2306.10599v3 [cs.SE] 17 Dec 2023

arxXiv

Noname manuscript No.
(will be inserted by the editor)

An Empirical Study of Untangling Patterns of Two-Class
Dependency Cycles

Qiong Feng - Shuwen Liu - Huan Ji -
Xiaotian Ma - Peng Liang

Received: date / Accepted: date

Abstract Dependency cycles pose a significant challenge to software quality and
maintainability. However, there is limited understanding of how practitioners re-
solve dependency cycles in real-world scenarios. This paper presents an empirical
study investigating the recurring patterns employed by software developers to re-
solve dependency cycles between two classes in practice. We analyzed the data from
38 open-source projects across different domains and manually inspected hundreds
of cycle untangling cases. Our findings reveal that developers tend to employ five
recurring patterns to address dependency cycles. The chosen patterns are not only
determined by dependency relations between cyclic classes, but also highly re-
lated to their design context, i.e., how cyclic classes depend on or are depended
by their neighbor classes. Through this empirical study, we also discovered three
common counterintuitive solutions developers usually adopted during cycles’ han-
dling. These recurring patterns and common counterintuitive solutions observed
in dependency cycles’ practice can serve as a taxonomy to improve developers’
awareness and also be used as learning materials for students in software engi-
neering and inexperienced developers. Our results also suggest that, in addition
to considering the internal structure of dependency cycles, automatic tools need
to consider the design context of cycles to provide better support for refactoring
dependency cycles.

Keywords Dependency Cycle, Untangling Pattern, Counterintuitive in Refactor-
ing Cycles

Qiong Feng - Shuwen Liu - Huan Ji - Xiaotian Ma
School of Computer Science, Nanjing University of Science and Technology, Nanjing, China
E-mail: {qiongfeng, hyggen, alex, xyzboom}@njust.edu.cn

Peng Liang (X))
School of Computer Science, Wuhan University, Wuhan, China
E-mail: liangp@whu.edu.cn

http://arxiv.org/abs/2306.10599v3

2 Qiong Feng et al.

1 Introduction

In the ever-evolving world of software development, producing reliable, main-
tainable, and efficient code is very important. While developers strive to build
quality software systems, there are certain pitfalls that can affect the quality
and longevity of software systems, with cyclic dependency being a prominent one
(Mo et all, 2019; [Oyetoyan et all, [2013; Xiao et all, 2022). Cyclic dependency oc-
curs when two or more modules, classes, or components in a system rely on each
other directly or indirectly, forming a loop of dependencies (Lakod, 1996). Cyclic
dependency not only makes the code more challenging to understand, but also
limits its reusability and testability. As these cycles proliferate in a software sys-
tem, they create a complex, brittle structure that is resistant to change and more
prone to errors (Mo et all, 2019; [Xiao et all, 2022).

While several automated tools can help detect and visualize dependency cycles
such as Designiteﬂ, StructurelOlE, and SonarQubeﬁ, there is limited understanding
of how practitioners resolve or refactor these cycles in real-world scenarios. A recent
study (Feng and Mg, 12023) shows that untangling strategies of a dependency cycle
are highly correlated with its topological structure and the dependency relations
inside the cycle. For example, a previously circle-shaped dependency cycle was
broken into a circle-shaped dependency cycle of a smaller size. Though this study
reveals dependency cycles evolution patterns in terms of structure and dependency
types, some of important details in the untangling process of dependency cycles
still remain unclear. For example, we do not know when a dependency relation
is removed to resolve a cycle, whether or how the system maintains its original
functionality. We also do not know the specific challenges that practitioners face
while resolving dependency cycles.

To better understand dependency cycle’ resolution and challenges during the
process, we conduct a large-scale empirical study of dependency cycles’ fix in com-
mits to understand whether and how the original functionalities get maintained
when a dependency relation in dependency cycle is removed. Particularly we fo-
cus on dependency cycles’ resolution between two classes. There are two reasons.
First, a previous study found that most of dependency cycles’ resolutions are not
a one-shot process (Feng and Ma, 2023). Instead, it involves multiple steps: first
to a less complex cycle (which sometimes involves two classes’ resolution), then to
a two-classes cycle, and finally get fully untangled. Thus, two-class cycles’ resolu-
tion is usually the last and also an critical step in the whole untangling process.
Second, two-class cycles’ resolutions are the most frequent cases in code reposi-
tories of multiple open-source projects (Feng and Mo, [2023). This finding shows
that developers have spent a significant effort on this type of cases. A study of
two-class resolution can reveal the specific challenges that practitioners face while
resolving such dependency cycles and also provide valuable insights into the whole
untangling process.

To this end, we designed an approach to identify recurring untangling pat-
terns employed by software developers to resolve dependency cycles between two
classes. Using the data from 38 open-source projects, we first extracted source code

! https://www.designite-tools.com
2 https://structurelOi.org
3 lhttps://www.sonarqube.org

https://www.designite-tools.com
https://structure101.org
https://www.sonarqube.org

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 3

and structural dependency graphs before and after each commit, and we detected
dependency cycles before and after each commit. Then for each commit, we ap-
plied an algorithm defined in [Feng and Mo (2023) to detect whether the commit
involves the fix of dependency cycles. In this way, we detected 587 successful and
69 unsuccessful untangling cases in these 38 open-source projects. Next, we man-
ually located the code snippet which causes the dependency cycles and the code
changes to fix it. At last, we followed a rigorous process to summarize dependency
cycles’ fix patterns. Our investigations reveal the following results:

First, developers tend to use five recurring fix patterns in two-class depen-
dency cycles’ successful untangling. 91.3% (536/587) of two-class dependency cy-
cles’” untangling cases are resolved by these patterns, including “Remove Un-
used/Deprecated Code” (40.0%), “Move Code From One Cyclic Class To a Third
Class” (23.4%), “Move Code Between Two Cyclic Classes” (14.8%), “Shorten Call
Chain” (12.1%), and “Leverage Built-In Feature” (1.0%), which will be described
later in Section Ml Since these recurring patterns can be observed in different
projects with various domains, we are confident that a taxonomy of these patterns
can help developers understand dependency cycles better and thus tackle them
more efficiently.

Second, not only is the chosen untangling pattern related with the internal
dependency relations inside a dependency cycle, but also highly affected by the
cycle’s design context, i.e., how cyclic classes depend on or are depended by its
neighbor classes. We found that the internal dependency relations inside a depen-
dency cycle can be used to predict its untangling pattern. Moreover, for patterns
which involve a third class’s participation, combining a cycle’s design context with
its internal structure can help better predict its untangling pattern.

Third, among all cases involving addressing dependency cycles, we also found
that 10.5% (69/(69+587)) of cases were not successfully untangled. It means that,
in around every 10 dependency cycles’ untangling cases, there exists 1 dependency
cycle which is not properly handled. These counterintuitive cases can be classified
into three categories. We believe that the awareness of these categories can help
developers avoid similar problems in future development of untangling dependency
cycles.

Overall, this paper reveals the recurring fix patterns and common challenges
when developers are addressing two-class dependency cycles. This paper also proves
that the design characteristics inside and outside a dependency cycle can determine
the chosen untangling pattern.

The rest of the paper is organized as follows. Section 2] presents the general
approach. Section [B] introduces the open-source projects we used in this study
and the corresponding research questions. Section Ml and Section [G] discuss the
results and how these results can benefit developers in addressing dependency
cycles. Section [(] lists related work and Section [7] concludes this paper with future
directions.

2 Approach
Numerous research have explored code change patterns in various scenar-

ios such as program fixes, regression repairs, and API misuse (Kim_ et all, 2013;
Koyuncu et _all, 2020; [Liu et all, 12021; [Meng et al., [2013; [Tan and Roychoudhuryi,

4 Qiong Feng et al.

1. Git repository URL
2. Start commit SHA-1 : 3 Step #3

: AN !
Class A} |ClassB) ! N
e before commit r |:>

| : i 3 3 i Co-changed :
Step #1 o PN~ LR netghbor s
CiassA] |class B identify removed ~ analyze deleted analyze Inspect if neighbor|

Detect dependency
| dependencies code lines files’ changes are

cycles in commits.

) ft wr (dp_Type, dp_A_B) (cl_del)inA similar to cl_del
For each commitr, |} aerfommlr referringto B near cl_del and
compare two sets of
dependency cycles I\ j
before and after r Y
Legend
Step #3 Step #4 [1 majorstep input
Step #2 Locate the code snippet

Summarize v - . .
Identify commits with |:r/ causing theldependency!| D i datain the analysis process

dependency cycle’s

dependency cycle's fix. cycle and the code i
X patterns
changes to fix it P I:> control flow

Fig. 1: Overview of Pattern Identification Approach

2015). These studies commonly employ a practice that involves locating specific
commits, identifying code changes in those commits, analyzing the relationship
between added and removed code snippets, and summarizing the resulting change
patterns. Notably, these studies often identify patterns through manual inspections
of code changes and subsequently verify the recurrence of these patterns across
multiple projects (Liu_et all,2021; Meng et all,[2013). In our work, we also adopted
this practice to locate fix commits for dependency cycles and examined the code
changes within those commits. Resolving dependency cycles typically entails mod-
ifications in multiple code locations. Therefore, our analysis goes beyond analyzing
added and removed code snippets solely within the cyclic classes. We also traced
the calling chain in the modified code of these classes and explored whether similar
code changes exist in other source files. This consideration is important because
code changes can propagate through both structural and semantic relations. By
tracing the calling chain of added or removed code snippets and grouping simi-
lar code changes, we have observed six recurring patterns, which will be further
discussed in the Experiment Results section (Section []). The overall approach for
detecting recurring patterns in the resolution of dependency cycles comprises four
steps, which are illustrated in Figure [T

Step #1: Detect dependency cycle in commits. To identify dependency cy-
cles within each commit, we first extract the source code by executing “GIT SHOW
CHANGED_FILENAMES” . Then we utilize an open source reverse engineering tool De-
pendﬂ to extract dependency relationships between source files before and after
each commit. Depends can parse entities in Java source code and identify 13 unique
kinds of dependency relations between entities, as shown in Table[Il Dependency
relations among methods and variables are aggregated at the class level. Subse-

4 https://github.com/multilang-depends/depends

https://github.com/multilang-depends/depends

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 5

quently, we represent classes (nodes) and their structural dependencies (edges) as
a directed graph. Utilizing the two graphs produced before and after each com-
mit, we apply Kosaraju’s algorithm (Sharix, [1981) to detect strongly connected
components (SCCs) within each graph. By definition, in an SCC, a node (class
A) directly or indirectly relies on another node (class B), and likewise, class B
directly or indirectly relies on class A. We opt to identify an SCC as a dependency
cycle since a modification in one class is highly likely to propagate to another class
within the same SCC.

Table 1: Dependency Types Extracted by Depends

Dependency Type | Description
call a statement in a method invokes a method
cast a statement in a method casts another type to a variable
contain a file contain classes, enums or other types
create a statement in a method creates an instance of a type
extend a class extends a parent class
implement a class implements an interface
import a file imports another class, enum, static method or attribute
parameter a method use another type as its parameter
return a method returns another type
set a statement in a method sets a variable’s value
typed a variable is initiated from a class or other types
throw a method throws an exception
use a method uses a local variable or parameter in its scope

Step #2: Identify commits with dependency cycle’s fix. Upon identifying de-
pendency cycles both before and after each commit, we compare the two sets of
dependency cycles from these respective states. We adopt the method to identify
dependency cycle’ fix in this paper (Feng and Ma, 2023). If two classes formed a
dependency cycle, but are no longer in the same dependency cycle after a commit,
we consider it as a candidate for a dependency cycle fix. There are three possi-
bilities: at least one class gets deleted, both classes exist independently (not in
any dependency cycle), or these two classes get untangled and at least one class
joins a dependency cycle with other classes in the system. After we identify the
commit with dependency cycles’ fix, we execute “GIT DIFF CHANGED_FILENAMES”
to extract code changes associated with each class involved in the commit. This
diff information contains details related to how the dependency cycle was fixed,
which will be the input for the next step.

Step #3: Locate the code snippet causing dependency cycle and the code
changes to fix the cycle. This is the most time-consuming step in our approach as
it involves several minor steps and also relies on manual inspections. We establish
a protocol for this process. First, since the dependency cycle is disentangled, we
identify the removed dependency relationships between two cyclic classes, such
as when class A eliminates its call to a method of class B, by comparing the
dependency graph before and after the commit. We mark the removed dependency
relation’s type. Next, we analyze deleted code lines in class A and search for the
deleted code snippet referring to class B. We validate the deleted code snippet
by matching with removed dependency types and its location. For example, if the
dependency graphs indicates class A removes its “call” to class B, we check whether

6 Qiong Feng et al.

the deleted code in class A contains B.FUNC() to validate the deleted code line is
actually the line for the dependency change. Subsequently, we check whether any
new code snippets are added in class A near the location of the deleted code line.
If present, we examine if the added code calls other classes or types and manually
inspect whether the added code provide similar features as the deleted code, such as
containing the similar method signature or code structure. This step required the
dedicated efforts of four students with 4 years of Java development experience, and
one senior researcher with 14 years of Java Development experience. We followed
the practice outlined in [Campbell et al! (2013), allowing the senior researcher to
establish the procedure for identifying code changes and training the students
with examples. Subsequently, the four students were divided into two groups, with
two students in each group collaborating to identify code changes. We then cross-
examined the results from both groups to reconcile any disagreements and reach a
consensus. For instance, one disagreement occurred when one group thought that
added code changes were to replace the same feature of deleted code lines, while the
other group believed that the purpose of the added code lines was not to provide
the same feature. Another disagreement occurred when one group thought that
the removed code lines were not responsible for the untangling of the dependency
cycle, but the other group disagreed. In the event of such disagreements, the senior
researcher would review the specific case and discuss it with the students until a
consensus was reached. Beside the two cyclic classes, we also track changed code
snippet of other source files in the same commit and analyze the type calling in
the deleted and added code.

No O No
Inspect if
No deleted code in T
A were added in Inspect whether the Yes
Check if A which other files deleted code is
removes dependency Yes moved to B No
on B, added new code
Inspect if added NO_|Checkif Ais calling
Yes new code is calling a build-in feature Vos
athirdclass ||
Scenario
No
Check if B also calls
Y
e the third class
before after Vos

Fig. 2: Process of Identifying Untangling Patterns

Step #4: Summarize dependency cycles’ fix patterns. Through Step #3, we
obtain code changes in dependency cycle and their propagation to other neighbor
files for fixing dependency cycles. We then analyze numerous cases across different
commits and projects to identify potential recurring fix patterns. To do this, we
design a decision tree strategy to study fix patterns of dependency cycles, as shown

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 7

in Figure[2l The rationale behind this strategy is to investigate whether a specific
feature remains intact during the resolution of a dependency cycle and to determine
the scope of the impact if the feature is maintained through code changes. In
particular, we examine the extent to which code changes affect both the cyclic
files and neighboring files. By doing so, we gain insights into how the dependency
cycles’ fix influence the functionality and dependencies within the system.

Suppose that there is a cycle involving two source classes, A and B, and this
cycle is being untangled in a commit where class A no longer calls class B. In order
to analyze this situation, we first locate the old code snippet in class A that was
causing the dependency cycle and check if any new code snippets were added in
its context. In case there are no new code snippets in class A, we examine whether
the deleted code snippet can be found in other files. If the deleted code snippet is
not found anywhere, it suggests that the feature in class A may have been simply
removed. However, if the deleted code snippet is found in another location, we
investigate whether it has been relocated to the other cyclic class B, or to a third
file to determine the change scope.

On the other hand, if new code snippets were indeed added in the source
file of class A, we examine whether these new additions provide similar features
as the deleted code snippets. If similarities are found, we further inspect whether
the types or classes referenced in the new code snippets are consistent with the
original ones and trace up the referenced types or classes. This step can help us
identify whether code changes are limited to only one cyclic class, or both cyclic
classes, or affecting more neighboring classes. Depending on the change scope and
the referenced types, we categorize the fix into different categories. For example,
if the new code does not call any other type or class, we check whether it utilizes
built-in features, and classify the fix accordingly.

By following these steps, we discover recurring fixes that lead to the identifi-
cation of several common patterns for fixing dependency cycles.

3 Research Questions
3.1 Subjects

The objective of our study is to explore the recurring patterns of dependency
cycle resolution in various projects. To achieve this, we first leverage the dataset
from our previous study of dependency cycle (Feng and Mad, 2023), which includes
12 Apache projects and 6 other projects from different domains. To ensure the
generality of observed patterns, we also crawled dependency cycle resolution cases
from other active communities: Google, Eclipse, Facebook, and Alibaba. These
communities are well-known, and the projects they open-sourced are generally
considered reliable. We utilized the GitHub API and conducted a search using
the criteria ‘STARS:>100 LANGUAGE:JAVA FORKS:>100’ to identify popular and ac-
tive projects within these communities. Subsequently, we selected the top 5 most
contributor projects in each community to ensure that we capture patterns from
different developers. This process resulted in a total of 38 open-source projects.
Detailed information about all these projects can be found in our replication pack-
age (Feng et all, [2023).

8 Qiong Feng et al.

Due to space limitations, we select 3 projects with most contributors from
each community and present the demographic information of these 18 projects in
Table Pl The first column, labeled Cmty, indicates the community to which the
projects belong. Columns 2-5 display the project’s name, number of Java files,
commits, and contributors. The last column indicates the project’s domain. These
projects vary in size from 52 to 14,684 Java files, with commit counts ranging from
266 to 37,028, and development histories spanning 4 to 21 years. By investigating
the details of changes made during the resolution of dependency cycles in these
projects, we aim to gain a deeper understanding of how dependency cycles are
resolved in practice and the challenges associated with this process.

Table 2: Demographic Information about the Study Subjects

Cmty Proj #Java | #Cmt | #Ctr Domain
Avro 661 2435 296 Data Process
Apache Cassandra 2751 25234 274 Database System
HBase 4233 17621 263 Data Process
guava 3199 6165 299 Utility Core Library
Google closure-compiler 1302 18774 256 Complier
ExoPlayer 1638 18864 247 Media Player
jetty.project 3365 25066 183 Web Server
Eclipse jkube 1187 1650 162 Deployment
eclipse-collections 2664 1650 162 Data Structure Framework
buck 6996 22696 289 Build System
Facebook fresco 808 3649 218 | Image Loading and Display
litho 1573 16447 205 UI Generator
nacos 2119 4703 330 Service Data Manager
Alibaba druid 5138 6874 205 JDBC component library
Sentinel 1280 815 184 Service Manager
Javaparser 1751 8029 183 Code Analyzer
Others Stripe-java 787 2344 143 Payment System
Spoon 2055 3882 119 Code Analyzer

3.2 Research Questions

We investigated the following Research Questions (RQs) to gain insight into
the methods used for resolving dependency cycles in practice and the frequent
errors that arise during this process.

RQ1. Are there any recurring patterns developers employ to resolve dependency
cycles? Recognizing common patterns for addressing dependency cycles is crucial
for automating their resolution. If we can identify the recurring patterns, we can
establish a taxonomy that developers can consult when attempting to resolve
dependency cycles.

RQ2. Does each recurring pattern exhibit specific design characteristics in terms
of dependency types? If dependency cycles with particular design characteristics
tend to be resolved by certain recurring patterns, we can recommend developers
to choose a specific pattern or even automate the resolution process. On the other
hand, if dependency cycles with similar design characteristics are resolved by dif-

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 9

P
GIOIOIO 0@@

before after before after before after
(a) Move Code between (b) Move Code from (c) Shorten Call Chain
Two Cyclic Classes One Cyclic Class

to a Third Class

10

after

-4

before after before

(d) Leverage Built-In Feature (e) Remove Unused Code

Fig. 3: Recurring Patterns in Dependency Cycles’ Untangling

ferent types of recurring patterns, it indicates that the patterns are not related to
design characteristics.

RQ3. Are there any counterintuitive solutions when developers try to resolve de-
pendency cycles, and why? According to the work of [Lu et al! (2016) and |[Feng et al.
(2019), new anti-patterns could be introduced when existing anti-patterns get
resolved. However, previous research has not examined how and why new anti-
patterns are introduced. By addressing this RQ, we plan to explore the challenges
developers face and the counterintuitive solutions developers make while resolving
dependency cycles and discuss the strategies to avoid them.

4 Experiment Results
4.1 Recurring Untangling Patterns

By employing the analysis strategy outlined in Section Bl we discovered 587
dependency cycles’ fix from 38 open-source projects and analyzed how they were
resolved by contributors in practice. Among these cases, we discovered six recurring
patterns, as shown in Table Bl From this table, we can see “Remove Unused/Dep-
recated Code” and “Move Code From One Cyclic Class To a Third Class” is the
two most frequently observed patterns while “Leverage Built-In Feature” is the
least common pattern. In this section, we discuss these recurring patterns, which
are illustrated in Figure B

4.1.1 Move Code Between Two Cyclic Classes

As shown in Figure[3al, to resolve the cycle of class A and class B, the code in
class B, which was referenced by class A, was moved from class B to A. Thus, class

10 Qiong Feng et al.

Table 3: The Statistics of Untangling Patterns

Untangling Patterns Count | Percentage
Remove Unused/Deprecated Code 235 40.0%
Mode Code From One Cyclic File to a Third Class 137 23.4%
Move Code Between Two Cyclic Files 87 14.8%
Shorten Call Chain 71 12.1%
Complex 51 8.7%
Leverage Built-In Feature 6 1.0%
Total 587 100%

A no longer depends on class B. Instead, class A relies on the relocated code in
itself. This case is similar to the feature envy code smell (Fowler and Beck, [1999).
According to the definition of feature envy, when a method, attribute, or inner
class in class B is more closely associated with class A than its own class, it should
be moved to class A, eliminating the need for class A to call class B.

Code Change D di Change
ModifiedFile: wicket-extensions/src/java/wicket, i ‘markup/htmi/d. icker/DatePickerSettings.java
—~
4 - private ResourceReference style = DatePicker.STYLE_AQUA; before after

Initially line 4 refered to line 6-8 , which

ModifiedFile: wicket-extensions/src/java/wicket/extensions/markup/html/datepicker/DatePicker.java implied that C1 depended on C2. Since

6~ /** date picker style aqua. */ line 6-8 in C2 was relocated to in

7 - public static final StaticResourceReference STYLE_AQUA = Cl now refers to in its own
; " n c2 "

8- new StaticResourceReference(DatePicker.class, "style/aqua/theme.css"); class C1 and C1 no longer depends on C2.

Fig. 4: Move Code Between Two Cyclic Classes

Figure Ml presents commit #decQ27eE of the Wicket project. Class DatePicker
(denoted as C2) and DatePickerSettings (denoted as C1) formed a cycle in which
class C1 also uses the constant STYLE_AQUA of class C2 as shown in Line 4. To
address this dependency cycle, the constant in class C2 were moved to class C1 and
Line 6-8 in C2 was relocated to Line 1-3 in class C1. This eliminated the need for
class C1 to call class C2. Furthermore, the code Line 4 DatePicker.STYLE_AQUA
was replaced by STYLE_AQUA in Line 5 after resolving the cycle.

4.1.2 Move Code From One Cyclic Class To a Third Class

This scenario is different from the feature envy code smell. Although one cycle
class relies on another cycle class, the method in the latter class is moved to a third
class. It is usually designed for better scalability. As shown in Figure Bh] class A
calls a method of class B. To untangle this dependency cycle, class A switches its
dependency of class B to a third class by calling a similar method in the third
class.

5 lhttps://github.com/apache/wicket/commit/dec227e

https://github.com/apache/wicket/commit/dec227e

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 11

Figure [presents an example of this case Commit #ca57991ﬁ of the Ant
project. Before this commit, class Antlib (denoted as C4) and class Definer (denoted
as C3) formed a cyclic dependency relationship and class C4 called a method set-
InternalClassLoader of class C3, as shown in Line 10-12. During the commit, the
method setInternalClassLoader in Line 7-9 of class C3 was removed and abstracted
into a method setAntlibClassLoader of 2 new classes: AntlibInterface (denoted as
C1) and DefBase (denoted as C2). To accompany with this change, class C4 re-
moved the call to the original setInternalClassLoader method of class C3. Instead,
it calls the abstracted method in class C1. As shown in dependency change of Fig-
ure Bl the red curve of C3 — C4 was removed and class C4 added its dependency
on class C1, marked as the green curve. This case demonstrates that the cyclic
dependency between two classes can be alleviated by shifting responsibilities to a
third class. It is worth noting that the third class and removed code class likely
have a parent-child relationship.

Code Change D d Change

AddedFile: src/main/org/apache/tools/ant/taskdefs/Antlibinterface.java
C1

AddedFile: src/main/org/apache/tools/ant/taskdefs/DefBase.java Q Q
C Oct
e C2
P - — @ T
ModifiedFile: src/main/org/apache/tools/ant/taskdefs/Definerjava 6‘

5 - public abstract class Definer extends Task {

c3 before after

7 - protected void setInternalClassLoader(ClassLoader classLoader) {

8- this.internalClassLoader = classLoader; . . .
Line 10-12 in C4 depended on a method in

9 -

! line 7-9 of C3. The method was then pull
ModifiedFile: src/main/org/apache/tools/ant/taskdefs/Antlib.java up to o nanew parent class C2 (C3
10- if (t instanceof Definer) { extf:nds C2in . and further up to
1- Definer d = (Definer) t; Iin a new 1‘nterface ClL. A§ a result,
12 - d.setInternalClassLoader(getClassLoader()); instead of calling the method in C3, C4

now depends on the interface class Cl1, as
shown in

Fig. 5: Move Code From One Cyclic Class To a Third Class

4.1.83 Shorten Call Chain

As shown in Figure Bd in the dependency cycles of class A and B, class A
calls a method in class B, but the method of class B calls another third class. To
resolve this cycle, class A does not call the method of class B but calls the third
class directly, breaking the dependency cycle between class A and B, and further
shortening a dependency chain of three classes to a chain of two classes.

Commit #dd?OCCZﬂ in the HBase project demonstrates an example of such
cases. As shown in Figure @] initially class ZkSplitLogWorkerCoordination (denoted
as C1) calls class ZkCoordinatedStateManager’s (denoted as C2) method chain (C2’s

6 https://github.com/apache/ant/commit/cab799f
7 lhttps://github.com/apache/hbase/commit/dd70cc3

https://github.com/apache/ant/commit/ca5799f
https://github.com/apache/hbase/commit/dd70cc3

12 Qiong Feng et al.

Code Change Dependency Change

ModifiedFile: src/main/java/org/apache/hadoop/hbase/coordination/zkSplitLogWorkerCoordination.java
1 - private final ZkCoordinatedStateManager manager;

c1 e .
3 - public ZkSplitLogWorkerCoordination(ZkCoordinatedStateManager zkCoordinatedStateManager,)
4- ZooKeeperWatcher watcher) { -

5 - manager = zkCoordinatedStateManager;
6~ ServerName serverName = manager.getServer().getServerName(); before after
C3:Server C4:ServerName

Initially line 1 and line 3-4 indicated that C1 used
C2 as a construstor parameter and line 6 showed
that C1 called the method getServer() of C2 and

getServerName() of C3 to get the ServerName

ModifiedFile: src/main/java/org/apache/hadoop/hbase/coordination/ZkCoordinatedStateManager.java instance C4. In order to remove the dependency
9 - public Server getServer() { on C2, developers use ServerName C4 directly in
10- return server; CI’s constructor, as shown in and .
11-1 2 The method getServer() in line 9-11 in C2 was

removed accordingly.

Fig. 6: Shorten Call Chain

method getServer and Server—C3’s method getServerName) to get the class Server-
Name in Line 6. To resolve this cycle, developers use class ServerName (denoted
as C4) in class ZkCoordinatedStateManager’s constructor in Line 7 and directly call
class ServerName instead of going through the method calling chain of class C2 and
C3. At the same time, class C2 removes ServerName from its constructor in Line
9-11. As shown in Dependency Change in Figure [6l the red curve of C1—C2 and
C2—C3 was eliminated and the green curve of C1—C4 is added. In this case, not
only is a cycle resolved, but a calling chain involving three classes is also shortened.

4.1.4 Leverage Built-In Feature

As shown in Figure [Bd], this pattern uses class’s build-in features instead of
calling one cyclic class’s method. In this scenario, instead of calling a method
from one cycle class, the fix utilizes built-in features of the Java library to achieve
similar functionality.

In Commit #284e79d§ of the Ant project, the commit message “Make XalanEz-
ecutor independent of Xalan2 so one can compile XalanlFEzecutor without Xalan2”
indicates that the purpose of this commit is to untangle the cycle between class
XalanEzecutor and class Xalan2Ezecutor. The code changes are shown in Figure [7
We examined the code changes in class XalanFEzecutor and discovered that, in-
stead of instantiating class Xalan2Fzecutor directly using NEw, developers applied a
built-in reflection method Class.forName().newlnstance(). This case leverages Java
built-in reflection features to create an instance of class objects.

4.1.5 Remove Unused/Deprecated Code

As shown in Figure Bel when a feature becomes obsolete and is deprecated,
the code which causes the dependency cycle can be removed from the code base.
In our manual analysis, this is the most common case we encountered. We found
that 40.0%(235/587) of the two-class dependency cycles were resolved by simply
eliminating the feature that caused the cyclic dependency.

8 https://github.com/apache/ant/commit/284e790

https://github.com/apache/ant/commit/284e790

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 13

Code Change
ModifiedFile: src/main/org/apache/tools/ant/taskdefs/optional/junit/XalanExecutor.java
1- executor = new Xalan2Executor(); C2: Xalan2Executor c
Dependency Change
Line 1 indicated that C1 relied on C2’s
.newlnstance() ...
constructor initially. used the

2) reflection mechanism of Java
CB to

remove C1’s static dependency directly
on C2.

before after

Fig. 7: Leverage Built-In Feature

For example, in Commit #8290&215@ of the Wicket project, one class, PageSet,
was removed, along with its reference code in its cycle class, Page. We exam-
ined the commit message and the message stated that “Experimental feature will
not be supported anymore and really didn’t have any use at it’s current state”. For
another example, in Commit #738190«3@ of the Ambari project, as developers
“completely removed admin role from ambari”, the original dependency cycle be-
tween class RoleEntity and class UserEntity was also resolved as class RoleEntity
was removed.

4.1.6 Associate with a Big Architectural Refactoring

Except for the cases that we can categorize into the above five scenarios, there
are several instances of dependency cycle resolution involving a significant amount
of code addition and deletion at the architecture level. Identifying the patterns for
these cases requires deeper domain knowledge, and consequently we classify them
into the Associate with a Big Architectural Refactoring category.

9 https://github.com/apache/wicket/commit/829caab
10 https://github.com/apache/ambari/commit/73819ca

https://github.com/apache/wicket/commit/829caa5
https://github.com/apache/ambari/commit/73819ca

14 Qiong Feng et al.

To answer RQ1, our manual analysis and inspection across 38 open-source
projects of different domains shows that developers tend to apply five re-
curring patterns in the untangling practice of two-class dependency cycles.
“Remove Unused/Deprecated Code” is the most frequent observed pattern, and
“Move Code From One Cyclic Class To a Third Class”, “Move Code Between
Two Cyclic Classes”, “Shorten Call Chain”, “Complex”, and “Leverage Built-In
Feature” are following next. These recurring patterns indicate that developers fre-
quently apply common practices to untangle dependency cycles. We believe that
the taxonomy of these patterns can help developers understand dependency cycles
better and thus tackle them more efficiently.

4.2 Design Characteristics in Dependency Cycles

After we identified recurring patterns for untangling dependency cycles be-
tween two classes, one question raises up: are certain patterns applied to specific
types of dependency cycles? In other words, we want to know if dependency cy-
cles resolved using the same pattern exhibit similar characteristics. If the answer is
positive, we can recommend that developers can use particular patterns to address
dependency cycles with certain traits. If not, it suggests that the characteristics
of dependency cycles may not be related to the chosen untangling methods, and
developers may have selected these patterns at random. In this case, our study can
also help the untangling process by providing all candidate patterns and potential
fixes for developers to choose from.

Untangling dependency cycles involves changing the dependency relations be-
tween two cyclic files, sometimes dependency changes can even propagate to neigh-
boring files. Intuitively, we examined whether dependency relations among cyclic
files and their neighbors could determine the chosen untangling patterns. As var-
ious types of dependency relations may exist between two classes as shown in
Table [we investigated whether and how different types of dependency relations
within cyclic files, and among cyclic files and neighboring files, affect the chosen
patterns. We try to solve the problem whether the design characteristics inside and
outside of dependency cycles can determine the chosen untangling pattern. Basi-
cally it is a classification problem. Our initial thought was to embed dependency
relations within and outside a cycle into vectors and check if a trained Graph
Neural Network (GNN) model could classify them into different categories. How-
ever, as far as we know, current GNN models do not have a mature method for
dependency calling graph’s representation, and such graph representation learn-
ing also requires a large amount of data (Xu, 2021)). Therefore, in this study we
represented different types of dependency relations as features and adopt classic
machine learning methods to examine the relations between dependency relation
traits and different recurring patterns of cycles’ untangling.

4.2.1 Design Characteristics within Cycles

We first investigated internal design characteristics inside two cyclic files.
Since dependency graphs are bidirectional, in order to fairly compare them in
different cycles, we first set certain dependency relations as dominant, labeling

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 15

the file initiating such relations as fl1 and the other file in the cycle as f2. In
this way, we labeled all dependency relations as “depType_fi_fj”, which means fi
depends on fj with depType. In our experiment, if there exists inheritance relations
denoted as “Extend” or “Implement”, then we mark it as an dominant relation.
If no inheritance relations exist, then we mark “Call” as dominant. For example,
among 5 untangling cases in the “Leverage Built-In Features” category in Table[]
3 cases have an “Extend” relation; we labeled the file initiating this relation as f1
and considered the other cyclic file as 2. If an “Extend” relation is already marked
as “f1_f2” and another “Call” relation exists between f2 and f1, it is marked as
“Call_f2_f1”. After accurately marking these dependency relations, one observation
is that the most frequent relations in the “Leverage Built-In Features” pattern
involve f1 extending 2 while f2 creates f1. This relation accounts for 50% of all
cases (cases 1, 2, and 3). The second most frequent relation is fl calling f2 while
2 uses f1, accounting for the remaining 50% of all cases (cases 4, 5 and 6).

Table 4: Dependencies in Leverage Built-In Feature

Extend_f1_f2, Create_f2_f1, Call_f1_f2, Use_f1_{2
Extend_f1_f2, Create_f2_f1, Call_f1_f2, Call_f2_f1 | 50%
Extend_f1_f2, Create_f2_f1, Call_f2_f1
Call_f1_f2, Use_f2_f1, Create_f1_f2

Call_f1_f2, Use_f2_f1, Create_f1_{2 50%
Call_f1_f2, Use_f2_f1, Cast_f1_f2

O] UY W= | W N —

Using the above method, we annotated all types of dependency relations and
24 unique types of dependency relations were extracted from all 536 cases with five
untangling patterns. The details of these 24 unique types can be obtained from
our replication package (Feng et all, [2023). For each unique “depTypefifj”, if a
cycle contains it, then we mark it as 1, otherwise 0. In this way, we represented
each cycle with one 24-length array with each feature’s value marked as 1 or 0.
Next, we applied classic machine learning methods to see if these cases can be
classified into their untangling patterns. Since the instances of these five patterns
vary significantly, we used a technique called SMOTE (Chawla et _all, [2002) to get
a balanced dataset by over sampling and creating synthetic minority class samples.
After that, we split the dataset to 80% of training and 20% of testing data. Last,
we trained “Nearest Neighbors” (n_neighbors=5), “Linear SVM” (kernel="linear”,
C=0.025), “Decision Tree”, (max_depth=10), and “Multi-layer Perceptron” (MLP,
alpha=1, max_iter=1000) with the default setting from the scikit-learn package
with the training data and tested the model with the testing data. We found
that, among these classifiers, “MLP” achieved the highest average accuracy in all
untangling patterns.

Table [Bl shows MLP’s prediction details. From this table, we can see that
“MLP” can predict cycles which use the “Leverage Built-In Feature” pattern with
a precision 0.75 and a recall 0.98. This results suggest that the internal dependency
structure inside this pattern already shows distinct characteristics, and conse-
quently “MLP” can use its distinct dependency relations to predict the pattern
the dependency cycle can use. This is not surprising, as our previous analysis (see
Section 1)) revealed that 50% of this pattern involves f1 extending 2 while {2
creates f1. Upon manual inspections, we found that this type of dependency rela-

16 Qiong Feng et al.

Table 5: MLP Classification Using Dependencies Inside Cycles

Untangling Patterns Precision | Recall | Fl-score
Move Code from One Cyclic File to a Third Class 0.68 0.42 0.52
Move Code between Two Cyclic Files 0.59 0.64 0.61
Remove Unused/Deprecated Code 0.38 0.48 0.42
Shorten Call Chain 0.62 0.58 0.60
Leverage Built-in Feature 0.75 0.98 0.85

tions only exist and are unique in this pattern. The second best result of MLP’s
prediction is “Move Code between Two Cyclic Files” with Fl-score 0.61. We also
manually inspected these cases and found that “Use_f2_f1” and “Callf1_{2” are ex-
clusive to the “Move Code between Two Cyclic Files” pattern. These unique traits
inside the dependency cycle provide the reason why why “MLP” can classify these
patterns with a relatively high precision and recall.

Though MLP can successfully predict “Leverage Built-In Feature” and “Move
Code between T'wo Cyclic Files” based on dependency cycles’ internal dependency
traits, we also observed that, the Fl-score of “Shorten Call Chain”, “Move Code
from One Cyclic File to a Third Class”, and “Remove Unused/Deprecated Code” is
0.60, 0.52, and 0.42 separately. It seems that “MLP” classifier cannot tell which one
of these three patterns to use if only based on dependency cycles’ internal structure.
It also suggests that if such a cyclic case occurs, “MLP” classifier can likely choose
any of these three untangling strategies. Different from “Leverage Built-In Feature”
and “Move Code between Two Cyclic Files” whose internal dependency relations
already show specific traits and untangling pattern only involves cyclic classes,
“Move Code from One Cyclic Class to a Third Class” and “Shorten Call Chain”
also involve a third class’s participation. Thus, we conjecture that the neighbor
files’ interaction with the dependency cycle can play an important role in deciding
which pattern to use.

4.2.2 Design Characteristics outside Cycles

To verify the above assumption, next we investigated design context outside
two cyclic classes. We tracked all neighbor files, which have direct relations and
co-changed with cyclic classes, and extracted their dependency relations. Similarly,
we distinguished the dominant file f1 and the other file f2. Then, we marked all
neighbor files as f3 and used the same method to annotate the dependency relations
between f3 and f1/f2. For example, if f1 “extends” 3, then we annotate it as
“extend_f1_f3”; if a neighbor file “uses” 2, then we annotate it as “use_f3_f2”. In
this way, we extracted another 52 unique dependency relations between neighbor
and cyclic files, and represented a dependency cycle’ design context as a 52-length
array. Different from two cyclic classes, it may exist more than one neighbor files
with the same types of dependency with cyclic files. We also added weights to
these 52 unique dependency relations. For example, if there exists 3 neighbor files
“call” f1, we represent this “call f3_f1” feature’s value as 3. We combined these 52
features of the cycle’s design context with the cycle’s internal 24 features to form
a 76-length array. Finally, to better compare the classification effect using only
cyclic internal dependency relations, we also adopted SMOTE to create a balanced
dataset and trained the “MLP” model with 80% of data with 76 features. Finally,

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 17

we used the trained “MLP” to classify 20% of testing data, and the result is shown
in Table

Table 6: MLP Classification Using Dependencies Inside and Outside Cycles

Untangling Pattern Precision | Recall | Fl-score
Move Code from One Cyclic File to a Third Class 0.71 0.59 0.64
Move Code between Two Cyclic Files 0.64 0.63 0.64
Remove Unused/Deprecated Code 0.52 0.57 0.54
Shorten Call Chain 0.67 0.59 0.63
Leverage Built-in Feature 0.76 0.98 0.86

From Table [6] we can see that the precision is slightly improved for “Lever-
age Built-In Feature” (0.85—0.86) and “Move Code Between Two Cyclic Classes”
(0.61—0.64). It means that the design context outside dependency cycle can help
developers choose these two patterns better. Furthermore, we observed the preci-
sion and recall is significantly improved for “Move Code from One Cyclic Class
to a Third Class”, with precision from 0.68 to 0.71, recall from 0.42 to 0.59, and
F1l-score from 0.52 to 0.64. This suggests that the dependency relations between
neighbor files and the dependency cycle play an important role for the cycle’ un-
tangling pattern. It makes sense as we mentioned earlier that this pattern involves
a third class’s participation so the neighbor files’ dependency relations with the
cycle is definitely very important. We also observed F1-score is slightly improved
for the “Shorten Call Chain” pattern and “Remove Unused/Deprecated” pattern.

To answer RQ2, “MLP” prediction results show that recurring patterns
do exhibit specific characteristic signs. First, the patterns developers chose in
practice to untangle dependency cycles are highly related with cycles’ internal de-
pendency relations. Especially for “Leverage Built-In Feature” and “Move Code
between Two Cyclic Classes”, the dependency relations inside the cycle can de-
termine the applied pattern. Second, we found that, combining the design context
outside a dependency cycle with the dependency relations inside the cycle can have
a better prediction of untangling patterns, especially when the pattern involves a
third class’s participation.

4.3 Counterintuitive Solutions in Untangling Dependency Cycles

Not only recurring patterns were applied to effectively untangle cycles, in
our empirical study we also observed 69 dependency cycles were not correctly ad-
dressed. These cases usually resulted in breaking the original cycle, only to form
a new, sometimes even larger, cycle. While it is possible that the intention of that
particular commit is not to untangle the cycle, we argue that developers also do
not intend to create new or larger cycles. However, there may be complex rea-
sons such as trade-offs or deliberate design choices behind these cases. Therefore,
we refer to these cases as ‘counterintuitive solutions’ in the paper. Our manual
analysis shows three common counterintuitive solutions developers always used in
addressing these dependency cycles. Revealing and understanding these common

18 Qiong Feng et al.

counterintuitive solutions can help developers avoid similar errors in the future. In
this section, we numerate the three common counterintuitive solutions observed
in our empirical study and discuss how to avoid them.

4.8.1 Cycle Shift to a Parent Class

In this scenario, a child class and a third class originally are calling each
other, forming a cycle. Meanwhile, the third class also depends on the parent
class. During a commit, the child class moves up a method, which depends on the
third class, to its parent class. As a result, the cycle shifts from between the child
and the third class to between the parent and the third class.

Code Change Dependency Change

ModifiedFile: wicket/src/java/wicket/markup/html/form/SubmitLink.java °

1- private Form form; e
public SubmitLink(MarkupContainer parent, String id, Form form){ A

2- super(parent, id);

3- this.form = form; c er@ 0

ModifiedFile: wicket/src/java/wicket/markup/html/form/Button.java before after

Line 1-3 indicated that C relied on the Form
Class and used Form in its constructor
initially. showed P added Form in
its constructor. Now, C directly inherited P’s
constructor () without having Form as
its private attribute.

Fig. 8: Cycle Shift to a Parent Class

Commit #f96f99 of the Wicket project in Figure 8 shows such an exam-
ple. A child class SubmitLink (denoted as C) moved up its constructor, in which
class Form is a parameter, to its parent class Button (denoted as P). The com-
mit message “AjaxSubmitButton and AjarSubmitLink now extends Button. This gives
them the possibility to set DefaultFormProcessing” denoted that the reason for this
change was to enable the parent class Button to pass the parent’s constructor to
more children classes. Meanwhile, the changes in this commit indicated the third
class Form did not call the child class SubmitLink directly any more. Consequently,
the cycle shifts from between the child C and the third class Form to between the
parent P and the third class Form. Though manual examination, we found that
the constructor, which was moved up from this child to parent class, used the en-
tire third class Form as a parameter. Since Form and Button are Ul components,
we can apply “inversion of control” to decouple these two classes and resolve this
cycle. For example, we can assign a callback to the clickable event of the but-
ton and implement an observer pattern for Form, Button and the event class. As
this involves more architectural change, it would belong to Associate with a Big
Architectural Refactoring pattern mentioned in Section .11

11 https://github.com/apache/wicket/commit/f96£99¢

https://github.com/apache/wicket/commit/f96f99e

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 19

4.8.2 Cycle Shift to a Child Class

In this scenario, a parent class and a third class depend on each other, forming
a cycle, and a child class also depends on the third class. In a commit, the third
class removed the dependency to the parent class, and instead called the child
class, causing the cycle to shift from between the parent and the third class to
between the child classes and the third class.

Figure[@shows the modified code in the HtmlHeaderContainer class of Commit
#763dcc in the Wicket project. Line 1-9 show that class HtmlHeaderContainer
(denoted as T) deleted the code which calls the parent class IHeaderRenderer (de-
noted as P), and added dependencies on its original children classes: WebPage
(denoted as C1) and Border (denoted as C2). However, the cycle is not resolved.
The dependency change shows that after the commit, the cycle shifts from between
P and T to a larger cycle involving T, C1, and C2.

Code Change Dependency Change
ModifiedFile: wicket/src/java/wicket/markup/htmi/internal/HtmIHeaderContainer.java
1- if (parent instanceof IHeaderRenderer) { T
2- ((IHeaderRenderer)parent).renderHeaderSections(this);

3-
) P: IHeaderRender

ModifiedFile: wicket/src/java/wicket/markup/html/WebPage.java c1
10 - public class WebPage extends Page implements IHeaderRenderer

after

Initially line 1-3 indicated that T called the

ModifiedFile: wicket/src/java/wicket/markup/html/border/Border.java method renderHeaderSections() of the P class:

public abstract class Border extends WebMarkupContainer implements IComponentResolver,| | IHeaderRender. This commits removed the P
12 - IComponentResolverMarker, IHeaderRenderer class and thus Cl1 and C2 were no long P’s

(o] children, as shown in line 10 and 12.
showed that T shifted its dependency on P to C1

14 - public final void renderHeaderSections(final HtmlHeaderContainer container){ and C2 . Since C1 and C2 also depended on T,
15- MarkupContainer parent = getParent(); these 3 classes formed a large cycle.
16 - if (parent instanceof IHeaderRenderer){
17 - ((IHeaderRenderer)parent).renderHeaderSections(container);

18- 1

Fig. 9: Cycle Shift to Children Classes

Upon further examination, we found that class P got deleted in this commit.
Subsequently, class C1 and C2 removed its implementation to class P and the
overridden method “renderHeaderSections” from class P also got deleted, as shown
in Line 10-11 and Line 12-18. However, we found that class C1 and C2 both
depended on class T. Class C1 “imports” class T. Class C2 also overrode a method
of class WebMarkupContainer which uses class T as a parameter. This results in two
cyclic dependency: T and C1, T and C2, forming a larger dependency cycle with
3 classes. To avoid this problem, when shifting a third class’s dependency from
parent to children classes, developers first need to examine whether children classes
have any dependencies to the third class and whether these dependencies can be
removed. Though the unnecessary “import” from C1—T can be removed, class

12 https://github.com/apache/wicket/commit/763dcc3

https://github.com/apache/wicket/commit/763dcc3

20 Qiong Feng et al.

(C2’s dependency on the third class T is deeper and cannot be removed directly.
In this case, simply shifting dependencies cannot untangle the cycle.

4.8.8 Cycle Shift to a Third Class

Compared to the above two scenarios happening in parent and child classes,
this scenario is more likely to occur in utility features. In Commit #3a7d73
of the Commons-math project shown in Figure [I0) class FastMath (denoted as
C3) originally used the static attributes in the MathUtils class (denoted as C1).
This commit was associated with the issue MATH—68 in the Jira issue tracking
system, whose intent is to break up the MathUtils class.

As two static attributes in class C1 were relocated to the Precision class
(denoted as C2), class C3 now relied on class C2. All of these three classes were
placed in the same “util” package. However, both class C1 and class C2 also
depended on class C3. Consequently, the original dependency cycle between class
C1 and class C3 was shifted to a new cycle between class C2 and class C3 after
the static attributes’ relocation. Upon further examination, we discovered that the
static attributes were not used in either class C1 or C2. Instead, these attributes
are more closely coupled with class C3 than with either class C1 or C2. So moving
these attributes from class C1 to C2 is to “move attributes from one wrong place to
another”. The optimal solution to break the cycle is to move the static attribute
to class FastMath where the static attributes are more closely coupled or create a
new class for storing these static attributes.

Code Change Dependency Change

ModifiedFile: src/main/java/org/apache/commons/math/util/MathUtils.java
- public static final double EPSILON = 0x1.0p-53;
- public static final double SAFE_MIN = 0x1.0p-1022; a

ModifiedFile: src/main/java/org/apache/commons/math/util/Precision.java

c2

ModifiedFile: src/main/java/org/apache/commons/math/util/FastMath.java As the code snippet was relocated
- if (d>-MathUtils.SAFE_MIN && d < MathUstils.SAFE_MIN){ a from C1 to C2, C3 depends on C2. C3
and C2 formed a new cycle.

Fig. 10: Cycle Shift to a Third Class

To answer RQ3, among all cases involving cycles’ addressing, we found that
10.5% (69/(69-+587)) of dependency cycles were not correctly untangled.
These cases show some common characteristics and can be classified into the three
categories we summarized above. We believe that the awareness of these counter-
intuitive solutions can help developers better handle cycle’s untangling cases.

13 https://github.com/apache/commons-math/commit/3a7d733
14 https://issues.apache.org/jira/browse/MATH-689

https://github.com/apache/commons-math/commit/3a7d733
https://issues.apache.org/jira/browse/MATH-689

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 21

5 Discussion

In this section, we first present the analysis of the results and discuss the
implications of our findings, and then we clarify the threats to the validity of our
analysis.

5.1 Analysis of Results

RQ1: Through hundreds of dependency cycle untangling cases from different
projects in various domains, we have found in RQ1 that developers tend to apply
five recurring patterns to untangle dependency cycles between two classes in prac-
tice. These five recurring patterns account for 94.8% of all untangling cases, which
indicates that these patterns are frequently used by developers and prevalent in
the code repository. These summarized patterns can be shared with practitioners
to improve their understanding of effective strategies for resolving two-class de-
pendency cycles. Furthermore, the findings of our study can be incorporated into
educational materials and training programs for software developers, improving
their understanding of dependency cycles and how to address them.

RQ2: We demonstrated in RQ2 that, based on cycles’ internal structure and
design context, machine learning models can be trained to predict the untan-
gling pattern of two-class dependency cycles. This finding suggests that, similar
to the state-of-the-art automated program repair techniques, which were achieved
by training code embedding (Jiang et all, [2021; [Li et all, 2020), it is possible to
leverage machine/deep learning techniques in assisting dependency cycles’ refac-
toring and setting up cycles’ refactoring goals/patterns. It is worth to mention that
some patterns do occur more frequently in some particular projects, but we had
not observed that a single project involves only one pattern. We will investigate
whether projects from the same domain may achieve a better prediction result in
the future work.

RQ3: We have revealed three common counterintuitive patterns of addressing
these two-class dependency cycles in RQ3. Among all cases of addressing cycles,
we found that 10.5% (about one in ten) of dependency cycles were not correctly
addressed and fell into these three counterintuitive solutions. While conducting
follow-up interviews with developers about their decision-making process could
provide better insights into why they chose these counterintuitive solutions, we
have also observed some simple mistakes directly from code changes, such as the
case illustrated in Figure It means that dependency cycles’ handling is chal-
lenging and error-prone. This result is consistent with other refactoring empirical
studies by [Bavota et all (2013), [Kim et all (2014), and [Sharma et al| (2015), in
which they claimed that architectural refactoring is risky and needs strong sup-
port and guidance. In Section [£3] we discussed how the three counterintuitive
solutions of addressing two-class dependency cycles can be better handled. We
hope that this information can be used to develop guidelines and best practices
for practitioners, helping them avoid repeating these counterintuitive solutions.

22 Qiong Feng et al.

5.2 Implications

A simple dependency cycle’s untangling is not trivial. [Fowler and Beck
(1999) recommended to apply the camp site rule— “always leave the code behind
in a better state than you found it”. By doing this, small regular refactoring can
be combined in developers’ daily activities, such as implementing new features,
fixing bugs, and improving code base health. Significant advancements have been
made in the field of detecting local refactoring opportunities through various re-
search (Cui et all;2022;|Liu et all,2015; Terra et all,2018; Tsantalis and Chatzigeorgiou,
2009). Meanwhile, refactoring operations (“move method”, “pull members up”,
etc.) are supported in some popular IDEs, such as IntelliJ and Eclipse. While
these techniques provide strong support for code refactoring, refactoring at the
design or architectural level still lacks valid support, especially for legacy software
systems (Kim et all, 2014;Sharma et all, 2015). Our study results show that, with
all these support, a significant ratio of mistakes still occur in addressing a sim-
ple two-class dependency cycles. Also, there exist five different patterns to resolve
a simple two-class dependency cycles. This evidence shows that even a simple
dependency cycle’s untangling is not trivial. Refactoring, especially that involv-
ing multiple files, is challenging for software practitioners (Bavota et all 2013;
Lacerda. et _all, [2020; [Peruma et all, [2022) and needs better support.

A top-down refactoring approach can be benefited by leveraging inter-
nal design characteristics of two-class dependency cycles and their design
context. For complex refactoring at the design or architectural level, architects
tend to adopt a top-down approach, which is to set a refactoring goal first and then
design detailed steps towards the goal (Lin et all, 12016). However, the settings of
a refactoring goal heavily reply on developers’ experience and domain knowledge
and cannot be automated currently. Our study shows that the untangling pat-
terns (or refactoring goals) of two-class dependency cycles can be predicted by
leveraging the internal design characteristics of two-class dependency cycles and
their design context. This finding suggests that, similar to program repair which
can be automated by learning code relations (Jiang et all, [2021); [Li et al., [2020),
dependency cycles’ repair/refactoring goals can also be semi-automated theoret-
ically. The challenge is how we can mine the “hidden” knowledge and patterns
at the architectural or design level. Furthermore, two important questions raise
up: (1) how to represent the information of nodes and edges in and out of depen-
dency cycles with more than 2 files; and (2) how to train machine learning or deep
learning models to better leverage dependency cycles’ internal and context infor-
mation. The answers to these questions are valuable for automating refactoring
goals of complex dependency cycles or other architecture anti-patterns (Mo et all,
2019). We believe that the answers to these questions are the keys towards better
refactoring support at the architecture or design level.

5.3 Threats to Validity

Construct Validity: The analysis of the recurring patterns and common
counterintuitive solutions of cycles’ untangling heavily relies on the manual inspec-
tion. In order to reduce human bias and neglect, we designed a protocol to track
code snippets’ changes in commits and summarize patterns. And four experienced

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 23

developers divided into two groups participated in the inspection process, until
all developers reached an agreement. Besides, we also cross-validated the identi-
fied patterns from our manual inspection with RefactoringMiner (T'santalis et all,
2022), which is a refactoring mining tool and can mine atomic refactoring opera-
tions from code changes. For example, if through manual inspection, all developers
agreed that it is a “move code between two cyclic classes” pattern, we used Refac-
toringMiner to verify that a “move method/attribute/static class” operation was
also detected. We also used DV (a dependency graph visualization tool) to ver-
ify the dependency change if all developers agreed that it is a “move code from
one cyclic class to a third class” or “shorten call chain” pattern.

Internal Validity: One major internal threat is the way we represent depen-
dency relations in and outside of cycles. There exist many ways for dependency
graph representation. In this work, we chose “depType_fi_fj” as it is most straight-
forward to present nodes and directed edges of dependency graphs, and contains
necessary structure information of cycles and their context. Also, the high preci-
sion and F1-scores using the “MLP” model to classify untangling patterns demon-
strate its effectiveness. We are not sure whether different representations of cy-
cles (Cai et all,[2018), such as deep walk (Perozzi et all,[2014), node2vec (Grover and Leskoved,
2016), etc., will produce a different result. We leave the comparison of prediction
refactoring patterns with different representations as our future work.

External Validity: In terms of external threats, we only studied 263 untan-
gling cases in Java in our study since it involves intensive manual inspections.
It remains unclear whether our findings can be generalized to other open-source
projects or closed-source industrial projects. Though in this study, 18 projects were
selected from different domains and can be representative, we cannot guarantee
that these observed patterns and common counterintuitive solutions are universal.
We plan to validate this by analyzing more diverse projects in different program-
ming languages in the next step.

Conclusion Validity: Our approach detected dependency cycles’ fix and sum-
marized the fix patterns in a single commit. However, it is possible that developers
may take multiple commits to fix a dependency cycle. In such a situation, the un-
tangling patterns of the whole process with multiple commits may be different. In
this work, as we focus on the last step of two-class dependency cycles’ untangling,
the conclusion of the summarized patterns is valid if we narrow down the scope.
Moreover, in order to increase the reliability of the results, we made the replication
package of this work available online (Feng et all, [2023).

6 Related Work

The study of dependency cycles has been a topic of interest in the software
engineering research community for many years. In this section, we discuss the
related research of our work from two perspectives: empirical studies on depen-
dency cycles, which focus on the causes and consequences of dependency cycles,
and refactoring of dependency cycles.

15 https://archdia.com

https://archdia.com

24 Qiong Feng et al.

6.1 Empirical Studies of Dependency Cycles

Numerous empirical studies have been conducted to understand dependency
cycles and their impact on software systems. [Dietrich et all (2010) and|Melton and Tempero
(2007) showed that dependency cycles are pervasive in modern software systems,
affecting code’s comprehension and testing. [Zazworka et all (2013) investigated
the impact of dependency cycles on software maintainability, and the results show
that that systems with a higher number of dependency cycles have lower maintain-
ability scores. MacCormack et al) (2006) performed a case study on a large-scale
software system and found that dependency cycles were often caused by architec-
tural erosion (Li et all,[2022), which led to increased complexity and reduced mod-
ularity. [Lu et all (2016) defined a particular dependency cycle model called Hub,
in which a center file depends on a set of other files and that set of files also depend
on the center file. They analyzed the maintenance effort of Hub through different
releases and concluded that Hubs have been growing in size through releases and
cost large maintenance effort in terms of defects and changes. |Snipes et all (2018)
conducted a case study about the effects of architecture debt on software evolution
effort. They proved that files involved in dependency cycles are highly correlated
with the maintenance efforts. |Qyetoyan et all (2013) classified software compo-
nents into two groups — the cyclic and the non-cyclic ones, and their results show
that most defects and defective components are concentrated in cyclic-dependent
components, either directly or indirectly.

Recently, more and more empirical research focuses on studying how depen-
dency cycles get evolved in the code revision. |Qyetoyan et al! (2014) analyzed
the evolution of dependency cycles among components. By studying dependency
cycles through different releases of software systems, they found that there is no
evidence of any systematic “cycle-breaking” refactoring in these dependency cycles
among components. A recent study by [Feng and Md (2023) explored how depen-
dency cycles among classes evolve at the commit level. Their results show shows
that dependency cycles with different topological structure can present different
evolution characteristics. While the above empirical studies provide valuable input
about dependency cycles’ evolution and their impacts on software quality, how de-
pendency cycles get resolved by practitioners is still not clear. In this work, we try
to fill this gap and study how code snippets are removed or replaced in addressing
two-class dependency cycles. Through the manual inspection with a well-defined
study protocol, our study identified five recurring patterns and three common
mistakes in dependency cycles’ untangling process. Besides, we also prove that the
untangling patterns chosen by developers are not only determined by the internal
structure of dependency cycles, but also highly related to the design context of
the dependency cycles.

6.2 Refactoring of Dependency Cycles

Several studies have proposed effective strategies and best practices for (semi-
)automatically refactoring dependency cycles (Caracciolo et _all,[2016;|Goldstein and Moshkovich,
2014;|0yetoyan et all,[2015;|Shah et all,2012,12013)./Shah et al. (2012) introduced
an algorithm that eliminates circular dependencies between packages by relocating
classes between them. In addition to moving classes, they suggested refactoring

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 25

operations such as type generalization and service locator to resolve circular de-
pendencies. The effectiveness of their approach was validated using instances of
cyclic dependencies, demonstrating a decrease in their occurrence after applying
the proposed method. |Goldstein and Moshkovich (2014) introduced a method for
automatically untangling cyclic dependencies among components. Their algorithm
aims to minimize the number of classes to be relocated while simultaneously con-
sidering architectural metrics. They asserted that their approach not only resolved
dependency cycles, but also improved architectural metrics like cohesion and cou-
pling.

Oyetoyan et all (2015) introduced a novel metric to evaluate coupling changes
between a class’s CRSS (the Class Reachability Set Size) and its interfaces, and
developed a decision support system for breaking dependency cycles using this
metric. Their assessment indicated that this new metric can help identify a smaller
number of candidate classes for resolving large dependency cycles, ultimately de-
creasing the refactoring effort required. |Caracciolo et all (2016) explored various
refactoring strategies, recommending the most cost-effective sequence of opera-
tions to break dependency cycles. They determined the optimal strategy using a
profit function, and concluded that their approach successfully eliminates cyclic
dependencies between packages. [Ferreira et al! (2023) claimed that the orderings
of recommended refactoring is difficult for developers to understand. They pro-
posed an algorithm for detecting these dependencies among refactoring operations
and defined refactoring recommendations as sets of refactoring graphs instead of
sequences.

As a complement to existing research, we studied how developers addressed
two-class dependency cycles in practice. As untangling cyclic dependencies is an
NP-hard problem (Goldstein and Moshkovich, [2014), there may exist various ways
to untangle a dependency cycle. Our study identified five recurring patterns in
untangling two-class dependency cycles. We believe that these patterns have the
potential to help developers towards automatic untangling of such dependency
cycles in practice.

7 Conclusions

In this paper, we conducted an empirical study on how dependency cycles
between two classes get resolved in practice from 38 open-source projects, while
maintaining the original functionalities. Our results show that developers tend
to apply five recurring patterns to untangle two-class cycles. These patterns can
be observed in projects from different domains. Moreover, developers also make
common counterintuitive solutions in addressing dependency cycles. Our study
can serve as a taxonomy to improve developers’ awareness for dependency cy-
cles’ refactoring and also be used as learning materials for students in software
engineering and inexperienced developers.

To verify whether the design characteristics can determine the chosen untan-
gling pattern, we extracted fine-grained dependency relations inside and outside
dependency cycles as features and check whether these features can be used to clas-
sify the patterns. We have showed that for cycles’ refactoring which only needs
code changes inside cyclic classes, using features of the internal structure in cy-
cles can achieve a good result of predicting the chosen pattern. But when a cycle’

26 Qiong Feng et al.

refactoring requires a third class’s participation, the dependency relations outside
dependency cycles need to be taken in consideration. This empirical study shows
that it is theoretically feasible to use design characteristics to predict the refactor-
ing goal of a simple dependency cycle. However, it is unknown whether it can be
applied to more general cases.

We plan to study whether a good prediction can also be achieved for com-
plex dependency cycles in our future work. In that case, refactoring goals can be
automatically set based on a large amount of learning data. Moreover, similar to
JDeodorant (Tsantalis et al), 2018) which is an Eclipse plugin and supports the
refactoring of five typical code smells, we plan to implement an IDE-plugin to
better support the detection and refactoring of two-class dependency cycles.

Acknowledgements

This work is supported by the National Natural Science Foundation of China
(NSFC) under Grant No. 62172311.

Data Availability Statements

The data generated and analyzed during the current study is available in the
Zenodo repository at (Feng et all, [2023).

References

Bavota G, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013)
An empirical study on the developers’ perception of software coupling. In: Pro-
ceedings of the 35th International Conference on Software Engineering (ICSE),
IEEE, pp 692-701

Cai H, Zheng VW, Chang KCC (2018) A comprehensive survey of graph embed-
ding: Problems, techniques, and applications. IEEE Transactions on Knowledge
and Data Engineering 30(9):1616-1637

Campbell JL, Quincy C, Osserman J, Pedersen OK (2013) Coding in-depth
semistructured interviews: Problems of unitization and intercoder reliability and
agreement. Sociological methods & research 42(3):294-320

Caracciolo A, Aga B, Lungu M, Nierstrasz O (2016) Marea: A semi-automatic deci-
sion support system for breaking dependency cycles. In: Proceedings of the 23rd
IEEE International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), IEEE, pp 482-492

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research
16:321-357

Cui D, Wang S, Luo Y, Li X, Dai J, Wang L, Li Q (2022) Rmove: Recommending
move method refactoring opportunities using structural and semantic represen-
tations of code. In: Proceedings of the 38th IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE, pp 281-292

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 27

Dietrich J, McCartin C, Tempero E, Shah SMA (2010) Barriers to modularity-
an empirical study to assess the potential for modularisation of java programs.
In: Proceedings of the 6th International Conference on the Quality of Software
Architectures (QoSA), Springer, pp 135-150

Feng Q, Mo R (2023) Fine-grained analysis of dependency cycles among classes.
Journal of Software: Evolution and Process 35(1):¢2496

Feng Q, Cai Y, Kazman R, Cui D, Liu T, Fang H (2019) Active hotspot: an issue-
oriented model to monitor software evolution and degradation. In: Proceedings
of the 34th IEEE/ACM International Conference on Automated Software En-
gineering (ASE), IEEE, pp 986-997

Feng Q, Liu S, Ji H, Ma X, Liang P (2023) Replication Package of the Paper:
An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles.
https://doi.org/10.5281/zenodo.8048164

Ferreira T, Ivers J, Yackley JJ, Kessentini M, Ozkaya I, Gaaloul K (2023) De-
pendent or not: Detecting and understanding collections of refactorings. IEEE
Transactions on Software Engineering 49(6):3344-3358

Fowler M, Beck K (1999) Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, Boston, Massachusetts

Goldstein M, Moshkovich D (2014) Improving software through automatic untan-
gling of cyclic dependencies. In: Proceedings of the 36th International Confer-
ence on Software Engineering (ICSE) Companion, ACM, pp 155-164

Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), ACM, pp 855-864

Jiang N, Lutellier T, Tan L (2021) Cure: Code-aware neural machine translation for
automatic program repair. In: Proceedings of the 43rd IEEE/ACM International
Conference on Software Engineering (ICSE), IEEE, pp 1161-1173

Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from
human-written patches. In: 2013 35th International Conference on Software En-
gineering (ICSE), IEEE, pp 802-811

Kim M, Zimmermann T, Nagappan N (2014) An empirical study of refactoring
challenges and benefits at microsoft. IEEE Transactions on Software Engineering
40(7):633-649

Koyuncu A, Liu K, Bissyandé TF, Kim D, Klein J, Monperrus M, Le Traon Y
(2020) Fixminer: Mining relevant fix patterns for automated program repair.
Empirical Software Engineering 25:1980-2024

Lacerda G, Petrillo F, Pimenta M, Guéhéneuc YG (2020) Code smells and refac-
toring: A tertiary systematic review of challenges and observations. Journal of
Systems and Software 167:110610

Lakos J (1996) Large-Scale C++ Software Design. Addison-Wesley, Reading, MA

Li R, Liang P, Soliman M, Avgeriou P (2022) Understanding software architec-
ture erosion: A systematic mapping study. Journal of Software: Evolution and
Process 34(3):€2423

LiY, Wang S, Nguyen TN (2020) Dlfix: Context-based code transformation learn-
ing for automated program repair. In: Proceedings of the 42nd ACM/IEEE
International Conference on Software Engineering (ICSE), ACM, pp 602-614

Lin Y, Peng X, Cai Y, Dig D, Zheng D, Zhao W (2016) Interactive and guided
architectural refactoring with search-based recommendation. In: Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software

https://doi.org/10.5281/zenodo.8048164

28 Qiong Feng et al.

Engineering (FSE), ACM, pp 535-546

Liu H, Liu Q, Liu Y, Wang Z (2015) Identifying renaming opportunities by expand-
ing conducted rename refactorings. IEEE Transactions on Software Engineering
41(9):887-900

Liu W, Chen B, Peng X, Sun Q, Zhao W (2021) Identifying change patterns of
api misuses from code changes. Science China Information Sciences 64:1-19

LuY, LouY, Cheng S, Zhang L, Hao D, Zhou Y, Zhang L (2016) How does regres-
sion test prioritization perform in real-world software evolution? In: Proceed-
ings of the 38th IEEE/ACM International Conference on Software Engineering
(ICSE), IEEE, pp 535-546

MacCormack A, Rusnak J, Baldwin CY (2006) Exploring the structure of com-
plex software designs: An empirical study of open source and proprietary code.
Management Science 52(7):1015-1030

Melton H, Tempero E (2007) An empirical study of cycles among classes in java.
Empirical Software Engineering 12(4):389-415

Meng N, Kim M, McKinley KS (2013) Lase: locating and applying systematic edits
by learning from examples. In: 2013 35th International Conference on Software
Engineering (ICSE), IEEE, pp 502-511

Mo R, Cai Y, Kazman R, Xiao L, Feng Q (2019) Architecture anti-patterns: Au-
tomatically detectable violations of design principles. IEEE Transactions on
Software Engineering 47(5):1008-1028

Oyetoyan TD, Cruzes DS, Conradi R (2013) A study of cyclic dependencies
on defect profile of software components. Journal of Systems and Software
86(12):3162-3182

Oyetoyan TD, Cruzes DS, Conradi R (2014) Transition and defect patterns of
components in dependency cycles during software evolution. In: Proceedings
of the Software Evolution Week - IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE), IEEE, pp 283-292

Oyetoyan TD, Cruzes DS, Thurmann-Nielsen C (2015) A decision support system
to refactor class cycles. In: Proceedings of the 31st IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), IEEE, pp 231-240

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social repre-
sentations. In: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), ACM, pp 701-710

Peruma A, Simmons S, AlOmar EA, Newman CD, Mkaouer MW, Ouni A (2022)
How do i refactor this? an empirical study on refactoring trends and topics in
stack overflow. Empirical Software Engineering 27(1):Article number: 11

Shah SMA, Dietrich J, McCartin C (2012) Making smart moves to untangle pro-
grams. In: Proceedings of the 16th European Conference on Software Mainte-
nance and Reengineering (CSMR), IEEE, pp 359-364

Shah SMA, Dietrich J, McCartin C (2013) On the automation of dependency-
breaking refactorings in java. In: Proceedings of the 29th IEEE International
Conference on Software Maintenance (ICSM), IEEE, pp 160-169

Sharir M (1981) A strong-connectivity algorithm and its applications in data flow
analysis. Computers & Mathematics with Applications 7(1):67-72

Sharma T, Suryanarayana G, Samarthyam G (2015) Challenges to and solutions
for refactoring adoption: An industrial perspective. IEEE Software 32(6):44-51

Snipes W, Karlekar S, Mo R (2018) A case study of the effects of architecture debt
on software evolution effort. In: Proceedings of the 44th Euromicro Conference

An Empirical Study of Untangling Patterns of Two-Class Dependency Cycles 29

on Software Engineering and Advanced Applications (SEAA), IEEE, pp 400-403

Tan SH, Roychoudhury A (2015) relifix: Automated repair of software regressions.
In: Proceedings of the 37th IEEE/ACM IEEE International Conference on Soft-
ware Engineering (ICSE), IEEE, vol 1, pp 471-482

Terra R, Valente MT, Miranda S, Sales V (2018) Jmove: A novel heuristic and
tool to detect move method refactoring opportunities. Journal of Systems and
Software 138:19-36

Tsantalis N, Chatzigeorgiou A (2009) Identification of move method refactoring
opportunities. IEEE Transactions on Software Engineering 35(3):347-367

Tsantalis N, Chaikalis T, Chatzigeorgiou A (2018) Ten years of jdeodorant: Lessons
learned from the hunt for smells. In: Proceedings of the 25th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), IEEE,
pp 4-14

Tsantalis N, Ketkar A, Dig D (2022) Refactoringminer 2.0. IEEE Transactions on
Software Engineering 48(3):930-950

Xiao L, Cai Y, Kazman R, Mo R, Feng Q (2022) Detecting the locations and
predicting the costs of compound architectural debts. IEEE Transactions on
Software Engineering 48(9):3686-3715

Xu M (2021) Understanding graph embedding methods and their applications.
STAM Review 63(4):825-853

Zazworka N, Vetro A, Izurieta C, Wong S, Cai Y, Seaman C, Shull F (2013)
Comparing four approaches for technical debt identification. Software Quality
Journal 22:403-426

	Introduction
	Approach
	Research Questions
	Experiment Results
	Discussion
	Related Work
	Conclusions

