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Abstract

Multi-modal retrieval has seen tremendous progress with the development of
vision-language models. However, further improving these models require addi-
tional labelled data which is a huge manual effort. In this paper, we propose a
framework MuMUR, that utilizes knowledge transfer from a multilingual model
to boost the performance of multi-modal (image and video) retrieval. We first
use state-of-the-art machine translation models to construct pseudo ground-truth
multilingual visual-text pairs. We then use this data to learn a joint vision-text
representation where English and non-English text queries are represented in a
common embedding space based on pretrained multilingual models. We evaluate
our proposed approach on a diverse set of retrieval datasets: five video retrieval
datasets such as MSRVTT, MSVD, DiDeMo, Charades and MSRVTT multilin-
gual, two image retrieval datasets such as Flickr30k and Multi30k . Experimental
results demonstrate that our approach achieves state-of-the-art results on all
video retrieval datasets outperforming previous models. Additionally, our frame-
work MuMUR significantly beats other multilingual video retrieval dataset. We
also observe that MuMUR exhibits strong performance on image retrieval. This
demonstrates the universal ability of MuMUR to perform retrieval across all
visual inputs (image and video) and text inputs (monolingual and multilingual).

Keywords: Video-retrieval, Image-retrieval, Multilingual, Multimodal
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Fig. 1 Illustration of the improved video retrieval ranking for a test sample in MSRVTT dataset.
For the current state-of-the-art video retrieval model, the rank of the ground truth video is 47. When
multilingual data is used as knowledge transfer, the ranking of the ground truth video improved
significantly from 47 to 2.

1 Introduction

The task of multimodal retrieval aims to retrieve images or videos that are seman-
tically similar to a given text query and vice-versa. In the world of computer vision,
image retrieval and video retrieval have been treated as separate tasks. For exam-
ple, transformer models pretrained on large amounts of image-text pairs are then fine
tuned for the task of image retrieval [10, 24, 31–33]. In contrast, video retrieval mod-
els are developed in two parallel directions. The first line of work [4, 19, 31] focused on
video-text pretraining on large-scale datasets like Howto100M [44] and WebVid-2M
[4]. While the second line of work [41] focused on using pretrained image features like
CLIP [48] for video retrieval often surpassing the models pretrained on video datasets.

Most of the current multimodal retrieval datasets typically contain around 10k
visual inputs and the corresponding captions of maximum lengths ranging from 30
to 60. In multimodal retrieval, the text encoder projects the input text caption and
visual inputs (image or video) into a common embedding space. With longer captions,
the text embeddings might lose required contextual information resulting in incor-
rect retrievals. One could address this by incorporating more structured knowledge
(e.g., parts of speech, dependency graphs) in the text encoder [7]. However, a drop
in performance is observed [7] with the addition of structural knowledge in a text-to-
video retrieval setting. One could argue that the reason might be the smaller retrieval
datasets and creating meaningful structural knowledge becomes a challenging task.

There are over 6000 languages in the world each having its own vocabulary of
words, grammar and morphology. However, there exists an overlap of knowledge among
these languages [3, 22, 59]. In Natural Language Processing, some works [12] explored
this idea of using multilingual data to improve the performance on monolingual English
datasets. Conneau et al. introduced a new pretraining objective: Translation Language
Modeling (TLM) in which random words were masked in the concatenated sentences
of English and multilingual data and the model predicts the masked words. There,
the objective was to use multilingual context to predict masked English words if the
English context was not sufficient and vice-versa.
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Most of the current works in multimodal retrieval are primarily focused on mono-
lingual English datasets. Recently, few works have proposed models that can perform
retrieval in a multilingual setting [6, 23, 45, 66]. However, these works use large
amounts of multilingual data for pretraining and are tuned for retrieval on each lan-
guage. Moreover, these models are also limited to performing either image retrieval
or video retrieval. In addition, these models show a drop in performance on English
retrieval datasets even though there is a boost in performance on multilingual data.

In this work, we are interested in two objectives (i) design a model capable of
performing retrieval on both images and videos (ii) design a model capable
of performing retrieval on multiple languages including English. Multilingual
data serves as a powerful knowledge augmentation for monolingual models [12]. Nev-
ertheless, creating multilingual data requires huge human effort. To overcome this, we
use state-of-the-art machine translation models [52] to convert English text captions
into other languages. Specifically, we choose languages whose performance on XNLI
benchmark [13] is comparable to that of English (i.e., French, German, Spanish). With
this, we create high quality multilingual data without requiring human labelling. To
the best of our knowledge, this is the first work that uses multilingual knowledge
transfer to improve multimodal retrieval.

We propose a new framework MuMUR : Multilingual Multimodal Universal
Retrieval that is capable of performing both image and video retrieval on multilingual
datasets. This framework is based on CLIP [48] to effectively utilize and adapt the
multilingual knowledge transfer. Our model takes a visual input, English text caption
and multilingual text caption as inputs and extracts joint visual-text representations.
The multilingual text representations should act as a knowledge augmentation to the
English text representations aiding in retrieval. For this purpose, we introduce a dual
cross-modal (DCM) encoder block which learns the similarity between English text
representations and visual representations. In addition, the DCM encoder block also
associates the visual representations with the multilingual text representations. In the
common embedding space, our model learns the important contextual information
from multilingual representations which is otherwise missing from the English text
representations effectively serving as knowledge transfer.

We validate our proposed model on a comprehensive set of image retrieval datasets:
Flickr30k [47] and video retrieval datasets: MSRVTT-9k [61], MSRVTT-7k [61],
MSVD [9], DiDeMo [2] and Charades [50]. We show that our approach achieves state-
of-the-art results, outperforming previous models on most datasets. In addition to
the evaluation on monolingual retrieval datasets, we also compare the performance
of our model on multilingual datasets Multi30k [16] and MSRVTT multilingual.[23].
Experimental results demonstrate that MuMUR achieves state-of-the-art results on
all English video retrieval datasets and significantly outperforms previous models on
multilingual video retrieval in a zero-shot setting. Furthermore, our model MuMUR
establishes new benchmark on multilingual image retrieval while achieving strong per-
formance on English image retrieval datasets. These results demonstrate the universal
capability of MuMUR to perform all types of multimodal and multilingual retrieval.

To summarize, our contributions are as follows: (i) We generate multilingual data
using external state-of-the-art machine translation models. (ii) We propose a model
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that is capable of knowledge transfer from multilingual data to improve the per-
formance of multimodal retrieval. (iii) We evaluate the proposed framework on six
English retrieval benchmarks and achieve state-of-the-art results in both text-to-visual
and visual-to-text retrieval settings. (iv) Finally, we demonstrate that our model
significantly outperforms previous approaches on multilingual retrieval datasets.

2 Related work

2.1 Multimodal retrieval

Pre-train and then fine-tune is the most popular paradigm involving image retrieval
[10, 32–34]. These models are pre-trained on huge amounts of image text pairs such
as Conceptual Captions [8], Visual Genome [28] and SBU [40] and tested on image
retrieval datasets such as Flickr30k [47] and COCO [25].

The task of video retrieval has seen tremendous progress in the recent years. This
is partly due to the availability of large-scale video datasets like HowTo100M [44] and
WebVid-2M [4]. Besides the adaption of transformers to image tasks like image classifi-
cation [14] spurred the development of models based on transformers. However, videos
require computationally more memory and compute power and can be infeasible to
compute self-attention matrices. With the introduction of more efficient architectures
[5] large-scale pretraining on videos became a possibility. In this direction, several
transformer based architectures [4, 19, 42, 43] were proposed and pretrained on large
video datasets which achieved state-of-the-art results on downstream video retrieval
datasets in both zero-shot and fine-tuning settings.

In a parallel direction, a few works [41] have adopted image level features pretrained
on large scale image-text pairs to perform video retrieval. Surprisingly, these works
have performed significantly better than the models that are pretrained from scratch
on large scale video datasets. Compared to these models, our approach completely
differs in the architecture and the training methodology.

2.2 Multilingual training

The recent success of multimodal image-text models on a variety of tasks, such as
retrieval and question-answering, has been mostly limited to monolingual models
trained on English text. This is mainly due to the availability and high-quality of
English-based multimodal datasets. Recent work indicates that incorporating a sec-
ond language or a multilingual encoder, thus creating a shared multilingual token
embedding space, can improve monolingual pure-NLP downstream tasks [12]. This
concept was rapidly embraced for training multimodal models. Previous works had
used images as a bridge for translating between two languages, without using a
language-to-language shared dataset for training [9, 49, 51].

Recent work has focused on multimodal tasks, such as image retrieval, aiming to
add multilingual capabilities to multimodal models [6, 21]. The work often indicates
that incorporating a second language during training of multimodal models, improves
performance on single-language multimodal tasks such as image retrieval, compared
to multimodal models that were trained on a single language [21, 26, 57]. MULE [26],
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Fig. 2 Illustration of the proposed MuMUR model. The model takes as visual input (image or
video), a corresponding English text query and a translated multilingual query. The multilingual text
query is obtained using the off-the-shelf machine translation model. It is used only for the inference
and is not part of the architecture. The video and English text features are extracted using CLIP
model whereas multilingual text features are extracted using M-CLIP model. The features are then
passed onto a cross-model encoder to learn the association in a common embedding space. Cross-
entropy loss is then applied to measure the similarity between text features RE and RvE , RM and
RvM . The final loss is the sum of both the losses.

which is a multilingual universal language encoder trained on image-multilingual text
pairs, showed an improvement on image-sentence retrieval tasks of up to 20% com-
pared to monolingual models. Nevertheless, all these previous works focus on designing
models separately for image and video retrieval. Our objective is to use multilingual
knowledge transfer to improve the performance on current image and video retrieval
datasets. In addition, our model is capable of performing multilingual retrieval on
more than 10 languages.

3 MuMUR : Multilingual Multimodal Universal
Retrieval

In this section, we introduce our framework MuMUR : Multilingual Multimodal
Universal Retrieval. We first describe the problem statement, then the multilingual
data augmentation strategy and finally go over the proposed approach that enables
knowledge transfer from multilingual data for video retrieval.
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3.1 Problem statement

Given a set of visual data V , their corresponding English text captions E and related
multilingual text captions M , our goal is to learn similarity functions s1(vi, ei) and
s2(vi,mi) (vi ∈ V , ei ∈ E and mi ∈ M). In other words, we propose a framework
MuMUR that enables end-to-end learning on a tuple of visual input, English text
caption and multilingual text caption by bringing closer the joint representations of
those three elements. Specifically, for each visual input V and the English text captions
E, we generate the multilingual translationsM using external state-of-the-art machine
translation models [52]. Next, we present the proposed approach that facilitates the
end-to-end learning using multilingual data.

3.2 Approach

Our model, illustrated in Figure 2, is comprised of three components: (i) visual encoder
(ii) text encoder (iii) dual cross modal encoder. Next, we describe the framework in
detail.

3.2.1 Visual Encoder

Given a visual input V , we consider uniformly sampled clips C ∈ RNv×H×W×3 where
Nv is the number of frames (1 for images), H and W are the spatial dimensions of
a RGB frame. We then use a pretrained CLIP-ViT image encoder [48] to extract
the frame embeddings Fv ∈ RNv×Dv where Dv denotes the dimensions of the frame
embeddings. The frame embeddings are concatenated to obtain the final representation
for the video V .

3.2.2 Text Encoder

Let the inputs English text caption be E and multilingual text caption M of lengths p
and q respectively. We use a pretrained CLIP-ViT text encoder to convert the English
text caption into a sequence of embeddings RE = REp×DE where DE denote the
embedding dimensions. We consider the representation of the token [EOS] as the final
representation of English text caption. To encode multilingual text caption M , we use
a M-CLIP1 model which is a multilingual clip model pretrained on multilingual text
and image pairs. Specifically, the multilingual text caption is converted into a sequence
of embeddings RM = RMq×DM where DM denote the embedding dimensions. Similar
to the CLIP model, we consider the [EOS] representation as the final representation
of M-CLIP model.

3.2.3 Dual cross-modal encoder (DCM)

Our goal is to closely associate the visual embeddings Rv, English text embeddings RE

and multilingual text embeddingsRM in a common embedding space. For this purpose,
we propose a dual cross-modal encoder (DCM). To incorporate textual information
into visual features and to learn visual features that are semantically most similar to

1https://github.com/FreddeFrallan/Multilingual-CLIP
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text features, we use multi-head attention. The text features are used as the queries
whereas the visual features are used as the keys and values.

rvE = Attention(TE , Fv, Fv) (1)

rvM = Attention(ME , Fv, Fv) (2)

where multi-head attention (Attention) is defined as:

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V (3)

Here Q, K and V are same as the original multi-head attention matrices in the trans-
former encoder. We then apply a fully connected layer on the attention outputs and
finally layer normalization to obtain RvE and RvM .

RvE = LN(FC(rvE) + rvE) (4)

RvM = LN(FC(rvM ) + rvM ) (5)

where FC is the fully connected layer and LN is the layer normalization layer.

3.2.4 Loss

We use the standard image-text or video-text matching loss [58] to train the model.
It is measured as the dot product similarity between matching text embeddings and
visual embeddings in a batch. First, we compute the loss LE between RvE and RE

and then compute the loss LM between RvM and RM . The final loss is the sum of
losses LE and LM .

L = LE + LM . (6)

where LE = Lt2v
E + Lv2t

E and LM = Lt2v
M + Lv2t

M

Lv2t
E = − 1

B

B∑

i=1

log
exp(RE

(i) ·R(i)
vE)∑B

j=1 exp(RE
(i) ·R(j)

vE)
, (7)

Lt2v
E = − 1

B

B∑

i=1

log
exp(RvE

(i) ·R(i)
E )

∑B

j=1 exp(RvE
(i) ·R(j)

E )
. (8)

Lv2t
M = − 1

B

B∑

i=1

log
exp(RM

(i) ·R(i)
vM )

∑B

j=1 exp(RM
(i) ·R(j)

vM )
, (9)

Lt2v
M = − 1

B

B∑

i=1

log
exp(RvM

(i) ·R(i)
M )

∑B

j=1 exp(RvM
(i) ·R(j)

M )
. (10)
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3.2.5 Inference

During inference for English retrieval datasets, we freeze the multilingual text encoder
and measure the retrieval performance only using RE and RvE . Similarly, for multi-
lingual datasets, we freeze the English text encoder and calculate the retrieval score
using RM and RvM .

4 Experiments

4.1 Datasets

Our goal is to design a universal multimodal multilingual retrieval model. There-
fore, our experiments focus on evaluating on both image and video retrieval datasets
comprising of monolingual and multilingual captions.

4.1.1 Video Retrieval

We perform experiments on six standard text-video retrieval datasets: MSRVTT-9k
and MSRVTT-7k splits [61], MSVD [9], DiDeMo [2], Charades [50] and MSRVTT
multilingual [23].

MSRVTT contains 10K videos with each video ranging from 10 to 32 seconds and
200K captions. We report the results both on MSRVTT-9k and MSRVTT-7k datasets
following [41].

MSVD consists of 1970 videos and 80K descriptions. We use the standard training,
validation and testing splits following [41]. In this dataset, each video has multiple
captions and are treated as independent samples during testing.

DiDeMo is made up of 10K videos and 40K localized descriptions of the videos.
We concatenate all the sentences for each video and evaluate the paragraph-to-video
retrieval following [35, 41].

Charades contains of 9848 videos and each video is associated with a caption. We
use the standard training and test splits following [35].

MSRVTT multilingual is a multilingual version of MSRVTT in which the
English captions are translated into nine different languages. We use the standard
splits following [23].

4.1.2 Image Retrieval

We evaluate the proposed approach MuMUR on the following image retrieval datasets:
Flickr30k contains 31000 images with each image containing single caption for

training and validation data and 5 captions for testing data. We follow the standard
splits of 29k/1k/1k [32].

Multi30K [16] is a multilingual version of Flickr30k [47] in which the English
text captions are translated into German (de), French (fr) and Czech (cs) languages.
We use the training, validation and testing splits of 29k/1k/1k following [45].
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4.2 Metrics

For evaluating the performance of models, we use recall at rankK (R@1, R@5, R@10),
median rank (MedR) and mean rank (MnR). Unless specified, the values reported are
the mean of three runs with different seeds.

Text-to-Video Retrieval Video-to-Text Retrieval
Type Model R@1 R@5 R@10 MdR MnR R@1 R@5 R@10 MdR MnR

O
th
er
s

JsFusion [64] 10.2 31.2 43.2 13.0 - - - - - -
HT [44] 14.9 40.2 52.8 9.0 - - - - - -

HERO [34] 20.5 46.8 60.9 - - - - - - -
CE [37] 20.9 48.8 62.4 6.0 28.2 20.6 50.3 64.0 5.3 25.1

ClipBERT [30] 22.0 46.8 59.9 - - - - - - -
SupportSET [46] 27.4 56.3 67.7 3.0 - - - - - -
VideoCLIP [60] 30.9 55.4 66.8 4.0 - - - - - -
FrozenInTime [4] 31 59.5 70.5 3.0 - - - - - -

CLIP [48] 31.2 53.7 2.6 4.0 - - - - - -
HIT [36] 30.7 60.9 73.2 2.6 - 32.1 62.7 74.1 3.0 -

AlignPrompt [31] 33.9 60.7 73.2 - - - - - - -
All-in-one [54] 34.4 65.4 75.8 - - - - - - -
MDMMT [15] 38.9 69.0 79.7 2.0 - - - - - -

C
L
IP

b
a
se
d

CLIP4Clip [41] 44.5 71.4 81.6 - 15.3 43.1 70.5 81.2 2.0 12.4
VCM [7] 43.8 71.0 80.9 2.0 14.3 45.1 72.3 82.3 2.0 10.7
MCQ [19] 44.9 71.9 80.3 2.0 15.3 - - - - -
MILES [20] 44.3 71.1 80.8 2.0 14.7 - - - - -
CAMoE [11] 44.6 72.6 81.8 2.0 13.3 45.1 72.4 83.1 2.0 10.0

CLIP2Video [17] 45.6 72.6 81.7 2.0 14.6 43.5 72.3 82.1 2.0 10.2
CLIP2TV [18] 46.1 72.5 82.9 2.0 15.2 43.9 70.9 82.2 2.0 12.0

Ours MuMUR 46.6 72.6 82.2 2.0 13.9 45.5 73.4 84.7 2.0 8.07

Table 1 Text-to-video and video-to-text retrieval results on MSR-VTT dataset 9k split. Recall at
rank 1 (R@1)↑, rank 5 (R@5)↑, rank 10 (R@10)↑, Median Rank (MdR)↓ and Mean Rank (MnR)↓
are reported. Results of other methods taken from mentioned references. Our model surpasses
previous state-of-the-art performance. In video-to-text retrieval, our model achieved 1.6 points
boost in performance.

4.3 Implementation Details

We use translations of French for the multilingual inputs to train the MuMUR model.
The visual encoder and the English text encoder are initialized with CLIP-ViT-B-32.
The multilingual text encoder is initialized with M-CLIP-ViT-B-32. The dimension
size of the video, English caption and multilingual caption representations is 512.
The dual cross-model encoder is initialized randomly and trained from scratch. The
dimension size of the key, query and value projection layers is 512. The fully connected
layer in the transformer has a size of 512 and a dropout of 0.4 is applied on this
layer. We use 16 frames for MSRVTT-9k, MSRVTT-7k and MSVD datasets, 42 frames
for DiDeMo and Charades datasets. The maximum sequence length is set to 32 for
MSRVTT-9k and MSRVTT-7k, 64 for DiDeMo and 30 for charades dataset. The
model is trained using AdamW [39] a learning rate of 1e-4 and a cosine decay of 1e-6.
The MSRVTT-9k and MSRVTT-7k datasets are trained with a batch size of 32 and
for 15 epochs. The MSVD dataset is trained with a batch size of 32 and for 5 epochs.

9



The DiDeMo and charades datasets are trained with a batch size of 16 for 12 and 15
epochs respectively.

Model R@1 (↑) R@5 (↑) R@10(↑) MdR (↓)
HowTo100M [44] 10.2 31.2 43.2 13.0
ActBERT [67] 8.6 23.4 33.1 36.0
NoiseE [1] 17.4 41.6 53.6 8.0

ClipBERT [30] 22.0 46.8 59.9 6.0
CLIP4clip- [41] 42.1 71.9 81.4 2.0
Singularity [29] 42.7 69.5 78.1 2.0

MuMUR 44.8 72.0 82.5 2.0
Table 2 Text-to-video retrieval results on MSR-VTT - 7k split. Recall at rank-1 (R@1), rank-5
(R@5), rank-10 (R@10), Median Rank (MdR) are reported. Results of other methods taken from
mentioned references.

Model R@1 (↑) R@5 (↑) R@10(↑) MdR (↓)
VSE [17] 12.3 30.1 42.3 14.0
CE [37] 19.8 49.0 63.8 6.0
SSML [1] 20.3 49.0 63.3 6.0

SUPPORT-SET [46] 28.4 60.0 72.9 4.0
FROZEN [4] 33.7 64.7 76.3 3.0
CLIP [48] 37.0 64.1 73.8 3.0

CLIP4Clip [41] 46.2 76.1 84.6 2.0
CLIP2Video [17] 47.0 76.8 85.9 2.0

MuMUR 47.2 77.3 86.2 2.0

Table 3 Text-to-video retrieval results on MSVD dataset (multi-caption evaluation). Recall at
rank-1 (R@1), rank-5 (R@5), rank-10 (R@10), Median Rank (MdR) are reported. Results of other
methods taken from mentioned references.

5 Results and Discussion

5.1 Evaluation on English video retrieval datasets

In Table 1 we report the results of our proposed approach on MSVRTT-9k dataset. It
can be observed that the difference between CLIP based models and other models is
very significant (> 5%). Therefore, it explains the incentive to build our model using
CLIP features. On MSRVTT-9k split, our model significantly outperforms CLIP4Clip
model on all the metrics in both text-to-video and video-to-text retrieval settings.
VCM employs a knowledge graph between video and text modalities making its perfor-
mance superior to other models in a video-to-text retrieval task. Our model surpasses
VCM significantly in all the metrics elucidating that the multilingual representations
serve as a powerful knowledge transfer. Moreover, our approach outperforms MCQ
and MILES which are pretrained on WebVid-2M data, initialized with CLIP features,
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Model R@1 (↑) R@5 (↑) R@10 (↑) MdR (↓)
S2VT [53] 11.9 33.6 - 13.0
FSE [65] 13.9 36 - 11.0
CE [37] 16.1 41.1 - 8.3

ClipBERT [30] 20.4 48.0 60.8 6.0
FrozenInTime [4] 31.0 59.8 72.4 3.0
OA-Trans [55] 34.8 64.4 75.1 3.0
CLIP4clip [41] 43.4 70.2 80.6 2.0
CLIP2TV [18] 43.9 70.5 79.8 2.0
TS2-Net [38] 41.8 71.6 82.0 2.0
ECLIPSE [35] 44.2 70.0 80.2 2.0
MuMUR 44.4 74.3 83.1 2.0

Table 4 Text-to-video retrieval result on DiDeMo dataset. Recall at rank-1 (R@1), rank-5 (R@5),
rank-10 (R@10), Median Rank (MdR) are reported. Results of other methods taken from mentioned
references.

Model R@1 (↑) R@5 (↑) R@10 (↑) MdR MnR
ClipBERT [30] 6.7 17.3 25.2 32.0 149.7

FrozenInTime [4] 11.9 28.3 35.1 17.0 103.8
CLIP4clip [41] 13.9 30.4 37.1 14.0 98.0
ECLIPSE [35] 15.7 32.9 42.4 16.0 84.9
MuMUR 16.6 37.5 50.0 10.0 52.7

Table 5 Text-to-video retrieval result on charades dataset. Recall at rank-1 (R@1), rank-5 (R@5),
rank-10 (R@10), Median Rank (MdR) are reported. Results reported are taken from [35].

employing additional semantic information like parts-of-speech. This validates that our
model doesn’t require any pretraining on videos and structural knowledge injection.
The multilingual text representations in our model effectively serves this purpose.

In Tables 2, 3, 4 and 5 we report the results on MSRVTT-7k, MSVD, DiDeMo and
Charades datasets respectively. Our model outperforms all the previous approaches
across all the metrics on all the datasets. For the MSRVTT-7k split, our model achieves
a significant boost of 2.1%, 2.5% and 4.4% in R@1, R@5 and R@10 respectively
compared to the previous baselines. For the MSVD dataset, we notice an improvement
of 0.2%, 0.5% and 0.3% in R@1, R@5 and R@10 respectively. MSVD is a relatively
smaller dataset with test size of 670 videos and hence, the improvements are relatively
marginal.

For the DiDeMo dataset, our model showed a marginal boost of 0.2% in R@1
but a significant boost of 4.3% and 2.9% in R@5 and R@10 respectively compared to
the previous approaches. For the Charades dataset, our model outperformed previous
approaches by 0.9% in R@1 and by a significant margin of 4.6%, 7.6% and 6.0% in R@5,
R@10 and MedianR respectively. ECLIPSE uses audio as additional information for
video retrieval. We showed that multilingual text acts as a better knowledge transfer
input.
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Image-to-text Retrieval Text-to-Image Retrieval
Model R@1 (↑) R@5 (↑) R@10 (↑) R@1 (↑) R@5 (↑) R@10 (↑)

ViLT [27] 83.5 96.7 98.6 64.4 88.7 93.8
UNITER [10] 87.3 98.0 99.2 75.6 94.1 96.8
Frozen [4] - - - 61.0 87.5 92.7

ALBEF [33] 94.3 99.4 99.8 82.8 96.7 98.4
BLIP [32] 96.6 99.8 100.0 87.2 97.5 98.8
ALIGN [31] 95.3 99.8 100.0 84.9 97.4 98.6

SINGULARITY [29] 93.3 99.4 99.8 81.4 95.8 97.9
BridgeTower [63] 94.7 99.61 100.0 85.8 97.6 98.9
ManageTower [62] 95.6 - - 86.5 - -

MuMUR 90.5 99.7 99.8 92.0 99.5 99.9

Table 6 Text-to-image and image-to-text retrieval results on Flickr30k [47] dataset split. Recall at
rank 1 (R@1)↑, rank 5 (R@5)↑, rank 10 (R@10)↑ are reported. Results of other methods taken from
mentioned references. MuMUR significantly outperforms previous models in text-to-image retrieval
while achieving comparable results in image-to-text retrieval.

Model de cs zh ru sw es
m-BERT (zero-shot) 11.1 8.2 6.9 7.9 1.4 12

m-BERT MMP (zero-shot) 15 11.2 8.4 11 3.4 15.1
XLM-R (zero-shot) 16.3 16 14.9 15.4 7.7 17.3

XLM-MMP (zero-shot) 19.4 19.3 18.2 19.1 8.4 20.4
m-BERT (fine-tune) 18.2 16.9 16.2 16.5 13 18.5

XLM- R + MMP (fine-tune) 21.1 20.7 20 20.5 14.4 21.9
MuMUR - fr (zero-shot) 27.4 28.2 24.1 26.6 22.5 26.5

Table 7 Text-to-video retrieval (R@1 metric) results on MSR-VTT - multilingual [23]. Results of
other methods taken from [23]. Our model is trained on Charades dataset and using only french
language and evaluated in a zero-shot setting on MSRVTT multilingual dataset. In zero-shot
evaluation on other languages, our model significantly outperforms previous models trained in both
zero-shot and fine-tuning setting.

5.2 Evaluation on English image retrieval datasets

Next, we measure the performance of MuMUR on English image retrieval dataset
Flickr30k. The results are reported in the table 6 in both image-to-text and text-to-
image settings. As shown in the table, MuMUR achieves comparable performance to
previous approaches on image-to-text retrieval. Moreover, we observe that MuMUR
significantly outperforms these models by 5.5% in image-to-text retrieval. Note that,
these models are pretrained on large amount of image-text pairs and fine-tuned on
Flickr30k dataset. In contrast, our model uses a small amount of multilingual data
and achieves remarkable results in both the settings. This validates that multilingual
data acts as superior knowledge transfer even for image retrieval.

5.3 Evaluation on multilingual video retrieval datasets

In addition to the monolingual datasets, we also evaluate the proposed approach
on multilingual video retrieval datasets. Specifically, we use the model trained only
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Model de fr cs
EmbN [56] 60.3 54.8 46.3

PAR. EmbN [21] 62.6 60.6 54.1
S-LIWE [57] 72.1 63.4 59.4
MULE [26] 64.1 62.3 57.7
SMALR [6] 69.8 65.9 64.8
M3P [45] 82.1 67.3 65
MuMUR 85.2 70.5 69.3

Table 8 Text-to-image retrieval (R@1 metric) results on Multi30K [16] dataset (de - German, fr -
French and cs - Czech). Results of other methods are taken from [45]. Our model is fine-tuned for
each language and evaluated on the corresponding test data.

using French captions and test on 6 languages such as German (de), Czech (cs), Chi-
nese (zh), Swahili (sw), Russian (ru) and Spanish (es) in a zero-shot setting. Table
7 shows the results on MSRVTT-multilingual dataset. Our model achieved a signif-
icant boost of 8.2% (average) in R@1 in a zero-shot setting. It is worth noting that
our model in a zero-short evaluation outperformed the previous approaches fine-tuned
on these languages by a huge margin of 6.1% (average). MMP [23] is pretrained on
the large scale multilingual dataset HowTo100M on 9 languages. However, our model
trained on just 1 language outperformed MMP. This shows that our dual cross-modal
(DCM) encoder block can effectively learn the association among video, English and
multilingual representations even when large video pretraining is not involved.

5.4 Evaluation on multilingual image retrieval datasets

We also evaluate the proposed model MuMUR on the multilingual image retrieval
dataset Multi30K. Table 8 show the results on 3 languages German (de), French
(fr) and Czech (cs) fine-tuned for these languages. As shown in the table, MuMUR
significantly outperforms previous models by 3.1% for German (de), 3.2% for French
(fr) and 4.3% for Czech (cs) languages.

5.5 Ablation studies

5.5.1 Effect of multilingual knowledge transfer

We investigate the effect of multilingual knowledge transfer on the video-retrieval
performance. Precisely, we train a model without the multilingual text encoder keeping
the rest of the architecture intact. As shown in Figure 3, using multilingual data as
knowledge transfer significantly improved the performance on DiDeMo and Charades
datasets. The improvement is 2.4% for DiDeMo and 3.62% for Charades datasets.

5.5.2 Using only multilingual text encoder

Next, we ablate the choice of using an English text encoder. We validated previously
that multilingual data improves the performance of video retrieval. This raises the
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Fig. 3 Comparison of models with and without using multilingual data as input. The first model
takes as input only video and English text captions whereas the second model takes video, English
text and multilingual text captions as input. As shown in the figure, using multilingual text data as
knowledge transfer significantly improved the performance.
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Fig. 4 Comparison of models consisting of only multilingual text encoder and multilingual text
encoder + English text encoder. Using a separate English text encoder for encoding English text
captions outperforms the model using multilingual text encoder to encode English text captions

question: Why a separate English text encoder is required if multilingual text encoder

can be used for both English text and multilingual text representations? In Figure 4,
we show the results of two different model variants. The first model uses a separate
English text encoder to encode English text captions whereas in the second model,
both the English text and multilingual text are encoded using the same multilin-
gual text encoder. Results show that encoding English text captions using a separate

14



Dataset

R
@

1 
sc

or
e

0

10

20

30

40

50

DiDeMo Charades

With DCM block (MKTVR) Without DCM block

Fig. 5 Comparison of models with and without DCM block in the architecture. Using DCM block
in the architecture showed superior performance to models without the DCM block.
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Fig. 6 Comparison of MuMUR trained with different multilingual caption data. It is evident from
the figure that training with more languages improved the performance.

English text encoder surpasses the model using multilingual text encoder to encode
both English text and multilingual text. Multilingual pretraining employs a part of
English data whereas the English text encoder is pretrained on a comparatively larger
English data. Hence, leveraging a separate English text encoder showed much superior
performance to using multilingual text encoder for English text.
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Fig. 7 Figure shows the effect of the number of video frames used to train MuMUR model on
MSRVTT-9k dataset. Results demonstrate that R@1 score is the highest when 16 frames are used in
text-to-video and video-to-text settings.

Fig. 8 Figure demonstrates the performance of MuMUR for varying number of video frames on
MSVD dataset (single caption evaluation). It is evident that the R@1 score is maximum at 16 frames
when evaluated in both text-to-video and video-to-text settings.

5.5.3 Effectiveness of dual cross encoder block

Next, we ablate the effectiveness of dual cross encoder block. We train a model with-
out the DCM block and directly compute the loss between video representations and
English text representations and video representations and multilingual text represen-
tations. From Figure 5, we can see that the model using DCM block achieves better
performance than the model without the encoder block. This justifies our motivation
to use DCM block in our model.
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Fig. 9 We ablate the sampling strategy used for selecting video frames on MSRVTT-9k dataset. We
observe that uniform and random sampling techniques achieve similar performance for all the video
frames.

Fig. 10 Figure illustrates the comparative performance of random and uniform video sampling
techniques on MSVD dataset. It is evident that random significantly outperforms uniform sampling
but fails for larger number of video frames.

5.5.4 Training with more languages

Next, we ablate training our model with more than one language. Concretely we train
our model with German (de) and Spanish (es) captions. These languages are chosen
because their performance on XNLI dataset [13] is comparable to English. The results
are shown in Figure 6 and it is seen that training with more languages improved the
performance on video retrieval. These results validate that multilingual data act as an
effective knowledge transfer mechanism for improving video retrieval.
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5.5.5 Effect of video frames

We investigate the impact of the frequency of video frames on the retrieval per-
formance. We train the MuMUR model with increasing number of video frames in
intervals of 4. Figures 7 and 8 demonstrate the results of this ablation study on
MSRVTT-9k and MSVD datasets respectively. As shown in the figure, the R@1 score
is the highest when the model is trained with 16 video frames in both text-to-video
and video-to-text retrieval settings. Therefore, these results motivate the use of 16
frames for training MuMUR on video retrieval datasets.

5.5.6 Effect of video frame sampling

Following, we study the impact of choosing video frames at random vs with an uniform
manner. Figures 9 and 10 illustrate the results for varying video frames on MSRVTT-
9k and MSVD datasets respectively. It is clear from the figures that uniform and
random sampling strategies achieve nearly the same performance. However in case
of MSVD, we observe that random sampling performed much better compared to
uniform sampling. Nevertheless we see that random sampling fails for video frames
greater than 20.

6 Conclusion

In this paper we introduced MuMUR, a multilingual knowledge transfer framework
to improve the performance of multimodal retrieval. We constructed multilingual cap-
tions using off-the-shelf state-of-the-art machine translation models. We then proposed
a CLIP-based model that enables multilingual knowledge transfer using a dual cross-
modal encoder block. Experiment results on six standard multimodal retrieval datasets
showed that our framework achieved state-of-the-art results on all the datasets. Finally,
our model also showed superior performance to previous approaches on multilingual
retrieval datasets in a zero-shot and fine-tune settings. In the future, we will focus on
more efficient ways of multilingual knowledge transfer for multimodal retrieval.
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[51] Suŕıs, D., Epstein, D., Vondrick, C.: Globetrotter: Connecting languages by con-
necting images. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 16474–16484 (2022)

[52] Tang, Y., Tran, C., Li, X., Chen, P.J., Goyal, N., Chaudhary, V., Gu, J., Fan, A.:
Multilingual translation with extensible multilingual pretraining and finetuning.
arXiv preprint arXiv:2008.00401 (2020)

[53] Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko,
K.: Sequence to sequence-video to text. In: Proceedings of the IEEE international
conference on computer vision. pp. 4534–4542 (2015)

[54] Wang, A.J., Ge, Y., Yan, R., Ge, Y., Lin, X., Cai, G., Wu, J., Shan, Y., Qie,
X., Shou, M.Z.: All in one: Exploring unified video-language pre-training. arXiv

23



preprint arXiv:2203.07303 (2022)

[55] Wang, J., Ge, Y., Cai, G., Yan, R., Lin, X., Shan, Y., Qie, X., Shou, M.Z.: Object-
aware video-language pre-training for retrieval. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 3313–3322 (2022)

[56] Wang, L., Li, Y., Huang, J., Lazebnik, S.: Learning two-branch neural net-
works for image-text matching tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 41(2), 394–407 (2018)

[57] Wehrmann, J., Souza, D.M., Lopes, M.A., Barros, R.C.: Language-agnostic
visual-semantic embeddings. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 5804–5813 (2019)

[58] Wu, H.Y., Zhai, A.: Classification is a strong baseline for deep metric learn-
ing. In: Sidorov, K., Hicks, Y. (eds.) Proceedings of the British Machine
Vision Conference (BMVC). pp. 224.1–224.12. BMVA Press (September 2019).
https://doi.org/10.5244/C.33.224, https://dx.doi.org/10.5244/C.33.224

[59] WU SJ, D.M.: The surprising cross-lingual effectiveness of bert. In: Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing, Hong
Kong, China. pp. 833–844 (2019)

[60] Xu, H., Ghosh, G., Huang, P.Y., Okhonko, D., Aghajanyan, A., Metze, F., Zettle-
moyer, L., Feichtenhofer, C.: Videoclip: Contrastive pre-training for zero-shot
video-text understanding. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. pp. 6787–6800 (2021)

[61] Xu, J., Mei, T., Yao, T., Rui, Y.: Msr-vtt: A large video description dataset for
bridging video and language. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 5288–5296 (2016)

[62] Xu, X., Li, B., Wu, C., Tseng, S.Y., Bhiwandiwalla, A., Rosenman, S., Lal,
V., Che, W., Duan, N.: ManagerTower: Aggregating the insights of uni-modal
experts for vision-language representation learning. In: Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). pp. 14507–14525. Association for Computational Linguis-
tics, Toronto, Canada (Jul 2023). https://doi.org/10.18653/v1/2023.acl-long.811,
https://aclanthology.org/2023.acl-long.811

[63] Xu, X., Wu, C., Rosenman, S., Lal, V., Che, W., Duan, N.: Bridgetower: Building
bridges between encoders in vision-language representation learning. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 10637–10647
(2023)

24

https://dx.doi.org/10.5244/C.33.224
https://aclanthology.org/2023.acl-long.811


[64] Yu, Y., Kim, J., Kim, G.: A joint sequence fusion model for video question answer-
ing and retrieval. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 471–487 (2018)

[65] Zhang, B., Hu, H., Sha, F.: Cross-modal and hierarchical modeling of video and
text. In: Proceedings of the european conference on computer vision (ECCV). pp.
374–390 (2018)

[66] Zhou, M., Zhou, L., Wang, S., Cheng, Y., Li, L., Yu, Z., Liu, J.: Uc2: Universal
cross-lingual cross-modal vision-and-language pre-training. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4155–
4165 (2021)

[67] Zhu, L., Yang, Y.: Actbert: Learning global-local video-text representations.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 8746–8755 (2020)

25


	Introduction
	Related work
	Multimodal retrieval
	Multilingual training

	MuMUR : Multilingual Multimodal Universal Retrieval
	Problem statement
	Approach
	Visual Encoder
	Text Encoder
	Dual cross-modal encoder (DCM)
	Loss
	Inference


	Experiments
	Datasets
	Video Retrieval
	Image Retrieval

	Metrics
	Implementation Details

	Results and Discussion
	Evaluation on English video retrieval datasets
	Evaluation on English image retrieval datasets
	Evaluation on multilingual video retrieval datasets
	Evaluation on multilingual image retrieval datasets
	Ablation studies
	Effect of multilingual knowledge transfer
	Using only multilingual text encoder
	Effectiveness of dual cross encoder block
	Training with more languages
	Effect of video frames
	Effect of video frame sampling


	Conclusion
	Acknowledgment
	Declarations
	Ethical Approval
	Competing interests
	Authors' contributions
	Funding
	Availability of data and materials


