRI
signal or first exit time distribution analytically for regular geometries and numerically for arbitrary ones.
The effect of the barriers and the transition from infinite permeability (no barriers) to zero permeability
(impermeable barriers) are investigated.

Keywords Diffusion · Semi-permeable barriers · Laplacian spectrum · Multilayer · Composite medium ·
Diffusion MRI · First-passage phenomena

1 Introduction

Diffusion is a very broad transport mechanism which may describe heat conduction in solids as well
as molecular exchanges in biological systems, among many examples. One often characterizes diffusion
processes by the “diffusion propagator” (or “heat kernel”) G(x0 → x, t) which is the probability density
of reaching position x after a time t starting from x0. When diffusion takes place in a homogeneous
medium without boundaries, the propagator is a Gaussian distribution centered on x0 with variance
2Dt, where D is the diffusion coefficient in the medium. On the other hand diffusion in complex systems
such as biological cells or composite materials may exhibit non-Gaussian behavior due to confinement,
hindrance by semi-permeable barriers or heterogeneity of the diffusion coefficient.

Generally speaking, the diffusion propagator obeys the diffusion equation:

∂G

∂t
= ∇(D∇G) , G(x0 → x, t = 0) = δ(x− x0) , (1)

where δ is the Dirac distribution,∇ = ∂
∂x in the one-dimensional case, and the diffusion coefficient D can

in general be space and time dependent to capture heterogeneities of the medium [1, 2]. Throughout this
article, we refer to ∇(D∇) as the “diffusion operator”. Note that if the diffusion coefficient is uniform,
then the diffusion operator is simply proportional to the Laplace operator ∇2. The complexity of the
geometry is hidden in the boundary conditions imposed on G at the outer boundaries and possible
inner semi-permeable barriers. Analytical solutions of Eq. (1) mainly rely on spectral decomposition
over the diffusion operator eigenmodes which are explicitly known only for few geometries: slab, disk,
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sphere (and some simple extensions) [3]. The study of more complicated structures requires numerical
simulations such as stochastic Monte-Carlo simulations [4, 5] or PDE solving with finite element or finite
difference methods [6]. On top of being time-consuming these techniques give little theoretical insight
into the dependence of the propagator on the physical parameters of the simulated medium. In this
situation, one-dimensional models of heterogeneous systems partitioned by semi-permeable barriers can
help to uncover this dependence and to understand the role of diffusive exchange across the barriers.
Note that three-dimensional diffusion in a stack of parallel planes with lateral invariance is naturally
reduced to one-dimensional models. As a consequence, these models have a wide variety of applications,
for example multilayer electrodes [7–9], coating of electronic components and improving the performance
of semi-conductors [10–12], geophysics and thermal analyses of buildings [13–17], industrial processes
[18–20], waste disposal and gas permeation in soils [21–24], drug delivery [25–27] and modeling tumor
growth [28]. They can also be applied as approximation schemes for finding the spectrum of Sturm-
Liouville problems where the coefficients of the differential operator are replaced by piecewise constant
(or polynomial) functions (the so-called “Pruess method”) [29–33]. Two applications of particular interest
to us are diffusion magnetic resonance imaging (dMRI), a powerful experimental technique for probing
diffusion inside complex media such as biological tissues (see Sec. 4.2), and first-passage phenomena (Sec.
4.3).

Because of this diversity of applications, many authors have more or less independently tackled such
models of one-dimensional diffusion in heterogeneous structures, with various computational techniques:
spectral decompositions, Green functions, Laplace transforms and others (see [34, 35] for a review of the
subject). In this article we consider finite geometries, which are best treated by spectral decompositions
(or “separation of variables”). To our knowledge, the most recent and complete work on this topic is the
one by Hickson et al [6, 19, 20]. However it was mainly devoted to the case of heterogeneous structures
with distinct diffusivities and without barriers. Moreover the spectrum was computed numerically and
only few analytical results were obtained. On the other hand, some very general mathematical results
were obtained by Gaveau et al for generic heterogeneous media without barriers [36]. Another technique
was proposed in the recent work by Carr and Turner [37], in which the solution of Eq. (1) was decomposed
on the Laplacian eigenmodes of each compartment separately, instead of the eigenmodes of the whole
structure. This technique presents numerical advantages without providing analytical insights onto the
spectrum of the diffusion operator.

In this article we present an efficient method to compute the eigenvalues and eigenfunctions of the
diffusion operator in one-dimensional domains with multiple barriers. This method allows us to calculate
the diffusion propagator and related quantities such as dMRI signal or first exit time distribution ana-
lytically for sufficiently regular geometries such as a finite periodic geometry or a micro-structure inside
a larger scale structure, and numerically for arbitrary structures.

The article is organized as follows. Section 2 is entirely devoted to analytics. We start with standard
computations using transition matrices (Sec. 2.1) and obtain the equation of the spectrum as a tran-
scendental equation F (λ) = 0 (Eq. (22)). Three following subsections are more technical and may be
omitted in a first reading. In particular, we express the normalization constant of the eigenmodes as a
function of F (Eq. (24)), and we derive general consequences of the symmetry or the periodicity of the
medium (Sec. 2.3 and 2.4, respectively). In Sec. 2.5, we study in more detail the function F and obtain
simple estimates of its roots with respect to the geometrical parameters of the medium, in particular
the permeability of the barriers. This part is crucial for the numerical implementation of the method.
This section is concluded with some extensions of our model. Section 3 illustrates our general approach
on the example of a (finite) periodic structure with multiple identical barriers and compartments. The
numerical implementation of the method is presented in Sec. 4.1. In particular, we discuss the major
numerical challenges related to finding very close zeros of the eigenspectrum equation (22) and the pro-
posed shortcuts based on the analytics from Sec. 2. The application of our technique to the computation
of the dMRI signal and the first exit-time distribution is briefly discussed in Sec. 4.2 and 4.3. Section 5
concludes the paper and presents further perspectives and open problems.

The electronic Supplementary Material (SM) contains additional developments. Section SM. I is
devoted to the application to dMRI. The dependence of the acquired signal on the geometrical parameters
of the medium is thoroughly discussed. In Sec. SM. II, the effect of semi-permeable barriers on the diffusive
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Fig. 1 Illustration of the geometry. Arbitrarily spaced barriers split the interval [0, L] into m compartments Ωi of length
li and diffusion coefficient Di. The positions of the barriers are denoted by xi,i+1 and their permeabilities by κi,i+1.
One can also take into account relaxation or leakage at the two outer barriers by permeabilities K−, K+.

motion is studied from another viewpoint, namely the first exit time distribution. Some technical results
are moved to Sec. SM. III, which contains proofs of the existence of infinitely many eigenvalues, their
non-degeneracy, their monotonic growth with respect to the barrier permeabilities, as well as a Courant
nodal theorem for our particular model of diffusion with barriers.

2 Computation of the eigenmodes of the diffusion operator

2.1 General case

In this section we study the eigenmodes of the “diffusion operator”∇(D∇) in a one-dimensional geometry
(see Fig. 1). We reproduce the general computational scheme from Ref. [38] and propose improvements
specific to the one-dimensional geometry. An interval [0, L] is divided by barriers into m compartments
(or “cells”) Ωi = (xi−1,i, xi,i+1), i = 1, . . . , m, where x1,2, . . . , xm−1,m are the positions of m − 1 inner
barriers, and x0,1 = 0 and xm,m+1 = L correspond to the outer barriers. Each compartment is charac-
terized by its length li = xi,i+1 − xi−1,i > 0 and diffusion coefficient Di > 0 and each barrier by its
permeability κi,i+1 ≥ 0 or equivalently by its “resistance” to diffusive exchange: ri,i+1 = 1/κi,i+1. Finally
one can take into account some relaxation or leakage at the endpoints by non-negative permeabilities (or
relaxaton coefficients) K− and K+.

The diffusion coefficient D is thus a piecewise constant function:

D(x) =

m∑

i=1

DiIΩi
(x), (2)

where IΩi
denotes the indicator function of Ωi: IΩi

(x) = 1 if x ∈ Ωi and 0 otherwise. This implies that
the diffusion operator can be split into two terms:

∇(D∇) = D∇2 + (∇D)∇ = D∇2 +

(
m−1∑

i=1

(Di+1 −Di)δ(x− xi,i+1)

)

∇ . (3)

The second term vanishes at the interior points so that the diffusion operator is reduced to D∇2. The
same is true for the general class of diffusion operators ∇(Dα∇(D1−α ·)), where 0 ≤ α ≤ 1 is the Itô-
Stratonovitch interpretation parameter (some authors use 1− α instead of α) [39, 40]. Here we consider
heterogeneous diffusion coefficients with discontinuities at the barriers, hence these operators coincide
inside the compartments but yield different boundary conditions at the barriers. Our choice ∇(D∇)
corresponds to the Hänggi-Klimontovich interpretation [41–45] with α = 1, which is most often used
in physical applications. The main reason is that it corresponds to the standard Fick law and that
equilibrium solutions of the diffusion equation are constant, which is expected for, say, water diffusing
in an isothermal medium. From a mathematical point of view, this choice ensures that the operator is
self-adjoint, which allows us to use standard spectral methods.
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The L2-normalized eigenmodes u of the diffusion operator are then determined by the equation

Du′′ + λu = 0 , (4)

with the boundary conditions

Diu
′|Ωi

= Di+1u
′|Ωi+1

at the barrier at xi,i+1 (5)

Diu
′|Ωi

= κi,i+1(u|Ωi+1

− u|Ωi

) at the barrier at xi,i+1 (6)

D1u
′(0) = K−u(0) (7)

Dmu
′(L) = −K+u(L) , (8)

and the normalization condition ∫ L

0

u2 = 1 , (9)

where u|Ωi

is the restriction of u to the cell Ωi (i = 1, . . . ,m) and prime denotes the derivative with

respect to x.
Eqs. (5) and (6) express the flux conservation across the barriers (no accumulation of diffusing par-

ticles) and the drop of particle density due to the non-zero resistance of the barriers, respectively. Note
in particular that Eq. (5) ensures the continuity of D∇u = Du′. The infinitely thin barriers that we
consider can approximate barriers of thickness hi,i+1 with the standard continuity conditions. When
hi,i+1 is much smaller than other length scales, one can interpret κi,i+1hi,i+1 as the diffusion coefficient
inside the barrier, whereas (u|Ωi+1

− u|Ωi

)/hi,i+1 approximates the derivative of u across the barrier of

thickness hi,i+1. If κi,i+1 = ∞ there is no barrier and Eq. (6) becomes a continuity condition for u at
x = xi,i+1. In the opposite limit κi,i+1 = 0 the compartments Ωi and Ωi+1 do not communicate with
each other: the flux Du′ is zero at the barrier and the discontinuity (u|Ωi+1

− u|Ωi

)(xi,i+1) is arbitrary.

One can then study the two parts [0, xi,i+1] and [xi,i+1, L] separately.
To avoid such trivial separations, we consider only non-zero permeabilities: κi,i+1 > 0 throughout

this article. Under this assumption we prove in Sec. SM. III that there are infinitely many eigenvalues
λn, n = 1, 2, . . ., and all λn are simple. One can also easily prove that they are non-negative, and we sort
them by ascending order: 0 ≤ λ1 < λ2 < . . .. Moreover, thanks to the self-adjointness of the diffusion
operator ∇(D∇) we know that the eigenmodes un, n = 1, 2, . . . form a complete orthonormal basis in the
space L2(0, L) of square-integrable functions on (0, L) [34, 35].

For simplicity we further assume that K− <∞, which allows us to write

u = βv , v(0) = 1 , (10)

with β being a normalization constant that ensures Eq. (9). The case of Dirichlet boundary conditions
(K− = ∞) requires another convention which is detailed in Sec. SM. IV.5. We study the (non-normalized)
eigenmode v first and then we compute the normalization constant β.

Throughout this section we assume λ 6= 0. One can see that λ = 0 is only possible if the relaxation
coefficients K± are equal to zero and in this case one gets a constant eigenmode v = 1 (and β = 1/

√
L).

Equation (4) has a general solution

v|Ωi

(x) = ali cos
(√

λ/Di(x− xi−1,i)
)

+ bli sin
(√

λ/Di(x− xi−1,i)
)

, (11)

or equivalently

v|Ωi

(x) = ari cos
(√

λ/Di(x− xi,i+1)
)

+ bri sin
(√

λ/Di(x− xi,i+1)
)

, (12)

where ali, b
l
i and a

r
i , b

r
i are constants to be determined, related by

[
ari
bri

]

= Ri

[
ali
bli

]

, where Ri =




cos
(√

λ/Dili
)

sin
(√

λ/Dili
)

− sin
(√

λ/Dili
)

cos
(√

λ/Dili
)



 . (13)



Diffusion across semi-permeable barriers 5

Note that

v|Ωi

(xi,i+1) = ari , Div
′|Ωi

(xi,i+1) =
√

λDib
r
i , (14)

with similar formulas for ali, b
l
i, so that one can write the boundary equations (5) and (6) as

[
ali+1

bli+1

]

= Ki,i+1

[
ari
bri

]

, with Ki,i+1 =

[
1 ri,i+1

√
λDi

0
√

Di/Di+1

]

. (15)

The equations at the barriers can thus be restated in a matrix form:

[
ali+1

bli+1

]

= Mi,i+1

[
ali
bli

]

, (16)

with the notation for the “transition matrix”:

Mi,i+1 = Ki,i+1Ri , (17)

with Ri and Ki,i+1 defined by Eqs. (13), (15). In the same way, one can rewrite the endpoint conditions
(7), (8):

[
−K−

√
λD1

]
[
al1
bl1

]

= 0 and
[
K+

√
λDm

]
[
arm
brm

]

= 0 .

We have the additional condition al1 = v(0) = 1, therefore

[
al1
bl1

]

=

[
1

K−/
√
λD1

]

and

[
arm
brm

]

= ǫ

[
1

−K+/
√
λDm

]

, (18)

where ǫ is an unknown proportionality coefficient.

Equation (16), which relates the coefficients of one cell to those of the next cell, is compatible with
Eq. (18), which prescribes the first and last cell coefficients (up to a proportionality factor), only if λ is
an actual eigenvalue of the diffusion operator ∇(D∇). That is, by writing explicitly the condition that
the product of all the transition matrices Mi,i+1 should send the previously determined (al1, b

l
1) onto the

(alm, b
l
m), we get the equation on the spectrum of the diffusion operator:

T
[

1
K−/

√
λD1

]

= ǫ

[
1

−K+/
√
λDm

]

, (19)

with

T = RmMm−1,m . . .M1,2 . (20)

Note that this condition is equivalent to

[
K+/

√
λDm 1

]
T = η

[
−K−/

√
λD1 1

]
, (21)

and to

F (λ) :=
[
K+/

√
λDm 1

]
T (λ)

[
1

K−/
√
λD1

]

= 0 . (22)

The proportionality coefficients ǫ and η are constrained by the relation: ǫη = det T =
√

D1

Dm
.
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2.2 Computation of the norm

Now we compute the normalization constant β. Since the eigenmode v is a piecewise combination of sine
and cosine functions, the constant β can be obtained by a direct integration (see Ref. [38]). This approach
is convenient for numerical computations. Here we present another approach which is more suitable for
analytical derivations. The starting point of the method is the spectral decomposition of the diffusion
propagator:

G(t, x0 → x) =

∞∑

n=1

un(x0)un(x)e
−λnt =

∞∑

n=1

βn
2vn(x0)vn(x)e

−λnt , (23)

where n = 1, 2, . . . spans the infinitely many eigenmodes of the diffusion operator. We now compute this
propagator in a different way by solving explicitly Eq. (1). Again, we use Eq. (3) to transform ∇(D∇)
into D∇2 at the interior points. Let G̃(s, x0 → x) denote the Laplace transform of the propagator:
G̃(s, x0 → x) =

∫∞
0
e−stG(t, x0 → x) dt. Then G̃ obeys the equation

D(x)G̃′′(s, x0 → x) = sG̃(s, x0 → x)− δ(x− x0) ,

with the same boundary conditions (5)-(8) as for the propagator G in time domain. As in the previous
section, prime denotes derivative with respect to x. We use the method from Sec. 2.1 to solve the
homogeneous equation with the inner boundary conditions (5), (6) imposed at the barriers: if s 6= 0 we
can build two solutions φ(s, x) and ψ(s, x) such that:

– φ(s, x) is built from

[
al1
bl1

]

=

[
1
0

]

: at the left endpoint its derivative with respect to x is zero and its

value is one.

– ψ(s, x) is built from

[
al1
bl1

]

=

[
0
1

]

: at the left endpoint its derivative with respect to x is
√

s/D1 and

its value is zero.

It is then easy to obtain the complete solution because the Wronskian matrix W =

[
φ(s, x) ψ(s, x)
φ′(s, x) ψ′(s, x)

]

is

quite simple. Indeed over any layer Ωi the determinant of W is constant and equal to
√
sD1/Di. This

is obtained from the differential equation obeyed by φ(s, x) and ψ(s, x) and the boundary conditions at
each barrier. The standard method for solving the second order differential equations then yields

G̃ = µφ+ νψ ,

with the equation on µ, ν:

D(x)

[
µ′(s, x)
ν′(s, x)

]

= W−1

[
0

−δ(x− x0)

]

= − D(x)√
D1s

δ(x− x0)

[
−ψ(s, x)
φ(s, x)

]

.

After a straightforward integration, we obtain

G̃(x0 → x, s) =

(

A+
1√
D1s

ψ(s, x0)H(x− x0)

)

φ(s, x)

+

(

B − 1√
D1s

φ(s, x0)H(x− x0)

)

ψ(s, x) ,

which is valid for any x0, x ∈ [0, L], and s 6= 0, where H is the Heaviside function and the constants A
and B remain to be determined. We consider general relaxing conditions at the endpoints:

{

D1
∂G̃
∂x (x = 0) = K−G̃(x = 0)

Dm
∂G̃
∂x (x = L) = −K+G̃(x = L)

,
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from which

A =
φ(s, x0)(Dmψ

′(s,L) +K+ψ(s,L))− ψ(s, x0)(Dmφ
′(s, L) +K+φ(s,L))

DmK−ψ′(s,L) +K+K−ψ(s,L) +Dm
√
D1sφ′(s,L) +K+

√
D1sφ(s,L)

,

B =
K−A√
D1s

.

Now we simplify the above expressions. We anticipate that the non-normalized eigenmodes are vn(x) =
v(λn, x), with

v(s, x) = φ(s, x) +
K−√
D1s

ψ(s, x) ,

and we use Eq. (14) to get

Aφ(s, x) +Bψ(s, x) =
v(s, x)φ(s, x0)

K−
−

√
D1s

K−
v(s, x)v(s, x0)

[
K+

√
Dms

]
T (s)

[
1
0

]

F (s)
,

with T and F defined in Eqs. (20), (22), respectively, in which λ is replaced by s. To obtain the propagator
in time domain, one needs to perform an inverse Laplace transform. This is done by looking for the poles
s = λn of G̃ and the above formula shows that they are given by the zeros of F (s), as expected. We prove
in Sec. SM. III.2 that these zeros are simple. At s = λn, one can use Eqs. (19) and (21) to compute the
residue of G̃, which yields simply

Ress=λn
(G̃) =

−ηn
√
D1s v(s, x)v(s, x0)

dF
ds

∣
∣
∣
∣
∣
s=λn

.

By comparison with Eq. (23), this allows us to conclude:

βn
−2 = − 1

ηn
√
D1λn

dF

dλ
(λn) . (24)

In general, one obtains ηn by computing the matrix product in Eq. (21). A great simplification occurs in
the case of symmetric geometries, which is the topic of the next section.

2.3 Symmetry properties

For a geometry which is symmetric with respect to the middle of the interval [0, L], some simplifications
occur. In fact the symmetry of the geometry implies that the eigenmodes are either symmetric or anti-
symmetric with respect to the middle of the interval, and as a consequence ǫ = η = +1 or ǫ = η =
−1, respectively. These statements can be easily proved with the above matrix formalism. In fact, the
symmetry of the geometry is equivalent to the two properties:

1. The endpoints vectors V+ =

[
1

−K+/
√
λD1

]

and V− =

[
1

K−/
√
λDm

]

have equal first components

and opposite second components, which follows from the symmetry K− = K+, D1 = Dm. With the

notation S =

[
1 0
0 −1

]

, this can be restated as V± = SV∓.

2. The inverse of the transition matrix T is obtained by replacing the off-diagonal terms by their op-
posite in its expression (note that this corresponds to the transformation

√
λ → −

√
λ). In fact,

this property is clearly true for the “elementary blocks” K and R and thus it is also the case for
RmKm−1,mRm−1 . . .K1,2R1 because Ri = Rm+1−i and Ki,i+1 = Km−i,m+1−i. In other words,
T −1 = ST S.
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The consequence of these two properties is that Eq. (19) can be restated as: “V− is an eigenvector of
ST ” and that this matrix is equal to its inverse:

(ST )−1 = T −1S−1 = ST .

This implies that the eigenvalues of this matrix, hence the proportionality coefficients ǫ, η in Eqs. (19)
and (21), are equal to ±1. We can also easily prove the symmetry or anti-symmetry of the eigenmodes.
In fact, one has

[
ali
bli

]

= Ki−1,iRi−1 . . .R1V−

[
arm+1−i
brm+1−i

]

= K−1
m+1−i,m+2−kR−1

m+2−k . . .R−1
m ǫV+

Hence [
arm+1−i
brm+1−i

]

= SKi−1,iSSRi−1S . . .SR1SǫV+ = ǫS
[
ali
bli

]

. (25)

Let x ∈ Ωi, we write x = xi−1,i + ξ, with 0 < ξ < li, which implies by symmetry that L − x =
xm+1−i,m+2−i − ξ. According to Eqs. (11), (12), and (25), we have then

v(x) =
[

ali b
l
i

]




cos
(

ξ
√

λ/Di
)

sin
(

ξ
√

λ/Di
)





= ǫ
[
arm+1−i b

r
m+1−i

]




cos
(

−ξ
√

λ/Dm+1−i
)

sin
(

−ξ
√

λ/Dm+1−i
)



 = ǫv(L− x) ,

since Di = Dm+1−i. Therefore the eigenmode is symmetric if ǫ = +1 and anti-symmetric if ǫ = −1.
Moreover from Eq. (24) we deduce that the derivative dF

dλ (λn) and ηn have opposite signs. Because the
eigenvalues λn are the zeros of F , the derivative alternates between positive and negative sign, and so do
ηn and ǫn. In particular, in the case of a symmetric geometry, the modes un are alternately symmetric
and anti-symmetric. One can show that the first mode u1 is always symmetric (ǫ1 = η1 = 1), hence

ǫn = ηn = (−1)n−1 . (26)

2.4 Periodicity properties

A finite periodic geometry is anM -times repetition of an elementary block composed of N compartments:
(D1; l1), (D2; l2), . . . , (DN ; lN ). The transition matrix of the block is

M = KinterRNKN−1,N . . .R1 , (27)

where Kinter is the matrix corresponding to the inter-block barriers. Then the complete transition matrix
T is equal to

T = K−1
interMM . (28)

Because of the periodicity,

detM =

√

DN
D1

︸ ︷︷ ︸

detKinter

√

DN−1

DN
. . .

√

D1

D2
= 1 .

This property makes the computation of MM easier, thanks to the formula

MM =
sinMψ

sinψ
M− sin(M − 1)ψ

sinψ
I2 , (29)
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Fig. 2 Example of roots which may prove challenging to find numerically with standard methods. We consider five
compartments and D1 = . . . = D5 = 1, r1,2 = . . . = r4,5 = 10 and the lengths li of the five compartments are:
1; 1.2; 1.5; 1.2; 1, with reflecting boundary conditions at the endpoints: K± = 0. The root z = 6.30446 (b) corresponds to
l3 = 1.5, with n = 3, ζ = 2, whereas the two roots z± = 6.2991316± 8.7 · 10−6 (c) correspond to l1 = l5 = 1, with n = 2,
ζ = 1 (see explanations in the text). Notice the scale changes, horizontally and vertically, between (a), (b) and (c).

where I2 is the 2× 2 identity matrix and ψ is implicitly defined by

cosψ =
1

2
TrM . (30)

Formula (29) implies that the inter-block variation of the coefficients a, b has the form:

ai0+N(j−1) = A cos(jψ) +B sin(jψ) , j = 1, . . . ,M , (31)

with a similar formula for b, where A and B are coefficients which depend on the choice of the origin
i0 ∈ {1, . . . , N − 1}. Thus ψ governs the global behavior of the mode (when the number M of repeated
blocks is sufficiently large).

2.5 Study of the spectrum

The main numerical difficulty of the above method is to solve Eq. (22) on the spectrum, that is to find
the zeros of F (λ). In fact, a standard method to find all the zeros of a function in a given interval is
to compute the function on a fine array (0, ǫ, 2ǫ, . . .) and to look for the sign changes, that indicate the
presence of at least one zero. By decreasing ǫ, one is assured at some point to find all the zeros of the
function. However, in general one knows neither the number of zeros of the function in a given interval nor
the minimal spacing between the zeros. In turn, missing some zeros would result in missed eigenmodes,
and thus in inaccurate computation of the propagator and the related diffusion quantities. An example
of F (λ) shown in Fig. 2 illustrates that some roots may be very close to each other. We provide here a
rough analysis of Eq. (22) in order to study this phenomenon.

We discard the elementary case of a single interval (m = 1) where the roots of F are explicitly known
[1, 2]. Let us assume for simplicity that all the diffusion coefficients Di and the barrier resistances ri,i+1
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are identical (denoted D and r, respectively). Furthermore we set the relaxation coefficients K± to zero.
We change the variable λ by z =

√

λ/D and reveal an explicit dependence of F on the geometry (omitting
D and r for the sake of clarity):

F (λ) = Fm(z; l1, . . . , lm) .

2.5.1 Regime r → 0

First we consider the regime of quasi-permeable barriers, that is r → 0. One has

K = I2 + rDzN , N =

[
0 1
0 0

]

,

from which we deduce the first-order expansion

Fm(z; l1, . . . , lm) ≈−sin(zL) + rDz
m∑

i=1

sin(z(l1+. . .+li)) sin(z(li+1+. . .+lm)) .

This formula implies that the roots are approximately equal to z0 = nπ/L, with an integer n. In fact,
one can compute the first order correction to this formula, which yields

z ≈ nπ

L

(

1− rD

l

[

1

m

m∑

i=1

sin2
(

nπ
l1 + · · ·+ li

L

)])

, (32)

where l = L/m is the arithmetic mean of the li. The factor inside the brackets is always less than 1,
hence the (first order) relative perturbation of the roots is at most rD/l. Therefore in the regime of
quasi-permeable inner barriers (rD/l≪ 1) the roots are easy to find numerically because we have a good
estimate of their position and a good lower bound of the distance between them.

2.5.2 Regime r → ∞

Now we turn to the opposite regime of almost impermeable barriers: r → ∞. In this case one writes

K = rDz

(

N +
1

rDz
I2
)

.

For z large enough such that rDz ≫ 1, this yields

Fm(z; l1, . . . , lm) ≈ (−rDz)m−1 sin(zl1) · · · sin(zlm)

(

1− 1

rDz

m−1∑

i=1

sin(z(li + li+1))

sin(zli) sin(zli+1)
+ . . .

)

. (33)

From this expression one gets the approximate roots z0 = nπ/li with an integer n, as expected. The non-
zero permeability of the barriers increases the values of the roots by coupling the compartments to their
nearest neighbors. The higher-order terms of the expansion (33) involve coupling between next-nearest
neighbors, etc. From the above formula we expect the increase to be of order (rDz0)

−1. The case n = 0
(that is, z0 = 0) is special and we treat it later. Note that the above expansion is valid around z0 = nπ/li
(with n > 0) if rDz0 ≫ 1, that is rD/li ≫ 1.

If we consider an isolated root z0 = nπ/li (which means that all the other n′π/li′ are located at a
relative distance much greater that (rDz0)

−1), then we get

z ≈ nπ

li
+

ζi
nπrD

, (34)

where ζi is the number of neighbors of the cell i (ζi = 2 if 1 < i < m, otherwise ζi = 1).
The case of non-isolated roots is more complicated but also more interesting. In fact all the numerical

difficulties come from this case. From the equation

Ri

[
1
0

]
[
0 1
]
Ri −

[
1
0

]
[
0 1
]
= − sin(zli)Ri ,
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we deduce the following general relation which is valid for any i from 1 to m− 1:

Fm(z; l1, . . . , lm) =
[Fi(z; l1, . . . , li)Fm+1−i(z; li, . . . , lm)−Fi−1(z; l1, . . . , li−1)Fm−i(z; li+1, . . . , lm)]

F1(z; li)
.

(35)
Now we assume that there exist i1 < i2 such that

z0 =
n1π

li1
=
n2π

li2
,

with n1, n2 integers. Note that n1/n2 = li1/li2 . We look for an approximate root of the form z = z0(1+η),
with η ∼ (rDz0)

−1 (where ∼ means “is of the same order of magnitude as”).
First let us consider the case where two compartments i1 and i2 are not neighbors, that is i1+1 < i2.

From Eq. (33) we infer

Fi1+1(z; l1, . . . , li1+1) ∼ (rDz)i1η ∼ (rDz)i1−1 ,

Fm−i1(z; li1+1, . . . , lm) ∼ (rDz)m−1−i1η ∼ (rDz)m−2−i1 ,

Fi1(z; l1, . . . , li1) ∼ (rDz)i1−1η ∼ (rDz)i1−2 ,

Fm−1−i1(z; li1+2, . . . , lm) ∼ (rDz)m−2−i1η ∼ (rDz)m−3−i1 ,

hence Eq. (35) becomes

Fm(z; l1, . . . , lm) =
Fi1(z; l1, . . . , li1)Fm+1−i1(z; li1 , . . . , lm)

F1(z; li1)

(

1 + O((rDz)−2)
)

.

We deduce that the roots of Fm(z; l1, . . . , lm) are given by the roots of the functions Fi1(z; l1, . . . , li1)
and Fm+1−i1(z; li1 , . . . , lm), which are not coupled to the first order in (rDz)−1:

z ≈ z0 +
ζi1

n1πrD
and z ≈ z0 +

ζi2
n2πrD

. (36)

Note that the same is true for any number of “coinciding” roots as long as they correspond to non-
adjacent compartments. The roots are at a relative distance of order (rDz0)

−1 if n1/ζi1 6= n2/ζi2. If
n1/ζi1 = n2/ζi2 one has to compute the next-order corrections which involve the length of the other
compartments, as explained previously. One can show that the term of order (rDz0)

i1−i2 is always non-
zero; for symmetric geometries (rDz0)

i1−i2 may be the first non-zero term of the expansion of the relative
difference of the roots.

Now we consider the case i2 = i1 + 1. We use Eq. (33) to get

Fm(z; l1, . . . , lm) ≈ (−rDz)m−3




∏

i 6=i1,i1+1

sin(zli)





(

n1n2X
2 − (ζi1n1 + ζi2n2)X + (ζi1ζi2 − 1)

)

,

where X = rDπη. Thus we obtain two roots:

z± = z0 +
X±
rDπ

, with X± =
ζi1n1 + ζi2n2 ±

√

(ζi1n1 − ζi2n2)2 + 4n1n2

2n1n2
. (37)

Note that z+−z− ≥ 2
π
√
n1n2rD

. One can perform the same computations for a larger number of adjacent

cells with “coinciding” roots: at the end one has to solve a polynomial equation in the variable X. The
roots are always distinct and separated by a relative distance of order (rDz0)

−1. Section 3.1 is devoted
to the exact computation of the roots for an array of identical cells, which is a good example of such a
situation.

In all the above computations we assumed z0 = nπ/li with positive n. However there are also m roots
located near zero. To find them we expand the sine and cosine functions in Eq. (33) and get to the first



12 Nicolas Moutal, Denis Grebenkov

order in zl a polynomial equation of degree m in the variable Z = rDlz2, where l is the harmonic mean
of the li. Hence we obtain m roots of the form:

zn =

√

Zn
rDl

, n = 1, . . . ,m (38)

with Zn spanning the solutions of the polynomial equation. Note that we assumed rD/li ≫ 1 hence one
has zl ≪ 1, which legitimates a posteriori the polynomial expansion. Furthermore, the first coefficients
of the polynomial expansion are readily available from Eq. (33) and we get from them that:

m∑

n=1

Zn ≈ 2m . (39)

This formula is valid in the regime rD/l≫ 1 and its simplicity comes from the particular choice of l we
made (harmonic mean of the li). If one assumes that the roots Zn are approximately equispaced at small
n, then one obtains immediately that the first roots Zn, and hence λn, follow a 1/m2 dependence on m.

From this analysis of the low permeability regime (rD/li ≫ 1 for all i) we can draw several conclusions,
partly illustrated in Fig. 2.

– them first roots (zl ≪ 1) behave differently than the other ones. They typically spread over a distance
(rDl)−1/2.

The following points only apply to the other roots (zl & 1).

– all the roots increase from the limits z0 = nπ/li with the permeability of the inner barriers (a general
mathematical proof of this statement is given in Sec. SM. III.3). The relative increase is of the first
order in (rDz0)

−1;
– very close roots associated to adjacent cells are coupled by the permeability of their barrier and

separate from each other by a relative distance of order (rDz0)
−1;

– very close roots associated to non-adjacent cells are not coupled to the first order in (rDz)−1. The
difficult case is when the two cells have the same length: then n1 = n2 and the relative distance
between the two roots is in the best case of order (z0rD)−2. In fact, it depends on the length of all
other cells. For example, symmetric geometries typically lead to a relative distance between roots of
order (z0rD)−|i2−i1|.

All the previous computations are somewhat schematic because we made a particular choice of geometry
(same diffusion coefficients, same permeability and no relaxation at the outer boundaries) from the
beginning. However, the above conclusions are globally still valid in the general case, with appropriate
modifications. For example if one considers perfectly relaxing condition at the endpoints (K± = ∞), then
in the low-permeability limit the roots corresponding to the outer compartments are z0 = (n+ 1/2)π/li
(i = 1 or m), whereas the roots corresponding to the other compartments are z0 = nπ/li, 1 < i < m
(with an integer n). Thus one has to consider separately the case of the outer compartments depending
on the conditions at the outer boundaries. We come back to the relaxing case in Sec. SM. II and Sec.
SM. IV.5. Moreover, the case of heterogeneous diffusion coefficients is treated analytically in the simplest
case of a bi-periodic structure in Sec. SM. V.

2.6 Extensions

The above analysis may be extended in many ways. First, one can consider more general boundary
conditions. In particular, many experiments in heat conduction are done with one end of the system in
contact with a heat source (acting as a constant heat flux or as a thermostat with a constant temperature).
One should then replace our homogeneous outer boundary conditions (7), (8) by inhomogeneous boundary
conditions. The only difference is in the steady-state solution (λ = 0) which is easy to obtain, whereas the
transient solution remains the same (see [19, 34]). One is then often interested in the “critical time”, i.e.
the typical time required to reach the steady-state solution. More precisely, one definition of the critical
time is the time at which the average temperature over the sample is equal to some fraction α < 1 of
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the average steady-state temperature over the sample. Other definitions and a thorough comparison of
these definitions are detailed in [46, 47]. This time is essentially given by the study of the first non-
zero eigenvalue of the diffusion operator, for which we are able to obtain estimates with respect to
the geometrical parameters of the medium (such as Eq. (38), which yields λ ∼ (rlm2)−1, in the low-
permeability regime). The situation is different when the boundaries are subject to modulated heating,
which is the case in geophysics and building design [13–17], and in photothermal measurements [11, 12].
One can still transform the problem into an homogeneous boundary problem but it requires adding a
suitable source term to the diffusion equation [34]. In some cases the main mechanism of heat relaxation
at the outer boundaries is not conduction-convection but radiation, with a non-linear T 4 heat flux [48].
Finally, when considering diffusion of ions in multilayer chemical system such as electrodes, one writes
chemical equilibrium condition at the interfaces: the ratio of concentrations on both sides of the interface
is equal to the partition coefficient [7–9, 49, 50]. This is another type of inner boundary condition, which
leads to different K matrices, quite similar to the case of heterogeneous diffusion coefficients and no
barriers.

Another possible generalization is the inclusion of bulk reaction rates inside the compartments. That
is, to change Eq. (1) to a reaction-diffusion equation:

∂G

∂t
= D∇2G+ µG , (40)

where µ may depend on space and G [46]. If µ is constant, then one gets the solution of Eq. (40) by
multiplying the solution of Eq. (1) by exp(µt). The case of piecewise constant µ (µ = µi on Ωi) is slightly
more complicated but may be easily incorporated into our computations. Such reaction-diffusion models
may describe diffusion of molecules that can be trapped, killed, destroyed, or loose their activity [51–
55] or, on the opposite, self-heating by temperature-induced oxidation [56] (µ > 0). Other applications
include ecology dynamics [57] and fabrication of multilayer foil materials [58, 59].

Last, one can consider other equations than the diffusion equation (1), for example:

– inhomogeneous Laplace (Poisson) equation: ∇(D∇Ψ) = F ,
– inhomogeneous Helmholtz (s > 0) or modified Helmholtz (s < 0) equations: (s+∇D∇)Ψ = F ,
– inhomogeneous diffusion equation: ∂Ψ∂t −∇(D∇Ψ) = F , Ψ(x, t = 0) = U(x),

– inhomogeneous wave equation: ∂
2Ψ
∂t2 −∇(D∇Ψ) = F , Ψ(x, t = 0) = U(x), ∂Ψ∂t (x, t = 0) = V (x),

where F,U, V are given functions, and with the boundary conditions (5), (6), (7), and (8). Thanks to the
knowledge of the eigenmodes basis of the diffusion operator ∇(D∇), the above equations may be solved
by decomposing u and F over this basis [1, 2].

The computational method that we presented is therefore relevant to many models and applications.
In the Supplementary Material we discuss two particular examples: diffusion MRI (Sec. SM. I) and first
exit time distribution (Sec. SM. II).

3 Example: simple periodic geometry

In this section, we illustrate the application of our general method to the case of a (finite) periodic
structure which is relevant for various applications. Throughout this section, we assume that all li, Di,
κi,i+1 are the same (denoted l, D, κ in the following). We apply the results of Sec. 2 and obtain the
eigenmodes and eigenvalues un, λn. Similar computations for more complicated structures are presented
in Sec. SM. V (bi-periodic geometry) and Sec. SM. VI (two-scale geometry).

3.1 Eigenmodes

We assume reflecting boundary conditions at the endpoints (K± = 0) and introduce the dimensionless
parameters

α =
√

λ/Dl and r̃ = 1/κ̃ = rD/l . (41)
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Then the transition matrix of the elementary block is simply

M = KR =

[
cosα− r̃α sinα sinα+ r̃α cosα

− sinα cosα

]

, (42)

and Eq. (19) on the spectrum becomes

K−1Mm

[
α
0

]

= ǫ

[
α
0

]

. (43)

Since the geometry is symmetric, we already know that ǫ = ±1. Furthermore we use the results of Sec.
2.4 to compute Mm: first we apply Eq. (30) to define ψ:

cosψ = cosα− r̃

2
α sinα , (44)

then from Eq. (29), we get

Mm =

[

(cosα− r̃α sinα) sinmψ
sinψ − sin(m−1)ψ

sinψ (sinα+ r̃α cosα) sinmψ
sinψ

− sinα sinmψ
sinψ cosα sinmψ

sinψ − sin(m−1)ψ
sinψ

]

. (45)

Equation (43) can be further simplified by using the fact that K
[
1
0

]

=

[
1
0

]

. We thus have the simple

condition

Mm

[
1
0

]

= ǫ

[
1
0

]

, (46)

which gives the equation on α (and thus on eigenvalues λ)

sinα
sinmψ

sinψ
= 0 . (47)

This corresponds to two cases:

– sinα = 0, that is α = jπ, with j = 0, 1, 2, . . .. We denote these solutions by αj,0 if j is even and

αj,m if j is odd. The vector

[
1
0

]

is an eigenvector of the matrix M with the eigenvalue (−1)j, thus

ǫ = (−1)jm.
– sinmψ

sinψ = 0, which gives mψ = pπ, where p ∈ {1, . . . ,m − 1}, and can be restated according to Eq.

(44) as:

cosα− r̃

2
α sinα = cos pπ/m , p ∈ {1, . . . ,m− 1} . (48)

For each value of p this yields an infinite array of solutions that we will denote as αj,p, where the j
index means jπ ≤ αj,p < (j + 1)π (j = 0, 1, . . .). We have Mm = (−1)pI2, therefore ǫ = (−1)p.

Figure 3 illustrates the solutions αj,p in the case m = 4 and r̃ = 0.4. One can see that the solutions
are grouped in branches of m values. Each branch begins at a multiple of π and ends below the next
one. The branches of even j begin with ψ = 0 (p = 0) and increase with increasing p, whereas the odd j
branches begin with ψ = π (p = m) and increase with decreasing p. Note that we discard the branches
with negative j because α ≥ 0 according to Eq. (41).

Note that α (or j) dictates the intra-compartment variation of the mode, whereas ψ (or p) is related to
its inter-compartment variation (as we explained in Sec. 2.4). In fact, the index j is equal to the number
of extrema of the mode in the first compartment (not counting the one at x = 0). If one is interested in
the inter-compartment variation only, for example by looking at the value of the mode at the beginning
of each compartment, then p represents the number of extrema of this variation over the whole interval.
Moreover, the Courant nodal theorem (proved for our particular model in Sec. SM. III.4) states that each
eigenmode changes sign p+ jm times. Figure 4 shows the first modes of an array of m = 4 identical cells
with impermeable outer barriers. The first two branches are represented. We have additionally plotted
dots at the beginning of each compartment to make the inter-compartment variation more visible.
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Fig. 3 (left) Plot of cosψ = cosα −
r̃
2
α sinα with r̃ = 0.4. Horizontal dotted lines indicate cosψ = cos pπ/m, p =

0, . . . , m, with m = 4 and the circles represent the solutions αj,p. (right) An equivalent representation is the plot of αj,p
versus ψp = pπ/m. One can see branches beginning at jπ and ending below (j +1)π. As α increases, the graph of cosψ
crosses the [−1; 1] interval with a steeper slope, which results in solutions closer to jπ as j increases.
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Fig. 4 Plot of the diffusion operator eigenmodes for the array of m = 4 identical cells of length 1 with impermeable
outer boundaries and r̃ = 0.4. (left) j = 0, p = 0, . . . ,m − 1; (right) j = 1, p = m, . . . , 1. Note the discontinuities at the
barriers which increase when αj,p increases.

One can compare the results of this section with Bloch waves in solid state physics. Indeed the
branches of solutions αj,p are similar to energy bands, where j and p are analogous to the band index n
and the wavenumber k, respectively. This is no surprise because we are dealing with a (finite) periodic
geometry. Although the periodicity is not expressed through an energy potential but boundary conditions,
the mathematical framework is the same. This explains the striking similarity between Fig. 3 and energy
band diagrams (where only the k ≥ 0 half would be represented).
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3.2 Computation of the norm

Because the geometry is symmetric and the relaxation coefficientsK± are equal to zero, one can transform
the formula (24) of the normalization constant into

β−2
j,p =

l

2

∣
∣
∣
∣

[
0 1
] dT
dα

[
1
0

]∣
∣
∣
∣
α=αj,p

=
l

2

∣
∣
∣
∣

[
0 1
] dMm

dα

[
1
0

]∣
∣
∣
∣
α=αj,p

=
l

2

∣
∣
∣
∣

d

dα

(

sinα
sin(mψ)

sinψ

)∣
∣
∣
∣
α=αj,p

. (49)

Now we use Eq. (47), which leads us to distinguish the two cases as above:

– sinα = 0: it corresponds to α = jπ, with a positive integer j (recall that we discard α = 0). Then
cosψ = (−1)j and sinmψ

sinψ = m(−1)j(m−1). We conclude that the norm of the mode is:

β2
j,p =

2

ml
. (50)

–
sinmψ
sinψ = 0: it corresponds to αj,p (ψ = pπ/m), p = 1, . . . ,m − 1 and j = 0, 1, . . .. In this case, the

derivative in Eq. (49) is easily computed by the chain rule:

d

dα

(
sinmψ

sinψ

)

=
d cosψ

dα

dψ

d cosψ

d

dψ

(
sinmψ

sinψ

)

= −
(

sinα

(

1 +
r̃

2

)

+
r̃

2
α cosα

)( −1

sinψ

)
m cosmψ sinψ − sinmψ cosψ

sin2 ψ
,

which by evaluation at αj,p yields:

β2
j,p =

2

ml

sin2 pπ/m

sinαj,p
(
sinαj,p

(
1 + r̃

2

)
+ r̃

2αj,p cosαj,p
) . (51)

4 Implementation and Applications

4.1 Numerical Implementation

From a numerical point of view, the computational steps are the following: (i) to compute the transition
matrix Mi,i+1 in Eq. (17) for each compartment; (ii) to apply Eq. (20) to get the complete transition
matrix; (iii) to solve Eq. (22) to get the spectrum of the diffusion operator; each solution of Eq. (22)
determines one eigenvalue whereas Eqs. (16) and (18) yield the coefficients ali, b

l
i, k = 1, . . . ,m for each

(non-normalized) mode; (iv) to compute the normalization constant; combined with Eq. (11) it allows
one to compute the eigenmode at any point of the interval.

Steps (i) and (ii) are easy and fast since we are dealing with 2 × 2 matrices. Step (iv) can be done
either with Eq. (24), which involves a numerical derivative, or by a direct computation, using:

∫ l

0

(a cos(kx) + b sin(kx))2 dx =
(a2 + b2)l

2
+

(a2 − b2)

4k
sin(2kl) +

ab

4k
(1− cos(2kl)) . (52)

The most complicated and time-consuming step is (iii). As we explained in Sec. 2.5, two or more
solutions of Eq. (22) may be very close to each other in the case of low-permeability barriers (typically
κ≪ D/l). The estimates we derived allow us to localize the roots that speeds up the computation. This is
the crucial point and one of the major practical achievements of the paper. This numerical improvement
allows us to detect very close zeros (as those shown in Fig. 2) and to compute the eigenmodes of the
diffusion operator in heterogeneous structures with hundreds of barriers. Moreover, Fig. 2 illustrates
an interesting property of Fm(z; l1, . . . , lm) as a function of z: two local extrema are apparently always
separated by a zero. Although we have no mathematical proof for this observation, it is very helpful
because it allows us to detect pairs of close zeros by the change of sign of the derivative of the function,
which may take place on a much larger scale than the change of sign of the function itself. One can
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also take advantage of the Courant nodal theorem (which is proven for our particular model in Sec. SM.
III.4): the n-th eigenmode has n nodal domains (connected components on which the eigenmode has a
constant sign), or equivalently, the n-th eigenmode changes sign n − 1 times (possibly at the barriers).
This can be used as an efficient test to check a posteriori that no eigenvalue is missed.

In practice, the standard floating-point precision limits the relative accuracy of a numerical compu-
tation to about 10−15. Let us assume that we are dealing with a geometry such that two eigenvalues λ1
and λ2 are much closer than this limit; for example they coincide up to 10−20. With the above tricks we
are still able to detect those roots and even to compute accurately their position and spacing. However,
the subsequent computations performed on λ1 and λ2 (for example, the computation of the eigenmodes
or their norm) treat λ1 and λ2 as equal numbers. Even worse: the closeness of λ1 and λ2 is related to the
very fast local variations of F (λ) with λ, and as a consequence of the coefficients (ali, b

l
i) and of the norm

of the eigenmode. Therefore it is very difficult to compute accurately these quantities for two eigenmodes
corresponding to very close eigenvalues. The estimates derived in Sec. 2.5 can be used to detect a priori

such situations in which the spectral decomposition can numerically fail.
If one is interested in the diffusion propagator (23) or related quantities, the infinite collection of

eigenmodes has to be truncated. This is done by sorting the eigenvalues λn in ascending order and then
cutting off the ones such that λnt≫ 1, where t is the smallest diffusion time for which the computation
is needed. The precise choice of the truncation threshold is a compromise between precision and speed of
computation. Practically, one can check the validity of the truncation by re-doing the computation with
a higher threshold and then comparing the two results.

We have implemented the proposed method for an arbitrary configuration of barriers and diffusion
coefficients as a Matlab code. The numerical results presented in the Supplementary Materials were
obtained on a basic laptop computer by using this code. The code can be sent upon request.

4.2 Application to diffusion MRI

Diffusion of spin-bearing particles (such as nuclei of hydrogen atoms in water molecules) may be sur-
veyed by diffusion magnetic resonance imaging (dMRI), which is a powerful imaging technique with
many biomedical applications [60–63]. From the knowledge of the diffusion propagator one can access the
dMRI signal under the so-called Narrow-Pulse Approximation (NPA), thus motivating numerous theo-
retical and experimental works on diffusion in complex geometries. As explained previously, restricted
diffusion in simple domains such as slab, cylinder, sphere, can be treated analytically [64–67]. In contrast,
most works devoted to multi-layered systems with semi-permeable barriers are numerical. Tanner took
advantage of the simple expression of the Laplace eigenmodes in a slab geometry to study a finite periodic
repetition of semi-permeable barriers [68]. The same method was applied later by Kuchel and Durrant to
unevenly spaced membranes [69]. These approaches were generalized by Grebenkov with a matrix formal-
ism allowing efficient computation of the signal in general multi-layered planar, cylindrical or spherical
structures, without the NPA restriction [38]. Powles and co-workers proposed in [70] an opposite ap-
proach based on the (one-dimensional) analytical solution of G for one semi-permeable barrier extended
to several barriers by multiple reflections. Other numerical techniques such as a finite differences method
were reported [71]. The first analytical expression of the dMRI signal in a one-dimensional geometry
with periodic permeable barriers was provided by Sukstanskii et al. [72]. Relying on the periodicity of
the system they computed directly the signal in Laplace domain without having to derive the diffusion
propagator. Unevenly spaced membranes were treated in [73, 74] from the analytical solution for one
membrane and under the assumption that the diffusing time is sufficiently short so that the layers are
independent. Note that in contrast to almost all previously cited works the analysis performed in [74]
does not confine to infinitely narrow pulses. Finally, Novikov et al. studied the effect of randomly placed
semi-permeable barriers on the diffusive motion [75, 76]. Using a renormalization group technique, they
obtained structural universality classes characterized by the disorder introduced by the barriers, which
in turn govern the long-time asymptotic behavior of the mean square displacement.

In the general case, the signal is obtained by solving the Bloch-Torrey equation for the local magne-
tization m(x, t):

∂m

∂t
= D∇2m+ iγgxf(t)m , (53)
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where D is the diffusion coefficient, γ the gyromagnetic ratio of the nuclei, g the magnetic field gradient
and f(t) a customizable temporal profile [60–62]. In our one-dimensional geometry, the signal is then
given by

S(t) =
1

L

∫ L

0

m(x, t) dx . (54)

The method developed in Sec. 2 for computing the diffusion operator eigenmodes allows us to calculate
the signal analytically for infinitely narrow gradient pulses, or numerically for arbitrary pulse sequences
(such as the one in Fig. 5). In particular, this method generalizes earlier approaches [68, 71–73] and
opens unprecedented opportunities for studying more sophisticated configurations of barriers such as
microstructures inside larger scale structures.

Fig. 5 Temporal profile f(t) for Pulsed-Gradient-Spin-Echo (PGSE) experiments. The Narrow-Pulse Approximation
(NPA) is the limit case δ → 0 while γgδ remains constant.

The computations are detailed in Sec. SM. I. We explain how one can obtain the dMRI signal from the
Fourier transform of the eigenmodes un in the so-called narrow pulse regime, then we derive the expression
of the signal for the periodic geometry presented in Sec. 3. We discuss the effect of the permeability of
the barriers on the dMRI signal in the regimes of short and long diffusion time. In particular, we obtain
a scaling law of the form κ̃t/(κ̃ + 1) involving t and κ̃ = κl/D, which is valid in the long time regime
(t≫ l2/D). Computations for more sophisticated geometries are presented in Sec. SM. IV (relaxation at
the outer boundaries), SM. V (bi-periodic geometry), and SM. VI (two-scale geometry).

4.3 First exit time distribution

Another application of the diffusion operator eigenmodes is the computation of the first exit time distri-
bution. First exit times are a particular case of first passage phenomena, which find many applications
in physics, chemistry, biology, or economy. In particular, one-dimensional models are relevant to a wide
variety of phenomena in which an event is triggered when a fluctuating variable reaches a given threshold
(examples include avalanches, neuron firing, or sell/buy orders) as well as diffusion controlled reactions
such as fluorescence quenching or predation [77, 78]. In general planar domains, exit times were thor-
oughly investigated in the so-called “narrow-escape limit” [79] and few results are available for arbitrary
escape areas [80, 81].

For this purpose, let us consider perfectly relaxing conditions at the outer boundaries of the interval
[0, L]: K± = ∞. Then the quantity

∫ L

0

G(x → x′, τ) dx′

represents the probability of not reaching the outer boundaries for a particle starting at x, up to the
time τ . In other words, if one denotes by Tx the random variable equal to the first exit time of a particle
starting at x, then the tail distribution and the probability density of Tx are respectively given by:

P(Tx > τ) =

∫ L

0

G(x→ x′, τ) dx′ =
∞∑

n=1

e−λnτun(x)

(∫ L

0

un(x
′) dx′

)

, (55)

ρTx
(τ) =

P(τ < Tx < τ + dτ)

dτ
=

∞∑

n=1

λne
−λnτun(x)

(∫ L

0

un(x
′) dx′

)

. (56)
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The computations are detailed in Sec. SM. II. We rely on the computation of the eigenmodes for
a periodic geometry with perfectly relaxing outer boundaries performed in Sec. SM. IV and obtain the
first exit time distribution for this structure. We study the limit of a large number of barriers (where
the size L of the large interval remains constant). Similarly to the computation of the dMRI signal, we
obtain a scaling law of the form κ̃t/(κ̃+1). Then we turn to irregular geometries where li and κi,i+1 are
randomly distributed and we observe the same scaling law, with a new definition for κ̃ which depends on
permeabilities and positions of the barriers. Numerical computations show a very good agreement even
for a moderate number of barriers (m ≈ 10). Moreover, we analyze the regime of very low permeability,
where the diffusive motion can be replaced by a discrete hopping model, and exhibit a perfect agreement
with previously obtained results.

5 Conclusion

We presented an efficient method to compute the eigenmodes of the diffusion operator on a one-dimensional
interval segmented by semi-permeable barriers, which in turn give access to the diffusion propagator. One
can then compute several diffusion-related quantities such as the dMRI signal for any pulse sequence or
the first exit time distribution.

Although the general matrix formalism is applicable to other multi-layered structures such as con-
centric cylindrical or spherical shells [38], the main analytical simplifications follow from the translation
invariance of the Laplacian eigenmodes which is specific to one-dimensional models. In particular we de-
rived some estimates that help us to accurately compute the eigenvalues, even when they are extremely
close to each other. This is the crucial numerical step that allowed us to deal with heterogeneous struc-
tures with hundreds of semi-permeable barriers. This efficient method opens unprecedented opportunities
to investigate the impact of microstructure onto diffusive motion.

Acknowledgements We acknowledge the support under Grant No. ANR-13-JSV5-0006-01 of the French National
Research Agency.
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Supplementary Material for the article “Diffusion across semi-permeable barriers:
spectral properties, efficient computation, and applications”

SM. I Computation of the dMRI Signal

SM. I.1 General case

For a general geometry and an arbitrary pulse sequence one may solve numerically the Bloch-Torrey
equation (53) by decomposing m(x, t) over the diffusion operator eigenmodes basis (un)n∈N:

m(x, t) =

∞∑

n=1

mn(t)un(x) , with mn(t) =

∫ L

0

u∗n(x)m(x, t) dx , (S1)

where the asterisk denotes complex conjugation [62, 82]. Truncating the decomposition (S1) to a finite
number of terms nmax, one can represent the solution of the Bloch-Torrey equation as a vector:

m(t) =








m1(t)
m2(t)

...
mnmax

(t)







.

The Bloch-Torrey equation can then be rewritten as

∂m

∂t
= −Λm+ iγgf(t)Bm ,

with the following matrices:

Λn,n′ =

∫ L

0

u∗n(x) (−D∇2un′(x)) dx = λnδn,n′ ,

Bn,n′ =

∫ L

0

u∗n(x)xun′(x) dx ,

where δn,n′ is the Kronecker symbol: δn,n′ = 1 if n = n′ and δn,n′ = 0 otherwise. Moreover, one can
write

S(t) =
1

L

∫ L

0

m(x, t) dx = (a ·m(t)) =

nmax∑

n=0

anmn(t) , with an =
1

L

∫ L

0

un(x) dx .

When the gradient profile f(t) is made of two rectangular pulses of duration δ, separated by time ∆ (Fig.
5), the corresponding PGSE signal is obtained by computing the following scalar product:

S = a ·
[

e−(∆−δ)Λe−δ(Λ+iγgB)e−(∆−δ)Λe−δ(Λ−iγgB)
]

m(t = 0) , (S2)

with matrix exponentials in square brackets. More generally, approximating the profile f(t) by a piecewise
constant function, one can accurately compute the dMRI signal for an arbitrary profile f(t) [38, 62, 82].
The initial condition for the magnetization is often uniform,m(t = 0) = 1/L, in which case m(t = 0) = a.



2 Nicolas Moutal, Denis Grebenkov

SM. I.2 NPA approximation for an array of identical cells and reflecting conditions at the outer
boundaries

The Narrow-Pulse Approximation (NPA) is the limit δ → 0 while γgδ remains constant. In this regime
the signal is directly linked to the diffusion propagator G by

S(∆) =

∫ L

0

∫ L

0

ρ(x0)G(x0 → x,∆) cos(γgδ(x− x0)) dxdx0 , (S3)

where ρ(x0) is the initial spin density [60–62]. The spectral decomposition (23) yields

S(∆) =
∞∑

n=1

e−λn∆

∫ L

0

∫ L

0

ρ(x0)un(x0)un(x) cos(γgδ(x− x0)) dx dx0 ,

If the initial density is uniform ρ(x0) = 1/L, the symmetry between x and x0 leads to the following
simplification:

S(∆) =
1

L

∞∑

n=1

e−λn∆

∣
∣
∣
∣

∫ L

0

un(x)e
iγgδx dx

∣
∣
∣
∣

2

. (S4)

This formula is the basis of the NPA and was initially introduced in [64] to study the signal coming
from a single isolated interval. Later the effect of semi-permeable barriers was numerically studied in [68]
for the most simple one-dimensional geometry where all li, Di, κi,i+1 are the same (denoted l, D, κ in
the following).

In this section we apply the results of Sec. 3 and extend the results of Ref. [68]. In addition to Sec. 3
we compute the Fourier transform of the modes which gives us the signal S. In Sec. SM. IV we extend
this computation to relaxing conditions at the outer boundaries. A more complicated geometry consisting
of a microstructure inside a larger scale structure is treated in Sec. SM. VI.

We temporarily use the subscript k instead of i for the compartments in order to avoid any confusion
with the imaginary unit i =

√−1. As previously we use the position of the barrier to the left as the
origin in the formula (11) of the eigenmodes. This means that we have to compute integrals of the form:

∫ lk

0

eiγgδx cos
(

x
√

λ/Dk

)

dx =
lk
2

(

ei(γgδ+
√
λ/Dk)lk − 1

ilk(γgδ +
√

λ/Dk)
+
ei(γgδ−

√
λ/Dk)lk − 1

ilk(γgδ −
√

λ/Dk)

)

,

∫ lk

0

eiγgδx sin
(

x
√

λ/Dk
)

dx =
lk
2i

(

ei(γgδ+
√
λ/Dk)lk − 1

ilk(γgδ +
√

λ/Dk)
− ei(γgδ−

√
λ/Dk)lk − 1

ilk(γgδ −
√

λ/Dk)

)

.

We denote by Lk the row vector whose components are the above integrals. The Fourier transform of
the eigenmode v is then simply

∫ L

0

v(x)eiγgδx dx =
m∑

k=1

eiγgδxk−1,kLk
[
alk
blk

]

. (S5)

Now we apply this general formula to our finite periodic geometry. The sum can be simplified because
all Lk are the same:

L =
l

2

[

−i
(

ei(q−α) − 1

q − α
+
ei(q+α) − 1

q + α

) (

ei(q−α) − 1

q − α
− ei(q+α) − 1

q + α

)]

, (S6)

where q = γgδl. Moreover xk−1,k = (k − 1)l so we can rewrite the sum (S5):

∫ L

0

v(x)eiγgδx dx =

m∑

k=1

ei(k−1)qL
[
alk
blk

]

= L
m−1∑

k=0

eikqMk

[
1
0

]

= L(I2 − eiqM)−1(I2 − eimqMm)

[
1
0

]

= (1− (−1)peimq)L(I2 − eiqM)−1

[
1
0

]

,

(S7)
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where we have used Eq. (46) with ǫ = (−1)p. We can simplify the matrix product further with the remark
that the comatrix operation is linear for 2× 2 matrices, and that detM = 1, so that

L(I2 − eiqM)−1

[
1
0

]

=
L(I2 − eiqM−1)

det(I2 − eiqM)

[
1
0

]

=
L(I2 − eiqR−1)

det(I2 − eiqM)

[
1
0

]

.

From the knowledge of the trace and determinant of the matrix M we compute

det
(

I2 − eiqM
)

= −2eiq(cosψ − cos q) .

Furthermore,

L(I2 − eiqR−1)

[
1
0

]

= −2ieiq(cosα− cos q)
ql

q2 − α2
.

Putting all the pieces together yields

∫ L

0

vj,p(x)e
iγgδx dx = eimq/2

iql(e−imq/2 − (−1)peimq/2)
cos q−cosαj,p

cos q−cos pπ/m

q2 − αj,p2
. (S8)

Note that the ratio is either real (p even) or imaginary (p odd) which is consistent with the symmetry
or anti-symmetry of the mode (see Sec. 2.3).

SM. I.3 Complete expression of the signal

Let us summarize our results. In the array of m identical cells one has Di = D and li = l, i = 1, . . . ,m.
We thus introduce the dimensionless time t = D∆/l2, where ∆ is the diffusion time (see Fig. 5), and
q = γgδl. The combination of the previous results yields the formula:

S =
2(1− cosmq)

(mq)2
+

∞∑

j=1

4q2(1− (−1)jm cosmq)

m2 (q2 − (jπ)2)2
e−(jπ)2t

+

∞∑

j=0

m−1∑

p=1

2lq2

m

1− (−1)p cosmq

(cos q − cos pπ/m)2

(

cos q − cosαj,p
q2 − α2

j,p

)2

β2
j,pe

−αj,p
2t , (S9)

where β2
j,p is given by Eq. (51).

If m = 1, there is no double sum on the second line of Eq. (S9), and one retrieves the well-known
result by Tanner [64]:

S1(q, t) =
2(1− cos q)

q2
+

∞∑

j=1

4q2(1− (−1)j cos q)

(q2 − (jπ)2)2
e−(jπ)2t . (S10)

The opposite limit m → ∞ was the motivation of the subsequent article by Tanner [68] and was
derived analytically in [72]. When m → ∞, each term of the sum in Eq. (S9) vanishes except the ones
for which cos pπ/m is close to cos q. Let us write

q = 2kπ + p0π/m+ ǫ/m , p0 ∈ {0, . . . ,m− 1} , 0 ≤ ǫ < π .

Then we have:
1− (−1)p cos(mq)

m2(cos q − cos pπ/m)2
≈ 1− (−1)p0−p cos ǫ

π2 sin2(q)(p0 − p+ ǫ/π)2
.

To get the signal in the m→ ∞ limit, we thus have to compute the following sum:

∞∑

p=−∞

1

π2

1− (−1)p cos ǫ

(p+ ǫ/π)2
= 1.
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The new equation on α is

cosψ = cosα− r̃

2
α sinα = cos q , (S11)

and the expression of the signal becomes

S∞(q, t, κ̃) =
2q2

κ̃

∞∑

n=1

αn
2 sinαne

−αn
2t

(αn2 − q2)2 ((2κ̃+ 1) sinαn + αn cosαn)
. (S12)

This is exactly the formula derived in [72] by the computation of the Laplace transform of
∫
G(x0 →

x)eiγgδ(x−x0) dx0 on an infinite periodic geometry. Note that although the geometry is infinite and thus
the spectrum of the diffusion operator is continuous, the signal is expressed in terms of a discrete set of
eigenvalues because of Eq. (S11): the Fourier transform selects only the modes that globally oscillate at
the wavenumber q (recall that α only describes the intra-block oscillations, whereas the global behavior of
the mode is dictated by ψ, according to Eq. (31)). This is consistent with the discreteness of the spectrum

of the Airy operator D d2

dx2 + iγgx on any (bounded or unbounded) interval segmented by semi-permeable
barriers [74, 83]. As a consequence, one has to compute αn, n = 1, 2, . . . for each value of q, in contrast to
the finite geometry where the spectrum depends only on the geometry and needs to be calculated only
once. This is an important numerical advantage of the finite geometry over the infinite one because the
computation of the spectrum is one of the most time-consuming step (as explained in Sec.2.5 and 4.1).

SM. I.4 Discussion: dependence of the signal on the permeability

In this section we study the diffusion operator eigenvalues and the signal in various regimes in order
to show the dependence of the signal on the dimensionless permeability of the inner barriers, κ̃, which
characterizes the microstructure. In biological tissues, one has typically: D ∼ 1 µm2/ms, l = 1− 100 µm,
κ ∼ 10−3−1 µm/ms, and the experimental range of diffusion time is about∆ ∼ 10−103 ms. Thus we have
the following ranges of variation for our dimensionless parameters: κ̃ ∼ 10−3 − 102 and t ∼ 10−3 − 103.

In the limit κ̃ → ∞, one obviously recovers the signal associated to the whole interval of length ml
with no barriers, whereas in the opposite limit κ̃→ 0 one gets the signal (S10) associated to one interval
of length l (we detail the mathematical proof in Sec. SM. VII). In other words

S(m, q, t, κ̃) −−−−→
κ̃→∞

S1(mq, t/m
2) and S(m, q, t, κ̃) −−−→

κ̃→0
S1(q, t) .

We are interested in the transition from one limit to the other, that is the dependence of the signal on
the permeability. Expansions of αj,p at low and high permeability are derived in Sec. SM. VIII. They
show that the transition from κ̃ = 0 to κ̃ = ∞ does not occur at one fixed value of κ̃ but depends on
the branch of eigenvalues that we consider. Typically for the branch j the transition occurs at κ̃ ∼ jπ/2
if j > 0. As we have already seen, the j = 0 branch is particular and exhibits a κ̃1/2 dependence at
low κ̃ (see Eqs. (S14) and (S87)). In order to refine our analysis we distinguish long-time and short-time
regimes.

SM. I.4.1 Long-time regime

In the limit t→ ∞, all the modes with non-zero eigenvalues vanish and we are left with

S =
2(1− cosmq)

(mq)2
, (S13)

which is a well-known formula [64]. Note that relaxation at the outer boundaries would lead to zero signal
in the long-time limit because λ = 0 would not be an eigenvalue of the diffusion operator anymore. As
expected at long times the details of the geometry are averaged out and the signal depends only on the
length of the whole interval, L = ml. The next terms are given by the first solutions of the j = 0 branch.
Let us study Eq. (48) at small α, ψ. Expanding the sine and cosine functions, one gets

α = ψ

√

κ̃

κ̃+ 1

(

1− ψ2

24(κ̃+ 1)2

)

+O(ψ5) . (S14)
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Fig. S1 The j = 0 branch of solutions for m = 100 compartments and its approximation by Eq. (S14). (left) κ̃ = 1;
(right) κ̃ = 0.01. One can see that the first order approximation formula is more accurate when κ̃ is higher which is
consistent with Eq. (S14).

Note that the third order correction is below 1% if ψ/π < 0.15(κ̃+ 1) and approximately below 10% if
ψ/π < 0.5(κ̃+ 1). In particular the accuracy of the first-order approximation is always better than 10%
for the first non-zero solution ψ = π/m (m > 1). This is illustrated in Fig. S1 for two values of κ̃: 1
and 0.01. As expected, the approximation is more accurate for larger κ̃. Using this expansion we get the
long-time asymptotic behavior

S ≈ 2(1− cosmq)

(mq)2
+A1(q) exp

(

− π2κ̃t

m2(κ̃+ 1)

)

, (S15)

where A1(q) can be read on Eq. (S9):

A1(q) =
2lq2

m

1 + cosmq

(cos q − cosπ/m)2

(

cos q − cosα0,1

q2 − α2
0,1

)2

β2
0,1 .

Because α0,1 is small, we have approximately

A1(q) ≈ 4(1 + cosmq)(1− cos q)2

q2m2(cos q − cosπ/m)2
,

which does not depend on α0,1 anymore but only on ψ0,1 = π/m. In other words, A1(q) weakly depends
on κ̃. This approximation is especially accurate at high m (we checked numerically that the error is less
than 3% for m > 10, for example). This is a consequence of the remark that the global behavior of the
mode, hence its norm and Fourier transform, is dictated by ψ (see Eq. (31)).

From the expansion (S15) we conclude that the parameter which controls the validity of the long-time
limit is not t but rather κ̃t/((κ̃+ 1)m2). The m-dependence is obvious: m2 is in fact the (dimensionless)
time required to diffuse through all the compartments if there are no barriers. One can then see that
the effect of the barriers is to increase this diffusion time by a factor (κ̃+ 1)/κ̃. In other words, the
time-dependence of the signal yields an apparent diffusion coefficient

Dapp = D
κ̃

κ̃+ 1
=

1

1/D + 1/(κl)
. (S16)

This formula is a well-known correction that can be derived by simple geometrical arguments [84]. When
the permeability is high, the diffusion coefficient is slightly diminished. In the opposite limit κ̃ ≪ 1 one
gets an apparent diffusion coefficient: Dapp = Dκ̃ = κl, which does not depend on the “true” diffusion
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Fig. S2 Signal as a function of κ̃t/(κ̃ + 1) at long diffusion times (t > 1) for m = 10 compartments and fixed q = 0.5.
One can see that the curves fall onto one master curve. The low- and high-permeability limits (Eqs. (S17) and (S13),
respectively) are plotted by dashed and dash-dotted line, respectively.

coefficient anymore. In this regime, the kinetics of diffusion are governed by the crossing of the barriers
and not by the (much faster) intra-compartment diffusion.

More generally, we have:

S ≈
m−1∑

p=0

Ap(q) exp

(

− p2π2κ̃t

m2(κ̃+ 1)

)

, Ap(q) =

∣
∣
∣
∣

∫ L

0

u0,p(x)e
iqx dx

∣
∣
∣
∣

2

,

where Ap(q) weakly depends on κ̃. Thus in the long-time regime, the signal depends on t and κ̃ via the
combination κ̃t/(κ̃+ 1).

If 1 ≪ t≪ 1/κ̃, then S ≈∑m−1
p=0 Ap(q) and from Sec. SM. VII we get:

S ≈ 2(1− cos q)

q2
(1 ≪ t≪ 1/κ̃) . (S17)

The condition t≫ 1 means that the diffusion has averaged the magnetization inside each compartment,
whereas t ≪ 1/κ̃ means that very few particles have crossed the inner barriers. As a consequence we
recover the signal in the long-time limit for one compartment of length l and not of length L = ml (as
in Eq. (S13)), even though t≫ 1.

Figure S2 illustrates the long-time regime (t > 1) for an interval segmented intom = 10 compartments.
The signal is plotted as a function of κ̃t/(κ̃ + 1) at fixed q = 0.5 and different times. The choice of q
is a compromise between the two limits given by Eqs. (S17) and (S13) (dashed and dash-dotted line,
respectively). In fact, q should be small enough so that the signal in the limit κ̃ → 0 is close to 1, and
large enough so that the signal in the limit κ̃ → ∞ should be close to 0, in order to maximize the
variation of the signal with κ̃. One can see that all the symbols fall onto one master curve. In particular,
the transition from low- to high-permeability occurs at a fixed value of κ̃t/(κ̃+1), which is around 1/q2.

SM. I.4.2 Short-time regime

The short-time limit is the opposite case: all the branches of j . 1/
√
t have to be taken into account in

the formula (S9) of the signal. However, we know that jπ < αj,p < (j + 1)π, so that increasing κ̃ from
0 to ∞ produces a net increase of the αj,p which is less than π. As a consequence, the relative decrease
of exp

(
−α2

j,pt
)
is at most π2(2j + 1)t . 2π2

√
t ≪ 1. Thus, as expected, the signal weakly depends on

the permeability. As κ̃ increases the branches of solutions transform successively from the κ̃ = 0 limit to
the κ̃ = ∞ limit. Beyond κ̃ ∼ 1/

√
t, the increase of κ̃ produces little change on the most contributing

branches, hence on the signal. One can interpret this behavior in the following way: the dependence of
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the signal on the permeability is proportional to the fraction of particles which have reached a barrier.
Indeed at short time, this fraction is given by

√
t. Among those particles, the ones that have crossed the

barrier represent a fraction κ̃t/
√
t = κ̃

√
t. Hence κ̃ ∼ 1/

√
t is the value of the permeability from which

almost every particle that has reached a barrier has crossed it.

SM. II First exit time distribution

SM. II.1 Regular geometry

Let us study the first exit time distribution (56) for a geometry similar to the example of Sec. 3 and SM.
I: it consists of an array of m identical cells of length L/m, where L is independent of m, with perfectly

relaxing conditions at the outer boundaries (K± = ∞). The computations are detailed in Sec. SM. IV.5.
Since un(0) = 0, one cannot use the normalization v(0) = 1 from Sec. 2, so we write u = βw with another

normalization, w′(0) =
√

λ/D, which corresponds to

[
al1
bl1

]

=

[
0
1

]

. Because the geometry is symmetric

the eigenmodes of the diffusion operator un, n = 1, 2, . . . are alternately symmetric or anti-symmetric
(see Sec. 2.3); the latter give a zero contribution in the sum in Eqs. (55) and (56). As for the symmetric
eigenmodes, one obtains:

∫ L

0

w(x) dx =
2l

α
, (S18)

β−2 =
−ml
2

sinα
(
1 + r̃

2

)
+ r̃

2α cosα

sin2 ψ

(

sinα cosmψ +
r̃α(m− 1)

m
cos((m− 1)ψ)

)

+
ml

2

(
sinα

α
− cosα

)
sinmψ

m sinψ
, (S19)

where α is a solution of the equation

sinα
sinmψ

sinψ
+ r̃α

sin((m− 1)ψ)

sinψ
= 0 . (S20)

We recall that
λ = Dα2/l2 = Dα2m2/L2 , (S21)

and we introduce the dimensionless time:
t = Dτ/L2 . (S22)

Note that the solutions α depend only on m and κ̃, hence the tail distribution is a function of t, m, κ̃,
and the starting point x:

P(Tx > τ) = Px(t,m, κ̃) ,

ρTx
(τ) = −∂Px

∂τ
= −L

2

D

∂Px
∂t

=
L2

D
ρx(t,m, κ̃) ,

ρx(t,m, κ̃) being the probability density function of the dimensionless random variable DTx/L
2.

We consider now the limit m → ∞. We recall that κ̃ = κl/D = κL/(mD), hence κ̃ depends on m if
κ, D, L are fixed. However in what follows we consider κ̃ and m as independent parameters. From Eq.
(S21) we get that only the smallest solutions α contribute to the sum in Eqs. (55) and (56), hence we
use Eq. (S53) which immediately implies that in the m→ ∞ limit all the curves fall on a unique master
curve of the variable κ̃t/(κ̃+ 1):

Px(t,m, κ̃) ≈ P ∗
x

(
κ̃t

κ̃+ 1

)

, (S23)

ρx(t,m, κ̃) ≈ κ̃

κ̃+ 1
ρ∗x

(
κ̃t

κ̃+ 1

)

. (S24)
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x/L

Fig. S3 An example of a random symmetric structure (with m = 11 compartments). The solid vertical lines picture the
barriers (the darker the line, the higher the resistance of the barrier). One can see this structure as nested subintervals
of lengths L1 < L2 < . . . enclosed by barriers of resistances R1, R2, . . .. The cross indicates the starting position of the
particles, x = L/2.

This master curve (P ∗
x , ρ

∗
x) is precisely the one corresponding to an interval without any barriers (κ̃→ ∞).

The interpretation is that a very large number of barriers can be modeled as an effective medium with
the diffusion coefficient Dapp = Dκ̃/(κ̃+ 1). In particular, one obtains the formula for the mean first exit
time:

E[Tx] =
x(L− x)

2Dapp
=
x(L− x)

2D

κ̃+ 1

κ̃
. (S25)

Note that from the second equality in Eq. (S53) we get that one should replace κ̃ by κ̃
(
1 + 2

m

)
in

order to obtain the scaling laws (S23) and (S24), and thus Eq. (S25), to the first order in 1/m.

SM. II.2 Irregular geometry

Now we turn to an irregular geometry: the lengths of the intervals and the permeabilities of the inner
barriers are randomly distributed. We still impose that the whole interval has a constant length L. If
the number of compartmentsm is sufficiently large, we expect that the effective medium description still
holds, with an effective value of κ̃. The formula for κ̃ should involve all the lengths li and permeabilities
κi,i+1. Moreover in the case of a regular geometry, li = l and κi,i+1 = κ, and one should retrieve
κ̃ = κl/D. If li and κi,i+1 are independent, we find numerically that the formula

κ̃ =
〈l〉

〈r〉D , (S26)

where 〈·〉 denotes arithmetic mean, works well for large values ofm (typically,m & 100). As a consequence,
an irregular geometry does not differ from a regular geometry provided that the number of compartments
is sufficiently large, when one replaces l by 〈l〉 and r by 〈r〉.

However, this formula fails at small values of m. The following reasoning suggests indeed that the
formula of κ̃ should involve a correlation between the position of the barriers and their resistances. Let us
assume for simplicity that the lengths of the compartments are randomly generated in such a way that
the geometry is symmetric with respect to the middle of the interval (and that m is odd). One can then
see the structure as (m− 1)/2 nested subintervals I1 ⊂ I2 ⊂ · · · ⊂ [0, L] of sizes L1 < L2 < · · · < L and
enclosed by barriers of resistances R1, R2, . . . , R(m−1)/2 (see Fig. S3). We let a large number of particles
diffuse from x = L/2. First they diffuse inside the first subinterval I1, so that they “feel” r̃1 = DR1/L1.
Let us assume that the barriers are quasi-impermeable, that is r̃1 ≫ 1. According to Eq. (S25), after
a time T1 ∼ L2

1r̃1(8/D) ∼ L1R1 they have crossed the first barriers. The particle density is then quite
homogeneous inside the second subinterval I2 and so the particles feel r̃2 = DR2/L2. After a time
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T2 ∼ L2R2 they cross the second barriers, they homogenize inside the third subinterval, and so on. The

mean exit time is thus proportional to
∑(m−1)/2
i=1 RiLi. According to Eq. (S25) and to the condition that

we recover r̃ = rD/l for a regular geometry in the m = ∞ limit, one can guess:

κ̃ = r̃−1 =
L2

4D





(m−1)/2
∑

i=1

RiLi





−1

=
L2

4D

(
m−1∑

i=1

ri,i+1 |xi,i+1 − L/2|
)−1

. (S27)

Interestingly, the correction κ̃ → κ̃
(
1 + 2

m

)
is contained in this formula in case of a regular geometry

(see Sec. SM. II.1). This formula was obtained for a symmetric geometry and it has to be refined for
asymmetric geometries. In particular, it is not clear how it should be changed if the starting point x is
not at the middle of the interval anymore. The same reasoning suggests a formula such as:

κ̃ =
x2

4D

(
i0−1∑

i=1

ri,i+1(x− xi,i+1)

)−1

+
(L− x)2

4D

(
m−1∑

i=i0

ri,i+1(xi,i+1 − x)

)−1

, (S28)

if x ∈ Ωi0 . However the numerical agreement is not as good as with a symmetric geometry and x = L/2.
Therefore we focus on Eq. (S27) in the following. Note that Eq. (S27) gives different weights to the
barriers depending on their position with respect to the middle of the interval, which is rather intuitive.
Indeed one expects a barrier located exactly at the middle of the interval to have no effect at all (given
the symmetry of the geometry) whereas barriers located near the exit points should have the greatest
effect.

If the permeabilities of the barriers and the lengths of the compartments are independent random
variables and are distributed in a way that 〈r〉 is finite, then Eqs. (S26) and (S27) are identical in the limit
m → ∞. Furthermore, according to the central limit theorem we expect their deviation to be of order
m−1/2. Figure S4 shows a comparison of the two formulas. We have plotted the first exit time distribution
for random structures such as the one shown in Fig. S3, with m = 11 compartments. The lengths of the
compartments and the barrier resistances follow an exponential distribution. We choose various mean
values of the barrier resistances and we compute κ̃ according to Eq. (S26) or Eq. (S27). Then we apply
the scaling t → κ̃t/(κ̃ + 1). One can see that with Eq. (S27) all the curves fall onto one master curve,
whereas Eq. (S26) leads to significant deviations. Even though Eq. (S26) is less accurate than Eq. (S27),
the latter involves the correlation between the position of the barriers and their permeabilities, which
may be unknown in actual experiments. In this case one should use Eq. (S26), which is more “universal”.

Let us conclude this section by the investigation of the particular case κ̃ ≪ 1. As discussed previously,
in this regime the intra-compartment diffusion is much faster than the inter-compartment exchange, hence
our diffusion model becomes equivalent to a random walk process on a discrete one-dimensional lattice
of size m. The hopping rate from site i to site i+1 and from site i to site i− 1 are respectively given by:

Wi→i+1 =
κi,i+1

li
, and Wi→i−1 =

κi−1,i

li
. (S29)

Such models of discrete random walks with random hopping rates have been considered by many authors
[85–89], and in particular from the perspective of first exit times [90–95]. In particular, Murthy and Kehr
discuss in [92] various cases for the distribution of the hopping rates Wi→i+1. They consider discrete
random walks starting from the left endpoint (site 0, reflecting condition) of the lattice and analyze the
first exit time through the right endpoint (site N , absorbing condition). By reflecting the whole lattice
with respect to the left endpoint, it is equivalent to a symmetric geometry with a starting point at the
middle of the interval (and m = 2N +2). In two particular cases they obtain exact formulas for the mean
first exit time:

– “Symmetric case”, withWi→i+1 =Wi+1→i, which in our case corresponds to li = li+1 = l. The mean
exit time is then given by

E[T ]
MK89
=

N∑

i=1

i

Wm/2+i→m/2+i+1
=

1

2

m−1∑

i=1

|i−m/2|lri,i+1

=
1

2

m−1∑

i=1

|xi,i+1 − L/2|ri,i+1 =
L2

8Dκ̃
.
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Fig. S4 The probability density of the first exit time from an interval segmented into m = 11 compartments by random
barriers of variable mean resistance (such as in Fig. S3). We apply the scale change: t→ κ̃t/(κ̃+1), where κ̃ is computed
either with Eq. (S26) or Eq. (S27). The dotted and dashed lines correspond to a regular geometry with quasi-impermeable
and permeable barriers, respectively. (a) κ̃ is computed with Eq. (S26). One can see that the curves corresponding to
the regular geometry do not coincide very well, while the curves corresponding to the random structures exhibit large
deviations between each other. (b) κ̃ is computed with Eq. (S27). Visually, all the curves fall onto one master curve.

The first equality is from [92] (with suitable changes of notations). Using Eq. (S29), we obtain at the
end the same formula as Eq. (S25) (recall that κ̃≪ 1 and x = L/2), where κ̃ is given by Eq. (S27).

– “Random sojourn probabilities”, with Wi→i+1 = Wi→i−1, which translates into ri,i+1 = ri−1,i = r.
The mean exit time is given by

E[T ]
MK89
=

N∑

i=1

i

Wm−i→m−i+1
=

N∑

i=1

i∑

k=1

lm−ir =
N∑

k=1

(
k∑

i=1

lm/2+i

)

r

=
1

2

m−1∑

k=1

|xk,k+1 − L/2|r = L2

8Dκ̃
.

Again, the first equality is from [92]. By rearranging the sum, it transforms exactly into Eq. (S25).

We conclude that our formula Eq. (S27) introduces an effective permeability κ̃ which is consistent with
the predictions of the random hopping rate models and accurately describes the first exit time distribution
even for moderate number of barriers.

SM. III Mathematical proofs

In this section we prove the non-degeneracy of the eigenvalues of the diffusion operator under the as-
sumption that all inner membranes are semi-permeable κi,i+1 > 0, i = 1, . . . ,m−1. In fact this statement
involves two facts: (i) the eigenvalues λn of the diffusion operator are distinct; (ii) the zeros of F are
simple, that is F ′(λn) 6= 0, n = 1, 2, . . . (in this section, prime denotes derivative with respect to λ).
Furthermore we shall obtain as a corollary that there are infinitely many eigenvalues λn, that they grow
monotonically with the inner and outer barrier permeabilities κi,i+1 and K±, as well as a Courant nodal
theorem for the eigenmodes.

The assumption of non-zero permeability is crucial. Indeed it is clear that any inner impermeable
barrier would split the structure into two non-communicating parts. The eigenmodes for the whole struc-
ture would then be given by the eigenmodes for one part and the other separately. If the two parts are
identical, each eigenvalue is twice degenerate. We make no other assumption about the geometry and we
consider general relaxing outer boundary conditions.
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SM. III.1 Uniqueness of the eigenmodes

Let us assume that there exist two eigenmodes u and ũ satisfying Eqs. (4)-(9), with the same eigenvalue

λ. We shall prove that u is proportional to ũ. Because u and ũ both satisfy Eq. (7), one has u
′(0)
u(0) = ũ′(0)

ũ(0)
hence there exists a constant A such that

u(0)−Aũ(0) = 0 and u′(0)−Aũ′(0) = 0 .

Let us denote u − Aũ by w. This function satisfies Eqs. (4)-(9) because all these equations are linear.
What remains to show is that w is equal to 0 over the whole interval [0, L]. We prove it by induction
on the index of the compartment i. The main mathematical argument is Cauchy-Lipschitz uniqueness
theorem for second order linear differential equations (U): “if f satisfies a second order linear differential
equation over an interval Ω and f(c) = f ′(c) = 0, with c ∈ Ω, then f(x) = 0 for every x ∈ Ω”.

– We apply (U) to w|Ω1

: w|Ω1

(0) = w|′Ω1

(0) = 0 and D1w
′′|Ω1

+ λw|Ω1

= 0, hence w|Ω1

= 0.

– Let us assume that w|Ωi

= 0, with 0 < i < m − 1. Then, because κi,i+1 6= 0, the inner boundary

conditions in Eqs. (5) and (6) imply that w|Ωi+1

(xi,i+1) = w′|Ωi+1

(xi,i+1) = 0. Because w|Ωi+1

obeys

the equation Di+1w
′′|Ωi+1

+ λw|Ωi+1

= 0, one can apply again (U), which implies w|Ωi+1

= 0.

SM. III.2 Simplicity of the zeros of F

Now we prove that F ′(λn) 6= 0 for any eigenvalue λn. In order to simplify the notations we consider the
case where K± are finite. However the proof follows the same steps in the case of infiniteK±. Throughout
the proof we implicitly discard the case λ = 0. Let us recall that if we consider the function v(λ, x) which
satisfies Eqs. (4)-(7) as well as the condition v(0) = 1 (we have proven above that this function is unique),
then

F (λ) =
K+

Dm
v(λ, L) +

∂v

∂x
(λ, L) . (S30)

Instead of writing v as a sum of sine and cosine functions (see Eq. (11)), we introduce an amplitude and
phase representation:

v|Ωi

(x) = Ai(λ) cos
(√

λ/Dix+ φi(λ)
)

= Ai(λ) cos(Φi(λ, x)) , (S31)

with Ai ≥ 0. It is clear from Eq. (11) that Ai and φi do not depend on x. Moreover we have proven in
the above paragraph that Ai(λ) is non-zero for all i and λ. We now translate the boundary conditions
(5)-(8) in terms of Φi. Equation (7) yields: K−Ai cosφ1 +

√
λD1 sinφ1 = 0, hence

tanφ1 = − K−√
λD1

(−π/2 ≤ φ1 ≤ 0) . (S32)

Equtaions (5) and (6) can be restated as

−Ai
√

λDi sin(Φi) = −Ai+1

√

λDi+1 sin(Φi+1) = κi,i+1(Ai+1 cos(Φi+1)−Ai cos(Φi))

at x = xi,i+1, hence by eliminating Ai and Ai+1, we get

cotΦi(λ, xi,i+1)√
Di

− cotΦi+1(λ, xi,i+1)√
Di+1

= ri,i+1

√
λ , (S33)

with 0 ≤ Φi+1(λ, xi,i+1)− Φi(λ, xi,i+1) < π. Finally, one can rewrite Eq. (S30) as

F (λ) = Am(λ)

(
K+

Dm
cosΦm(λ, L)−

√

λ/Dm sinΦm(λ, L)

)

= Am+1(λ) cos(Φm(λ, L) + φm+1(λ)) , (S34)
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with:

Am+1(λ) = Am(λ)

√
(
K+

Dm

)2

+
λ

Dm
, cotφm+1(λ) =

K+√
λDm

(S35)

and 0 ≤ φm+1 ≤ π/2. We have Am+1(λ) 6= 0 for any λ and −π/2 < Φm(0, L) + φm+1(0) ≤ π/2, hence
Eq. (22) is equivalent to Φm(λn, L) + φm+1(λn) = (2n − 1)π/2. The derivative of F at λ = λn is then
given by

F ′(λn) = (−1)nAm+1(λn)
(
Φ′
m(λn, L) + φ′

m+1(λn)
)
. (S36)

It is clear from Eq. (S35) that φ′
m+1(λ) ≥ 0 for any λ. In order to prove that F ′(λn) 6= 0, it is then

sufficient to show that Φ′
m(λ, L) > 0. We prove by induction on the index of the compartment i that

Φ′
i(λ, x) is positive for any λ and any x ∈ Ωi:

– From Eq. (S32) we get that φ1 is an increasing function of λ. As Φ1(λ, x) =
√

λ/D1x + φ1(λ), we
immediately get that Φ′

1(λ, x) > 0 for any x ∈ Ω1.
– Let us assume that Φi(λ, xi,i+1) is an increasing function of λ. According to Eq. (S33), let us introduce

the function:

f(λ, y) = cot−1

(√

Di+1

Di
cot y − ri,i+1

√

λDi+1

)

. (S37)

Because cot is a decreasing function, f is an increasing function of y and a non-decreasing function
of λ, which implies that Φi+1(λ, xi,i+1) = f(λ,Φi(λ, xi,i+1)) is an increasing function of λ. It is then
clear that Φi+1(λ, x) = Φi+1(λ, xi,i+1) +

√

λ/Di+1(x− xi,i+1) is an increasing function of λ for any
x ∈ Ωi+1.

This proves the simplicity of the zeros of F . Moreover, we also obtain that Φm(λ, L) grows indefinitely
with λ. According to Eq. (S34), this implies that there are infinitely many values of λ such that F (λ) = 0.
In other words, there are infinitely many eigenvalues λn.

SM. III.3 Monotonicity of the eigenvalues with respect to the permeabilities

The previous computations enable us to show that the eigenvalues grow monotonically with the inner
and outer permeabilities κi,i+1 and K±. In fact, because Φm(λ,L)+φm+1(λ) is an increasing function of
λ, we just have to prove that Φm(λ, L) + φm+1(λ) is a non-increasing function of κi,i+1 and K±, which
follows immediately from Eqs. (S32), (S37) and (S35).

SM. III.4 Courant nodal theorem

Let us define the nodal domains of an eigenmode un as connected components on which un does not
change sign. We prove here that un has exactly n nodal domains, which means that it changes sign
n− 1 times (recall that we numbered the modes n = 1, 2, . . .). Note that these sign changes can occur at
discontinuity points of un. The proof relies on the amplitude and phase representation detailed above.
Let us then write

un(x) = A(λn, x) cos(Φ(λn, x)) , (S38)

where A and Φ are piecewise continuous functions of x defined by A|Ωi

= Ai and Φ|Ωi

= Φi. The changes

of sign of the eigenmode occur when the phase Φ crosses an odd multiple of π/2. Indeed, A(λn, x) has
a constant sign, and from Eq. (S33) we get that the jumps of Φ at the barriers are always less than π
(which means that Φ cannot cross two odd multiples of π/2 at the same time).

Moreover, we know the phase at the left endpoint: Φ(λn, 0) = φ1(λn) ∈ [−π/2; 0] and the phase at
the right endpoint: Φ(λn, L) = (2n− 1)π/2− φm+1(λn) ∈ [(n− 1)π; (n− 1)π + π/2]. We conclude that
the interval (Φ(λn, 0);Φ(λn, L)) contains exactly n − 1 odd multiple of π/2, thus the eigenmode has n
nodal domains.
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SM. IV Computations for an array of identical cells with symmetric relaxation conditions

at the outer boundaries

In this section we extend the computation presented in Sec. 3.1 by allowing relaxation or leakage at the
endpoints of the interval. In other words, we relax the reflecting boundary conditions K± = 0 at the
outer membranes. In particular we will also study the limit K± → ∞ which is the perfectly relaxing
case that we use in Sec. SM. II. The cells are the same: li = l, Di = D,κi,i+1 = κ, and the relaxation
coefficients are identical: K+ = K− = K. In addition to the notations (41), we introduce: K̃ = Kl/D.

SM. IV.1 Eigenmodes

Because the geometry is symmetric we know that ǫ = ±1. In this case we need to solve the general
equation (43)

K−1Mm

[
α

K̃

]

= ǫ

[
α

−K̃

]

. (S39)

With the help of Eq. (45) we can compute the matrix K−1Mm:

K−1Mm =

[

cosα sinmψ
sinψ − sin(m−1)ψ

sinψ sinα sinmψ
sinψ + r̃α sin(m−1)ψ

sinψ

− sinα sinmψ
sinψ cosα sinmψ

sinψ − sin(m−1)ψ
sinψ

]

. (S40)

Thus Eq. (S39) yields the system






(

cosα+ K̃ sinα
α

)
sinmψ
sinψ −

(

1− r̃K̃
)

sin(m−1)ψ
sinψ = ±1

(

cosα− 1
K̃
α sinα

)
sinmψ
sinψ − sin(m−1)ψ

sinψ = ∓1
, (S41)

which is equivalent to the equation

(

cosα+
1

2

(
K̃

α
− α

K̃

)

sinα

)
sinmψ

sinψ
−
(

1− r̃K̃

2

)
sin(m− 1)ψ

sinψ
= 0 . (S42)

Combined with Eq. (44) it forms a system whose solutions αn determine the eigenvalues λn. Compared
to the K = 0 case from Sec. 3.1, the solutions αn are modified and in general increase with K̃.

In the particular case K̃ = 2κ̃, Eq. (S42) simplifies into

sinmψ

sinψ
= 0 or cosα+

1

2

(
K̃

α
− α

K̃

)

sinα = 0 . (S43)

The first equation gives the αj,p (p = 1, . . . ,m− 1) from the earlier considered K = 0 case. The second
equation gives the solutions of cosψ = ±1 that are not multiple of π (that we denote as αj,m if j is
even and αj,0 if j is odd, to be consistent with our previous notations). The condition K̃ = 2κ̃ can be
interpreted as “one inner barrier is equivalent to two stacked outer barriers” or equivalently “the crossing

of one inner barrier transforms

[−1
K̃
α

]

into

[
1
K̃
α

]

”. In this way the reason why the αj,p are solutions

becomes clear: the matrix K
(
K−1Mm

)
= Mm should send

[
1
K̃
α

]

onto plus or minus itself. The αj,p

(with 1 < p < m) are solutions of Mm = ±I2 and the αj,0 and αj,m are such that

[
1
K̃
α

]

is an eigenvector

of M.
As a consequence, the spectrum for the case K̃ = 2κ̃ differs little from the spectrum for the imper-

meable outer boundary condition. The only difference lies in the beginning and the end of the branches
(see Fig. S5). This is nevertheless not a small difference because the eigenvalue λ = 0 (which is absent of
the spectrum if K̃ > 0) plays an important role in the long-time limit of the diffusion propagator as we
have discussed in Sec. SM. I.4.1.
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Fig. S5 Spectrum of the finite periodic geometry with m = 4 compartments and r̃ = 0.4, for K̃ = 0 (circles), K̃ =

κ̃/2 = 1.25 (squares), K̃ = 2κ̃ = 5 (asterisks), K̃ = 10κ̃ = 25 (pluses) and K̃ = ∞ (triangles). The values of α increase

with K̃. Notice how the spectra for K̃ = 0 and K̃ = 2κ̃ coincide except at the beginning and the end of the branches.

Beyond this special value of K̃, the solutions αn continue to increase so that some values of ψn become
complex (because | cosψ| > 1, which is apparent in Fig. S5). More precisely they have the general form
ψ = ix or ψ = π + ix, with x ∈ R. These values correspond to eigenmodes strongly localized inside the
outer compartments. Indeed, Eq. (31) implies that the coefficients a and b vary like linear combinations of
cosh and sinh functions of the compartment index i. The physical interpretation is simple: when K̃ ≫ κ̃
we are indeed in a regime where the leakage through the outer membranes is much faster than the
exchange through the inner barriers. As a consequence the outer compartments evolve separately from
the inner compartments, which corresponds mathematically to the existence of localized eigenmodes.
On the other hand, when K̃ ≪ κ̃, the outer leakage is much slower than the inner exchange, thus all
compartments are coupled. We treat the limit K̃ → ∞ below in Sec. SM. IV.5.

SM. IV.2 Computation of the norm

The general formula (24) reads

β−2 =
l

2

∣
∣
∣
∣

d

dα

([
K̃
α 1

]

T (α)

[
1
K̃
α

])∣
∣
∣
∣
α=αn

. (S44)

After lengthy computations, one gets

β−2 =
ǫl

2

sinα
(
1 + r̃

2

)
+ r̃

2α cosα

sin2 ψ

((
K̃

α

)2

sinα+ 2
K̃

α
cosα− sinα

)(
(m− 1) sinψ

sin(m− 1)ψ
− cosmψ

)

+
ǫl

2

sinmψ

sinψ

(

sinα

α

(

1 + 2K̃ +

(
K̃

α

)2
)

+

(

1−
(
K̃

α

)2
)

cosα

)

. (S45)

Note that when K̃ = 2κ̃ we have to compute separately the cases ψ = 0 and ψ = π. We get

β−2 =
ml

2

(

− cosα− 2
K̃

α
sinα+

(
K̃

α

)2(

cosα+
m− 1

mκ̃

)

+ 2
K̃

mα2

)

if ψ = 0,

β−2 =
ml

2

(

cosα+ 2
K̃

α
sinα−

(
K̃

α

)2 (

cosα− m− 1

mκ̃

)

+ 2
K̃

mα2

)

if ψ = π.
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SM. IV.3 Fourier transform

Except for the conditions at the outer boundaries, the geometry is the same as in Sec. SM. I.2. Hence
the computation follows the same steps. Using the condition (S39), we are led to compute the product

L
(

I2 − eiqR−1K−1
)(

I2 − ǫeimqKS
)[α

K̃

]

.

Skipping the technical computations, one gets depending on ǫ = ±1

∫ L

0

v(x)eiγgδx dx =
eimq/22l

(q2 − α)2(cos q − cosψ)
(A cos(mq/2) +B sin(mq/2)) if ǫ = +1, (S46)

∫ L

0

v(x)eiγgδx dx =
−ieimq/22l

(q2 − α)2(cos q − cosψ)
(A sin(mq/2)−B cos(mq/2)) if ǫ = −1, (S47)

where

A = K̃

(

(cosα− cos q) +
r̃

2
(q sin q − α sinα)

)

, B = q(cos q − cosα)

(

1− r̃K̃

2

)

. (S48)

SM. IV.4 Complete expression of the dMRI signal

According to Eq. (S4), the signal is expressed as a sum over all eigenmodes un. We recall that the
eigenmodes are alternately symmetric (odd n) and anti-symmetric (even n). Combining the above results
(S45)-(S48), one gets

S =

∞∑

n=1

(
A2
n +B2

n + (−1)n−1(A2
n −B2

n) cosmq + (−1)n−12AnBn sinmq
)
4β2
ne

−α2
n
t

(q2 − αn2)2(cos q − cosψn)2
, (S49)

where βn is given by Eq. (S45), An and Bn by Eq. (S48), ψn by Eq. (44) and αn are solutions of Eq.
(S42). For m = 1, we recover the signal derived by Coy and Callaghan [66].

SM. IV.5 Perfectly relaxing outer boundaries

Note that the limit K̃ → ∞ is singular because of the chosen normalization (10). This is particularly
clear in Eq. (18) where bl1 → ∞. In fact, K̃ = ∞ represents Dirichlet conditions at the outer boundaries:
u(0) = u(L) = 0. To avoid the singularity we use another normalization:

u = βw , w′(0) =
√

λ/D , (S50)

which corresponds to the coefficients (for w)

[
al1
bl1

]

=

[√
λD1

K−

1

]

.

SM. IV.5.1 Study of the spectrum

When K̃ → ∞, Eq. (S42) simplifies into

sinα
sinmψ

sinψ
+ r̃α

sin (m− 1)ψ

sinψ
= 0 . (S51)

We now study the solutions of this equation in three different regimes: high-permeability, low-permeability,
and very large number of compartments. We rely on the discussion developed in Sec. 2.5, which leads us
to the following conclusions.
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High-permeability regime In the high-permeability regime (r̃ ≪ 1), the solutions are located near the
limits α0 = nπ/m, which correspond also to ψ0 = nπ/m (n = 1, 2, . . .). More precisely one can compute
the first-order expansion:







αn ≈ nπ

m

(

1− r̃(m− 2)

2m

)

if n is not a multiple of m,

αn ≈ nπ

m

(

1− r̃(m− 1)

m

)

otherwise.

As already noted this case presents no difficulty from the numerical point of view.

Low-permeability regime In the low-permeability regime (κ̃ ≪ 1), the solutions are divided into two
categories.

• First, the solutions corresponding to the “inner” compartments: 1 < k < m. These solutions form
groups located around α0 = jπ (j being an integer). In fact they correspond to ψ ∈ R, at which sin(mψ)
and sin((m− 1)ψ) are of the same order. This implies that Eq. (S20) becomes in the low-permeability
limit

sin((m− 1)ψ)

sinψ
= 0 ,

which is (almost) the equation of the spectrum ofm−1 identical cells with impermeable outer boundaries
(47). One gets simply the solutions ψ0 = pπ/(m− 1), p = 1, . . . ,m − 2, thus the solutions in the first
category are approximately determined by

cosα− r̃

2
α sinα = cos(pπ/(m− 1)), p = 1, . . . ,m− 2 .

We study this equation in details in Sec. SM. VIII. In particular, applying Eq. (S87) one gets for the
m− 2 first solutions:

αn ≈ 2
√
κ̃ sin

(
nπ

2(m− 1)

)

, n = 1, . . . ,m− 2 . (S52)

• Second, the solutions corresponding to the outer compartments k = 1,m. These solutions form
pairs α± such that

(

n+
1

2

)

π − α+ ≈
(

n+
1

2

)

π − α− ∼ κ̃

(n+ 1/2)π
,

α+ − α− ∼
(

κ̃

(n+ 1/2)π

)m−1

,

with n = 1, 2, . . .. Therefore in the low-permeability limit (κ̃→ 0) these pairs are very difficult to detect,
especially when one is dealing with a large number of compartments m. As explained in Sec. 4.1, even if
one finds the roots, the subsequent computation of the eigenmodes and their norm may be inaccurate.
However in this regime these solutions are much larger than the smallest one from the first category which
go to zero according to Eq. (S52). Hence they have little influence on the first exit time distribution (56)
because of the very fast exponential decay compared to the first terms of the sum.

Limit m→ ∞ From the above discussion we get that them−2 first solutions of Eq. (S20), α1, . . . , αm−2,
satisfy

nπ/m < ψn < nπ/(m− 1) , n = 1, . . . ,m− 2 .

Thus one may write ψn = nπ
m−x , with 0 < x < 1. Let us rewrite Eq. (S20) as

sinαn sin(mψn) + r̃αn sin((m− 1)ψn) = (−1)n
(

sinαn sin

(
xnπ

m− x

)

− r̃αn sin

(
(1− x)nπ

m− x

))

= 0 .

Now we study the limit m→ ∞ with fixed n. Then ψn, αn ≪ 1 and the above equation transforms into

(−1)nαnnπ

m− x
(x− r̃(1− x)) = 0 ,
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from which we get x = r̃/(1 + r̃) = 1/(1 + κ̃). Let us use the expansion (S14):

αn ≈
√

κ̃

κ̃+ 1

nπ

m− 1
κ̃+1

≈
√

κ̃
(
1 + 2

m

)

κ̃
(
1 + 2

m

)
+ 1

nπ

m
, n = 1, . . . ,m− 2 . (S53)

SM. IV.5.2 Computation of the norm

The formula (24) for the norm becomes

β−2 =

∫ L

0

w2 =
−
√
D1

2η

d

d
√
s

(
[
K+

K−

√
Dms
K−

]

T (s)

[√
D1s
K−

1

])∣
∣
∣
∣
∣
s=λ

.

In the particular geometry we are dealing with and in the case K̃ = ∞, this gives

β−2 =
−ǫl
2

∣
∣
∣
∣

[
1 0
] dT
dα

[
0
1

]∣
∣
∣
∣

(S54)

=
−ǫml
2

sinα
(
1 + r̃

2

)
+ r̃

2α cosα

sin2 ψ

[

sinα cosmψ +
r̃α(m− 1)

m
cos((m− 1)ψ)

]

+
ǫml

2

(
sinα

α
− cosα

)
sinmψ

m sinψ
. (S55)

SM. IV.6 Computation of the Fourier transform

In the same way, the computation of the Fourier transform of w simplifies into

eimq/22lα

(q2 − α)2(cos q − cosψ)
×
{

A cos(mq/2) +B sin(mq/2) if ǫ = +1

−i(A sin(mq/2)−B cos(mq/2)) if ǫ = −1
, (S56)

with

A =

[

(cosα− cos q) +
r̃

2
(q sin q − α sinα)

]

, B =
r̃

2
q(cosα− cos q) . (S57)

SM. V Bi-periodic geometry

In this section, we briefly apply our method to the computation of the spectrum of the diffusion operator
on a finite periodic geometry where the elementary block is made of two different compartments (repeated
M times). Such a system may model laminated steel coils in industrial processes [18, 19] or intra- and
extra-cellular spaces in biology [69, 71, 96]. This is also a good example of the numerical simplifications
that our method enables. The lengths of the compartments are denoted by le and li, their diffusion
coefficients by De and Di and the barrier between the two compartments has a permeability κ (or
equivalently a resistance r = 1/κ). For simplicity we assume reflecting boundary conditions at the outer
boundaries. Let us introduce the notations

τi = l2i /Di and τe = l2e/De . (S58)

In that case, the equation (19) on the spectrum is MM

[
1
0

]

= ǫ

[
1
0

]

, with

M =

[
1 r

√
λDi

0
√

Di/De

] [
cos
(√
λτi
)

sin
(√
λτi
)

− sin
(√
λτi
)
cos
(√
λτi
)

] [
1 r

√
λDe

0
√

De/Di

] [
cos
(√
λτe
)

sin
(√
λτe
)

− sin
(√
λτe
)
cos
(√
λτe
)

]

. (S59)

Because the geometry is not symmetric, ǫ is not necessary equal to ±1. Moreover we have ǫη =
√

De/Di.
Following the same reasoning as in Sec. 3.1, we obtain that the solutions of Eq. (19) can be decomposed
into two types:
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– the ones such that

[
1
0

]

is an eigenvector of the transition matrix of one block, M, from Eq. (S59).

This gives the condition:

r
√

λDiDe =
√
Di cot

(√
λτe
)

sin
(√

λτi
)

+
√
De sin

(√
λτe
)

cot
(√

λτi
)

. (S60)

Moreover, one has

ǫ =

(

cos
(√

λτe
)

cos
(√

λτi
)

−
√

Di
De

sin
(√

λτe
)

sin
(√

λτi
)

−r
√

λDi cos
(√

λτe
)

sin
(√

λτi
)
)−M

;

(S61)
– the ones such that Tr(M) = 2 cos pπ/M , with p = 1, . . . ,M−1, which corresponds to MM = (−1)pI2

and thus to ǫ = (−1)p. This gives the equation

2 cos pπ/M = 2 cos
(√

λτe
)

cos
(√

λτi
)

−
(√

Di
De

+

√

De
Di

)

sin
(√

λτe
)

sin
(√

λτi
)

− 2r
√
λ
(√

De sin
(√

λτe
)

cos
(√

λτi
)

+
√
Di cos

(√
λτe
)

sin
(√

λτi
))

+ r2λ
√
DiDe sin

(√
λτe
)

sin
(√

λτi
)

, p = 1, . . . ,M − 1 . (S62)

It is interesting to compare the above equations with the analysis conducted in Sec. 2.5. Indeed, one can
see that in the limit of quasi-impermeable barriers (r → ∞), Eq. (S60) yields approximately

√

λ/De ≈ nπ

le
+

1

nπrDe
and

√

λ/Di ≈ nπ

li
+

1

nπrDi
, n = 1, 2, . . . , (S63)

which is exactly Eq. (34) with ζ = 1, that is for the outer compartments. In the same way, Eq. (S62)
yields approximately

√

λ/De ≈ nπ

le
+

2

nπrDe
+
le
√

De/DiXp

(nπrDe)2
,

√

λ/Di ≈ nπ

li
+

2

nπrDi
+
li
√

Di/DeYp

(nπrDi)2
, (S64)

where n = 1, 2, . . ., and Xp, Yp are dimensionless coefficients which depend on the value of cos pπ/M , with
p = 1, . . . ,M − 1. One recognizes the first order correction from Eq. (34) for inner compartments. The
second order correction is also discussed in Eq. (2.5) and arises from the next-nearest neighbor coupling
between the compartments of the same type. Therefore, in the low-permeability limit, the spectrum is
made of groups of M closely packed eigenvalues located around λ = De(nπ/le)

2 or λ = Di(nπ/li)
2: one

eigenvalue is given by Eq. (S60) then the following M − 1 eigenvalues are given by Eq. (S62). These
groups correspond to eigenmodes localized inside all compartments of type “e” or “i”, respectively.
More precisely, the first eigenvalue of each group corresponds to an eigenmode localized inside an outer
compartment and the M − 1 following eigenvalues correspond to eigenmodes localized inside all inner
compartments.

Equations (S60) and (S62) “disentangle” these groups of eigenvalues, that allows one to compute very
fast the spectrum of the diffusion operator for any number of repetitionsM and any barrier permeability.
This is a major simplification of the numerical problem of the determination of the spectrum (see Sec. 2.5
and 4.1). The same remark applies to any finite periodic geometry, provided that the repeated elementary
block is not too long.
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Fig. S6 Illustration of the two-scale geometry, which is a repetition of M blocks of N cells. All the cells have the same
length l and diffusion coefficient D and are separated by barriers of permeability κ. The blocks are separated by barriers
of permeability κL.

SM. VI Two-scale geometry

SM. VI.1 Eigenmodes

We consider again the repetition of an elementary block but without restricting ourselves to a small
block. Indeed the structure is the repetition of M arrays of N identical cells, each array being separated
from others by a “large barrier” (see Fig. S6). For simplicity we assume reflecting boundary conditions
at the endpoints. The cells are of length l, the barriers are of permeability κ, the diffusion coefficient is
D, and the “larger barriers” are of permeability κL. In addition to the notations (41), we introduce:

r̃L = 1/κ̃L = D/(κLl) and ρ̃ = r̃L − r̃ . (S65)

Strictly speaking, ρ̃ may be negative, however we have in mind the opposite case where the “larger
barriers” are less permeable than the inner barriers.

We have two different matrices to consider:

– the matrix associated to the microstructure is M1 =

[
1 r̃α
0 1

] [
cosα sinα
− sinα cosα

]

.

– the matrix associated to the macrostructure is M2 =

[
1 ρ̃α
0 1

]

M1
N .

Thanks to the formula (45), we can compute the matrix M2:

M2 =
1

sinψ





(
sin(N + 1)ψ

− (cosα+ ρ̃α sinα) sinNψ

) (
(sinα+ R̃α cosα) sinNψ

− ρ̃α sin(N − 1)ψ

)

− sinα sinNψ cosα sinNψ − sin(N − 1)ψ



 . (S66)

Since the geometry is symmetric, Eq. (19) of the spectrum is

M2
M

[
1
0

]

= ǫ

[
1
0

]

, (S67)

with ǫ = ±1, and by analogy with the finite periodic geometry from Sec. 3.1 we have two cases:
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– sinα sinNψ
sinψ = 0: the vector

[
1
0

]

is an eigenvector of the matrix M2. This condition gives exactly the

solutions αj,p, j = 0, 1, . . . and p = 0, . . . , N (Sec. 3.1). One has ǫ = (−1)pM .
– The trace of the matrix M2 is 2 cosPπ/M , for P ∈ {1, . . . ,M − 1}: M2

M is plus or minus the
identity matrix I2, which gives the condition:

cosNψ − r̃

2
α sinα

sinNψ

sinψ
= cosPπ/M , P = 1, . . . ,M − 1 . (S68)

In this case ǫ = (−1)P . Again, we use a special notation for the solutions: αj,p,P , where the index j
means jπ ≤ αj,p,P < (j+1)π and the index p means pπ/N ≤ ψj,p,P < (p+1)π/N . The P = 0 (resp.,
P =M) case corresponds then to the solutions for the finite periodic case αj,p if p is even (resp. if p
is odd).

The interpretation of the indices j, p, P follows the same line of reasoning as with the simple periodic
geometry: they give the intra-compartment, inter-compartment (or intra-block) and inter-block variation
of the mode, respectively.

SM. VI.2 Computation of the norm:

We use again Eq. (29):

[
0 1
]
T
[
1
0

]

=
[
0 1
]
(K2MN )M

[
1
0

]

=
sinMφ

sinφ

[
0 1
]
K2MN

[
1
0

]

=
sinMφ

sinφ

sinNψ

sinψ

[
0 1
]
M

[
1
0

]

= − sinMφ

sinφ

sinNψ

sinψ
sinα , (S69)

where we have introduced φ defined by

cosφ =
1

2
Tr(K2Mm) = cosNψ − r̃

2
α sinα

sinNψ

sinψ
. (S70)

Now we have three cases:

1. sinα = 0, which corresponds to αj,0 and αj,N . One gets

β2 =
2

MNl
.

2. sinNψ
sinψ = 0, which corresponds to αj,p, p = 1, . . . , N − 1. In this case we get

β2
j,p =

2

ml

sin2 pπ/N

sinαj,p
(
sinαj,p

(
1 + r̃

2

)
+ r̃

2αj,p cosαj,p
) .

3. sinMφ
sin φ = 0, which corresponds to the general case. We use the chain rule again to compute the

derivative with respect to α:

d

dα

(
sinMφ

sinφ

)

=
d cosφ

dα

dφ

d cosφ

d

dφ

(
sinMφ

sinφ

)

,

d cosφ

dα
= −N 1− cosNψ cosPπ/M

sinNψ sinψ

[(

1 +
r̃

2

)

sinα+
r̃

2
α cosα

]

+
cosNψ − cosPπ/M

sin2 ψ

[
sin2 α

α
+
r̃

2
(α+ sinα cosα)

]

,

dφ

d cosφ

d

dφ

(
sinMφ

sinφ

)

=

( −1

sinPπ/M

)(
(−1)P

sinPπ/M

)

.
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Hence we get the normalization constant:

β2
j,p,P =

2 sin2(Pπ/M) sinψ
ml sinα sinNψ





1−cosNψ cosPπ/M
sinNψ sinψ

((
1 + r̃

2

)
sinα+ r̃

2α cosα
)

+ cosNψ−cos Pπ/M
N sin2 ψ

(
sin2 α
α + r̃

2 (α+ sinα cosα)
)





∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
α=αj,p,P

. (S71)

SM. VI.3 Fourier transform

In the same way as for the finite periodic geometry, we have only one L to consider, so we need to
compute

∑

i

eikqLi
[
ali
bli

]

= L
M−1∑

i=0

N−1∑

i=0

eiq(KN+k)M1
kM2

K

[
1
0

]

= L(I2 − eiqM1)
−1(I2 − eiNqM1

N )(I2 − eiqNM2)
−1(I2 − eiNMqM2

M )

[
1
0

]

. (S72)

Using Eq. (S67) on the spectrum and the linearity of the comatrix operation, we get to simplify a lot the
above expression:

∑

i

eikqLi
[
ali
bli

]

= (1− (−1)P eiNMq)
det
(
I2 − eiNqM1

N
)

det(I2 − eiNqM2)
L(I2 − eiqM1)

−1

[
1
0

]

. (S73)

And finally

∫ L

0

v(x)eiγgδx dx =
iql
(
1− (−1)PeiNMq

) cosNψj,p,P−cosNq
cosPπ/M−cosNq

cosαj,p,P−cos q
cosψj,p,P−cos q

q2 − αj,p,P 2
. (S74)

SM. VI.4 Complete expression of the dMRI signal

We gather the above expressions to obtain the signal as a function of q = γgδl and t = D∆/l2:

S =
2(1− cosmq)

(mq)2
+

∞∑

j=1

4q2(1− (−1)jm cosmq)

m2 (q2 − (jπ)2)2
e−(jπ)2t

+
∞∑

j=0

N−1∑

p=1

2lq2

m

1− (−1)pM cosmq

(cos q − cos pπ/N)2

(

cos q − cosαj,p
q2 − α2

j,p

)2

β2
j,pe

−αj,p
2t

+

∞∑

j=1

N∑

p=0

M−1∑

P=1

2mlq2(1− (−1)P cosmq)

M2 (cosNq − cosPπ/M)2

(
cos q − cosαj,p,P
q2 − αj,p,P 2

)2(
cosNq − cosNψj,p,P
N(cos q − cosψj,p,P )

)2

× β2
j,p,P e

−αj,p,P
2t , (S75)

where β2
j,p and β2

j,p,P are given by Eqs. (49) and (S71), respectively.
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SM. VII Limit of the dMRI signal for the periodic geometry as κ̃ → 0 and κ̃ → ∞

SM. VII.1 High-permeability limit: κ̃→ ∞

In this limit, one has:
{

αj,p = jπ + pπ/m if j is even,

αj,p = jπ + (m− p)π/m if j is odd.
(S76)

In particular, cosαj,p = cosψj,p, so the expression of the signal simplifies into

S =
2(1− cosmq)

(mq)2
+

∞∑

j=1

4q2(1− (−1)jm cosmq)

m2 (q2 − (jπ)2)2
e−(jπ)2t

+
∞∑

j=0

m−1∑

p=1

2lq2

m

1− (−1)p cosmq

(q2 − α2
j,p)

2
β2
j,pe

−αj,p
2t ,

with β2
j,p = 2/(ml). Hence:

S =
2(1− cosmq)

(mq)2
+

∞∑

n=1

4q2(1− (−1)n cosmq)

((mq)2 − (nπ)2)2
e−(nπ)2t/m2

, (S77)

which is the formula of the signal for one interval of length L = ml, as expected.

SM. VII.2 Low-permeability limit: κ̃ → 0

Although the result is intuitively expected, the computation is more complicated. The mathematical
reason is that in the limit κ̃→ 0, αj,p = jπ so that the eigenmodes of the branch j are degenerate. Using
Eq. (48), one gets the expression of the signal:

S =
2(1− cosmq)

(mq)2
+

∞∑

j=1

4q2(1− (−1)jm cosmq)

m2 (q2 − (jπ)2)2
e−(jπ)2t

+

∞∑

j=0

m−1∑

p=1

2lq2

m

1− (−1)p cosmq

(cos q − cos pπ/m)2

(
cos q − (−1)j

q2 − (jπ)2

)2

β2
j,pe

−(jπ)2t ,

with {

β2
j,p = 2

ml (1 + (−1)j cos pπ/m) if j > 0,

β2
0,p = 1

ml (1 + (−1)j cos pπ/m) .

Gathering all the terms, we obtain

S = S0(q)
2(1− cos q)2

m2q2
+

4q2

m2

∞∑

j=1

Sj(q)
(1− (−1)j cos q)2

(q2 − (jπ)2)2
e−(jπ)2t , (S78)

with

Sj(q) =
m∑

p=0

(1− (−1)p cosmq)(1 + (−1)j cos pπ/m)

(cos q − cos pπ/m)2(1 + θp)
, j = 0, 1, . . . , (S79)

where θp = 1 if p = 0 or m, and θp = 0 otherwise. To compute Sj(q), we introduce the following
polynomial:

P(X) =
m∏

p=0

(X − cos pπ/m) . (S80)
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The analysis of its roots and degree leads to the following formula:

P(cos q) = N sin(mq) sin q , (S81)

where N is an unknown proportionality coefficient whose value is not needed in the following. This allows
us to compute

P ′(cos q) =

( −1

sin q

)

N (m cos(mq) sin q + sin(mq) cos q) , (S82)

P ′(cospπ/m) = Nm(−1)p+1(1 + θp) . (S83)

Now we use the standard partial fraction expansion formula, for any polynomial Q such that degQ ≤
degP :

Q(X)

P(X)
= C +

m∑

p=0

Q(cospπ/m)

P ′(cospπ/m)(X − cos pπ/m)
, (S84)

where prime denotes the derivative with respect toX and C is a constant.With the polynomialR(cos q) =
cosmq, we get according to Eq. (S84)

Sj(q) = Nm

[(R(X)(1 + (−1)jX)

P(X)

)′
−R(X)

(
1 + (−1)jX

P(X)

)′]

X=cos q

= NmR′(cos q)
1 + (−1)j cos q

P(cos q)
.

Computing the derivative of R and using Eq. (S81), one finally gets

Sj(q) =
m2

1− (−1)j cos q
. (S85)

Now we come back to Eq. (S78), which yields

S =
2(1− cos q)

q2
+

∞∑

j=1

4q2(1− (−1)j cos q)

(q2 − (jπ)2)2
e−(jπ)2t , (S86)

which is the expected formula of the signal for one interval of length l.

SM. VIII Expansions for αj,p for the periodic geometry

Low-permeability limit: κ̃ → 0 In this case we rewrite Eq. (44) as α sinα = 2κ̃(cosα − cosψ). We start
with the branch j = 0. Let us write α = u

√

2κ̃(1− cosψ). Then

α sinα = 2κ̃(1− cosψ)u2
(

1− 1

3
κ̃(1− cosψ)u2

)

+O(κ̃3) ,

(cosα− cosψ) = (1− cosψ)− κ̃(1− cosψ)u2 +O(κ̃2) ,

from which we derive

α0,p = 2κ̃1/2 sin(pπ/2m)− κ̃3/2
(

sin(pπ/2m)− 2

3
sin2(pπ/2m)

)

+O(κ̃5/2) . (S87)

Now, if α = jπ + ǫ, one has

α sinα = (−1)j(jπǫ+ ǫ2 +O(ǫ3)) , (cosα− cosψ) = (−1)j(1− (−1)j cosψ +O(ǫ2)) ,
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which gives

αj,p =







jπ +
4κ̃

jπ
sin2(pπ/2m)− (4κ̃)2

(jπ)3
sin4(pπ/2m) +O(κ̃3) if j is even,

jπ +
4κ̃

jπ
sin2((m− p)π/2m)− (4κ̃)2

(jπ)3
sin4((m− p)π/2m) +O(κ̃3) if j is odd.

(S88)

This is consistent with the idea that at very low permeability the compartments become independent so
that αj,p (with p = 1, . . . ,m− 1) are identical and equal to jπ. One notices that the deviation from this
limit decreases with j which is consistent with previous observations (Fig. 3).

High permeability limit: r̃ → 0 Again, we start with the j = 0 branch. Let us write α = ψ − u. Then we
have the equations:

cosα = cosψ

(

1− u2

2
+O(u4)

)

+ sinψ(u+O(u3)) ,

α sinα = ψ sinψ + u sinψ + uψ cosψ +O(u3) ,

which yield

α0,p =
pπ

m

(

1− r̃

2
+
r̃2

4

[

1 +
pπ/m

2 tan(pπ/m)

]

+O
(

r̃3
))

. (S89)

For the other branches, the computations are similar:

αj,p =







(jπ + pπ/m)

(

1− r̃

2
+
r̃2

4

[

1 +
jπ + pπ/m

2 tan(pπ/m)

])

+O
(

r̃3
)

j even,

(jπ + (m− p)π/m)

(

1− r̃

2
+
r̃2

4

[

1 +
jπ + (m− p)π/m

2 tan((m− p)π/m)

])

+O
(

r̃3
)

j odd.

(S90)

Again, the interpretation is quite clear. When the permeability is very high, r̃ → 0 and the αj,p approach
the solutions for one interval of length ml, for which αn = nπ/m (n = 0, 1, . . .). Consistently with the
above low-permeability regime, the deviation from the limit κ̃ = ∞ increases with j.
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