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Abstract 
The proliferation of semantic data in the form of RDF (Resource Description 

Framework) triples demands an efficient, scalable, and distributed storage along 

with a highly available and fault-tolerant parallel processing strategy. There are 

three open issues with distributed RDF data management systems that are not well 

addressed altogether in existing work. First is the querying efficiency, second is that 

solutions are optimized for certain types of query patterns and don’t necessarily 
work well for all types, and third is concerned with reducing pre-processing cost. 

More precisely, the rapid growth of RDF data raises the need for an efficient 

partitioning strategy over distributed data management systems to improve 

SPARQL (SPARQL Protocol and RDF Query Language) query performance 

regardless of its pattern shape with minimized pre-processing time. In this context, 

we propose a new relational partitioning schema called Property Table Partitioning 

(PTP) for RDF data, that further partitions existing Property Table into multiple 

tables based on distinct properties (comprising of all subjects with non-null values 

for those distinct properties) in order to minimize input size and number of join 

operations of a query. This paper proposed a distributed RDF data management 

system called S3QLRDF, which is built on top of Spark and utilizes SQL to execute 

SPARQL queries over PTP schema. The experimental analysis with respect to 

preprocessing costs and query performance, using synthetic and real datasets shows 

that S3QLRDF outperforms state-of-the-art distributed RDF management systems. 

Keywords RDF · SPARQL · Data Partitioning ·  Spark 
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1 Introduction 
  
The Semantic Web refers to a Web of Data that associates the semantics of 

information and services on the web to provide machine-readable and processable 

data. The RDF1 is a data model proposed by W3C to represent metadata about Web 

resources and facilitates the search engine to precisely locate and extract 

information on the Semantic Web. Recently, RDF has gained popularity for its 

flexible data model, which is used for publishing data on the Web through a number 

of applications and use cases in many areas such as social networks, commercial 

search engines, public knowledge bases, and databases. There are a growing 

number of organizations, institutions, and companies adopting Semantic Web 

technologies to represent data in a semantically structured way and thereby 

contributing to the Web of Data. Top search engine providers, Google, Bing, 

Yahoo!, and Yandex, have agreed to create a protocol (Schema.org2) for a 

structured data vocabulary in order to define entities, actions, and relationships 

through the internet, which helps search engines figure out the meanings on web 

pages more effectively and serve relevant results based on search queries of the 

internet users. To improve the accuracy of recommendations, recommender 

companies are increasingly using semantics and semantic tagging. DBpedia [1], 

YAGO [2], Bio2RDF [3], Google’s Knowledge Vault [4], Probase [5], 

PubChemRDF [6], and Universal Protein Resource (UniProtKB) [7] consist of 

billions of facts that are represented as RDF data contained in the Linked Open Data 

(LOD) [8] cloud. Therefore, we can expect the Semantic Web to grow steadily at 

web-scale and produce a large amount of RDF data. This steady growth of RDF 

data necessitates an efficient RDF management solution for storing and querying 

these very large RDF graphs. Over the last decade, many RDF data management 

systems have been designed to provide scalable, highly available, and fault-tolerant 

RDF stores with efficient SPARQL3 query processing for distributed environments 

(e.g., Partout [9], DREAM [10]). In the last few years, many distributed RDF 

management systems are built on Big Data technologies like Hadoop (e.g., Rya 

[11], H2RDF+ [12], SHARD [13], CliqueSquare [14], PigSPARQL [15], Sempala 

[16], S2RDF [17], SPARQLGX [18], PRoST [19]). These RDF data processing 

systems rely on cluster computing engines based on MapReduce [20] as an 

execution layer or in-memory frameworks such as Spark4 and Impala [21]. In most 

cases, these systems are optimized for specific query patterns. Some of these 

existing systems often give up their data preprocessing time for better querying 

performance. Therefore, it is necessary to implement a distributed RDF 

management system for efficient query performance on a wide range of query 

patterns with minimized preprocessing overhead, and that is the goal of this work. 

To achieve the above goal, RDF data partitioning strategy using existing 

approaches, Property Table [22] and Vertical Partitioning (VP) [23], to form SPT + 

VP [24] storage layout has been proposed. The combined SPT + VP RDF 

management solution outperforms state-of-the-art systems for all types of query 

                                                         
1 https://www.w3.org/TR/rdf-concepts/ 
2 https://schema.org/ 
3 https://www.w3.org/TR/rdf-sparql-query/ 
4 https://spark.apache.org/ 



 

 

patterns except a few complex-shaped queries. To overcome the query performance 

issue on complex query patterns, we further partition the Property Table into 

multiple tables based on distinct properties to propose a new storage schema called 

Property Table Partitioning (PTP). For storing and querying RDF data, we use 

HDFS5 (Hadoop Distributed File System) and an in-memory cluster computing 

framework Spark, one of the most important and popular Hadoop ecosystem 

components. 

This paper is an extension of the publication [25], where an initial version of the 

S3QLRDF system had been presented, by adding the following novel contributions: 

– An experimental evaluation between Big Data file formats, Parquet and ORC, 

using the S3QLRDF system with the PTP schema that demonstrates the impact 

of using different file formats for storing RDF data. 

– An empirical comparison of open-source Spark-based state-of-the-art systems: 

S3QLRDF, S2RDF, SPARQLGX, and PRoST based on real datasets, YAGO 

and DBLP, confirms the effectiveness and applicability of our approach. 

Giving this outlook, rest of this paper is presented as follows: We introduce the 

background with preliminary definitions used in section 2. Section 3 studies the 

related work. A detailed overview of S3QLRDF (SPARQL on Spark SQL for RDF) 

system is given in Section. 4. Experimental evaluation of S3QLRDF with other 

state of the art Hadoop-based SPARQL query engines is presented in Section. 5. 

Section 6 illustrates the impact of using different Big Data columnar file formats on 

the S3QLRDF system for RDF data management. The comparative performance 

evaluation of the S3QLRDF system with other state-of-the-art Spark-based 

SPARQL processors using real datasets is demonstrated in Section 7. Section 8 

concludes the paper. 

 
2 Background 

 
In this section, we briefly introduce background information on the RDF data and 

SPARQL query model followed by the Big Data technologies used. 

 

2.1 RDF 

 
RDF is a schema-free data model recommended by W3C to describe information 

about any resource on the Web. An RDF dataset consists of a collection of triples 

(subject, predicate, object), abbreviated as (s, p, o). In an RDF triple (aka RDF 

statement), subject denotes the entity or a class of resources; predicate denotes the 

attribute or aspect and relationship (aka property) between entities or classes; and 

object denotes an entity, class, or literal value. The RDF dataset represents triples as 

a directed graph with annotations called RDF graph. Nodes of an RDF graph 

represent either subject or object, and edges represent properties. Each node can be 

an Internationalized Resource Identifier (IRI), a literal or blank node. 

                                                         
5 https://hadoop.apache.org/  



 

 

 

 
 

Fig. 1   An example RDF graph 

 
Fig. 1 simulates an RDF graph with 16 edges of a simple publication network of 

an RDF dataset that consists of 16 triples, where ellipse nodes represent resources, 

directed edges represent properties, and rectangular nodes represent literal values. An 

RDF graph could also have blank nodes that represent resources without URI or 

literal assignment. Let I, B, and L be infinite sets of IRIs, blank nodes, and literals 

respectively which are pairwise disjoint. All RDF valid terms are the union of (I ∪ B ∪ L) and denoted by T.  

RDF Triple A ternary tuple (s, p, o) ∈ (I ∪ B) ☓ I ☓ (I ∪ B ∪ L) is called an RDF 

triple where s, p, and o denote subject, predicate, and object respectively. 

RDF Graph An RDF graph G = {t1, …. tn} is a finite set of RDF triples ti where 1 

≤ i ≤ n. 
RDF Dataset An RDF dataset is a collection of RDF graphs D = {G0, (i1, G1), …. 

(in, Gn)} with i1, . . . , in ∈ I. The pairs (ii, Gi) are named graphs identified by IRI and 

the default graph is G0 that does not have a name. 

 

2.2 SPARQL 

 
SPARQL is the standard query language recommended by W3C for RDF data. A 

basic SPARQL query consists of a SELECT clause followed by query variables 

represented by bound variables (variable with specified value) that appear in the 

result set and a WHERE clause followed by graph patterns that match against the 

RDF graph that the query is being executed on. A SPARQL query can be one of four 

types, including SELECT, ASK, DESCRIBE, and CONSTRUCT. On the other hand, 

a graph pattern that defines the query semantics can be one of the following types: 

Basic Graph Pattern (BGP), Basic Graph Pattern with Filter Constraints (FGP), 

Optional Graph Pattern (OGP), Union Graph Pattern (UGP) or Alternative Graph 

Pattern (AGP), and Group Graph Pattern (GGP). BGP, FGP, and OGP consist of 

one or multiple triple patterns, while a GGP or UGP (aka AGP) consists of one or 

multiple BGPs, FGPs or OGPs. Each part of a triple pattern: subject, predicate, and 

object can be either a bound or unbound variable. Basically, the result of a SPARQL 

query is obtained by replacing the variables of the query graph patterns with elements 

of the RDF graph. A SPARQL query has solution modifiers: ORDER BY (sort by 



 

 

defined order), DISTINCT (remove all duplicates), REDUCED (remove some 

duplicates), OFFSET (skip the first specified number of solutions) and LIMIT (upper 

bound on the number of solutions). SPARQL BGPs fall in one of the four following 

categories: 

Chain Shaped Pattern consists of a set of triple patterns that are linked together as 

subject-object joins via different unique join variables at the subject or object 

positions. 

Star Shaped Pattern consists of a set of triple patterns that are linked together via 

a single join variable at the subject or object position. 

Snowflake Shaped Pattern consists of several star shapes linked via different join 

variables at the subject or object positions in the triple pattern. 

Complex Structure is the compositions of the above-mentioned query patterns. 

  
SELECT ?article  ?t  

WHERE { 

                   ?article  author  ?a . 

                   ?article  title      ?t . 

                   ?a          name    “John Wayne” 
. 

} 

 
a) SPARQL 

 
b) Graph 

 
Fig. 2   A SPARQL query that finds the articles with their corresponding title written by John Wayne 

 
Fig. 2a represents a SPARQL query that returns the title of articles written by John 

Wayne. The corresponding graph pattern of the SPARQL query is shown in Fig. 2b. 

The result is the set of ordered bindings of (?article, ?t ) that render the query graph 

isomorphic to subgraphs in the data. Assuming data are stored in a table D(s, p, o), 

the query can be answered by first decomposing it into three subqueries: q1 ≡ σp = name ∧ o = John Wayne (D), q2 ≡ σp = author (D), and q3 ≡ σp = title (D). The subqueries are answered 

independently by scanning table D; then, their intermediate results are joined on the 

subject and object attribute: q1 ⋈ q1.s = q2.o q2 ⋈ q2.s = q3.s q3. By applying the query on 

the data in Figure 1, we get (?article, ?t ) ∈ {(Article_2, Title Two), (Article_3, Title 

Three)}. 

  

2.3 Hadoop & Spark 

 
Hadoop is an open-source framework for distributed storage and processing of large 

datasets based on the HDFS and MapReduce paradigm. HDFS is a popular 

distributed file system due to its replication capability to provide data redundancy 

where MapReduce can be I/O intensive and not suitable for interactive queries. To 

overcome this issue, a number of distributed computation engines based on in-

memory processing strategy have been introduced (e.g., Spark).  

Spark is an in-memory cluster-computing framework like MapReduce, which 

utilizes in-memory caching and advanced directed acyclic graph (DAG) execution 

engine to create efficient query plans for data transformations. Spark runs programs 

up to 100 times faster in-memory processing mode and 10 times faster in disk 

processing mode than Hadoop MapReduce. Spark has a SQL like module called 



 

 

Spark SQL6 that is used for structured data processing and allows running SQL like 

queries on Spark data. Spark SQL includes a cost-based optimizer that enables 

control code generation to make queries faster. 

  

2.4 Hadoop & Spark 

 
In this section, we discuss the state-of-the-art Big Data file formats called Parquet 

and ORC, which are relevant to this work. 

Parquet7 is a column-oriented data storage format of the Apache Hadoop 

ecosystem. It stores data in a column-oriented way, where the values of each 

column are organized consecutively on a disk that enables better compression. 

   

 

Fig. 3   The Parquet File Format8 

     
Parquet stores data organized by horizontal partitions called row groups. For 

each row group, the data values are organized by column chunk. Each column 

chunk corresponds to a column in the data set. A column chunk consists of multiple 

pages where each page contains values for a particular column. Parquet stores 

metadata at all the levels in the hierarchy (i.e., file, column chunk, and page). A 

sample parquet file format is shown in Fig. 3. This data format supports additional 

optimizations include encodings (bit packing, run length, and dictionary encoding) 

as well as compression algorithms like Snappy9, GZip10, LZO11, and so on. Parquet 

supports both flat and nested data. Parquet has a filter pushdown option that prunes 

extraneous data to reduce the number of data scans and reads when a query contains 

a filter expression. Pruning data reduces the I/O, CPU, and network overhead to 

optimize query performance. Another advantage is that NULL values are not stored 

explicitly in Parquet, therefore, sparse columns cause little to no storage overhead. 

ORC12 (Optimized Row Columnar) is a columnar file format that provides a 

                                                         
6 https://spark.apache.org/sql/ 
7 https://parquet.apache.org/ 
8 https://parquet.apache.org/documentation/latest/ 
9 http://google.github.io/snappy/ 
10 https://www.gnu.org/software/gzip/ 
11 http://www.oberhumer.com/opensource/lzo/ 
12 https://orc.apache.org/ 



 

 

highly efficient way to store relational data. It stores collections of rows in one file, 

and within the collection, the row data is stored in a columnar format. This allows 

parallel processing of row collections across a cluster. Each file with the columnar 

layout is optimized for compression and skipping of data/columns reduces read and 

decompression load. Its file structure consists of three parts: Stripe, Footer, and 

Postscript. It breaks the source file into a set of rows called a Stripe. The default stripe 

size is 250 MB. This large stripe size enables an efficient read of columns from 

HDFS. The file footer contains a list of stripes in the file, the number of rows per 

stripe, and each column's data type. It also contains column-level aggregate count, 

min, max, and sum. Postscript contains compression parameter and size of the 

compressed footer. Each stripe in an ORC File has three parts: Index data, Row data, 

and Stripe footer. Index data include min and max values for each column and the 

row positions within each column. Row index entries provide offsets that enable 

seeking the right compression block and byte within a decompressed block. The Row 

data are composed of multiple streams per column, and they are used in table scans. 

The stripe footer contains a directory of stream locations. Fig. 4 illustrates the layout 

of the ORC File structure. 

The columns in an ORC File separate the stripes or sections of the file. An internal 

index is used to track a section of the data within each column. This organization 

allows readers to efficiently omit the columns that are not required. Only required 

column values on each query are scanned and transferred on query execution. The 

ORC File supports sparse indexes that are data statistics and position pointers. The 

data statistics are used in query optimization, and they are also used to answer simple 

aggregation queries. The ORC reader uses these statistics to avoid unnecessary data 

read from HDFS. The position pointers are used to locate the index groups and 

stripes.  

 

Fig. 4   The ORC File Format [26] 

 

The ORC File uses a two-level compression scheme. Each column can apply one 

of the four types of encoding schemes based on its data type: 1) a sequence of bytes, 



 

 

2) a run-length encoded sequence of bytes, 3) a run-length and delta encoded 

sequence of integers, and 4) a bit vector. Users can further ask the writer of an ORC 

File to compress streams of data with a general-purpose codec among ZLIB13, 

Snappy, and LZO. Metadata about the ORC data, such as the schema and 

compression format, are serialized into the file and are made available to the readers. 

The operator translates the ORC File schema into appropriate data flow types when 

possible. 

 
3 Related work 

   
Over the past decade, many RDF data management systems have been built based on 

distributed storage systems to provide efficient, scalable, highly available and fault 

tolerance services. These systems use various indexing and partitioning strategies on 

RDF elements to develop RDF storage layouts. In this section, we discuss the state-

of-the-art distributed RDF management systems that are relevant to this work. 

Rya [11] has been implemented on top of a key-value store Accumulo14  stores 

RDF triple in the Row ID part of the Accumulo tables and indexes the triples across 

three separate tables (spo, pos, and osp) by maintaining the different ordering of the 

subject, predicate, object for each table. These three permutations (spo, pos, and osp) 

of triple components are sufficient to answer all possible triple patterns by using 

range scan on the appropriate index. 

CliqueSquare [14] uses built-in data replication mechanism of HDFS to partition 

the RDF dataset by hashing on all three columns of triples based on their subject, 

predicate and object values and creates three replicas by default. The first replica 

holds the partitions of triples based on their subject, predicate, and object values. 

Second replica stores all subject, predicate, and object partitions of the same value 

within the same node. For the third replica, CliqueSquare groups all the subject 

partitions within a node by the value of the predicate in their triples. It also groups all 

object partitions based on their predicate values. CliqueSquare uses a clique-based 

algorithm to select the partitions in such a way that can reduce as much as possible 

data exchange in the shuffle phases and minimize the number of MapReduce stages. 

S2RDF [17] has been built on top of Spark  that uses a relational partitioning 

technique called Extended Vertical Partitioning (ExtVP) which is an extension of 

Vertical Partitioning (VP) [27] approach to store RDF data on the HDFS using 

Parquet columnar storage format. The goal of ExtVP approach is to minimize the 

input size for the query by using a semi-join based preprocessing approach to 

compute the possible join relations between partitions of VP tables. S2RDF executes 

SPARQL queries by translating them into SQL queries, which are then evaluated 

using Spark SQL. 

SPARQLGX [18] also built on top of Spark uses Vertically Partitioned approach 

proposed in [27] to store the RDF dataset into HDFS and compiles the SPARQL 

queries into Scala code in order to execute directly into Spark operations. The system 

uses its own statistics to optimize the computation with less intermediate results. 

PRoST [19] is a Spark based distributed system for RDF storage and SPARQL 

querying that stores data twice using Vertical Partitioning and Property Table. PRoST 

                                                         
13 https://zlib.net/ 
14 https://accumulo.apache.org/ 



 

 

translates SPARQL queries into the Join Tree format where every node represents 

either the Vertical Partitioning table or Property Table. The triple patterns with the 

same subject in a unique basic graph pattern are grouped to form a single node where 

the Property Table is used. All the other groups with a single triple pattern are 

translated to nodes that use the Vertical Partitioning tables. 

Table 1   Summary of Distributed RDF Systems  

System Storage Strategy Storage Backend Execution Framework 

Rya  3 Indices (SPO, POS, OSP) Key-Value Store 
OpenRDF Sesame 

Framework 

CliqueSquare  Hash and Vertical Partitioning Distributed File System MapReduce 

S2RDF  
Vertical Partitioning and Extended 

Vertical Partitioning 
Distributed File System SPARQL to SQL 

SPARQLGX  Vertical Partitioning Distributed File System SPARQL to Scala Code 

PRoST  Vertical Partitioning Distributed File System SPARQL to SQL 

 
4 S3QLRDF architecture 

 
In this section, we present the overall architecture of S3QLRDF15 system. It consists 

of three main components: Data Loader – RDF data ingestion and partitioning using 

PTP schema, Query Translator – Spark SQL query generator from the SPARQL 

query, and Query Evaluator – Spark SQL query evaluated directly into the Spark 

SQL engine (Fig. 5). 

 

 

Fig. 5   S3QLRDF Architecture Overview 

                                                         
15 https://github.com/sbansallab/S3QLRDF 



 

 

Data Loader S3QLRDF comes with a novel RDF data partitioning strategy 

called PTP schema. RDF data is first loaded into HDFS, and then Spark read and 

partition the data using the PTP schema that is a modified and enhanced version of 

the well-known PT schema introduced by Wilkinson et al. [22]. 

Table 2   Summary Modified Property Table for RDF Graph of Figure 1 (empty cells = NULL) 

subject type title author name website_of 

Article_1 Article “Title One” [David_Gary]   

Article_2 Article “Title Two” [David_Gary, John_Wayne]   

David_Gary Person   “David Gary”  

www.aaa.com/d_g     David_Gary 

Article_3 Article “Title Three” [John_Wayne]   

John_Wayne Person   “John Wayne”  

www.bbb.com/j_w     John_Wayne 

 
We introduced the Modified Property Table in [24] which is a modified version of 

the traditional PT where multi-valued properties are stored in a single cell using a 

nested data structure (e.g., Array). We briefly present the Modified Property Table 

schema followed by our proposed PTP schema; an extension of the Modified 

Property Table approach. We use RDF in N-Triples format for the data storage 

layout. Initially, we create a TT (Triple Table) with three columns where each row 

comprises an RDF statement, i.e., triples (subject, property, object). Then we create 

PT (Property Table) with the following schema: 

 

PT(subject, property1, ..., propertyn)  

 

where n is the total number of distinct properties present in a particular RDF dataset. 

Here, each RDF subject is stored in the subject column and their object values reside 

in their corresponding property columns. 

Next, we partition the Modified Property Table into multiple tables based on 

distinct properties present in the RDF dataset to devise our proposed PTP schema. 

Each of the PTP tables contains only those subjects that have a value for the particular 

property on which that partition is based, and we use the name of that particular 

property as the partitioned table name. Table 3 shows the proposed RDF data layout 

that is obtained from partitioning the whole Modified Property Table (Table 2). 

An RDF dataset can have many properties, and most subjects will only use a small 

subset of these properties, therefore, these tables will be sparse containing NULL 

values. We decide to use the general-purpose Parquet columnar storage format to 

materialize those PTP tables in HDFS because Parquet does not store NULL values 

explicitly, thus sparse columns cause little to no storage overhead. We also keep a 

statistics file to store the actual sizes (number of tuples) of each PTP table along with 

the name of multi-valued attributes, such that these statistics can be used for query 

generation.  

The goal of PTP approach is to reduce the number of tuples to scan and the 

amount of I/O required for a query. Since each table of the PTP is the fragment of the 

Property Table, it is possible to minimize unnecessary I/O and comparisons during 



 

 

join execution to reduce in-memory consumption. Spark is an in-memory system, and 

memory is typically much more limited than HDFS disk space, thus saving this 

resource is important for scalability. Another advantage of the PTP approach is that 

star patterns can be answered entirely without the need for a join. 

 
Table 3   Property Table Partitioning Schema for RDF Graph shown in Fig. 1 

type     

subject type title author name 

Article_1 Article “Title One” [David_Gary]  

Article_2 Article “Title Two” [David_Gary, John_Wayne]  

David_Gary Person   “David Gary” 

Article_3 Article “Title Three” [John_Wayne]  

John_Wayne Person   “John Wayne” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Query Translator The query translator generates the equivalent Spark SQL 

expressions from SPARQL query based on PTP schema using the statistics file that is 

generated during the PTP tables creation process. Every SPARQL query defines a 

graph pattern to be matched against an RDF graph. A triple pattern is the basic 

building block of a SPARQL query, and a Basic Graph Pattern (BGP) is simply the 

concatenation of a set of triple patterns using AND (.). Since a BGP represents the 

core of the SPARQL query, we will mainly focus on the BGP fragment. A triple 

group (tg) consists of a set of triple patterns having the same subject in a BGP. So, a 

title  

subject type title author 

Article_1 Article “Title One” [David_Gary] 

Article_2 Article “Title Two” [David_Gary, John_Wayne] 

Article_3 Article “Title Three” [John_Wayne] 

author  

subject type title author 

Article_1 Article “Title One” [David_Gary] 

Article_2 Article “Title Two” [David_Gary, John_Wayne] 

Article_3 Article “Title Three” [John_Wayne] 

name   

subject type name 

David_Gary Person “David Gary” 

John_Wayne Person “John Wayne” 

website_of  

subject website_of 

www.aaa.com/d_g David_Gary 

www.bbb.com/j_w John_Wayne 



 

 

BGP (bgp) can have more than one distinct triple group. 

Consider the following BGP: 

 

bgp = {     ?x    type     ?p . 

                 ?x    name   “John Wayne” . 
                 ?y    type     “Article” .  
                 ?y    author  ?x .    

                 ?y    title      ?t .  

                 ?z   website_of    ?x  } 

 

At first, we group the triple patterns having the same subject. The above mentioned 

bgp consists of three distinct triple groups, tg1 = { ?x type ?p  . ?x name “John 
Wayne” }, tg2 = { ?y type “Article” . ?y author ?x . ?y title ?t }, and tg3 = { 

?z   website_of  ?x }. Then we count the bound (fixed) values for each triple group. 

The number of bound values for the bgp is (tg1 → 1, tg2 → 1, tg3 → 0). Here, the basic 

concept is that each triple group can be answered by a subquery without a join where 

variables occurring in a triple group define the columns to be selected and fixed 

values are used as conditions in the WHERE clause. Variables are mapped by subject 

and property based on their position in the triple pattern. A subject variable is mapped 

to subject column and the object(s) variable is mapped to its corresponding property 

(multi-valued property is labeled with a special extension) column. It is worth 

mentioning here that Spark uses the LATERAL VIEW EXPLODE function to flatten 

a complex column (multi-valued property). This variable mapping is used to name the 

output columns such that an outer query can easily refer to it. The table for a triple 

group is selected from the properties which belong to that triple group. We also add a 

test for NOT NULL to the property (multi-valued property with a special extension) 

in the WHERE clause if the corresponding object is a variable in the triple pattern. 

This is not necessary for variables on the subject position as the subject column does 

not contain NULL values. Because the system is aware of the size of the PTP tables 

and each table is named after the property, it can select the table for a triple group that 

has the lowest number of tuples identified from the statistics file. For example, tg1 has 

two distinct properties, type and name, so two candidate tables are available. From the 

statistics file, the number of tuples for the two distinct tables are type → 5 and name 
→ 2 (refer to Table 3). Since table name has fewer number of tuples compared to 

type, the table name will be selected for tg1. Similarly, table title and website_of will 

be selected for tg2 and tg3 respectively. Note that, title and author have the same 

number of tuples; therefore, a random table will be selected between them for the tg2. 

It then arranges the triple groups based on the number of bound values and the size of 

the selected PTP tables for the triple groups. The triple group with the highest number 

of bound values is given the top rank to execute first during the query execution. A 

triple group having the smallest number of tuples will be given the higher rank among 

the triple groups if they have the same number of bound values. For example, tg1 and 

tg2 both have the highest number of bound values among the triple groups, but the 

selected table of tg1 has a smaller number of tuples compared to tg2, so tg1 will be 

given the highest rank during the query execution to execute first. Now, out of the 

remaining two triple groups, tg2 and tg3, tg3 has a lower number of tuples compared to 

tg2, but the number of bound values of tg2 is higher than tg3. Since we are giving 

higher priority to the number of bound values than number of tuples of the selected 

table, tg2 will be given a higher rank than tg3. Finally, the triple groups are arranged in 



 

 

such a way that there must be at least one common variable between a triple group 

and any of its higher ranked triple group(s) to avoid cross joins when processing them 

in that order. So, the final ordering (ranking) among the three triple groups will be tg1 

→ tg2 → tg3. 

Overall SPARQL translation process can be described as follows: 

The subquery sq1 for tg1 is  

 

SELECT subject, type FROM name 

WHERE type IS NOT NULL AND name = ‘John Wayne’ 
 

The author is a multi-valued property that is identified from the statistics file. Thus, 

the author column is flattened by the LATERAL VIEW EXPLODE function, and we 

rename that column with an extension _lev. 

The second subquery sq2 for tg2 is  

 

SELECT subject, title, author_lve FROM title 

LATERAL VIEW EXPLODE(author) EXPLODED_NAMES AS author_lve 

WHERE type = “Article” AND title IS NOT NULL AND author_lve IS NOT 
NULL 

 

And the third subquery sq3 for tg3 is 

 

SELECT subject, website_of FROM website_of 

WHERE website_of IS NOT NULL 

 

After applying the final ordering of triple groups (tg2 → tg1 → tg3) and variable 

mapping for each triple group, we get the final SQL query for the bgp, that is 

 

SELECT table_1.subject AS x, t1.type AS p, t2.subject AS y, t2.title AS t, 

t3.subjectAS z FROM (sq1) table_1 JOIN (sq2) table_2 ON (table_1.subject = 

table2.author_lve) JOIN (sq3) table_3 ON (table_1.subject = table3.website_of 

AND table2.author_lve = table3.website_of) 

 

Therefore, the input SPARQL query can be translated to an equivalent Spark SQL 

query by mapping its operators to the equivalent Spark SQL keywords. A FILTER 

expression in SPARQL can be mapped to the equivalent conditions in Spark SQL by 

adapting the SPARQL syntax to the syntax of SQL, and then these conditions can be 

added to the WHERE clause of the corresponding (sub)query in Spark SQL 

statement. The OPTIONAL pattern can be mapped to a LEFT OUTER JOIN, and 

UNION, LIMIT, ORDER BY, and DISTINCT can be mapped directly using their 

equivalent clauses in the SQL dialect of Spark. Finally, a SPARQL query is fed to the 

Spark engine as an equivalent Spark SQL query. 

Query Executor In this process, the Spark SQL query created by the query 

translator is directly evaluated into the Spark SQL engine.  

 

 



 

 

5 Evaluation 
 
In this section, we present a comparative performance evaluation of our RDF 

management system S3QLRDF along with other state-of-the-art Hadoop-based RDF 

querying approaches, namely CliqueSquare, S2RDF, SPARQLGX, and Rya as they 

are the most similar to our system. The experimental setup and a discussion of results 

are presented. 

 

5.1 Benchmark Queries 

 
For the performance evaluation of our RDF management solutions, we utilize two 

synthetic and one real dataset, as shown in Table 4. The synthetic datasets are 

LUBM with the number of universities set to 1000, 5000, and 10000, and WatDiv 

with scale factor of 1000, 5000, and 10000. 

 

Table 4   Experimental Setup - Dataset Scale 

 
LUBM was proposed in 2005 with a data generator and was originally designed to 

test the inference capabilities of Semantic Web repositories. LUBM provides 14 

predefined test queries, but many of these queries have simple structures and are quite 

similar to each other. Therefore, we selected Q1, Q2, Q4, Q8, Q12, and Q14 from the 

LUBM test query set based on their structure and selectivity. Q1 has a star-shaped 

pattern with high selectivity, and it carries large input; Q2 has a complex pattern with 

large intermediate results; Q4 is a simple highly selective star query with a small size 

of result set; Q8 is the most complex snowflake query of the LUBM benchmark; Q12 

is a simple selective query, which has a constant number of solutions similar to Q1, 

Q4, and Q8 regardless of the dataset size; and Q14 is the most unselective query, 

which has a large size of results set. Q2 and Q14 have increasing numbers of 

solutions proportional to the dataset size. The University of Waterloo introduced 

WatDiv in 2014. WatDiv has a data generator as well as a query generator, and it was 

designed to cover both structural and data-driven features of four different types of 

query shapes, namely, linear, star, snowflake, and complex SPARQL queries. The 

WatDiv basic query set contains queries of varying shape and selectivity to model 

different scenarios. The queries are grouped into the following subsets: 

 

 Dataset 
Number of Triples (million) 

 

 LUBM 

 Number of Universities 

 1000 138 

 5000 691 

 10000 1381 

 

 WatDiv 

 Scale Factor 

 1000 109 

 5000 549 

 10000 1098 

 YAGO2  72 



 

 

 L (L1, L2, L3, L4, L5): Linear shaped queries. 

 S (S1, S2, S3, S4, S5, S6, S7): Star shaped queries.  

 F (F1, F2, F3, F4, F5): Snowflake shaped queries. 

 C (C1, C2, C3): Complex shaped queries. 

 

The real-life dataset is the YAGO2, which is a semantic knowledge base, derived 

from Wikipedia, WordNet, and GeoNames. YAGO2 does not provide benchmark 

queries; we have created a set of representative test queries (Y1 – Y5) with different 

structures and complexities relative to LUBM and WatDiv query sets. Regarding 

LUBM queries, we modified some of the original queries because executing those 

original queries without the inferred triples returns an empty result set. All YAGO2 

and modified LUBM queries are listed in appendix A and B respectively. 

 

5.2 Cluster Configuration 

 
To conduct the comparative analysis of distributed RDF data management solutions, 

we constructed seven node clusters (1 master and 6 workers) on the Google Cloud 

Platform. Each node in the cluster has a 32 vCPUs Intel(R) Xeon(R) CPU @ 

2.30GHz processor, 120 GB of memory, and 1 TB of hard disk space running 

Ubuntu 16.04.3 LTS OS. Hadoop 2.7.7 and Spark 2.4.4 are configured on all nodes 

where each spark worker is given 100 GB of memory and 30 cores. In addition, 

Parquet filter pushdown is enabled and broadcast joins in Spark SQL are disabled. 

 

5.3 Empirical Comparison 

 
We present an empirical comparison of our prototype S3QLRDF system with four 

other open-source Hadoop based state-of-the-art systems: CliqueSquare, S2RDF, 

SPARQLGX, and Rya. The store sizes and data loading times are listed in Table 5. 

During data loading phase, we parse data to replace all URIs with their corresponding 

namespace prefix and remove data type information from RDF objects to convert 

them into primitive types. We do not consider the data import on the HDFS as part of 

the preprocessing phase. We conduct a performance evaluation of S3QLRDF with 

other competitor systems based on three metrics: preprocessing (loading) times, store 

sizes, and query execution times. All measurements are averaged over four runs. 

S3QLRDF has two data loading options: 1. Drop all columns whose entries are all 

empty (NULL), and 2. Keep all columns even if all entries are empty (NULL), which 

we call light-load. The light-load requires much less time compared to the first 

loading option to store RDF data in PTP schema. We notice that using the first data 

loading option cannot reduce noticeable storage space consumption and also query 

execution times compared to the light-load in our cluster configuration. Therefore, we 

discuss results with the light-load preprocessing option for S3QLRDF. S3QLRDF has 

a two-step data loading process. The first step is creating the Property Table, and the 

second step is to create PTP tables. We do not report about the Property Table in the 

results of query run time because it does not participate in query evaluation.  Since 

Spark SQL has the cacheTable functionality to cache table in memory, we report 

query execution times for both caching and without caching PTP table along with the 

average mean runtimes (AM). S2RDF has two preprocessing modes: VP and ExtVP, 

so we keep both of them in our results. We indicate “TimeOut” whenever the query 



 

 

processing does not complete within a certain amount of time (8 hours) and “Fail” 
whenever the query is not supported by the system or the system crashes before the 

timeout delay. 

 

Table 5   Loading Times and HDFS Sizes of S3QLRDF and Competitors 

 

 

   

 

Fig. 6   Storage Space Distributions with Datasets 

 
Fig. 6 indicates the storage space distribution of LUBM (avg. of 1000, 5000, and 

10000), WatDiv (avg. of SF 1000, 5000, and 10000), and YAGO2 datasets. From 

Table 5, we can see that S2RDF-VP and SPARQLGX have low space overhead; on 

the other hand, CliqueSquare and S2RDF-ExtVP need more storage space due to their 

underlying data storage layouts. 

 

 

Dataset 
LUBM 

1000 

LUBM 

5000 

LUBM 

10000 

WatDiv  

SF-1000 

WatDiv  

SF-5000 

WatDiv  

SF-10000 
YAGO2 

H
D

F
S

 S
iz

e 
(G

B
)  

Original 24 116 232 15 74 149 11 

CliqueSquare 39.7 201 402 30 153 308 15 

S2RDF-VP 0.98 5 10 1 5.5 11.1 1 

S2RDF-ExtVP 3.9 19.2 38.9 10.4 53.7 108.5 10 

SPARQLGX 1.2 5.9 12.1 0.88 4.8 9.8 1.1 

Rya 1.4 7.3 14.9 2.9 17.2 32.3 2.8 

S3QLRDF 3.7 18.7 37.4 7.6 38.3 76.6 5.3 

L
o

ad
in

g
 T

im
e 

(s
ec

o
n

d
s)

 

CliqueSquare 611 3027 6149 645 2983 6237 4876 

S2RDF-VP 63 173 289 104 219 325 114 

S2RDF-ExtVP 898 2293 4112 6082 10261 14606 13899 

SPARQLGX 143 508 908 106 380 749 105 

Rya 854 3476 5735 1277 5084 12509 977 

S3QLRDF 163 556 1009 279 766 1419 271 



 

 

 

Fig. 7   Time Distributions with Datasets (log scale) 

 

From Fig. 7, we notice that CliqueSquare, S2RDF-ExtVP, and Rya need more 

time to load data compare to S2RDF-VP and SPARQLGX because of their 

preprocessing methods. The lack of in-memory data processing framework in 

CliqueSquare and Rya causes high overhead. S2RDF-ExtVP incurs significantly 

higher overhead compared to S2RDF-VP because of additional pre-computation 

phases. Although YAGO2 is the smallest dataset, S2RDF-ExtVP needs more 

preprocessing time with YAGO2 due to its large number of predicates. We observe 

that the data loading time of S2RDF-ExtVP depends not only on the size of the 

dataset but also on the number of predicates. S3QLRDF has a moderate overhead in 

terms of data loading time and storage space as compared to other systems. 

 

 

Fig. 8   Performance Comparison for LUBM 10000 (log scale) 

  
The performance comparison for LUBM 10000 is illustrated in Fig. 8 on a log 

scale while absolute runtimes are given in Table 6. We can observe that S3QLRDF 

outperforms all other systems by up to an order of magnitude on average (arithmetic 

mean). Q1 and Q4 are the most selective queries, returning only a few results and can 

be answered by S3QLRDF within 5200 milliseconds or less. These queries define a 

star-shaped pattern, which can be answered very efficiently with the PTP table of 

S3QLRDF. For the most unselective query, Q14, S3QLRDF outperforms all other 

systems. Q2, Q8, and Q12 define the complex patterns where Q8 and Q12 produce 

results of constant size as the size of the dataset increases. On the other hand, the 

intermediate result set of Q2 increases when the input dataset increases. Also, for 

these queries, runtimes of S3QLRDF are significantly faster than for all other 

systems, which is below 9000 milliseconds. If we use the cacheTable functionality of 

Spark SQL to cache PTP tables in memory, which we call S3QLRDF-CT, then we 



 

 

achieve an order of magnitude faster response time despite that the caching table 

incurs a little overhead due to caching time. We also report the number of query 

executions per hour (Query/hr) where S3QLRDF and S3QLRDF-CT outperform all 

other systems. 

 

Table 6   LUBM Query Runtimes (milliseconds), AM: Arithmetic Mean 

Query Q1 Q2 Q4 Q8 Q12 Q14 AM Query/hr 

1
0
0
0
 

CliqueSquare 23004 131023 24005 55008 17003 25004 45841 78 

S2RDF-VP 737 1447923 1417 3346 1291 249 242493 14 

S2RDF-ExtVP 626 436253 773 2473 816 202 73523 48 

SPARQLGX 7435 16159 15676 15320 9528 4654 11462 314 

Rya 82519 TimeOut 24306 TimeOut TimeOut 19467 - - 

S3QLRDF 1289 4275 318 875 809 839 1400 2569 

S3QLRDF-CT 753 2708 162 579 529 468 866 4154 

5
0
0
0
 

CliqueSquare 51008 547086 58008 221037 23004 61012 160192 22 

S2RDF-VP 1170 7535191 4220 6630 1588 424 1258203 2 

S2RDF-ExtVP 1045 2534103 811 5308 1012 364 423773 8 

SPARQLGX 10820 24649 36834 28121 11966 5328 19619 183 

Rya 393219 TimeOut 93028 TimeOut TimeOut 103257 - - 

S3QLRDF 3672 6445 331 2045 984 1822 2549 1411 

S3QLRDF-CT 1387 4430 187 1584 720 1013 1553 2317 

1
0
0
0

0
 

CliqueSquare 85014 1149205 97020 429089 25005 109019 315725 11 

S2RDF-VP 1899 18737030 8751 15377 1818 512 3127564 1 

S2RDF-ExtVP 1813 9909611 1105 15261 1126 492 1654901 2 

SPARQLGX 13780 36944 69986 51158 17697 7233 32799 109 

Rya 820376 TimeOut 250340 TimeOut TimeOut 198825 - - 

S3QLRDF 5193 8565 359 4005 1069 3298 3748 960 

S3QLRDF-CT 2132 5841 209 2388 887 2016 2245 1603 

 

 

Fig. 9   Performance Comparison for WatDiv SF10000 (log scale) 

 



 

 

Fig. 9 compares the different systems on the largest dataset (SF10000) of WatDiv, 

corresponding AM runtimes are listed in Table 7. For WatDiv, S3QLRDF and 

S3QLRDF-CT show a competitive runtime performance for all query categories 

when increasing the size of the dataset. In Table 7, we report the number of queries to 

execute per hour (Query/hr) under all query categories for all competitors. Again, 

S3QLRDF and S3QLRDF-CT outperform all of its competitors by an order of 

magnitude in terms of Query/hr. 

 
Table 7   WatDiv Query Runtimes (milliseconds), AM: Arithmetic Mean 

Query L1 L2 L3 L4 L5 AM-L Query/hr 

1
0
0
0
 

CliqueSquare 17004 17003 17003 16003 16002 16603 216 

S2RDF-VP 1057 833 728 383 655 731 4923 

S2RDF-ExtVP 693 668 483 203 345 478 7525 

SPARQLGX 7499 6056 6266 5164 6513 6299 571 

Rya 11553 13986 179566 2503 7850 43091 83 

S3QLRDF 372 361 243 194 301 294 12236 

S3QLRDF-CT 271 241 154 107 209 196 18329 

5
0
0
0
 

CliqueSquare 21004 23005 20004 18004 23005 21004 171 

S2RDF-VP 1193 864 788 476 817 827 4349 

S2RDF-ExtVP 753 740 556 364 493 581 6194 

SPARQLGX 9332 7233 7550 5295 7678 7417 485 

Rya 93100 139321 2425292 16366 73631 549542 6 

S3QLRDF 417 402 321 206 316 332 10830 

S3QLRDF-CT 324 258 225 119 219 229 15720 

1
0
0
0

0
 

CliqueSquare 24004 28004 22004 19004 29007 24404 147 

S2RDF-VP 1214 1082 802 612 1079 957 3758 

S2RDF-ExtVP 804 972 781 409 669 727 4951 

SPARQLGX 10803 8740 8535 6330 10579 8997 400 

Rya 201572 150843 3773827 32482 163556 864456 4 

S3QLRDF 577 389 405 221 319 382 9419 

S3QLRDF-CT 364 279 243 153 226 253 14229 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 7   continued  

 

Query F1 F2 F3 F4 F5 AM-F Query/hr 

1
0
0
0
 

CliqueSquare 17003 34005 17003 17004 23004 21603 166 

S2RDF-VP 3213 3299 2806 3100 1200 2723 1321 

S2RDF-ExtVP 1195 1762 1590 1695 1020 1452 2478 

SPARQLGX 9303 14175 12139 12256 16317 12838 280 

Rya 118584 58966 3028489 36392 13775 651241 5 

S3QLRDF 498 410 813 902 750 674 5336 

S3QLRDF-CT 394 263 570 614 428 453 7933 

5
0
0
0
 

CliqueSquare 22004 52010 29004 18004 45009 33206 108 

S2RDF-VP 4015 4174 3186 4415 1804 3518 1023 

S2RDF-ExtVP 1418 2393 1611 1996 1415 1766 2037 

SPARQLGX 12077 26228 24835 14840 20742 19744 182 

Rya 2935654 502117 TimeOut 244267 87633 - - 

S3QLRDF 621 460 1343 1152 765 868 4146 

S3QLRDF-CT 484 282 891 764 529 590 6101 

1
0
0
0

0
 

CliqueSquare 23004 64009 51009 24005 69015 46208 77 

S2RDF-VP 4707 5249 3743 5052 1899 4130 871 

S2RDF-ExtVP 1666 2859 1759 2967 1586 2167 1660 

SPARQLGX 14727 36746 41766 15964 23861 26612 135 

Rya 16566663 955236 TimeOut 641823 161901 - - 

S3QLRDF 903 543 1488 1502 802 1047 3436 

S3QLRDF-CT 630 316 1093 1278 662 795 4523 

Query S1 S2 S3 S4 S5 S6 S7 AM-S Query/hr 

1
0
0
0
 

CliqueSquare 18003 17003 17003 17003 17003 18003 17003 17288 208 

S2RDF-VP 1403 1351 802 993 2893 1998 974 1487 2419 

S2RDF-ExtVP 1156 1015 381 468 1220 535 403 739 4866 

SPARQLGX 17207 8156 6499 8221 5944 6999 7655 8668 415 

Rya 14013 104851 2930 30746 4713 2020 129859 41304 87 

S3QLRDF 347 218 211 339 160 178 308 251 14310 

S3QLRDF-CT 242 115 120 210 117 112 227 163 22047 

5
0
0
0
 

CliqueSquare 23006 18003 17003 18004 17003 20005 21003 19146 188 

S2RDF-VP 1947 1618 1005 1063 3276 1863 1004 1682 2139 

S2RDF-ExtVP 1224 1064 505 586 1890 689 454 916 3930 

SPARQLGX 22275 15479 7560 11251 8751 8541 8845 11814 304 

Rya 81997 976214 28658 167601 33253 33400 715782 290986 12 

S3QLRDF 454 283 228 366 196 210 371 301 11954 

S3QLRDF-CT 321 144 125 254 126 128 238 190 18862 

1
0
0
0

0
 

CliqueSquare 31005 20003 18003 20005 18004 21004 26005 22004 163 

S2RDF-VP 2071 1810 1276 1089 4049 3015 1012 2046 1759 

S2RDF-ExtVP 1588 1665 738 627 2054 964 498 1162 3098 

SPARQLGX 30205 15140 8251 12190 9846 10440 12707 14111 255 

Rya 160363 1914860 66350 339725 64166 51112 1544922 591642 6 

S3QLRDF 472 294 242 383 226 222 378 316 11366 

S3QLRDF-CT 338 159 137 301 121 142 261 208 17272 



 

 

Table 7   continued  

Query C1 C2 C3 AM-C Query/hr 

1
0
0
0
 

CliqueSquare 33005 37006 30005 33338 107 

S2RDF-VP 3427 5250 5852 4843 743 

S2RDF-ExtVP 3251 3189 5275 3905 921 

SPARQLGX 19854 15152 21817 18941 190 

Rya 15444 2992945 2173732 1727373 2 

S3QLRDF 3854 2615 387 2285 1575 

S3QLRDF-CT 1597 1686 212 1165 3090 

5
0
0
0
 

CliqueSquare 49010 71018 92018 70682 50 

S2RDF-VP 4625 8970 10709 8101 444 

S2RDF-ExtVP 4092 4892 8705 5896 610 

SPARQLGX 34894 32621 48768 38761 92 

Rya 130440 TimeOut 13385691 - - 

S3QLRDF 5199 2844 664 2902 1240 

S3QLRDF-CT 2152 2332 302 1595 2256 

1
0
0
0

0
 

CliqueSquare 65014 109017 190041 121357 29 

S2RDF-VP 5880 10361 16488 10909 329 

S2RDF-ExtVP 5292 5783 14382 8485 424 

SPARQLGX 64319 29652 78596 57522 62 

Rya 310289 TimeOut 28712939 - - 

S3QLRDF 6370 4702 977 4016 896 

S3QLRDF-CT 2968 3449 351 2256 1595 

 

 

 
 

Fig. 10   Performance Comparison for YAGO2 (log scale) 

 

 

 

 



 

 

  Table 8   YAGO2 Query Runtimes (milliseconds), AM: Arithmetic Mean 

Query Y1 Y2 Y3 Y4 Y5 AM Query/hr 

S2RDF-VP 2923 5585 9754 8620 3469 6070 593 

S2RDF-ExtVP 1811 5188 7507 3445 1566 3903 922 

SPARQLGX 169546 35260 Fail 22542 15141 - - 

Rya 1329020 5288669 Fail TimeOut 632515 - - 

S3QLRDF 3525 9610 1921 2284 632 3594 1001 

S3QLRDF-CT 2544 8853 1407 1685 376 2973 1210 

  
Fig. 10 illustrates the execution times for YAGO2 queries of all compared systems 

while absolute runtimes, and Query/hr are given in Table 8. CliqueSquare fails to 

execute YAGO2 queries; therefore, we did not include CliqueSquare in the YAGO2 

query evaluation. We can observe that S3QLRDF and S3QLRDF-CT outperform 

SPARQLGX and Rya by an order of magnitude on runtime in all queries. S2RDF has 

faster query response times for Y1 and Y2 compared to S3QLRDF because of the 

materialized join reduction tables of ExtVP and because S3QLRDF incurs a little 

overhead while flattening a complex column. Since a number of complex columns are 

required to be flattened in Y1 and Y2, S3QLRDF is slower in response time 

compared to S2RDF, but in terms of average runtime and Query/hr, S3QLRDF 

outperforms all of its competitors, including S2RDF. 

In this section, we conduct a comparative performance evaluation of the SQL 

system on a Hadoop cluster with the state-of-the-art systems CliqueSquare, S2RDF, 

SPARQLGX, and Rya, using different query shapes, complexities with three different 

datasets up to 1.4 billion triples. Our proposed S3QLRDF system outperforms state-

of-the-art distributed SPARQL query processors by an order of magnitude on average 

for all query shapes. 

 
6 Benchmarking S3QLRDF under Columnar File Formats 

 
Columnar file formats have well known advantages that can improve the storage 

efficiency by effective data compression, as well as helping to achieve significant 

performance gains by moving only relevant portions of data into memory during 

query processing. Columnar storage formats have been available for storing data in 

HDFS for over a decade. Currently, Parquet and ORC formats are two of the most 

popular ones for HDFS. 

 

6.1 Relational Data Management Using Parquet and ORC 

 
Relational data management including analysis is one of the most popular data 

processing paradigms. Modern cloud-based relational data processing systems 

typically do not manage their storage. They leverage a variety of external file formats 

to store and access data. Over the last decade, a variety of external file formats such 

as Parquet, ORC, etc., have been developed to store large volumes of relational data 

in the cloud. High-performance networking and storage devices are used pervasively 



 

 

to process this massive amount of data in Big Data frameworks like Spark and 

Hadoop. The performance of a file format in terms of storage efficiency and data 

access rate plays an important role in data management. 

Parquet and ORC are columnar data storage in the Hadoop ecosystem. They offer 

features that store data by employing different encoding, column-wise compression, 

compression based on data type, and predicate pushdown. Typically, enhanced 

compression ratios, or skipping blocks of data, involves reading fewer bytes from 

HDFS, resulting in enhanced query performance. We use Parquet and ORC file 

formats as the storage backend for our S3QLRDF system to run the experiments in 

order to measure the RDF data storage efficiency, loading, and query execution 

performance. 

 

6.2 Empirical Comparison 

 
We present an empirical comparison between Parquet and ORC file formats while 

using S3QLRDF system with the PTP schema. 

We performed our evaluation on a small cluster of 6 machines (1 master and 5 

workers) using AWS EC2 instances. Each machine is equipped with 64 GB of 

memory, 1 TB of disk space and with an 8 Core Intel Xeon Platinum 8175M CPU @ 

2.50 GHz. The cluster runs with Hadoop 2.7.7, Hive 2.3.6, and Spark 2.4.4 on Ubuntu 

16.04 LTS. The resource manager, Yarn, uses 240 GB of memory and 40 virtual 

cores. In our cluster configuration, a Spark partition size is equal to the default size of 

an HDFS block (128 MB). We kept the default settings for both Parquet and ORC file 

formats with filter pushdown enabled. 

The experiments are conducted on a synthetic dataset, WatDiv, with around 109 

million triples and 86 predicates, and a real-world dataset, a dump of YAGO (Yago2s 

2.5.3), with a total size of 245 million triples and 104 predicates. The PT (Property 

Table) creation is the prerequisite to create the PTP tables, therefore, we report total 

time to create PT and PTP as data loading time. Both Parquet and ORC are efficient 

formats in terms of storage size due to their use of columnar storage and built-in 

compression. For this performance comparison, we use their default compression 

codec when writing Parquet/ORC files using Spark 2.4.4.  

 
Table 9   WatDiv and YAGO Loading Times and HDFS Sizes 

Dataset File Format Load Time HDFS Size 

WatDiv 
Parquet 796 s 7.1 GB 

ORC 768 s 6.6 GB 

YAGO 
Parquet 5621 s 16.7 GB 

ORC 4871 s 12.1 GB 

 
We report datasets loading times and HDFS sizes for PTP schema based on 

Parquet and ORC file formats in Table 9. From Table 9, we can see that ORC 

outperforms Parquet in terms of storage space and data loading time. These two 

formats physically organize the data in different manners, which is why they differ 

from one another in terms of their total size.  

 



 

 

  

 

Fig. 11   CPU and RAM Consumptions During Data Loading Phase 

 

  

 

Fig. 12   Total HDFS Bytes Read/Written During Data Loading Phase 

  
Fig. 11 and 12 present resource usages (CPU and RAM) and the total amount of 

bytes read from and written on the HDFS during the data loading process. The 

percent of CPU and the amount of RAM usage are slightly less in ORC than Parquet. 

Similarly, S3QLRDF reads and saves less amount of data while working with ORC 

than Parquet. 

WatDiv comes with a set of 20 predefined query templates called Basic Testing 

Use Case that can be grouped in four categories according to their shape: complex 

(C), snowflake (F), star (S), and linear (L). Each of the queries from the basic query 

set is evaluated four times to get the average run time. Finally, the query run times are 

aggregated by the query shapes. YAGO does not provide benchmark queries; we 

have created four representative test queries (C, F, S, and L) based on the categories 

of WatDiv basic query set where C, F, S, and L represent complex, snowflake, star, 

and linear-shaped query. We submitted each query at a time as a single Spark 

Application in the cold-start scenario when memory was free. The run times reported 

for each query are the average of 4 execution times. Since Spark SQL has the 
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cacheTable functionality to cache tables in memory before execution, we report 

average query execution times for both caching (CT) and without caching (W/O-CT) 

PTP tables. We also report the query run times (T-CT) including caching times to 

investigate how the caching table affects the overall query runtimes. 

 
Table 10   WatDiv Basic Testing (milliseconds) 

WatDiv-C Parquet ORC 

W/O-CT 18787 26521 

CT 9932 8765 

T-CT 34196 45296 
 

WatDiv-F Parquet ORC 

 30606 49703 

 14596 13081 

 52561 72198 
 

WatDiv-S   

W/O-CT 31561 49325 

CT 8079 7011 

T-CT 47936 67483 
 

WatDiv-L   

 22743 35096 

 5454 4906 

 35906 51103 
 

 
Table 11   YAGO Query Run Times (milliseconds) 

YAGO-C Parquet ORC 

W/O-CT 146028 152791 

CT 120097 122743 

T-CT 136335 143867 
 

YAGO-F Parquet ORC 

 5228 8321 

 1704 1593 

 8819 12435 
 

YAGO-S   

W/O-CT 59349 78218 

CT 58876 68082 

T-CT 64776 76602 
 

YAGO-L   

 4974 8232 

 1541 1394 

 8302 13064 
 

 
The performance comparison between Parquet and ORC storage formats based on 

PTP schema in terms of the query execution times for WatDiv and YAGO are shown 

in Tables 10 and 11 respectively. The first observation was that ORC with CT, 

compared to that of other options, had the best query performance for all WatDiv 

query types. For YAGO, ORC with CT shows the best performance except for the C 

and S query types, although it is not significantly worse. We did not consider caching 

times of PTP table in memory for CT, but if we report caching times along with query 

runtimes (T-CT) then ORC has slightly worse performance for the majority of query 

types. We also observe that Parquet without cacheTable method (W/O-CT) shows 

reasonably better performance for all query types. For future experiments in section 7, 

we will be using Parquet without cacheTable method to measure query runtimes. 

From the above discussion, we can conclude that the caching table in memory 

adds some overhead to the total query runtimes; therefore, the cacheTable method is 

recommended only for batch execution of queries. We demonstrate query 

performance while using cacheTable method for batch execution of queries in section 

5.3. 

 



 

 

7 Empirical Evaluation of Spark-based RDF Management Systems 
 

Over the last few years, several systems have been designed to exploit the Spark 

framework for building scalable RDF processing engines like S3QLRDF, S2RDF, 

SPARQLGX, and PRoST. These systems load data as triples, and a simple 

partitioning technique, like vertical partitioning or property table partitioning, is 

applied to their raw form for further processing. In such systems, the RDD API, or 

Spark SQL, is used to answer the SPARQL query. 

 

7.1 Benchmarked SPARQL Evaluators 

 
In this section, we present a brief overview on Spark-based RDF management 

systems, namely S3QLRDF, S2RDF, SPARQLGX, and PRoST. Table 12 shows the 

RDF data partitioning techniques used in the state-of-the-art Spark-based systems. 

 
Table 12   Partitioning Strategies of Spark-based RDF Management Solutions 

 VP WPT PTP ExtVP 

S3QLRDF   X  

S2RDF X   X 

SPARQLGX X    

PRoST X X   

 
Spark-based systems listed in Table 12 use one or a combination of relational 

partitioning techniques. S3QLRDF uses PTP schema to devise the RDF data storage 

layout, S2RDF makes use of both VP and ExtVP approaches, SPARQLGX uses only 

the VP approach, and PRoST combines the VP with the Wide Property Table (WPT) 

[19] for their storage layout. Table 13 represents the RDF query processing methods 

used in Spark-based systems based on Spark data abstraction. 

 
Table 13   Data Access Model of Spark-based RDF Management Solutions 

 RDD API DataFrame/Dataset (Spark SQL) 

S3QLRDF  X 

S2RDF  X 

SPARQLGX X  

PRoST  X 

 
Table 14   Experimental Setup - Dataset Statistics 

Dataset Number of Triples (million) Number of Predicates HDFS Size (GB) 

YAGO 245 104 35.5 

DBLP 129 27 19.3 

 
For the performance evaluation of Spark-based RDF management solutions, we 



 

 

utilize two real datasets YAGO (Yago2s 2.5.3) and DBLP as shown in Table 14. The 

YAGO is a semantic knowledge base, derived from Wikipedia, WordNet, and 

GeoNames. Meanwhile, the DBLP Computer Science Bibliography provides 

bibliographic information on computer science journals and proceedings. Both 

YAGO and DBLP16 do not provide benchmark queries. Thus, we have created four 

representative test queries C, F, S, and L for each dataset based on varying shape; like 

complex, snowflake, star, and linear to model different scenarios respectively. These 

query patterns actually affect the overall query performance. All YAGO and DBLP 

queries are listed in appendix C and D respectively. We keep the same cluster 

configuration mentioned in the section 6.2. 

 

7.2 Experimental Results 

 
We present an empirical comparison of 4 open-source Spark-based state-of-the-art 

systems: S3QLRDF, S2RDF, SPARQLGX, and PRoST based on real datasets, 

YAGO and DBLP. The store sizes and data loading times are listed in Table 15. From 

Table 15, we can see that SPARQLGX has low space overhead; on the other hand, 

S2RDF needs more storage space due to their underlying data layouts. SPARQLGX 

also has low preprocessing overhead compared to other systems. S2RDF needs more 

preprocessing time with YAGO due to its large number of predicates. We observe 

that the data loading time of S2RDF depends not only on the size of the dataset but 

also on the number of predicates which involve extensive precomputations with high 

loading time; therefore, this system is not suitable for some datasets having a large 

number of properties. S3QLRDF has a moderate overhead in terms of data loading 

time when compared to other systems. 

 
Table 15   Loading Times and HDFS Sizes 

 YAGO DBLP 

H
D

F
S

 S
iz

e 
(G

B
)  

S3QLRDF 16.7 23.8 

S2RDF 32.8 29.1 

SPARQLGX 3.4 2.2 

PRoST 15.3 8.7 

L
o

ad
in

g
 T

im
e 

(s
ec

o
n
d

s)
 

S3QLRDF 5621 486 

S2RDF 10999 2385 

SPARQLGX 751 417 

PRoST 1695 723 

 
The following Fig. 13 and 14 present resource usages (CPU and RAM) and the 

total amount of bytes read from and written on the HDFS during the data loading 

phase. SPARQLGX has highest CPU utilization while reading and saving less 

amount of data for both YAGO and DBLP datasets. On the other hand, S2RDF has 

the highest amount of RAM usage compared to other systems. From the above 

                                                         
16 https://dblp.org/ 



 

 

discussion, we can conclude that S2RDF is the costliest system for the cluster because 

of the highest data loading times and RAM usages. 

We conduct a query performance evaluation of Spark-based RDF management 

systems based on query execution times and cluster resource utilization. We report 

the query run times including caching times for those systems that 

use cacheTable functionality to cache table in memory. Not all systems offer to 

execute a set of queries in the same Spark application to take advantage of in-memory 

data left by a previously executed query. Thus, we submitted each query at a time as a 

single Spark application to make a fair comparison among all systems. All 

measurements are averaged over four runs. 

 

 

  

 

Fig. 13   CPU and RAM Consumptions During Data Loading Phase 

 

 

  
 

Fig. 14   Total HDFS Bytes Read/Written During Data Loading Phase (log scale) 

0

10

20

30

40

50

60

70

80

90

100

YAGO DBLP

A
v
er

ag
e 

C
P

U
 U

sa
g
e 

(%
) 

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

YAGO DBLP

A
v
er

ag
e 

R
A

M
 U

sa
g
e 

(B
y
te

s)

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

YAGO DBLP

T
o
ta

l 
B

y
te

s 
R

ea
d

 

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

YAGO DBLP

T
o
ta

l 
B

y
te

s 
W

ri
tt

en
  

S3QLRDF S2RDF

SPARQLGX PRoST



 

 

YAGO does not provide benchmark queries. Therefore, we use the YAGO test 

queries C, F, S, and L listed in appendix C to benchmark the performance of different 

Spark-based systems. The following Fig. 15 illustrates the performance comparison 

for YAGO. S3QLRDF shows the best performance, except for query C and S, 

although it is not significantly worse. S3QLRDF incurs a little overhead while 

flattening a complex column. Since a number of complex columns are required to be 

flattened in C and S, S3QLRDF is slower in response time compared to S2RDF, 

which has the fastest query response times for C and S compared to all other systems 

due to the materialized join reduction of ExtVP tables. 

 

 

 
 

Fig. 15   YAGO Query Run Times (log scale) 

 

 
 

Fig. 16   Total HDFS Bytes Read During YAGO Query Phase (log scale) 
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Fig. 17   CPU and RAM Consumptions During YAGO Query Phase 

 
S2RDF trades off the query performances with disk space and loading time. 

SPARQLGX has poor runtimes for all queries among all systems. From Fig. 16 we 

can see that the number of bytes required to read during query evaluation is less in 

S3QLRDF for all of the queries, except C. We also figure out from Fig. 17 that the 

system SPARQLGX, which is inexpensive in terms of data loading time, become 

costly in cluster resource utilization (CPU and RAM) for evaluating most of the 

queries, except query F. 

Like YAGO, DBLP does not have benchmark queries; therefore, we use the 

DBLP test queries C, F, S, and L listed in appendix D. 

 

 
 

Fig. 18   DBLP Query Run Times (log scale) 
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Fig. 19   Total HDFS Bytes Read During DBLP Query Phase (log scale) 

 
Fig. 18 illustrates the execution times for DBLP queries of all compared systems. 

We can observe that S3QLRDF outperforms its competitors on runtime in most of the 

queries, except F, where PRoST shows the best performance. Like YAGO, 

SPARQLGX again shows poor query performance among all systems. We can also 

observe from Fig. 19 that S3QLRDF reads relatively a less number of bytes to answer 

queries C and F; on the other hand, PRoST requires less number of bytes to read 

during query S and L evaluation. The average cluster CPU usage percent is high in 

S2RDF and SPARQLGX while the average RAM usage is almost similar for all 

systems (Fig. 20). 

 

 

  

 

Fig. 20   CPU and RAM Consumptions During DBLP Query Phase 
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In this section, we conduct an empirical evaluation of 4 state-of-the-art Spark-

based RDF management solutions based on common criteria: preprocessing (loading) 

times, store sizes, query execution times, and cluster resource utilization. All of these 

systems use different data partitioning techniques to devise their relational storage 

schemas for RDF triplestore on top of Hadoop. The aim of using Spark with Hadoop 

is to provide efficient RDF management systems to improve query performance by 

exploiting data parallelization. Moreover, data partitioning also plays a vital role in 

efficient query processing which has a huge impact on query performance. 

 
8 Conclusion 
 
In this paper, we focus on two key elements in the distributed system for efficient 

SPARQL query processing; data parallelization and data partitioning. We propose a 

novel RDF data partitioning schema called Property Table Partitioning; and we use 

Spark to exploit data parallelization for the distributed RDF management system. We 

also demonstrate how columnar storage formats, like Parquet and ORC, can affect the 

overall performance of the distributed RDF storage and SPARQL querying system. 

We presented S3QLRDF, a distributed RDF management solution based on Property 

Table Partitioning schema built on top of Spark. Based on our extensive evaluation of 

S3QLRDF with other open-source state-of-the-art systems using real and synthetic 

RDF datasets, we conclude that S3QLRDF system improves the efficiency of 

SPARQL query processing. 

For future work, we consider further improvements of S3QLRDF system in terms 

of querying performance, especially for the query that involves flattening a number of 

complex columns. We aim at generating a better query plan with complex properties 

for less expensive retrieval.  
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Appendix 

 
A. YAGO2 QUERIES 

  BASE  <http://yago-knowledge.org/resource/>  

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 

 

Y1:   SELECT  ?GivenName  ?FamilyName  WHERE {  

              ?p              hasGivenName             ?GivenName .  

              ?p              hasFamilyName           ?FamilyName .  

              ?p              rdf:type                         ?scientist .  



 

 

              ?scientist   rdfs:label                      “scientist” .  
              ?p              wasBornIn                    ?city1 .  

              ?city1        isLocatedIn                   “France” .  
              ?p              hasAcademicAdvisor   ?a .  

              ?a              wasBornIn                    ?city2 .  

              ?city2        isLocatedIn                  “United_States” .  
} 

Y2:   SELECT  ?name  WHERE {  

              ?a           isCalled           ?name .  

              ?a           rdf:type           ?actor .  

              ?actor     rdfs:label        “actor” .  
              ?a           actedIn            ?m1 .  

              ?a           directed           ?m2 .  

              ?m1        rdf:type           ?movie .  

              ?movie   rdfs:label        “movie” .  
              ?m1        isLocatedIn    “Portugal” .   
              ?m2        rdf:type           ?movie .  

              ?m2        isLocatedIn     “Spain” .  
} 

Y3:   SELECT  DISTINCT  ?name1  ?name2  WHERE {  

              ?p1            hasFamilyName   ?name1 .  

              ?p2            hasFamilyName   ?name2 .  

              ?p1            rdf:type                ?scientist .  

              ?p2            rdf:type                ?scientist .  

              ?scientist   rdfs:label             “scientist” .  
              ?p1            hasWonPrize       ?award .  

              ?p2            hasWonPrize       ?award .  

              ?p1            wasBornIn           ?city .  

              ?p2            wasBornIn           ?city .  

              FILTER (?p1 != ?p2)  

} 

Y4:   SELECT  DISTINCT  ?name1  ?name2  WHERE {  

              ?p1       isCalled        ?name1 .  

             ?p1       wasBornIn    ?city1 .  

             ?p1       actedIn          ?movie .  

             ?p2       isCalled         ?name2 .  

             ?p2       wasBornIn    ?city2 .  

             ?p2       actedIn          ?movie .  

             ?city1   isLocatedIn   “United_States” .  
             ?city2   isLocatedIn   “United_States” .  
             FILTER (?p1 != ?p2)  

} 

Y5:   SELECT  ?name1  ?name2  WHERE {  

              ?p1   isCalled           ?name1 .  

              ?p1   wasBornIn      ?city .  

              ?p1   isMarriedTo   ?p2 .  

              ?p2   isCalled          ?name2 .  

              ?p2   wasBornIn      ?city .  

} 

 

B. LUBM QUERIES 
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#> 

 

Q4:   SELECT  ?X  ?Y1  ?Y2  ?Y3  WHERE {  



 

 

              ?X   rdf:type                 ub:FullProfessor .  

              ?X   ub:worksFor         <http://www.Department0.University0.edu> .  

              ?X   ub:name                ?Y1 .  

              ?X   ub:emailAddress   ?Y2 .  

              ?X   ub:telephone         ?Y3 .  

} 

Q8:   SELECT  ?X  ?Y  ?Z  WHERE {  

              ?X   rdf:type                         ub:UndergraduateStudent .  

              ?Y   rdf:type                         ub:Department .  

              ?X   ub:memberOf                ?Y .  

              ?Y   ub:subOrganizationOf   <http://www.University0.edu> .  

              ?X   ub:emailAddress           ?Z .  

} 

Q12: SELECT  ?X  ?Y  WHERE {  

              ?X   rdf:type                          ub:FullProfessor .  

              ?Y   rdf:type                          ub:Department .  

              ?X   ub:worksFor                  ?Y .  

              ?Y   ub:subOrganizationOf   <http://www.University0.edu> .  

} 

 

C. YAGO QUERIES 
BASE  <http://yago-knowledge.org/resource/>  

 

C:   SELECT  ?country ?capital ?lang ?geo ?lon ?lat ?area ?population ?inst ?player ?city1 ?city2 

WHERE {  

            ?geo         hasLongitude                ?lon .  

            ?geo         hasLatitude                   ?lat .  

            ?geo         hasArea                        ?area .  

            ?geo         linksTo                         ?lang .  

            ?country   hasOfficialLanguage   ?lang .  

            ?country   hasNumberOfPeople   ?population .  

            ?country   hasCapital                    ?capital .  

            ?capital    linksTo                         ?inst .  

            ?player     playsFor                       ?inst .  

            ?player     wasBornIn                    ?city1 .   

            ?player     diedIn                           ?city2  . 

} 

F:   SELECT  ?gname1  ?gname2  ?fname1  ?fname2  ?city1  ?city2  WHERE {  

            ?p1   hasGivenName     ?gname1 .  

            ?p2   hasGivenName     ?gname2 .  

            ?p1   hasFamilyName   ?fname1 .  

            ?p2   hasFamilyName   ?fname2 .  

            ?p1   isMarriedTo         ?p2 .  

            ?p1   wasBornIn            ?city1 .  

            ?p2   wasBornIn            ?city2 . 

 } 

S:   SELECT  ?geo  ?lon  ?lat  ?area  ?wiki  ?lang  WHERE {  

            ?geo   hasLongitude         ?lon .  

            ?geo   hasLatitude            ?lat .  

            ?geo   hasArea                 ?area .  

            ?geo   hasWikipediaUrl   ?wiki .  

            ?geo   linksTo                  ?lang . 

 } 

L:   SELECT  ?country  ?capital  ?lang  ?geo  ?area  WHERE {  



 

 

            ?geo          hasArea                       ?area .  

            ?geo          linksTo                        ?lang .  

            ?country   hasOfficialLanguage   ?lang .  

            ?country   hasCapital                    ?capital . 

 } 

 

D. DBLP QUERIES 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>  

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  

PREFIX dbp: <http://dbpedia.org/ontology/>  

PREFIX owl: <http://www.w3.org/2002/07/owl#>  

PREFIX swrc: <http://swrc.ontoware.org/ontology#>  

PREFIX owl: <http://www.w3.org/2002/07/owl#>  

PREFIX dcterms: <http://purl.org/dc/terms/>  

PREFIX foaf: <http://xmlns.com/foaf/0.1/>  

PREFIX dc: <http://purl.org/dc/elements/1.1/> 

 

C:   SELECT  ?v0  ?homepage  ?name  ?v1  ?year  ?isbn  ?publisher  ?v2  ?title  ?creator  WHERE {  

            ?v0   foaf:homepage   ?homepage .  

            ?v0   foaf:name           ?name .  

            ?v1   swrc:editor          ?name .  

            ?v1   dcterms:issued    ?year .  

            ?v1   swrc:isbn             ?isbn .  

            ?v1   dc:publisher         ?publisher .  

            ?v2   dcterms:partOf     ?v1 .  

            ?v2   dc:title                  ?title .  

            ?v2   swrc:series            <http://dblp.l3s.de/d2r/resource/collections/crypt> .  

            ?v2   dc:creator             ?creator . 

} 

F:   SELECT  ?v0  ?v2  ?v3  ?v4  ?v5  ?v6  ?v7  ?v8  WHERE {  

           ?v0   swrc:series                                 <http://dblp.l3s.de/d2r/resource/conferences/genetic> .  

           ?v0   foaf:homepage                           ?v2 .  

           ?v0   dcterms:bibliographicCitation   ?v3 .  

           ?v0   dcterms:issued                           ?v4 .  

           ?v0   dc:title                                        ?v5 .  

           ?v0   dc:creator                                   ?v6 .  

           ?v6   foaf:name                                   ?v7 .  

           ?v6   rdf:type                                       ?v8  . 

} 

S:   SELECT  ?v0  ?v2  ?v3  ?v4  ?v5  ?v6  ?v7  ?v8  ?v9  ?v10  ?v11  ?v12  ?v13  ?v14  ?v15 ?v16 

WHERE {  

            ?v0   swrc:journal                              <http://dblp.l3s.de/d2r/resource/journals/vldb> .  

            ?v0   foaf:homepage                          ?v2 .  

            ?v0   dc:creator                                  ?v3 .  

            ?v0   foaf:maker                                 ?v4 .  

            ?v0   rdfs:seeAlso                               ?v5 .  

            ?v0   dc:identifier                               ?v6 .  

            ?v0   dc:title                                        ?v7 .  

            ?v0   dc:type                                       ?v8 .  

            ?v0   dcterms:bibliographicCitation   ?v9 .  

            ?v0   dcterms:issued                           ?v10 .  

            ?v0   swrc:number                              ?v11 .  

            ?v0   swrc:pages                                 ?v12 .  

            ?v0   swrc:volume                              ?v13 .  



 

 

            ?v0   rdf:type                                      ?v14 .  

            ?v0   rdfs:label                                    ?v15 .  

            ?v0   owl:sameAs                               ?v16 . 

} 

L:   SELECT  ?v0  ?v1  ?v2  WHERE {  

            ?v0   dcterms:issued   "2017" .  

            ?v0   swrc:journal       ?v1 .  

            ?v1   rdfs:label            ?v2 . 

} 

 


