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Multi-class classification of COVID-19 documents using
machine learning algorithms
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Abstract
In most biomedical research paper corpus, document classification is a crucial task. Even
due to the global epidemic, it is a crucial task for researchers across a variety of fields to
figure out the relevant scientific research papers accurately and quickly from a flood of
biomedical research papers. It can also assist learners or researchers in assigning a research
paper to an appropriate category and also help to find the relevant research paper within a
very short time. A biomedical document classifier needs to be designed differently to go
beyond a “general” text classifier because it’s not dependent only on the text itself (i.e.
on titles and abstracts) but can also utilize other information like entities extracted using
some medical taxonomies or bibliometric data. The main objective of this research was to
find out the type of information or features and representation method creates influence
the biomedical document classification task. For this reason, we run several experiments
on conventional text classification methods with different kinds of features extracted from
the titles, abstracts, and bibliometric data. These procedures include data cleaning, feature
engineering, and multi-class classification. Eleven different variants of input data tables
were created and analyzed using ten machine learning algorithms. We also evaluate the
data efficiency and interpretability of these models as essential features of any biomedical
research paper classification system for handling specifically the COVID-19 related health
crisis. Our major findings are that TF-IDF representations outperform the entity extraction
methods and the abstract itself provides sufficient information for correct classification.
Out of the used machine learning algorithms, the best performance over various forms of
document representation was achieved by Random Forest and Neural Network (BERT). Our
results lead to a concrete guideline for practitioners on biomedical document classification.
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1 Introduction

Text mining or text analytics can be understood as data mining on textual documents. So,
text mining aims at discovering novel, interesting and useful patterns and new insights in
large collections of texts. Typical text mining tasks are text categorization (i.e., classifica-
tion of documents into different classes), document clustering (i.e., grouping documents
according to their similarity), or document filtering (e.g., classification of documents into
two classes like interesting vs. uninteresting documents, or spam vs. ham). The main prob-
lem in text mining is the question of the suitable representation of unstructured texts to be
analyzed using machine learning (ML) algorithms. Most of the algorithms can process only
structured data organized into a single data table containing a fixed number of columns –
features representing the instances (documents in the case of text mining) that are stored
as rows in the table. A typical pipeline of text processing that looks for suitable features
consists of lexical analysis (to identify individual words), lemmatization or stemming (to
transform inflected words to their base form), and stop-words removal (to remove words
not related to the content of the document). This process results in obtaining tokens (terms,
words) that are used as features in the data table. Each document is then represented as a
vector of a fixed length that contains information about the tokens that occur in the docu-
ment for the bag-of-word (BOW) representation. The tokens can be encoded in the vector
as binary values (yes/no occurrence in the document), numbers of occurrences in the docu-
ment, or TF-IDF (term frequency-inverse document frequency) values. So, each document
is represented using a large (many components) sparse (most values are zero as a particular
token does not appear in the document) numeric vector. As this yields the “Curse of dimen-
sionality” phenomenon, some dimensionality reduction methods are usually applied to the
document vectors, either feature selection or feature transformation.

There are several drawbacks to the BOW representation. BOW cannot handle multi-word
phrases and, in its basic form, cannot reflect the different importance of various parts of the
text. The first problem can be dealt with by n-grams; instead of using single tokens to create
features, we can create tokens for N subsequent words. The second problem can be handled
by weighting tokens according to their appearance in different parts of the document or by
considering only important parts of the documents. So e.g., we can expect that title, abstract,
and keywords, which are obligatory parts of scientific papers, are closely related to the con-
tent of the paper; so only these parts can be considered when defining the tokens. There are
also some techniques that can enhance the basic BOW representation: entity detection or
semantic expansion (Li et al., 2021). It is also possible to use word embeddings. This rela-
tively new concept from computational linguistics aims at describing semantic similarities
between linguistic items (words) using their co-occurrence in large textual databases.

Text mining can be applied in a wide range of application domains. As our work is ori-
ented on the multi-class classification of medical papers, we review some work in this area.
Gani et al. (2016) used Naı̈ve Bayes, Decision Tree, Support Vector Machine, and Stochas-
tic Gradient Descent algorithm to classify documents related to 23 cardiovascular diseases
taken from the MEDLINE database. They used BOW representation, where tokens are rep-
resented using TF-IDF values, and achieved the best classification accuracy of 76% for
SVM and 3000 selected features (Jindal & Taneja, 2015b). Yan et al. describes a Convolu-
tional Neural Network framework (B-CNN) for biomedicine semantic indexing (Yan et al.,
2018). The proposed CNN architecture can adaptively deal with features of documents and
can capture context information. They extend the features created using the BOW model by
word sequence embedding. As they reported, this extension can improve the classification
performance of CNN models but not of simpler models like Naive Bayesian classifier or
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Logistic Regression (Balaji et al., 2020). Another example application of the CNN model
to text classification is presented in Balaji et al. (2020). The authors of this paper used the
word embedding method Word2vec for texts retrieved from the PubMed databases word
embeddings were used to train a sentence-level classifier for texts that belong to one of 26
medical categories. Mujtaba et al. used a small subset of MEDLINE documents belonging
to top-10 disease categories to Compare Bayesian Network, Decision Tree, and Random
Forest models on a multi-class classification problem. They report, that in this particular
task, Bayesian Network, when used on BOW representation without stemming, achieved the
best performance (Mujtaba et al., 2019). Jindal and Taneja propose a lexical approach to text
categorization in the biomedical domain. They represent the documents using tokens that
are derived from words in the abstract by matching them with keywords taken from MeSH.
They then used a modified K-Nearest Neighbor algorithm for the multi-class classifica-
tion of the documents (Jindal & Taneja, 2015a). Elberichi, Amel, and Malika used MeSH
ontology to enhance document representation of papers taken from biomedical benchmark
text corpus Ohsumed (Elberrichi et al., 2012). They show that using hypernyms derived
from ontology as additional features in document representation can improve classification
performance.

2 Objectives

The work reported in the paper deals with the multi-class classification of biology and
medical research papers published on issues related to the COVID-19 pandemic. As this
pandemic threatens people in countries all over the world, a huge number of papers that
refer to COVID-19 have been published. It is impossible to read all these research papers.
So in our work, we try to classify these research papers depends not only on the bibliometric
information but also on utilizing the internal context of these research papers. We then per-
formed several ML experiments for different methods of document representation with the
aim to identify the suitable combination of representation scheme and algorithm to classify
COVID-19 related research papers into these classes.

3 Methods

The document processing pipeline is shown in Fig. 1. After the data enhancement, we
extracted different types of entities from the different parts of the research papers: title, and
abstract. We also consider various methods of encoding the features to represent the doc-
uments. These text pre-processing steps result in different data tables used in the machine
learning experiments. We assess not only the quality of the created models but also aim at
the interpretation of the results. The next subsections show details for each of these steps.

3.1 Corpora details

The LitCovid corpus is a collection of published PubMed research papers that are directly
related to the novel Coronavirus that was discovered in 2019. The collection comprises over
23,000 articles, with about almost 2,000 new articles uploaded every week, making it a
comprehensive resource for scholars keeping up to date on the current COVID-19 situation.
The whole article or at least the abstract can be downloaded straight from LitCovid’s website
for a major number of research papers. We chose 23,038 articles with full texts or abstracts
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Fig. 1 Overview of methodological pipeline

from more than 35,000 articles for our document classification corpus. These articles have
an average of 74 sentences and 1,399 tokens, indicating a fairly equal split between abstracts
and full articles based on visual assessment. Prevention, Treatment, Diagnosis, Mechanism,
Case Report, Transmission, Forecasting, and Generalcitep are the eight topic descriptors
allocated to each research paper in LitCovid (Chen et al., 2021a, 2021b). Despite the fact
that every research paper in the corpus can be tagged with numerous tags, the majority of
research papers (about 76 %) only have one. We only utilized the research papers with one
label in our experiment.

3.1.1 Data enhancement

We obtained and verify the authors, published year, type of paper, citations, references, type
of journal, and journal name based on data from Google scholar (https://scholar.google.
com/) and CORD-19 (CORD-19: COVID-19 Open Research Dataset)(https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC7251955/) in order to enhance the bibliometric data (Fig. 2).

3.1.2 Target classes

We used the LitCovid topic descriptors to define classes for our multi-class classification
task. Out of the eight topic descriptors, we worked only with the Prevention, Treatment,
Diagnosis, and Case Report classes. As we described before, our focus is on these four
classes, and the majority of research papers (about 76 %) only have these classes. Table 1
shows the distribution of classes in the data that we used for the experiment. The classes are
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Fig. 2 Process of data enhancement

highly imbalanced with the most commonly occurring label appearing about five times as
frequently as the least frequent one. We used a state-of-the-art algorithm SMOTE (Chawla
et al., 2002) for the over-sampling of minority classes, to handle this problem. In the over-
sampling technique with SMOTE, the synthetic samples are generated for the minority
class. Instead of simply duplicating minority class examples, the algorithm generates new
examples similar to those, existing in the data. To do this the algorithm first finds a close
neighbor of a minority class example and then creates a new example that lies in between.
So new minority class examples are obtained as interpolations of existing ones (Chawla
et al., 2002).

3.2 Data pre-processing and feature engineering

At the beginning of the feature engineering, we remove the unwanted characters from the
title and abstract. This helps to get more accurate features from the corpus. Also, we convert
all the uppercase words to lowercase. We also drop the duplicate data (abstract and title)
and remove the “NaN” values from the entire corpus. Also, removing the stop words did
not create any huge impact on the accuracy but it had a huge impact on improving the
model interpretability. After completing the basic data cleaning, the first set of features was
derived from the bibliometric indicators and placed into the “Bibliometric data” table. This
included the following information:

• Authors’ number,
• Age of the publication,
• Type of paper,
• Number of citation,
• Number of references,

Table 1 Label count (used for
this experiment) of the LitCovid
corpus

Label Count

Prevention 2599

Treatment 1454

Diagnosis 658

Case report 542
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• Type of publication,
• Tokenized journal name

As we described before, for our experiment we use the LitCovid corpus where we uti-
lize the abstracts, title, and bibliometric information but are not able to process full text
because of the low computational power and the full text is always not easy to find for
reproducibility, where abstracts are almost always available.

3.2.1 Entity extraction

We used ScispaCy (Neumann et al., 2019), to extract entities from the research papers. Scis-
paCy is one of the most robust model pipelines for a variety of natural language processing
tasks focused on biomedical text. It contains modules for part of speech tagging, depen-
dency parsing, named entity recognition, and sentence segmentation (Neumann et al., 2019).
We used four pre-trained ScispaCy models for named entity recognition in the research
papers. We employed a transition-based method based on the chunking model for entity
extraction (Lample et al., 2016) as implemented in ScispaCy. All four pre-trained ScispaCy
models are depicted in Table 2. A partial sample of entities for a research paper “Gene
expression in epithelial cells in response to pneumovirus infection” could be Respiratory
syncytial virus, RSV, pneumonia virus, mice, PVM, viruses, family Paramyxoviridae, sub-
family pneumovirus, respiratory infections, etc. All the entities were employed in forming
the model (see Section 3.2.2).

3.2.2 Document representation

We used three alternative ways to represent the text-related features: binary word incidence
approach (Zhang et al., 2010), TF-IDF approach (Aizawa, 2003; Muralikumar et al., 2017),
and the embeddings-based approach (Tenney et al., 2019). The first two ways are related to
the Bag-of-words (BOW) model. BOW is one of the simplest methods for document repre-
sentation. In this model, a document is represented as a multi-set of words appearing in the
document. In binary representation, only the presence or absence of a word in the document
is encoded. TF-IDF reflects both the occurrence of a term in a particular document (as term
frequency, TF) and the occurrence of this term in the whole collection of documents (as

Table 2 ScispaCy entity recognition systems used corpus

Training corpus Entity types

CRAFT GGP, SO, TAXON, CHEBI, GO, CL

JNLPBA DNA, CELL TYPE, CELL LINE, RNA, PROTEIN

BC5CDR DNA, CELL TYPE, CELL LINE, RNA, PROTEIN

BIONLP13CG AMINO ACID, ANATOMICAL SYSTEM,

CANCER, CELL, CELLULAR COMPONENT,

DEVELOPING ANATOMICAL STRUCTURE,

GENE OR GENE PRODUCT, IMMATERIAL ANATOMICAL ENTITY,

MULTI-TISSUE STRUCTURE, ORGAN, ORGANISM,

ORGANISM SUBDIVISION, ORGANISM SUBSTANCE,

PATHOLOGICAL FORMATION, SIMPLE CHEMICAL, TISSUE

List adapted from https://allenai.github.io/scispacy/
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inverse document frequency, IDF). For both representations, we used the N-gram approach
for the article titles and abstracts. According to multiple research projects, N-gram is one
of the most used methods in the field of computational linguistics (Brown et al., 1992). For
our experiment, we applied uni-gram, bi-gram, and tri-gram to find out the best possible
entities from the title and abstract of a research paper.

Bidirectional Encoder Representations from Transformers (BERT) were employed for
the embeddings-based method (Devlin et al., 2018). The BERT model is made by stack-
ing up multiple encoders of the transformer architecture on top of one another. The BERT
architecture is designed to pre-train deep bidirectional representations from the unlabeled
text by jointly conditioning on both left and right contexts in all layers. We applied BERT
Tokenizer based on WordPiece (Muller et al., 2019) for the title, and abstracts from the Lit-
Covid corpus. We used a pre-trained model bert-base-uncased (Geetha & Renuka, 2021) and
the pre-training was performed on a large corpus of English data (BookCorpus and English
Wikipedia) in a self-supervised fashion (Geetha & Renuka, 2021; Turc et al., 2019).

3.2.3 Dimensionality of input corpus

To reduce the dimensionality, for the document representation input data table we used tree
derived importance feature selection method, which is a very straight forward, fast, and
general approach for selecting the good features for machine learning methods. In Table 3,
we show the results of reduction applied to different input data tables. In their experiment,
Beranova et al. demonstrated that 1500 features outperformed other numbers of features
for the ScispaCy-related input data table (Beranová et al., 2022). For that reason, we utilize
the 1500 features for all of our ScispaCy entity-based experiments. But for others (TF-IDF
and BOW), we utilized all the features for our experiment. In Table 3, we also include
the total feature count before the feature selection, which was considered as an input to
reduce the size of the dataset to address the training time and scalability issues encountered
with the different machine learning-based methods. Also, for the Neural Network-based

Table 3 Overview of input corpus in the machine learning methods

Corpus (Input data
table)

Used text Columns Original
columns

ScispaCy Abstract 1500 195434

TF-IDF Abstract 20939 20939

BOW Abstract 20939 20939

ScispaCy Title 1500 3430

TF-IDF Title 326 326

BOW Title 326 326

ScispaCy Title Abstract 1500 195760

TF-IDF Title Abstract 21264 21264

BOW Title Abstract 21264 21264

BOW Abstract BibliometricFeatures 20945 20945

TF-IDF Abstract BibliometricFeatures 20945 20945

BERT Title 3072 30522

BERT Title and Abstract 3072 30522

BERT Title and Abstract and BibliometricFeatures 3072 30522
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model, the input data tables have been reduced because of training in a reasonable time. For
the BOW Input data table and the TF-IDF Input data table, we utilize all features. As we
described before, for the ScispaCy-related input data table we utilize the 1500 features and
utilize the threshold value like Beranová et al. (2022). We also investigated the relationship
between the dimension of the input data table and the accuracy of the Random Forest model
trained on it. Table 7 shows the best accuracy with the different document representations
with different machine learning-based methods, where the highest accuracy of 92% is most
stably attained for a vector length of about 21264 for the TF-IDF document representa-
tion with the Random Forest method. Also, the ScispaCy related document representation
(binary) with 1500 features got 79% accuracy. We used MDI feature importance scores to
select the most 1500 important features. Other input data tables (such as Title and Abstract
BibliometricFeatures) are constructed by merging the related input data tables.

3.3 Machine learning experiments

For the machine learning experiments, we used the Random Forest (Liaw et al., 2002;
Breiman, 2001), Linear Support Vector classifier (Linear SVC) (Suthaharan, 2016),
Multinomial Naive Bayes (Kibriya et al., 2004), Logistic Regression (Sperandei, 2014),
K-Nearest-Neighbors (Fukunaga & Narendra, 1975), Support Vector Classifier (SVC)
(Suthaharan, 2016), Decision Tree (Safavian & Landgrebe, 1991), Multi-layer Perceptron
(MLP) (Taud & Mas, 2018) and Adaptive Boosting (AdaBoost) (Margineantu & Dietterich,
1997) classifier as implemented using the scikit-learn (https://scikit-learn.org/), a free soft-
ware machine learning library for python. For training and testing purposes, we used the
title, abstract and bibliometric information from each research paper. Because of the lim-
ited computational power, we were not able to use the full-body text for our experiments.
Table 3, corpus(Input data table) column shows different variants of article representations
we used as input data tables for machine learning. Here TF-IDF, BOW, and ScispaCy refer
to methods used to represent information taken from the abstract or title of the articles
(BOW stands for binary representation), and BibliometricFeatures refers to bibliometric
information about the articles.

Convolutional Neural Networks (CNNs) outperform alternative neural network architec-
tures such as LSTMs and Recurrent Neural Networks for classification tasks (Gu et al.,
2018; Prusa & Khoshgoftaar, 2017). To encode our data, we created a BERT tokenizer and
a pre-trained BERT model configuration. We used a function called “batch encode plus” to
encode all of the titles and abstracts from the research paper, and we trained and validated
the data individually. Table 4 shows how the model was learned for various combinations
of hyperparameters.

We created eleven variants of the input data table altogether as input for machine learning
methods. In Section 4.2, we will present a comparison regarding the variants of data tables
and find which data table provides the best accuracy in our full experiment.

We also tuned different types of hyperparameters to find the best result using different
machine learning methods. We utilize the K-fold cross-validation from the scikit-learn.1 It
provides us the cross-validation with random search and grid search hyperparameter opti-
mization via the RandomizedSearchCV2 and GridSearchCV3 classes respectively. We used

1https://scikit-learn.org/stable/modules/generated/sklearn.model selection.KFold.html
2https://scikit-learn.org/stable/modules/generated/sklearn.model selection.RandomizedSearchCV.html
3https://scikit-learn.org/stable/modules/generated/sklearn.model selection.GridSearchCV.html

578 Journal of Intelligent Information Systems (2023) 60:571–591

(https://scikit-learn.org/)
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html


Table 4 Overview of input
Parameter grid Machine learning algorithm Parameter grid

Random Forest • ‘max depth’: 10,150,500,1000

• ‘max features’: 30,500,3000

• ‘min samples leaf’: 1,10,100

• ‘min samples split’: 2,10,100

• ‘n estimators’: 10, 100

Logistic Regression • ‘random state’: 0

K-Nearest-Neighbors • ‘n neighbors’: 3

SVC • ‘gamma’: 2

• ‘C’: 0.025, 1

• ‘kernel’: linear

Decision Tree • ‘max depth’: 5, 10, 15

Multi-layer Perceptron • ‘alpha’: 1

• ‘max iter’: 1000

Neural Network (BERT) • ‘max length’: 256

• ‘epochs’: 5

• ‘lr’: 1e-5

• ‘eps’: 1e-8

the inner loop of nested cross-validation where the training dataset was defined by the outer
loop. We also configure the hyperparameter search to refit a final model with the entire
training dataset using the best hyperparameters. As we describe before, we utilize nested
cross-validation for fine-tuning the hyperparameters. Nested cross-validation is an approach
for model hyperparameter optimization that attempts to overcome the problem of overfitting
the training dataset. The procedure involves treating model hyperparameter optimization as
part of the model itself and evaluating it within the broader K-fold cross-validation proce-
dure for evaluating models for comparison and selection. A set of different hyperparameters
for the different machine learning methods were optimized according to the grid that we
present in Table 4.

3.4 Explanation algorithms

The question of interpretability or explainability of the created models becomes a hot topic
in the area of machine learning. The end-users are interested not only in the quality of
the models but also in the insight into the classification process. Some models are easy to
understand by their nature (typical examples are Decision Trees), but some models, typically
Neural Networks, work as a black-box model.

The Random Forest method was designed for the calculation of the feature importance
scores. However, due to the number of trees with their complexity, and also because the
multiple trees can take part in a decision, direct interpretation of the Random Forest models
is not possible (Breiman, 2001). In our work, we adopt the original method for computing
the feature importance scores of Random Forest, which is based on the Mean Decrease of
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Impurity (MDI). For this method, it has been shown that the MDI importance of a relevant
feature is invariant with respect to the removal or addition of irrelevant features and that the
importance of a feature is zero if and only if the feature is irrelevant (Louppe et al., 2013).
LIME (Ribeiro et al., 2016) and SHAP (Lundberg et al., 2020) methods were also used to
interpret the created models.

LIME Local Interpretable Model-Agnostic Explanations (LIME) (Ribeiro et al., 2016) is an
interpretability surrogate model which can be used on any black-box model to provide local
interpretability for the result of prediction or classification of a single instance. The idea
is to explain this prediction using a simpler (usually linear) model that has been created
for a sample of the original data. Higher weights are assigned to examples that are like
the instance in question. Based on the linear model, we can assess the contribution of each
individual feature to the result of classification.

SHAP SHapley Additive exPlanations (SHAP) (Lundberg et al., 2020) is a game theory-
based method for interpreting any machine learning model’s output. It uses the traditional
Shapley values from game theory and their related extensions to correlate optimal credit
allocation with local explanations.

4 Results

4.1 Evaluationmetrics

In order to evaluate the performance of our proposed model, we used overall Accuracy (A),
Precision (P), Recall (R), and F1-score (F1). Overall accuracy is simply the proportion of
correct classifications. Precision and Recall have been proposed in the area of information
retrieval to evaluate the quality of search in a corpus of documents. In this original setting,
Precision represents the proportion of relevant documents in the set of retrieved documents,
and Recall represents the proportion of retrieved relevant documents in the set of all relevant
documents. When adapted to evaluate results of classification, Precision is defined as the
proportion of examples correctly classified to a given class in the set of examples classified
to this class (formula (2)), and Recall is defined as the proportion of examples correctly
classified to a given class in the set of all examples of this class (formula (3)). Here, TP
stands for the number of examples correctly classified to a given class, FP stands for the
number of examples incorrectly classified to a given class (so TP + FP is the number of
examples classified to this class) and FN stands for the number of examples that were not
classified to a given class (so TP + FN is the number of examples that belong to this class).
Finally, F1-score is the harmonic mean of Precision and Recall (formula (4)).

Accuracy = T P + T N

T P + T N + FP + FN
(1)

Precision = T P

T P + FP
(2)

Recall = T P

T P + FN
(3)

F1 = 2 ∗ T P

2 ∗ T P + FP + FN
(4)
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Precision, Recall, and F1-score are defined for each class separately. To evaluate a multi-
class classifier, these characteristics can be extended to macro average or weighted average
values. The macro average is just an arithmetic mean. A weighted average is obtained as a
weighted sum where weights are relative frequencies of classes.

4.2 Predictive performance

We used 70% training data and 30% test data to evaluate the effectiveness of different
machine learning based approaches. The overall accuracy was used to evaluate the results,
but we also computed the per-class accuracy. As previously stated, this dataset was unbal-
anced, and we used the oversampling approach to solve this. Tables 5 and 6 shows the
accuracy (per-class accuracy) of the Neural Network (BERT) and Random Forest approach,
whereas Table 7 shows the overall accuracy of the other methods.

As we see in Table 7, out of the traditional multi-purpose machine learning algorithms,
the Random Forest method outperforms others. The BERT over Neural Network, a modern
method used for NLP, achieved similar performance. But not only the classification accu-
racy should be considered when comparing the results of different methods. Another issue
that should be taken into account is the complexity of the used data and the complexity
of created models. Concerning the complexity of data, Table 3 indicates, that BERT was
trained on less complex data representation than was the TF-IDF representation used for
Random Forest. The complexity of the models can be assessed according to the number of
nodes (neurons in the Neural Network or branching nodes in the trees in the forest). The last
important issue when evaluating the models is their understandability and interpretability.
More on this is presented in the next subsection.

4.3 Model interpretation

As stated earlier, we used SHAP and LIME to get more insight into the created models. As
an illustration, we present an interpretation of the Random Forest model. Feature importance
scores were used to analyze Random Forest models. We utilized the MDI method to find

Table 5 Accuracy with Neural Network (BERT)

Input data table Per class accuracy Accuracy

Title prevention 0.92

treatment 0.77 0.76

diagnosis 0.69

case report 0.67

Title and Abstract prevention 0.95

treatment 0.80 0.87

diagnosis 0.86

case report 0.85

Title and Abstract and biblo prevention 0.92

treatment 0.67 0.74

diagnosis 0.59

case report 0.79
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Table 6 Accuracy with Random Forest

Input data table Used text Class Per class accuracy Accuracy

ScispaCy Abstract prevention 0.76

treatment 0.69 0.74

diagnosis 0.75

case report 0.74

TF-IDF Abstract prevention 0.96

treatment 0.92 0.92

diagnosis 0.90

case report 0.89

BOW Abstract prevention 0.93

treatment 0.90 0.90

diagnosis 0.92

case report 0.87

ScispaCy Title prevention 0.64

treatment 0.50 0.57

diagnosis 0.62

case report 0.47

TF-IDF Title prevention 0.83

treatment 0.81 0.80

diagnosis 0.81

case report 0.77

BOW Title prevention 0.71

treatment 0.66 0.70

diagnosis 0.78

case report 0.64

ScispaCy Title and Abstract prevention 0.81

treatment 0.76 0.79

diagnosis 0.80

case report 0.79

TF-IDF Title and Abstract prevention 0.96

treatment 0.92 0.92

diagnosis 0.91

case report 0.9

BOW Title and Abstract prevention 0.93

treatment 0.90 0.91

diagnosis 0.92

case report 0.87

BOW Title and Abstract and prevention 0.82

Bibliometric Features treatment 0.73 0.73

diagnosis 0.67

case report 0.72
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Table 6 (continued)

Input data table Used text Class Per class accuracy Accuracy

TF-IDF Title and Abstract and prevention 0.96

Bibliometric Features treatment 0.93 0.92

diagnosis 0.90

case report 0.89

the relevant characteristics, as explained previously. Table 8 shows three example matrices
from a total of eleven matrices.

SHAP can detect the direction of feature significance in the same way as the MDI tech-
nique can. A SHAP plot in Figs. 3 and 4 illustrates the significance of specific TF-IDF (title)
and TF-IDF (abstracts). Additionally, it is the first evidence of the connection between a
feature’s importance and its influence on a prediction. This SHAP plot combines the sig-
nificance of the features with their impacts. A Shapley value for a feature and an instance
may be found at each point on the summary plot. The feature determines the location on the

Table 7 Best accuracy with different machine learning algorithm for different text representation method

Input data table Used text Machine learning
algorithms

Accuracy Macro average
(F1 score)

Weighted aver-
age (F1 score)

ScispaCy Abstract Random Forest
Classifier

0.74 0.74 0.74

TF-IDF Abstract Random Forest
Classifier

0.92 0.92 0.92

BOW Abstract Random Forest
Classifier

0.90 0.90 0.90

ScispaCy Title Multinomial NB 0.68 0.68 0.68

TF-IDF Title Random Forest
Classifier

0.80 0.80 0.80

BOW Title Random Forest
Classifier

0.70 0.70 0.70

ScispaCy Title and
Abstract

Random Forest
Classifier

0.79 0.79 0.79

TF-IDF Title and
Abstract

Random Forest
Classifier

0.92 0.92 0.92

BOW Title and
Abstract

Random Forest
Classifier

0.91 0.91 0.91

BOW Abstract with Bib-
liometric Features

Random Forest
Classifier

0.73 0.73 0.73

TF-IDF Abstract with
Bibliometric
Features

Random Forest
Classifier

0.92 0.92 0.92

Bidirectional
Encoder
Representations

Title Abstract Neural
Network
(BERT)

0.87 0.87 0.87
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Table 8 Top most important features (MDI method) by input data table

ScispaCy Imp. TF-IDF Imp. TF-IDF and
Bibliometric

Imp.

Pandemic 0.004 year old 0.005 case 0.005

Fever 0.003 report case 0.004 year 0.005

Patient 0.003 fever 0.004 pcr 0.004

Respiratory distress
syndrome

0.003 report 0.003 old 0.003

Drug 0.002 cough 0.003 present case 0.003

Covid-19 0.002 trials 0.003 acute 0.003

Hospital 0.002 measures 0.003 report 0.003

Patient 0.002 inhibitors 0.003 sars cov 0.003

Patient covid-19 0.002 cov 0.003 personal 0.003

Cell 0.002 polymerase chain
reaction

0.003 sars 0.003

People 0.002 year 0.003 ct 0.003

Ace2 0.001 rt 0.002 inhibitors 0.003

Region 0.001 antiviral 0.002 covid 19 pandemic 0.002

Pneumonia 0.001 cov infection 0.002 clinical trials 0.002

Coronavirus 0.001 covid 19 pandemic 0.002 ace2 0.002

Protein 0.001 sars cov 0.002 cells 0.002

Recipient 0.001 receptor 0.002 specificity 0.002

Cytokine 0.001 angiotensin
converting enzyme

0.002 distancing 0.002

Infection 0.001 therapeutic 0.002 report case 0.002

Protease 0.001 ground 0.002 healthcare 0.002

Coronavirus
disease

2019 0.001 anti 0.002 therapeutic 0.002

y-axis, while the Shapley value determines the position on the x-axis. From low to high, the
color indicates the value of the feature. We can observe how the distribution of the Shap-
ley values for each feature is distributed since overlapping points are jittered in the y-axis
direction. The features are listed in ascending order of significance.

To get an overview of which features are most important for a model we plot the SHAP
values of important features for titles and abstracts using TF-IDF. Figures 3 and 4 sort
features by the sum of SHAP value magnitudes over all samples and uses SHAP values
to show the distribution of the impacts the features have on the model’s output. The color
represents the feature value whereas the red color shows greater values than values in blue.
Case, patient, covid 19, infection, etc are one of the most important features for the titles
using TF-IDF, and year old, case, stars cov, etc are one of the most important features for
the abstracts using TF-IDF for this research paper’s classification task. We also include the
LIME figure in Figs. 5 and 6 to explain the prediction of the Random Forest model for a
sample research article based on its title and abstract.
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Values in red>values in blue

Fig. 3 SHAP plot for titles (using TF-IDF)

5 Discussion

The average overall accuracy was very different depending on the form of document rep-
resentation; values ranged from 0.41 to 0.92. The document was represented using TF-IDF
and bibliometric features in several input data tables with the abstract, title abstract, and
title abstract bibliometric features. The high-dimensional input data table is used for a wide
range of purposes. The major goal is to see how the entity extraction method, document
representation method, and bibliometric features affect the multi-class classification of the
research paper. The interesting finding is that when we only use the retrieved entities (Scis-
paCy entities) from the abstract and title, we always obtain low accuracy. As a result, only
utilized entities have little bearing on the multi-class classification task. As we discussed
before, we used multiple input data tables for all of the available bibliometric features, and
the best result was 0.92 (TF-IDF with title abstract bibliometric features). The abstract only
and title-and-abstract combined input data tables yield comparable results. When we sim-
ply use the title data table, we receive less accuracy than when we only use the abstract
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Values in red>values in blue

Fig. 4 SHAP plot for abstracts (using TF-IDF)

data table. We may conclude from this experiment that the title has a smaller influence on
classification accuracy than the abstract alone.

In order to generalize our findings by evaluating several document representation types,
we discovered that

Fig. 5 LIME plot for title
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Fig. 6 LIME plot for abstract

• The context (Such as title, abstract, etc) of a research paper creates more influence than
the bibliometric information on the research paper’s classification.

• The information derived only from abstracts is more relevant than information derived
only from the title,

• Extracted entities from either abstract or title with binary document representation are
less effective than the use of abstract or title with TF-IDF document representation.

On the other side, the Neural Network (BERT) outperforms (with the exception of the
Random Forest method) the other machine learning methods when using TF-IDF docu-
ment representation, where we utilize three distinct input data tables (title, title abstract, and
title abstract some bibliometric info). In this case, the title abstract outperforms the oth-
ers, and also it is closely similar to the Random Forest approach with TF-IDF document
representation. We were also able to identify algorithms that outperformed the others for a
specific document representation scheme. However, Random Forest and Neural Networks
(BERT) display high performance across all document representation types.

5.1 Error analysis

To further understand the performance of the top-scoring Random Forest models, we addi-
tionally try to analyze the errors they made using TF-IDF document representation. First,
we observe that these models frequently correlate several categories namely, diagnosis and
treatment much more closely than is required. Despite the fact that there is some overlap

Fig. 7 LIME plot for an example error
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and a semantic relationship between these groups. Future work should attempt to explic-
itly model correlation between categories to help the model recognize the particular cases
in which labels should occur together. Finally, we observe that models have trouble identi-
fying discriminative sections of the research paper due to how much introductory content
on the pandemic can be found in most articles. Future work also should explicitly model
the gap in relevance between introductory sections and crucial sentences such as research
paper abstracts and titles. In Table 9, we provide three different example error samples. In
the first research paper, the Random Forest method classified it as a treatment instead of
prevention. Also for the second and third research papers, Random Forest classified it as a
prevention and diagnosis instead of treatment. In the future, We also try to find the errors
with the impact of the outside knowledge base in this classification task. In some cases, full
text from the research papers is needed to make better predictions with the title, abstract and
bibliometric information. We also include a LIME figure in Fig. 7 is an example of an error
to explain the prediction of the Random Forest model for a sample research article based on
its title.

6 Conclusion and future work

Our work deals with classifying the whole documents into classes that reflect important
COVID-19 related issues like diagnosis, treatment, case reports, or prevention. The pro-
posed pipeline can thus help medical practitioners to filter out research papers dealing with
these issues from a massive amount of COVID-19 related research papers. In the future,
we also plan to apply different rule mining methods to find the different patterns from
the issues like diagnosis, treatment, case report, or prevention. Also, the found papers can
present different opinions on the same issue bringing controversial information, the next
step in using text mining techniques to support work with the documents can be sentiment
analysis (Liu, 2012). Sentiment analysis can be turned into the question of whether a piece
of text is expressing positive, negative, or neutral sentiment towards the discussed topic and
can be thus understood as a knowledge-based classification problem. Sentiment analysis
can be performed at the document level, at the sentence level, or at the aspect level. To apply
sentiment analysis techniques, not only the texts themselves but also some sentiment lexi-
cons that contain representative words for different opinion polarities must be used. Also,
the MeSH thesaurus can be useful for sentiment analysis of COVID-19 related documents
when considering the aspect level.
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