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Abstract—Calibration processes came up to face the growing
demand for robot’s accuracy in the industry. Calibration methods
model the physical phenomena that degrades the accuracy,
identify those model’s parameters through measurement and
compensate them. The most efficient calibration methods com-
bine analytical models with machine learning, thus are called
hybrid. However, the most commonly used machine learning tool
for hybrid calibration, i.e. artificial neural network, are data
consuming, leading to long and complex measurement processes.
In this paper, a new active learning based hybrid calibration
method is presented. A fine tuning of the method parameters have
been made on a fully measured dataset, and an accurate stopping
condition has been found. Thus, the method is data-efficient and
provides better results that the ANN-based hybrid calibration
methods. Experimental validation shows that with this method,
positioning error could be reduced by 90% on two different
robots, using only a few data. The method is able to reduce
orientation error by 95% as well. Data-efficiency makes the
measurement process faster than ANN-based hybrid calibration,
thus avoiding thermal effects on the robot, which lead to more
accurate measurements.

Index Terms—Industrial robot accuracy, Hybrid Calibration,
Robotics, Machine Learning

I. INTRODUCTION

The use of robots in the industry is constantly growing,
with wide range of activities from traditional pick-and-place
application to more complex processes such as machining,
drilling, welding etc. Those tasks require high accuracy. Since
industrial robots are highly repeatable, but have a poor abso-
lute accuracy, they are often programmed online, with teaching
methods, for high accuracy demanding tasks. However, offline
programming is more and more used in the industry, as
the demand for digital twins grew up. Thus, the deviation
between the actually reached cartesian poses (i.e. position
and orientation) of the end-effector (EE) of a robot and the
expected one has to be reduced. This deviation is caused
by various phenomena. First, robot’s geometric parameters
(joints orientation, links lengths etc.), that are used to compute
forward and inverse kinematics, suffer from manufacturing and
assembly tolerances. In addition, other non-linear phenomena,
such as deflection, backlash or encoder resolution, can affect
the absolute accuracy of industrial robots [1]. To overcome
this issue, robot calibration must be performed. Traditionally,
one can distinguish two types of calibration: model-based and
model-less.

Model-based calibration relies on an accurate analytical
model of the phenomena that reduce a robot’s accuracy. The

most known model-based calibration method is the geomet-
ric calibration, which is based on the identification of the
geometric parameters (i.e. position and orientation of each
joint with regard to the previous one) [2]–[4]. The efficiency
of geometric calibration can be enhanced using observability
indices, opening the way towards optimal experiment design
[5], [6]. Moreover, the stiffness of each axis can be identified
as well, so that the self-mass and the payload of the robot
can be compensated for. In [7], Salisbury first established
the kinematic model that involve axis stiffness. Later, authors
in [8] proposed a method to identify axis stiffness, knowing
the mass model of the robot (i.e. the mass and the center
of gravity of each link). However, since the mass model of
industrial robot is rarely available, some other methods were
proposed in the literature to estimate axis stiffness for payload
compensation only. In [9], a method was proposed to identify
the stiffness of all axis knowing the wrench vector applied to
the robot’s EE. In [10], the axis stiffness of an industrial robot
were identified one axis after the other. Later, in [11], authors
identified a collaborative robot’s axis stiffness using the torque
sensors of the robot. However, all these previous methods have
drawbacks. Some of them require either to know the mass
model or the robot to be equipped with torque sensor, which
is rarely the case. Other methods estimating axis stiffness
from the wrench applied does not take into account the self-
mass of the robot. This can be an issue because axis stiffness
mainly comes from gearboxes in each axis, whose stiffness
is not constant: it increases as the applied torque increases,
according to [12]. This can be taken into account in the
stiffness formulation, but this leads to a very complex model.
In [13], joint stiffness is modeled by a second order polynomial
function of the torque applied, thus three coefficients need
to be identified for each axis. Similarly to the observability
indices that can enhance geometric calibration processes, [14],
[15] propose a method to optimize the measurement process
for stiffness identification as well. Later, in [16], authors
proposed a method for estimating geometrical parameters and
joint stiffness simultaneously with an optimized measurement
set.

Model-based calibration can compensate for most of the
positioning error through geometric parameters and axis stiff-
ness identification in an understandable way (using analytical
models), however the models grow in complexity when the
accuracy requirements are high. Extensively, some phenomena
are too complex to be compensated for using analytical models
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(e.g. gearboxes irregularities, thermal effects). To overcome
this issue, model-less calibration is based on machine learning
models that are to approximate the positioning error of the
robot’s EE. Most of calibration methods for static positioning
use Artificial Neural Network (ANN), since it is an universal
regression tool. In [17], authors show in simulation that ANNs
were able to compensate for kinematics error of a 2 degrees
of freedom robot. In [18], a method based on an ANN is
proposed. The ANN predicts the angular offsets to apply to
each joint in function of the desired cartesian position. The
method has been tested in simulation and showed a significant
reduction of the positioning error. In [19], authors show in
simulation that only a few amount of data is required to train
an ANN for error compensation of a two-axis robot in a small
area. In [20], a BP-neural networks is used to directly predict
the position of the end-effector given a joint position for a
robotic poly-articulated arm coordinate measuring machine.

In the past years, hybrid calibration (combining both model-
based and model-less calibration) showed interesting results.
In [21], authors identify the geometric parameters of a PA-10
robot and used an ANN to predict the angular offset to apply
given a joint position, so that the desired cartesian position
is reached accurately. In [22], [23], authors use an ANN to
predict the difference between real measurements and a kine-
matic model of the robot with identified geometric parameters
and axis stiffness. The method have been tested on a HH800
robot to compensate for only self-mass of the robot (i.e. not
the payload). In [24], authors train an ANN for residual error
prediction using massive measurements, made possible by the
automation of the measurement process with a trajectory that
keep the contact between the laser tracker and the Spherical
Mounted Reflector (SMR). In [25], authors improve the po-
sitioning and the orientation accuracy of an industrial robot
using ANN and geometric parameters identification across the
whole workspace of the robot, using almost 14000 data that
needed 3.5 days to be measured. In [26], an hybrid calibration
method also based on geometric parameters identification and
artificial neural network is proposed. The ANN used takes as
input the joint configuration and the payload as well, so that
any new payload can be compensated for. Consequently, the
ANN’s training requires measurement with different payloads,
which leads to complex measurement process. Since ANN are
known to be data-consuming, while measurement are costly
because of the measurement devices used, some researches
tends to reduce the number of data required, while keeping
a high accuracy. Indeed, in [27], authors show that hybrid
calibration can reduce the positioning error for a 5-bar parallel
robot. They optimize the training phase of the neural network
to reduce the number of data required using a Levenberg-
Marquardt combined with accelerated particule swarm for
weights optimization.

However, some researches showed that Gaussian Process
Regressors (GPRs) can be as effective as ANN’s for robot
calibration. In [28], authors used GPR to approximate the
positioning error of the end-effector (EE) of the robot. In [29],
[30], GPR are used to model more accurately robot’s dynam-
ics. These methods were based on GPR instead of ANN and
obtained satisfying accuracy, but some of the GPR advantages

over ANN are not exploited, such as measurement’s noise
modeling and uncertainty indicator over predictions. In [31],
an active learning algorithm using the variance output of a
GPR is proposed and tested on open-source datasets in other
contexts than robotic calibration.

Our previous work [32] focused on experimental studies
to reduce the number of data needed for ANN’s training,
in scenarios where the robot handle heavy payloads. How-
ever, even though this work showed that ANN’s coupled
with geometric calibration requires significantly less data than
model-free calibration, there is currently no mean to know
how many data are sufficient. One have to get too much
data before knowing that less data would have been enough,
leading to non-optimal measurement processes. Moreover,
ANN can handle any regression problem, given they have
enough neurons, nonetheless they are not necessarily the most
efficient tool. Indeed, GPR are known to be more effective
in low-dimension and low-data contexts, which is the case in
robot calibration. However, methods using GPR for robotic
calibration does not exploit their full potential, as they are
only used for regression purposes but not for optimizing the
measurement process as well.

For both model-less and hybrid calibration, since model’s
training often requires a lot of data, the measurement processes
are time-consuming. Indeed, in [24], authors stated that the
measurement process lasted for 5 hours to measure more than
10 000 points. In our previous work [32], the measurement
process took 3.5h to acquire 2000 datas. Thus, during the
measurement process, motors temperature increases, causing
thermal drift that bias the dataset. In [13], authors experimen-
tally observed that the stabilization of the joint’s temperature
of an aluminum-made robot appears after 2.5 hours, thus the
EE’s drift due to thermal effect stops after 6 hours. A similar
but longer phenomena have been observed on a steel-made
robot in [33]: robot’s joint temperature stabilizes after 6 hours,
thus the EE’s position no longer evolved after 10 hours. To
avoid any thermal drift during the measurement process, either
the process should be fast enough (with regard to the time
constant of the exponential decay that can model the EE’s
drift across time), or the robot have to be warmed up before
measurement, thus almost doubling the time needed for the
calibration of a robot.

In this paper, a new active learning-based method for
robot calibration is proposed. The goal of this calibration
method is to reduce drastically the number of data needed,
while being more accurate than traditional hybrid calibration
methods based on ANN. The method (depicted in Fig.1) uses
the uncertainty indicator provided by the GPRs to iteratively
build the training set in an active learning fashion. Thus, after
an initialization step, the algorithm chooses itself the most
relevant data to learn from, and when the training should
stop. Since the proposed algorithm depends on several hyper-
parameters (e.g. the kernel used or the stopping condition),
they have been empirically investigated and finely tuned, using
data from our previous work [32], for a more complete analysis
and evaluation. These hyper-parameters have been used to ex-
perimentally validate the proposed method on a KUKA KR300
industrial robot for positioning error compensation, and on
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Fig. 1: Proposed method flowchart

a KUKA lbr iiwa R820 for both positioning and orientation
accuracy enhancement. In section II, the general method is
described: hybrid calibration methods are detailed, and the
active learning based process for residual error approximation
is presented. Section III investigates empirically the finest
tuning for the method’s hyper-parameters, using data from
our previous work [32]. Section IV describes the experimental
setup required to apply the proposed method, and shows that
the proposed method is fast enough to neglect thermal drift.
Experimental results are presented and discussed in section V,
and section VI concludes.

II. METHOD DESCRIPTION

A. Hybrid calibration

Hybrid calibration combines identification of analytical
models parameters and approximation of residual errors
through machine learning. The final goal is to compensate
for positioning errors via an algorithm that uses an accurate
mapping between the joint configuration of the robot and the
position of its end-effector. In this paper, this accurate mapping
is made on the first hand through forward kinematics, using
identified geometric parameters, and on the other one using a
GPR to predict the residual error (i.e. the difference between
the measured position and the theoretical one after geometric
calibration). The general method is described in Fig.2.

The geometric model used is the DH-model [34], in which
four parameters (α, a, r, θ) for each joint are used to describe
the transformation to the next joint. The transformation matrix
between joint i− 1 and i is:

T i
i−1 = Rot(xi−1, αi) · Trans(xi−1, ai) ·

Rot(zi, θi) · Trans(zi, ri) (1)

The geometric parameters of the robot are gathered in a
vector denoted ξ. The Forward Kinematics (FK) is the serial
multiplication of these transformation matrices over all axes
for a given joint position Θ = θi=1 ... n. Hence, for an n-axes
robot, the forward kinematics is:

FK(ξ,Θ) = Tn
0 (ξ,Θ) =

n∏
i=1

T i
i−1 (2)

To identify the geometric parameters, the generalized Jaco-
bian matrix (that is the matrix gathering the partial derivatives

of the cartesian position with regard to the geometric parame-
ters), denoted J, is computed. For each joint position of the set
θgeometric, the associated theoretical cartesian position xth is
computed with eq. (2) and is compared to the measured carte-
sian position xmeasured. The identified geometric parameters
are:

ξidentified = ξnominal + J\∆x (3)

where ∆x = xmeasured − xth.
Finally, in the hybrid calibration method, the mapping

between the joint position and the cartesian position of the
EE is defined by the hybrid model

X = MB(ξidentified,Θ) +ML(Θ) (4)

where MB(ξidentified,Θ) is the model-based part and
ML(Θ) is the model-less one (e.g. ANN(Θ) or GPR(Θ)).
In this paper, we have:

X = FK(ξidentified,Θ) +GPR(Θ) (5)

The geometrical parameters ξ must be identified first, as
the GPR is to map the error between the analytical model
and the measurements. This model can now be used in a
compensation algorithm that computes the joint position the
robot should be in to reach a desired cartesian position. The
compensation algorithm is described in Fig.3. This algorithm
takes as input the desired cartesian position to reach. Through
the nominal Inverse Kinematics (IK) model, a joint position
is deduced. Using the hybrid model, a theoretically reached
cartesian position Xi is computed. The difference between
Xref and Xi (denoted ∆i) is then deduced, and added to
Xref to give an intermediate cartesian position X ′

i . From this
cartesian position, a new joint position is given by the IK, and
the previous steps are repeated until ∆i no longer evolves.
Finally, the last computed joint position reaches the desired
cartesian position, according to the model.

B. Gaussian Process regressors

Gaussian Process Regressors are a machine learning tool
used for regression by a Bayesian approach. GPR models
training data as multivariate Gaussian distribution (thus a GPR
is defined by its mean and covariance functions, m(x) and
k(x, x′)), so that a prediction can be made on any new input
via Bayesian inference [35].
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(a) Off-line programming without calibration using nominal Inverse Kinematics

(b) Off-line programming with hybrid calibration using compensation algorithm

Fig. 2: Hybrid calibration principle

Fig. 3: Compensation algorithm

The covariance function needs to be carefully chosen. For a
training set (xt, yt), the multivariate Gaussian distribution is:

yt ∼ N (m(xt),K(xt, xt)) (6)

with K(xt, xt) the covariance matrix of the inputs. Since in
our case the mean function m is the difference between the
measurements and the analytical model (from eq. (5)), we
choose m(x) = 0. For any new input xnew, the multivariate
Gaussian distribution becomes:(

yt
ynew

)
∼ N (0,

(
K(xt, xt) K(xt, xnew)

K(xnew, xt) K(xnew, xnew)

)
) (7)

From Bayes’ inference rule, it follows:

ynew|yt ∼ N (K(xt, xnew)K(xt, xt)
−1yt,

K(xnew, xnew)−K(xt, xnew)K(xt, xt)
−1K(xnew, xt))

(8)

From eq. (8), the mean and the standard deviation for any
new input can be deduced from observations. The mean is the
predicted value, and the standard deviation can be interpreted
as an uncertainty indicator on the prediction: the lower the
standard deviation is, the more confident is the prediction.
This uncertainty can be used in an active learning based
algorithm to reduce the number of observation data needed,
as presented in [31]. The method proposed in this paper have
been developed in Python, using the scikit-learn library [36]
for the GPR’s design and training.
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C. Active learning based algorithm

Active learning is a sub-part of machine learning where the
model is able to actively choose the most relevant data to learn
from, rather than being passively trained on a pre-selected
dataset. In this context, active learning aims at training a model
with the smallest amount of labeled data while maintaining a
high level of performance. Starting with very few data coming
from measurements in a sparse meshgrid of the workspace, the
uncertainty map provided by a GPR approach is exploited to
build an autonomous iterative active learning based process.
Hence only relevant new data are acquired, until the stopping
condition is reached.

The process can be separated into two parts: an initialization
phase and an iterative phase. The initialization phase consists
first in griding the sub-workspace that has to be calibrated.
The finest the grid is, the more accurate will be the choice
of new relevant observations. Then, a few samples have to be
selected among the grid (denoted S) to form the initial training
set. After the training of a GPR over this training set, the GPR
builds an uncertainty map (through a prediction over S), and
choose the next data to acquire as the one with the highest
standard deviation (i.e. the highest uncertainty). This last step
is repeated until the stopping condition is met. This process
is summarized in Algorithm 1. The overall proposed method
is illustrated in Fig.1

III. METHOD’S HYPER-PARAMETERS TUNING

In the proposed algorithm, several hyper-parameters must
be carefully tuned. First, as stated in section II-B, a GPR
is defined by its mean function, and its covariance function
also called kernel. GPR’s kernels can be the sum of well-
known kernels, usually a regression kernel (such as the Matérn
kernel or the Radial Basis Function) and a noise kernel, that
is to model the measurement noise. Second, as the calibrated
sub-workspace may be large, the initial observation data
distribution may be of importance. The stopping condition is
also to be considered. In the context of hybrid calibration, the
influence of the geometric calibration made in first instance of
the overall hybrid calibration process will be studied as well.
All these elements will be investigated using measurements
made for our previous work [32]. This dataset is made up of
2000 measurement points, evenly spaced in a sub-workspace
of the KUKA lbr iiwa. The discretized sub-workspace (Θ, X)
discussed before is then fully known, so the algorithm can
be run offline for parameters tuning purposes. Finally, the
contribution of the active learning based algorithm using GPR
is showed through comparison with other model-less choices.

A. Regression kernel used

As stated previously, GPR’s kernel are most of the time
the sum of some usual kernels: one for regression purposes,
the other one for measurement noise modeling. Here, some
commonly-used regression kernels will be compared. Based
on observations made on an interactive plot (depicted in Fig.4),
the error vector field that is to be approximated by the GPR
looks smooth and differentiable. For such cases, the Matérn

Algorithm 1 Active learning based process

Require: S, Θmeasured, Xmeasured

fit GPR(Θmeasured, Xmeasured)
repeat

m, σ ← GPR(S)
θnext ← S(max(σ))
Xnext ← measurement(θnext)
Θmeasured, Xmeasured ← append(θnext, Xnext)
fit GPR(Θmeasured, Xmeasured)

until stoppingcondition

Fig. 4: Error vector field across the calibrated sub-workspace.
For displaying purposes, all the errors have been amplified by
the same factor.

covariance function family are known to be effective. It is
defined as:

kν(x, y) =
21−ν

Γ(ν)

(√
2νr

ρ

)ν

Kν

(√
2νr

ρ

)
(9)

with ρ the range parameter, ν the smoothness parameter, Γ
the gamma function, and Kν the modified Bessel function of
the second kind of order ν. The design parameter ν represents
the differentiability of the function to approximate: ν = 1.5
corresponds to a function once differentiable, ν = 2.5 a
function twice differentiable, and so on. The special case
ν →∞ is the well-known Radial Basis Function (RBF).

These three kernels (Matérn(ν = 1.5), Matérn(ν = 2.5),
RBF ) have been compared on the test set and compared.
To do so, 100 points have been extracted randomly from
the dataset to form the test set. Then, another 5 points have
been extracted randomly to initialize the algorithm. Finally, the
algorithm have been ran over 45 iterations, so that the training
set is finally composed of 50 points. For this comparison,
no stopping conditions have been used, to fully investigate
the performances of each one of the kernels. Finally, the
accuracy of the model (eq. (5)) is compared over the test
set to the measured cartesian position for the corresponding
joint positions. The results are summed up on Fig.5. The
performances are not very sensitive to the kernel choice
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Fig. 5: Comparison of the different kernel for positioning
error approximation. The full lines represent the evolution of
the mean error over the test set along the iterations of the
algorithm, the dotted lines represent the evolution of the max
error.

between the three studied. As the initialization is randomized,
this test have been ran several time, and the results are always
consistent with the one presented. We decided to choose the
Matérn(ν = 1.5) kernel in the method.

B. Noise kernel influence

Since the observation data used for training the GPR come
from real measurements, they come with a measurement noise.
Assuming this noise is Gaussian, with a null mean and a
variance σ2, the kernel used in the GPR could be added to
a noise kernel that is to take into account this measurement
noise. By this way, our model will not fit exactly on the
observation data, but should accept a slight residue to enhance
the global accuracy. However, this noise level is not exactly
known, since the accuracy of the measurement device depends
on the distance between the Laser Tracker and the Spherical
Mounted Reflector (SMR), thus is not constant, and on the
repeatability of the robot (which depends itself as well on
the accuracy of the measurement device). Consequently, 5
different scenarios have been considered, to study the influence
of the value σ for the noise kernel’s settings on the proposed
calibration process performances:

• σ = 0, to assess the need of a noise kernel
• σ = 0.04, corresponding to the sum of the variance

of the measurement device, given by the acquisition
software, and the variance of the measured points during
a repeatability test, carried out on the same robot in the
sub-workspace calibrated. This can be considered as a
well-evaluated noise level, with regard to the available
data and the different tests carried out

• σ = 0.01, corresponding to an under-evaluated noise
level

• σ = 0.08, corresponding to an over-evaluated noise level

• adaptative σ, corresponding to letting the GPR find the
optimal value of σ during the training phases

The algorithm have been tested following the same con-
dition than the previous test. According to section III-A, the
regression kernel used here is Matérn(ν = 1.5). The result
of this study is depicted on Fig.6. One can note that an
over-evaluated noise does not benefit the algorithm: the mean
positioning error is higher than all other scenarios, due to over-
residues. Since there is no big difference between the other
settings, adaptative noise settings is prefered, as it requires
no a priori knowledge on the noise level of the measurement
setup.

C. Initialization
The initial data distribution across S is now investigated.

As the objective is to get only the most relevant data for
the training phase, the size of the initial dataset should be
as low as possible. In the following, we set the initial size
to 5, as an empiric compromise between convergence speed
and number of data required. Since this initial size is very
small, choosing the points randomly could lead to different
results from one initialization to another. Instead of choosing
randomly, one could use low-discrepancy series, so that the
data are deterministicaly chosen and more evenly spaced in
the sub-workspace.

These two different methods of initialization are compared,
with a similar experiment than before. The kernel used for the
GPR is the Matérn(ν = 1.5) one, added to a noise kernel
with adaptative noise level. The evolution mean and max
error over the test set across the iterations of the algorithm is
depicted in Fig.7. One can see that Halton sequence performs
better than random initialization. Moreover, the experiment
have been carried out several times, since the random initial-
ization could provide different results, but the Halton sequence
always performed better, and is more consistent.

D. Influence of geometric calibration
Since the objective of the proposed method is being more

data-efficient, one could think that geometric calibration would
require more data than it would save for GPR training. Thus,
two models are proposed, both based on eq. (5): the first
one uses ξnominal (this corresponds to model-less calibration),
and the other one uses ξidentified. The same experiment than
before have been carried out, using Matérn(ν = 1.5) kernel
added to a noise kernel with adaptative noise level, and initial-
ized with 5 data chosen from low discrepancy series. The mean
and max error evolution over the test set across the iterations of
the active learning based algorithm is depicted in Fig.8. One
can see on Fig.8 that using identified geometric parameters
instead of nominal ones lead to a faster convergence. As
usually several sub-workspaces can be calibrated for several
sub-tasks, it is overall a better compromise to have geometric
calibration performed before GPR training.

E. Stopping condition
Since all other parameters of the proposed algorithm have

now been tuned, the stopping condition can now be inves-
tigated. The objective is to find an intrinsic value that would
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Fig. 6: Comparison of different noise kernel’s settings. The
full lines represent the evolution of the mean error over the
test set along the iterations of the algorithm, the dotted lines
represent the evolution of the max error.

Fig. 7: Comparison of the different initialization methods. The
full lines represent the evolution of the mean error over the
test set along the iterations of the algorithm, the dotted lines
represent the evolution of the max error.

follow the evolution of the mean error over the test set, so that
during real experiments there is no need to have additional
measurements to monitor the evolution of the algorithm’s
performances across iterations. Indeed, on all previous ex-
periments, one can see that the mean error reaches quickly
a plateau, meaning that the real number of data required is
low compared to the one fixed for the experiment needs. Two
indicators are proposed and investigated. The first one is the
evolution of the maximal uncertainty over our uncertainty map,
which corresponds to a threshold value above whom the self-
confidence of the GPR is judged insufficient, so additional
data is needed. The second one is the standard deviation of the
uncertainty (uncertainty spread), so that the algorithm iterates
until the uncertainty is homogeneous over the whole calibrated

Fig. 8: Comparison of model-less and hybrid calibration. The
full lines represent the evolution of the mean error over the
test set along the iterations of the algorithm, the dotted lines
represent the evolution of the max error.

sub-workspace. Fig.9 shows the evolution of the mean error,
the maximal uncertainty and the uncertainty spread across
iterations. On this figure, one can clearly see that the mean
error and the uncertainty spread seems highly correlated. As a
stopping condition, one can iterate until the uncertainty spread
no longer evolves.

F. Performances

Since every parameters have been tuned, the overall perfor-
mances of the proposed method can be establish on the test
set. Thus, according to previous sections, our GPR is made
up of a Matérn kernel with ν = 1.5, a noise kernel with an
adaptative noise level. Initial data are selected using Halton set,
a low discrepancy serie. The algorithm stops itself when the
standard deviation of the uncertainty over S no longer evolves,
i.e. the uncertainty is homogeneous. Using these parameters,
the proposed method needed 21 iterations, leading to a final
training set of 26 data. Fig.10 shows the evolution of the
standard deviation of the uncertainty over S. On Fig.11, one
can see that the uncertainty is homogeneous at the end of the
method.

To assess the effectiveness of the proposed method, its
model-less part is modified for comparison purposes:

• An ANN trained with the exact same data after the active
learning phase of a GPR

• An ANN trained with 400 data chosen randomly, which
is a good compromise between accuracy and dataset-size
according to [32] (since experiments are carried on the
exact same robot in a similar sub-workspace)

• A GPR trained with the same number of data than
after the active learning phase of our method but chosen
randomly instead of according to the data relevance, thus
highlighting the benefits of the active learning method

The results are summarized in Tab.I. The proposed method
performs better than every other method it was compared to.
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Fig. 9: Comparison of two stopping conditions that are ex-
pected to fit the mean error over the test set. Pearson’s
correlation coefficient is in legend as key indicator

Fig. 10: Evolution of the standard deviation of the uncertainty
indicator using data from [32].

One can see that GPR trained with random data provides
better results than ANN trained with the same number of
data. However, both methods are less accurate than the one
proposed. Moreover, the proposed method provides better
results than training an ANN with 15 times more data.

IV. EXPERIMENTAL SETUP

To assess the effectiveness of the proposed method in
real industrial scenarios, it must be tested on various robots
using the compensation algorithm described in section II.
First, the method will be applied on a traditional industrial
robot, a KUKA KR300, for positioning accuracy enhancement.
Second, it will be tested on a collaborative robot, the KUKA
iiwa (the same one that provided data in the previous section),
for both positioning and orientation error compensation. For
both robot, the robot base frame have been identified using
the same method than in [37], and all measurement have

(a) Uncertainty map after initialization.

(b) Uncertainty map at the end of the process.

Fig. 11: Evolution of uncertainty over the calibrated sub-
workspace using dataset from [32].

TABLE I: Comparison between GPR and ANN

Method Mean error
(mm)

Max error
(mm)

Proposed method (26 training data) 0.1003 0.2079
ANN (using same data) 0.2267 0.5098
ANN (400 data selected randomly) 0.1091 0.2242
GPR (26 data selected randomly) 0.1767 0.3818

been made using a Laser Tracker API III, which accuracy
is 15µm+ 5µm/m.

A. KUKA KR300

The experiments have been set up according to section II.
First, geometric calibration of the robot have been performed,
using measurements made across the whole workspace of the
robot. The nominal and identified geometric parameters of the
KR300 are described in Tab.II and Tab.III. Then, the GPR have
been designed according to the previous section: it is made up
of a Matérn kernel with ν = 1.5 added to a noise level kernel
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TABLE II: DH model of the KR300 robot (nominal geometric
parameters)

Joint a (mm) α (°) r (mm) θ (°)
1 0 0 675 −θ1
2 350 -90 0 θ2
3 1150 0 0 θ3 - 90
4 -41 -90 1000 −θ4
5 0 90 0 θ5
6 0 -90 240 −θ6 + 180

TABLE III: DH Model of the KR300 robot (identified geo-
metric parameters)

Joint a (mm) α (°) r (mm) θ (°)
1 -0.164 0.0008 675.14 −θ1 + 0.0250
2 349.63 -89.9987 0.29 θ2 + 0.2043
3 1150.50 0.0183 0 * θ3 - 90.0461
4 -41.23 -90.0072 999.91 −θ4 - 0.0006
5 0.06 90.0073 0.03 θ5 + 0.0027
6 0.05 -90.0169 240.09 −θ6 + 179.928

*This parameter cannot be identified because of a loss of rank in the
generalized jacobian, as explained in [38]

with adaptative noise. Since the calibrated sub-workspace is
significantly bigger than the one of the previous section, 10
initial data have been selected from a Halton sequence. The
general setup is depicted in Fig.12.

B. KUKA lbr iiwa R820

The experimental setup for the iiwa is similar to the one of
the KR300. Geometric calibration has been performed as well
in first instance, using measurements made across the whole
workspace. The nominal and identified geometric parameters
of the iiwa are gathered in Tab.IV and Tab.V. The GPR design
is the same than for the KR300, with the exception that it
outputs both positioning and orientation error estimation. The
orientation is measured using 3 SMR whose positions are fully
known in the EE’s frame, since the Laser Tracker used can
not naturally measure orientation. As the 3 SMR positions
are fully known, for any new joint configuration, one simply
needs to measure their new positions, and fit them to their
reference one in the EE’s frame to reconstruct it, as done in
[25]. Thus, the tranformation matrix between robot’s base and
the EE’s frame is known, and orientation can be compared
as well as position. Initial data have been selected similarly
than previously, using 5 samples from a Halton sequences. The
general setup used for the experiments is depicted in Fig.13,
and, more specifically, the orientation measurement process is
depicted in Fig.14

C. Thermal drift

Since measurement processes for model-less and hybrid
calibration can be time-consuming (because they are data-
consuming), thermal drift can occur. As the proposed method
is data-efficient, the measurement process may be fast enough
to avoid any thermal drift. In [13], [33], both joint’s tem-
perature and drift of the robot’s EE are modeled by an
exponential decay, of the form T (t) = AT e

−t
τT + T0 and

X(t) = AXe
−t
τX + X0, with different time constants. Both

Fig. 12: Experimental setup for the KR300

TABLE IV: DH model of the iiwa (nominal geometric param-
eters)

Joint a (mm) α (°) r (mm) θ (°)
1 0 0 360 θ1
2 0 -90 0 θ2
3 0 90 420 θ3
4 0 90 0 θ4
5 0 -90 400 θ5
6 0 -90 0 θ6
7 0 90 152 θ7

TABLE V: DH model of KUKA LBR iiwa 14R820 (identified
geometric parameters)

joint a (mm) α (deg) r (mm) θ (deg)
1 -0.199 0.004 358.687 θ1 + 0*

2 -0.265 -90.005 0.109 θ2 + 0.032
3 -0.012 90.031 420.498 θ3 - 0.027
4 0.004 89.976 -0.292 θ4 + 0.006
5 0.146 -89.982 400.417 θ5 + 0.025
6 0.015 -90.013 -0.066 θ6 + 0.007
7 0 * 90* 152* θ7 + 0 *

*This parameter cannot be identified because of a loss of rank in the
generalized jacobian, as explained in [38]

time constant have been measured on both robots, thanks to
the Laser Tracker and internal temperature sensors, and are
summed up in Tab.VI. The amplitude of the thermal drift
does not exceed 0.3mm for both robot. Since the measurement
process for applying the method were 4min for the KR300
and 7min for the iiwa, and with regard to the time constant
of the EE’s evolution across time, the thermal drift during
the measurement process does not exceed 30µm, which is
neglectable.
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Fig. 13: Experimental setup used for the iiwa.

Fig. 14: Full pose measurement setup. SMR position 1 is used
as pose center, SMR position 2 and 3 are used as reference to
build the full pose.

TABLE VI: Time constants of the temperature and the EE’s
position evolution across time.

KR300 iiwa
τT (h) 1.66 1.04
τX (h) 2.91 1.17

V. RESULTS

A. KUKA KR300

With the previously-described calibration process, 24 mea-
surements were used to train the GPR to compensate for
residual errors after geometric calibration on the KR300.
Indeed, after the initialization phase (here 10 points), one can
see on Fig.15 that the uncertainty’s standard deviation stopped
its evolution after the 14th iteration. On Fig.16, the uncertainty
at the end of the process is well homogeneous on the whole
sub-workspace, while being heterogeneous after initialization.
However, looking at Fig.15, variation of the stopping condition
could be low even during the convergence, so that early

Fig. 15: Evolution of the standard deviation of the uncertainty
along the experimental protocol for the KR300.

TABLE VII: Performances of the proposed method compared
to no calibration and geometric calibration on the KR300.

Mean
(mm)

Max
(mm)

Error between nominal model and measured
position on training set 3.0603 5.2859

Error between identified geometric model and
measured position on training set 0.4607 0.8012

Error after proposed method 0.0803 0.1819

stopping could unfortunately happen. It may be safer to extend
the stopping condition on a larger window, though ending the
process on few non-relevant points. To assess the effectiveness
of the proposed method, 30 cartesian positions were randomly
generated, and their corresponding joint positions were com-
puted using the compensation algorithm depicted in Fig.3. One
can see on Tab.VII and Fig.17 that the proposed method can
reduce the mean positioning error by 98%.

B. KUKA lbr iiwa R820

Following the experimental process described in the previ-
ous section, the iiwa were calibrated using only 19 measure-
ments. Fig.18 shows the evolution of the stopping conditions
during the experiments. As the standard deviation of the uncer-
tainty over the workspace stopped evolving, the experiments
were stopped at the 14th iterations. Hence, the total training
set is made up of 19 measurements. One can see on Fig.19
that the uncertainty has evolved across the iterations, and is
homogeneous at the end of the process. Similarly than for
the KR300, 30 cartesian positions were randomly generated,
and their corresponding joint positions were computed using
the compensation algorithm depicted in Fig.3. Comparing the
measured reached cartesian position and the desired one, the
accuracy of the protocol is summed up in Tab.VIII. For com-
parison purposes, Tab.IX shows the positioning and orientation
error over the training set, after geometric calibration. Even
though these values have been computed over only 19 points,
the trend is clear: the positioning error have been reduced by
90% after our protocol, while the orientation error have been
reduced by 92% to 98% (depending on the axis). Moreover,
one can see on Fig.20 and Fig.21 that the error distribution is
much more tighter after applying the proposed method than
before.
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(a) Uncertainty map after initialization

(b) Uncertainty map at the end of the protocol

Fig. 16: Evolution of uncertainty over the calibrated sub-
workspace for the KR300

Fig. 17: Error distribution after calibration, over 30 validation
points, using the compensation algorithm on the KR300.

Fig. 18: Evolution of the standard deviation of the uncertainty
along the experimental protocol for the iiwa

(a) Uncertainty map after initialization

(b) Uncertainty map at the end of the protocol

Fig. 19: Evolution of uncertainty over the calibrated sub-
workspace for the iiwa

VI. CONCLUSION

In this paper, a data-efficient, accurate and fast active learn-
ing based method for robotic hybrid calibration is proposed.
It relies on one hand on the identification of the geometric
parameters and on the other hand on a Gaussian Process
Regressor that is to approximate the residual errors, trained in
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TABLE VIII: Positioning and orientation error after hybrid
calibration on the iiwa.

Mean Max
Positioning error 0.109 mm 0.266 mm

Orientation error around −→x 0.006° 0.017°
Orientation error around −→y 0.006° 0.022°
Orientation error around −→z 0.007° 0.020°

TABLE IX: Positioning and orientation error over training set
(after geometric calibration) on the iiwa.

Mean Max
Positioning error 0.644 mm 0.98 mm

Orientation error around −→x 0.036° 0.089°
Orientation error around −→y 0.100° 0.185°
Orientation error around −→z 0.026° 0.063°

Fig. 20: Error distribution before calibration, over the training
set of 19 points, on the iiwa

an active learning fashion. From a very few initialization data
that are used to train a first version of the GPR, an uncertainty
map can be built, based on the GPR prediction over the sub-
workspace that is to be calibrated. From this uncertainty map,
the most relevant new data can be selected autonomously,
measured and added to the training set, which is complete
when the uncertainty map becomes homogeneous. Experi-
mental validation using a compensation algorithm shows that
this method is able to reduce the positioning error on a
traditional industrial robot, the KR300, by 97% using only
24 training data. The mean value of the error after calibration
has been reduced to 0.08mm. Similarly, the positioning and the
orientation error of a collaborative robot, the KUKA lbr iiwa
R820, is reduced by 90%, using only 19 data for the GPR’s
training. Since the measurement process is fast, no thermal
effects bias the training data. Thus, compared to state-of-the-
art method on hybrid calibration, the proposed method offers
a better accuracy.

Fig. 21: Error distribution after calibration, over 30 validation
points, on the iiwa
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