
S3QLRDF: Distributed SPARQL Query Processing
Using Apache Spark - A Comparative Performance
Study
Mahmudul Hassan ( phassan@asu.edu)

Arizona State University
Srividya Bansal

Arizona State University

Research Article

Keywords: RDF , SPARQL , Data Partitioning , Spark

Posted Date: June 1st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1677298/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1677298/v1
mailto:phassan@asu.edu
https://doi.org/10.21203/rs.3.rs-1677298/v1
https://creativecommons.org/licenses/by/4.0/

S3QLRDF: Distributed SPARQL Query Processing Using

Apache Spark - A Comparative Performance Study

Mahmudul Hassan1 · Srividya Bansal1

Abstract
The proliferation of semantic data in the form of RDF (Resource Description

Framework) triples demands an efficient, scalable, and distributed storage along

with a highly available and fault-tolerant parallel processing strategy. There are

three open issues with distributed RDF data management systems that are not well

addressed altogether in existing work. First is the querying efficiency, second is that

solutions are optimized for certain types of query patterns and don’t necessarily
work well for all types, and third is concerned with reducing pre-processing cost.

More precisely, the rapid growth of RDF data raises the need for an efficient

partitioning strategy over distributed data management systems to improve

SPARQL (SPARQL Protocol and RDF Query Language) query performance

regardless of its pattern shape with minimized pre-processing time. In this context,

we propose a new relational partitioning schema called Property Table Partitioning

(PTP) for RDF data, that further partitions existing Property Table into multiple

tables based on distinct properties (comprising of all subjects with non-null values

for those distinct properties) in order to minimize input size and number of join

operations of a query. This paper proposed a distributed RDF data management

system called S3QLRDF, which is built on top of Spark and utilizes SQL to execute

SPARQL queries over PTP schema. The experimental analysis with respect to

preprocessing costs and query performance, using synthetic and real datasets shows

that S3QLRDF outperforms state-of-the-art distributed RDF management systems.

Keywords RDF · SPARQL · Data Partitioning · Spark

 Mahmudul Hassan

 phassan@asu.edu

Srividya Bansal

srividya.bansal@asu.edu

1 Arizona State University, Tempe, Arizona, USA

1 Introduction

The Semantic Web refers to a Web of Data that associates the semantics of

information and services on the web to provide machine-readable and processable

data. The RDF1 is a data model proposed by W3C to represent metadata about Web

resources and facilitates the search engine to precisely locate and extract

information on the Semantic Web. Recently, RDF has gained popularity for its

flexible data model, which is used for publishing data on the Web through a number

of applications and use cases in many areas such as social networks, commercial

search engines, public knowledge bases, and databases. There are a growing

number of organizations, institutions, and companies adopting Semantic Web

technologies to represent data in a semantically structured way and thereby

contributing to the Web of Data. Top search engine providers, Google, Bing,

Yahoo!, and Yandex, have agreed to create a protocol (Schema.org2) for a

structured data vocabulary in order to define entities, actions, and relationships

through the internet, which helps search engines figure out the meanings on web

pages more effectively and serve relevant results based on search queries of the

internet users. To improve the accuracy of recommendations, recommender

companies are increasingly using semantics and semantic tagging. DBpedia [1],

YAGO [2], Bio2RDF [3], Google’s Knowledge Vault [4], Probase [5],

PubChemRDF [6], and Universal Protein Resource (UniProtKB) [7] consist of

billions of facts that are represented as RDF data contained in the Linked Open Data

(LOD) [8] cloud. Therefore, we can expect the Semantic Web to grow steadily at

web-scale and produce a large amount of RDF data. This steady growth of RDF

data necessitates an efficient RDF management solution for storing and querying

these very large RDF graphs. Over the last decade, many RDF data management

systems have been designed to provide scalable, highly available, and fault-tolerant

RDF stores with efficient SPARQL3 query processing for distributed environments

(e.g., Partout [9], DREAM [10]). In the last few years, many distributed RDF

management systems are built on Big Data technologies like Hadoop (e.g., Rya

[11], H2RDF+ [12], SHARD [13], CliqueSquare [14], PigSPARQL [15], Sempala

[16], S2RDF [17], SPARQLGX [18], PRoST [19]). These RDF data processing

systems rely on cluster computing engines based on MapReduce [20] as an

execution layer or in-memory frameworks such as Spark4 and Impala [21]. In most

cases, these systems are optimized for specific query patterns. Some of these

existing systems often give up their data preprocessing time for better querying

performance. Therefore, it is necessary to implement a distributed RDF

management system for efficient query performance on a wide range of query

patterns with minimized preprocessing overhead, and that is the goal of this work.

To achieve the above goal, RDF data partitioning strategy using existing

approaches, Property Table [22] and Vertical Partitioning (VP) [23], to form SPT +

VP [24] storage layout has been proposed. The combined SPT + VP RDF

management solution outperforms state-of-the-art systems for all types of query

1 https://www.w3.org/TR/rdf-concepts/
2 https://schema.org/
3 https://www.w3.org/TR/rdf-sparql-query/
4 https://spark.apache.org/

patterns except a few complex-shaped queries. To overcome the query performance

issue on complex query patterns, we further partition the Property Table into

multiple tables based on distinct properties to propose a new storage schema called

Property Table Partitioning (PTP). For storing and querying RDF data, we use

HDFS5 (Hadoop Distributed File System) and an in-memory cluster computing

framework Spark, one of the most important and popular Hadoop ecosystem

components.

This paper is an extension of the publication [25], where an initial version of the

S3QLRDF system had been presented, by adding the following novel contributions:

– An experimental evaluation between Big Data file formats, Parquet and ORC,

using the S3QLRDF system with the PTP schema that demonstrates the impact

of using different file formats for storing RDF data.

– An empirical comparison of open-source Spark-based state-of-the-art systems:

S3QLRDF, S2RDF, SPARQLGX, and PRoST based on real datasets, YAGO

and DBLP, confirms the effectiveness and applicability of our approach.

Giving this outlook, rest of this paper is presented as follows: We introduce the

background with preliminary definitions used in section 2. Section 3 studies the

related work. A detailed overview of S3QLRDF (SPARQL on Spark SQL for RDF)

system is given in Section. 4. Experimental evaluation of S3QLRDF with other

state of the art Hadoop-based SPARQL query engines is presented in Section. 5.

Section 6 illustrates the impact of using different Big Data columnar file formats on

the S3QLRDF system for RDF data management. The comparative performance

evaluation of the S3QLRDF system with other state-of-the-art Spark-based

SPARQL processors using real datasets is demonstrated in Section 7. Section 8

concludes the paper.

2 Background

In this section, we briefly introduce background information on the RDF data and

SPARQL query model followed by the Big Data technologies used.

2.1 RDF

RDF is a schema-free data model recommended by W3C to describe information

about any resource on the Web. An RDF dataset consists of a collection of triples

(subject, predicate, object), abbreviated as (s, p, o). In an RDF triple (aka RDF

statement), subject denotes the entity or a class of resources; predicate denotes the

attribute or aspect and relationship (aka property) between entities or classes; and

object denotes an entity, class, or literal value. The RDF dataset represents triples as

a directed graph with annotations called RDF graph. Nodes of an RDF graph

represent either subject or object, and edges represent properties. Each node can be

an Internationalized Resource Identifier (IRI), a literal or blank node.

5 https://hadoop.apache.org/

Fig. 1 An example RDF graph

Fig. 1 simulates an RDF graph with 16 edges of a simple publication network of

an RDF dataset that consists of 16 triples, where ellipse nodes represent resources,

directed edges represent properties, and rectangular nodes represent literal values. An

RDF graph could also have blank nodes that represent resources without URI or

literal assignment. Let I, B, and L be infinite sets of IRIs, blank nodes, and literals

respectively which are pairwise disjoint. All RDF valid terms are the union of (I ∪ B ∪ L) and denoted by T.

RDF Triple A ternary tuple (s, p, o) ∈ (I ∪ B) ☓ I ☓ (I ∪ B ∪ L) is called an RDF

triple where s, p, and o denote subject, predicate, and object respectively.

RDF Graph An RDF graph G = {t1, …. tn} is a finite set of RDF triples ti where 1

≤ i ≤ n.
RDF Dataset An RDF dataset is a collection of RDF graphs D = {G0, (i1, G1), ….

(in, Gn)} with i1, . . . , in ∈ I. The pairs (ii, Gi) are named graphs identified by IRI and

the default graph is G0 that does not have a name.

2.2 SPARQL

SPARQL is the standard query language recommended by W3C for RDF data. A

basic SPARQL query consists of a SELECT clause followed by query variables

represented by bound variables (variable with specified value) that appear in the

result set and a WHERE clause followed by graph patterns that match against the

RDF graph that the query is being executed on. A SPARQL query can be one of four

types, including SELECT, ASK, DESCRIBE, and CONSTRUCT. On the other hand,

a graph pattern that defines the query semantics can be one of the following types:

Basic Graph Pattern (BGP), Basic Graph Pattern with Filter Constraints (FGP),

Optional Graph Pattern (OGP), Union Graph Pattern (UGP) or Alternative Graph

Pattern (AGP), and Group Graph Pattern (GGP). BGP, FGP, and OGP consist of

one or multiple triple patterns, while a GGP or UGP (aka AGP) consists of one or

multiple BGPs, FGPs or OGPs. Each part of a triple pattern: subject, predicate, and

object can be either a bound or unbound variable. Basically, the result of a SPARQL

query is obtained by replacing the variables of the query graph patterns with elements

of the RDF graph. A SPARQL query has solution modifiers: ORDER BY (sort by

defined order), DISTINCT (remove all duplicates), REDUCED (remove some

duplicates), OFFSET (skip the first specified number of solutions) and LIMIT (upper

bound on the number of solutions). SPARQL BGPs fall in one of the four following

categories:

Chain Shaped Pattern consists of a set of triple patterns that are linked together as

subject-object joins via different unique join variables at the subject or object

positions.

Star Shaped Pattern consists of a set of triple patterns that are linked together via

a single join variable at the subject or object position.

Snowflake Shaped Pattern consists of several star shapes linked via different join

variables at the subject or object positions in the triple pattern.

Complex Structure is the compositions of the above-mentioned query patterns.

SELECT ?article ?t

WHERE {

 ?article author ?a .

 ?article title ?t .

 ?a name “John Wayne”
.

}

a) SPARQL

b) Graph

Fig. 2 A SPARQL query that finds the articles with their corresponding title written by John Wayne

Fig. 2a represents a SPARQL query that returns the title of articles written by John

Wayne. The corresponding graph pattern of the SPARQL query is shown in Fig. 2b.

The result is the set of ordered bindings of (?article, ?t) that render the query graph

isomorphic to subgraphs in the data. Assuming data are stored in a table D(s, p, o),

the query can be answered by first decomposing it into three subqueries: q1 ≡ σp = name ∧ o = John Wayne (D), q2 ≡ σp = author (D), and q3 ≡ σp = title (D). The subqueries are answered

independently by scanning table D; then, their intermediate results are joined on the

subject and object attribute: q1 ⋈ q1.s = q2.o q2 ⋈ q2.s = q3.s q3. By applying the query on

the data in Figure 1, we get (?article, ?t) ∈ {(Article_2, Title Two), (Article_3, Title

Three)}.

2.3 Hadoop & Spark

Hadoop is an open-source framework for distributed storage and processing of large

datasets based on the HDFS and MapReduce paradigm. HDFS is a popular

distributed file system due to its replication capability to provide data redundancy

where MapReduce can be I/O intensive and not suitable for interactive queries. To

overcome this issue, a number of distributed computation engines based on in-

memory processing strategy have been introduced (e.g., Spark).

Spark is an in-memory cluster-computing framework like MapReduce, which

utilizes in-memory caching and advanced directed acyclic graph (DAG) execution

engine to create efficient query plans for data transformations. Spark runs programs

up to 100 times faster in-memory processing mode and 10 times faster in disk

processing mode than Hadoop MapReduce. Spark has a SQL like module called

Spark SQL6 that is used for structured data processing and allows running SQL like

queries on Spark data. Spark SQL includes a cost-based optimizer that enables

control code generation to make queries faster.

2.4 Hadoop & Spark

In this section, we discuss the state-of-the-art Big Data file formats called Parquet

and ORC, which are relevant to this work.

Parquet7 is a column-oriented data storage format of the Apache Hadoop

ecosystem. It stores data in a column-oriented way, where the values of each

column are organized consecutively on a disk that enables better compression.

Fig. 3 The Parquet File Format8

Parquet stores data organized by horizontal partitions called row groups. For

each row group, the data values are organized by column chunk. Each column

chunk corresponds to a column in the data set. A column chunk consists of multiple

pages where each page contains values for a particular column. Parquet stores

metadata at all the levels in the hierarchy (i.e., file, column chunk, and page). A

sample parquet file format is shown in Fig. 3. This data format supports additional

optimizations include encodings (bit packing, run length, and dictionary encoding)

as well as compression algorithms like Snappy9, GZip10, LZO11, and so on. Parquet

supports both flat and nested data. Parquet has a filter pushdown option that prunes

extraneous data to reduce the number of data scans and reads when a query contains

a filter expression. Pruning data reduces the I/O, CPU, and network overhead to

optimize query performance. Another advantage is that NULL values are not stored

explicitly in Parquet, therefore, sparse columns cause little to no storage overhead.

ORC12 (Optimized Row Columnar) is a columnar file format that provides a

6 https://spark.apache.org/sql/
7 https://parquet.apache.org/
8 https://parquet.apache.org/documentation/latest/
9 http://google.github.io/snappy/
10 https://www.gnu.org/software/gzip/
11 http://www.oberhumer.com/opensource/lzo/
12 https://orc.apache.org/

highly efficient way to store relational data. It stores collections of rows in one file,

and within the collection, the row data is stored in a columnar format. This allows

parallel processing of row collections across a cluster. Each file with the columnar

layout is optimized for compression and skipping of data/columns reduces read and

decompression load. Its file structure consists of three parts: Stripe, Footer, and

Postscript. It breaks the source file into a set of rows called a Stripe. The default stripe

size is 250 MB. This large stripe size enables an efficient read of columns from

HDFS. The file footer contains a list of stripes in the file, the number of rows per

stripe, and each column's data type. It also contains column-level aggregate count,

min, max, and sum. Postscript contains compression parameter and size of the

compressed footer. Each stripe in an ORC File has three parts: Index data, Row data,

and Stripe footer. Index data include min and max values for each column and the

row positions within each column. Row index entries provide offsets that enable

seeking the right compression block and byte within a decompressed block. The Row

data are composed of multiple streams per column, and they are used in table scans.

The stripe footer contains a directory of stream locations. Fig. 4 illustrates the layout

of the ORC File structure.

The columns in an ORC File separate the stripes or sections of the file. An internal

index is used to track a section of the data within each column. This organization

allows readers to efficiently omit the columns that are not required. Only required

column values on each query are scanned and transferred on query execution. The

ORC File supports sparse indexes that are data statistics and position pointers. The

data statistics are used in query optimization, and they are also used to answer simple

aggregation queries. The ORC reader uses these statistics to avoid unnecessary data

read from HDFS. The position pointers are used to locate the index groups and

stripes.

Fig. 4 The ORC File Format [26]

The ORC File uses a two-level compression scheme. Each column can apply one

of the four types of encoding schemes based on its data type: 1) a sequence of bytes,

2) a run-length encoded sequence of bytes, 3) a run-length and delta encoded

sequence of integers, and 4) a bit vector. Users can further ask the writer of an ORC

File to compress streams of data with a general-purpose codec among ZLIB13,

Snappy, and LZO. Metadata about the ORC data, such as the schema and

compression format, are serialized into the file and are made available to the readers.

The operator translates the ORC File schema into appropriate data flow types when

possible.

3 Related work

Over the past decade, many RDF data management systems have been built based on

distributed storage systems to provide efficient, scalable, highly available and fault

tolerance services. These systems use various indexing and partitioning strategies on

RDF elements to develop RDF storage layouts. In this section, we discuss the state-

of-the-art distributed RDF management systems that are relevant to this work.

Rya [11] has been implemented on top of a key-value store Accumulo14 stores

RDF triple in the Row ID part of the Accumulo tables and indexes the triples across

three separate tables (spo, pos, and osp) by maintaining the different ordering of the

subject, predicate, object for each table. These three permutations (spo, pos, and osp)

of triple components are sufficient to answer all possible triple patterns by using

range scan on the appropriate index.

CliqueSquare [14] uses built-in data replication mechanism of HDFS to partition

the RDF dataset by hashing on all three columns of triples based on their subject,

predicate and object values and creates three replicas by default. The first replica

holds the partitions of triples based on their subject, predicate, and object values.

Second replica stores all subject, predicate, and object partitions of the same value

within the same node. For the third replica, CliqueSquare groups all the subject

partitions within a node by the value of the predicate in their triples. It also groups all

object partitions based on their predicate values. CliqueSquare uses a clique-based

algorithm to select the partitions in such a way that can reduce as much as possible

data exchange in the shuffle phases and minimize the number of MapReduce stages.

S2RDF [17] has been built on top of Spark that uses a relational partitioning

technique called Extended Vertical Partitioning (ExtVP) which is an extension of

Vertical Partitioning (VP) [27] approach to store RDF data on the HDFS using

Parquet columnar storage format. The goal of ExtVP approach is to minimize the

input size for the query by using a semi-join based preprocessing approach to

compute the possible join relations between partitions of VP tables. S2RDF executes

SPARQL queries by translating them into SQL queries, which are then evaluated

using Spark SQL.

SPARQLGX [18] also built on top of Spark uses Vertically Partitioned approach

proposed in [27] to store the RDF dataset into HDFS and compiles the SPARQL

queries into Scala code in order to execute directly into Spark operations. The system

uses its own statistics to optimize the computation with less intermediate results.

PRoST [19] is a Spark based distributed system for RDF storage and SPARQL

querying that stores data twice using Vertical Partitioning and Property Table. PRoST

13 https://zlib.net/
14 https://accumulo.apache.org/

translates SPARQL queries into the Join Tree format where every node represents

either the Vertical Partitioning table or Property Table. The triple patterns with the

same subject in a unique basic graph pattern are grouped to form a single node where

the Property Table is used. All the other groups with a single triple pattern are

translated to nodes that use the Vertical Partitioning tables.

Table 1 Summary of Distributed RDF Systems

System Storage Strategy Storage Backend Execution Framework

Rya 3 Indices (SPO, POS, OSP) Key-Value Store
OpenRDF Sesame

Framework

CliqueSquare Hash and Vertical Partitioning Distributed File System MapReduce

S2RDF
Vertical Partitioning and Extended

Vertical Partitioning
Distributed File System SPARQL to SQL

SPARQLGX Vertical Partitioning Distributed File System SPARQL to Scala Code

PRoST Vertical Partitioning Distributed File System SPARQL to SQL

4 S3QLRDF architecture

In this section, we present the overall architecture of S3QLRDF15 system. It consists

of three main components: Data Loader – RDF data ingestion and partitioning using

PTP schema, Query Translator – Spark SQL query generator from the SPARQL

query, and Query Evaluator – Spark SQL query evaluated directly into the Spark

SQL engine (Fig. 5).

Fig. 5 S3QLRDF Architecture Overview

15 https://github.com/sbansallab/S3QLRDF

Data Loader S3QLRDF comes with a novel RDF data partitioning strategy

called PTP schema. RDF data is first loaded into HDFS, and then Spark read and

partition the data using the PTP schema that is a modified and enhanced version of

the well-known PT schema introduced by Wilkinson et al. [22].

Table 2 Summary Modified Property Table for RDF Graph of Figure 1 (empty cells = NULL)

subject type title author name website_of

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two” [David_Gary, John_Wayne]

David_Gary Person “David Gary”

www.aaa.com/d_g David_Gary

Article_3 Article “Title Three” [John_Wayne]

John_Wayne Person “John Wayne”

www.bbb.com/j_w John_Wayne

We introduced the Modified Property Table in [24] which is a modified version of

the traditional PT where multi-valued properties are stored in a single cell using a

nested data structure (e.g., Array). We briefly present the Modified Property Table

schema followed by our proposed PTP schema; an extension of the Modified

Property Table approach. We use RDF in N-Triples format for the data storage

layout. Initially, we create a TT (Triple Table) with three columns where each row

comprises an RDF statement, i.e., triples (subject, property, object). Then we create

PT (Property Table) with the following schema:

PT(subject, property1, ..., propertyn)

where n is the total number of distinct properties present in a particular RDF dataset.

Here, each RDF subject is stored in the subject column and their object values reside

in their corresponding property columns.

Next, we partition the Modified Property Table into multiple tables based on

distinct properties present in the RDF dataset to devise our proposed PTP schema.

Each of the PTP tables contains only those subjects that have a value for the particular

property on which that partition is based, and we use the name of that particular

property as the partitioned table name. Table 3 shows the proposed RDF data layout

that is obtained from partitioning the whole Modified Property Table (Table 2).

An RDF dataset can have many properties, and most subjects will only use a small

subset of these properties, therefore, these tables will be sparse containing NULL

values. We decide to use the general-purpose Parquet columnar storage format to

materialize those PTP tables in HDFS because Parquet does not store NULL values

explicitly, thus sparse columns cause little to no storage overhead. We also keep a

statistics file to store the actual sizes (number of tuples) of each PTP table along with

the name of multi-valued attributes, such that these statistics can be used for query

generation.

The goal of PTP approach is to reduce the number of tuples to scan and the

amount of I/O required for a query. Since each table of the PTP is the fragment of the

Property Table, it is possible to minimize unnecessary I/O and comparisons during

join execution to reduce in-memory consumption. Spark is an in-memory system, and

memory is typically much more limited than HDFS disk space, thus saving this

resource is important for scalability. Another advantage of the PTP approach is that

star patterns can be answered entirely without the need for a join.

Table 3 Property Table Partitioning Schema for RDF Graph shown in Fig. 1

type

subject type title author name

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two” [David_Gary, John_Wayne]

David_Gary Person “David Gary”

Article_3 Article “Title Three” [John_Wayne]

John_Wayne Person “John Wayne”

Query Translator The query translator generates the equivalent Spark SQL

expressions from SPARQL query based on PTP schema using the statistics file that is

generated during the PTP tables creation process. Every SPARQL query defines a

graph pattern to be matched against an RDF graph. A triple pattern is the basic

building block of a SPARQL query, and a Basic Graph Pattern (BGP) is simply the

concatenation of a set of triple patterns using AND (.). Since a BGP represents the

core of the SPARQL query, we will mainly focus on the BGP fragment. A triple

group (tg) consists of a set of triple patterns having the same subject in a BGP. So, a

title

subject type title author

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two” [David_Gary, John_Wayne]

Article_3 Article “Title Three” [John_Wayne]

author

subject type title author

Article_1 Article “Title One” [David_Gary]

Article_2 Article “Title Two” [David_Gary, John_Wayne]

Article_3 Article “Title Three” [John_Wayne]

name

subject type name

David_Gary Person “David Gary”

John_Wayne Person “John Wayne”

website_of

subject website_of

www.aaa.com/d_g David_Gary

www.bbb.com/j_w John_Wayne

BGP (bgp) can have more than one distinct triple group.

Consider the following BGP:

bgp = { ?x type ?p .

 ?x name “John Wayne” .
 ?y type “Article” .
 ?y author ?x .

 ?y title ?t .

 ?z website_of ?x }

At first, we group the triple patterns having the same subject. The above mentioned

bgp consists of three distinct triple groups, tg1 = { ?x type ?p . ?x name “John
Wayne” }, tg2 = { ?y type “Article” . ?y author ?x . ?y title ?t }, and tg3 = {

?z website_of ?x }. Then we count the bound (fixed) values for each triple group.

The number of bound values for the bgp is (tg1 → 1, tg2 → 1, tg3 → 0). Here, the basic

concept is that each triple group can be answered by a subquery without a join where

variables occurring in a triple group define the columns to be selected and fixed

values are used as conditions in the WHERE clause. Variables are mapped by subject

and property based on their position in the triple pattern. A subject variable is mapped

to subject column and the object(s) variable is mapped to its corresponding property

(multi-valued property is labeled with a special extension) column. It is worth

mentioning here that Spark uses the LATERAL VIEW EXPLODE function to flatten

a complex column (multi-valued property). This variable mapping is used to name the

output columns such that an outer query can easily refer to it. The table for a triple

group is selected from the properties which belong to that triple group. We also add a

test for NOT NULL to the property (multi-valued property with a special extension)

in the WHERE clause if the corresponding object is a variable in the triple pattern.

This is not necessary for variables on the subject position as the subject column does

not contain NULL values. Because the system is aware of the size of the PTP tables

and each table is named after the property, it can select the table for a triple group that

has the lowest number of tuples identified from the statistics file. For example, tg1 has

two distinct properties, type and name, so two candidate tables are available. From the

statistics file, the number of tuples for the two distinct tables are type → 5 and name
→ 2 (refer to Table 3). Since table name has fewer number of tuples compared to

type, the table name will be selected for tg1. Similarly, table title and website_of will

be selected for tg2 and tg3 respectively. Note that, title and author have the same

number of tuples; therefore, a random table will be selected between them for the tg2.

It then arranges the triple groups based on the number of bound values and the size of

the selected PTP tables for the triple groups. The triple group with the highest number

of bound values is given the top rank to execute first during the query execution. A

triple group having the smallest number of tuples will be given the higher rank among

the triple groups if they have the same number of bound values. For example, tg1 and

tg2 both have the highest number of bound values among the triple groups, but the

selected table of tg1 has a smaller number of tuples compared to tg2, so tg1 will be

given the highest rank during the query execution to execute first. Now, out of the

remaining two triple groups, tg2 and tg3, tg3 has a lower number of tuples compared to

tg2, but the number of bound values of tg2 is higher than tg3. Since we are giving

higher priority to the number of bound values than number of tuples of the selected

table, tg2 will be given a higher rank than tg3. Finally, the triple groups are arranged in

such a way that there must be at least one common variable between a triple group

and any of its higher ranked triple group(s) to avoid cross joins when processing them

in that order. So, the final ordering (ranking) among the three triple groups will be tg1

→ tg2 → tg3.

Overall SPARQL translation process can be described as follows:

The subquery sq1 for tg1 is

SELECT subject, type FROM name

WHERE type IS NOT NULL AND name = ‘John Wayne’

The author is a multi-valued property that is identified from the statistics file. Thus,

the author column is flattened by the LATERAL VIEW EXPLODE function, and we

rename that column with an extension _lev.

The second subquery sq2 for tg2 is

SELECT subject, title, author_lve FROM title

LATERAL VIEW EXPLODE(author) EXPLODED_NAMES AS author_lve

WHERE type = “Article” AND title IS NOT NULL AND author_lve IS NOT
NULL

And the third subquery sq3 for tg3 is

SELECT subject, website_of FROM website_of

WHERE website_of IS NOT NULL

After applying the final ordering of triple groups (tg2 → tg1 → tg3) and variable

mapping for each triple group, we get the final SQL query for the bgp, that is

SELECT table_1.subject AS x, t1.type AS p, t2.subject AS y, t2.title AS t,

t3.subjectAS z FROM (sq1) table_1 JOIN (sq2) table_2 ON (table_1.subject =

table2.author_lve) JOIN (sq3) table_3 ON (table_1.subject = table3.website_of

AND table2.author_lve = table3.website_of)

Therefore, the input SPARQL query can be translated to an equivalent Spark SQL

query by mapping its operators to the equivalent Spark SQL keywords. A FILTER

expression in SPARQL can be mapped to the equivalent conditions in Spark SQL by

adapting the SPARQL syntax to the syntax of SQL, and then these conditions can be

added to the WHERE clause of the corresponding (sub)query in Spark SQL

statement. The OPTIONAL pattern can be mapped to a LEFT OUTER JOIN, and

UNION, LIMIT, ORDER BY, and DISTINCT can be mapped directly using their

equivalent clauses in the SQL dialect of Spark. Finally, a SPARQL query is fed to the

Spark engine as an equivalent Spark SQL query.

Query Executor In this process, the Spark SQL query created by the query

translator is directly evaluated into the Spark SQL engine.

5 Evaluation

In this section, we present a comparative performance evaluation of our RDF

management system S3QLRDF along with other state-of-the-art Hadoop-based RDF

querying approaches, namely CliqueSquare, S2RDF, SPARQLGX, and Rya as they

are the most similar to our system. The experimental setup and a discussion of results

are presented.

5.1 Benchmark Queries

For the performance evaluation of our RDF management solutions, we utilize two

synthetic and one real dataset, as shown in Table 4. The synthetic datasets are

LUBM with the number of universities set to 1000, 5000, and 10000, and WatDiv

with scale factor of 1000, 5000, and 10000.

Table 4 Experimental Setup - Dataset Scale

LUBM was proposed in 2005 with a data generator and was originally designed to

test the inference capabilities of Semantic Web repositories. LUBM provides 14

predefined test queries, but many of these queries have simple structures and are quite

similar to each other. Therefore, we selected Q1, Q2, Q4, Q8, Q12, and Q14 from the

LUBM test query set based on their structure and selectivity. Q1 has a star-shaped

pattern with high selectivity, and it carries large input; Q2 has a complex pattern with

large intermediate results; Q4 is a simple highly selective star query with a small size

of result set; Q8 is the most complex snowflake query of the LUBM benchmark; Q12

is a simple selective query, which has a constant number of solutions similar to Q1,

Q4, and Q8 regardless of the dataset size; and Q14 is the most unselective query,

which has a large size of results set. Q2 and Q14 have increasing numbers of

solutions proportional to the dataset size. The University of Waterloo introduced

WatDiv in 2014. WatDiv has a data generator as well as a query generator, and it was

designed to cover both structural and data-driven features of four different types of

query shapes, namely, linear, star, snowflake, and complex SPARQL queries. The

WatDiv basic query set contains queries of varying shape and selectivity to model

different scenarios. The queries are grouped into the following subsets:

 Dataset
Number of Triples (million)

 LUBM

 Number of Universities

 1000 138

 5000 691

 10000 1381

 WatDiv

 Scale Factor

 1000 109

 5000 549

 10000 1098

 YAGO2 72

 L (L1, L2, L3, L4, L5): Linear shaped queries.

 S (S1, S2, S3, S4, S5, S6, S7): Star shaped queries.

 F (F1, F2, F3, F4, F5): Snowflake shaped queries.

 C (C1, C2, C3): Complex shaped queries.

The real-life dataset is the YAGO2, which is a semantic knowledge base, derived

from Wikipedia, WordNet, and GeoNames. YAGO2 does not provide benchmark

queries; we have created a set of representative test queries (Y1 – Y5) with different

structures and complexities relative to LUBM and WatDiv query sets. Regarding

LUBM queries, we modified some of the original queries because executing those

original queries without the inferred triples returns an empty result set. All YAGO2

and modified LUBM queries are listed in appendix A and B respectively.

5.2 Cluster Configuration

To conduct the comparative analysis of distributed RDF data management solutions,

we constructed seven node clusters (1 master and 6 workers) on the Google Cloud

Platform. Each node in the cluster has a 32 vCPUs Intel(R) Xeon(R) CPU @

2.30GHz processor, 120 GB of memory, and 1 TB of hard disk space running

Ubuntu 16.04.3 LTS OS. Hadoop 2.7.7 and Spark 2.4.4 are configured on all nodes

where each spark worker is given 100 GB of memory and 30 cores. In addition,

Parquet filter pushdown is enabled and broadcast joins in Spark SQL are disabled.

5.3 Empirical Comparison

We present an empirical comparison of our prototype S3QLRDF system with four

other open-source Hadoop based state-of-the-art systems: CliqueSquare, S2RDF,

SPARQLGX, and Rya. The store sizes and data loading times are listed in Table 5.

During data loading phase, we parse data to replace all URIs with their corresponding

namespace prefix and remove data type information from RDF objects to convert

them into primitive types. We do not consider the data import on the HDFS as part of

the preprocessing phase. We conduct a performance evaluation of S3QLRDF with

other competitor systems based on three metrics: preprocessing (loading) times, store

sizes, and query execution times. All measurements are averaged over four runs.

S3QLRDF has two data loading options: 1. Drop all columns whose entries are all

empty (NULL), and 2. Keep all columns even if all entries are empty (NULL), which

we call light-load. The light-load requires much less time compared to the first

loading option to store RDF data in PTP schema. We notice that using the first data

loading option cannot reduce noticeable storage space consumption and also query

execution times compared to the light-load in our cluster configuration. Therefore, we

discuss results with the light-load preprocessing option for S3QLRDF. S3QLRDF has

a two-step data loading process. The first step is creating the Property Table, and the

second step is to create PTP tables. We do not report about the Property Table in the

results of query run time because it does not participate in query evaluation. Since

Spark SQL has the cacheTable functionality to cache table in memory, we report

query execution times for both caching and without caching PTP table along with the

average mean runtimes (AM). S2RDF has two preprocessing modes: VP and ExtVP,

so we keep both of them in our results. We indicate “TimeOut” whenever the query

processing does not complete within a certain amount of time (8 hours) and “Fail”
whenever the query is not supported by the system or the system crashes before the

timeout delay.

Table 5 Loading Times and HDFS Sizes of S3QLRDF and Competitors

Fig. 6 Storage Space Distributions with Datasets

Fig. 6 indicates the storage space distribution of LUBM (avg. of 1000, 5000, and

10000), WatDiv (avg. of SF 1000, 5000, and 10000), and YAGO2 datasets. From

Table 5, we can see that S2RDF-VP and SPARQLGX have low space overhead; on

the other hand, CliqueSquare and S2RDF-ExtVP need more storage space due to their

underlying data storage layouts.

Dataset
LUBM

1000

LUBM

5000

LUBM

10000

WatDiv

SF-1000

WatDiv

SF-5000

WatDiv

SF-10000
YAGO2

H
D

F
S

 S
iz

e
(G

B
)

Original 24 116 232 15 74 149 11

CliqueSquare 39.7 201 402 30 153 308 15

S2RDF-VP 0.98 5 10 1 5.5 11.1 1

S2RDF-ExtVP 3.9 19.2 38.9 10.4 53.7 108.5 10

SPARQLGX 1.2 5.9 12.1 0.88 4.8 9.8 1.1

Rya 1.4 7.3 14.9 2.9 17.2 32.3 2.8

S3QLRDF 3.7 18.7 37.4 7.6 38.3 76.6 5.3

L
o

ad
in

g
 T

im
e

(s
ec

o
n

d
s)

CliqueSquare 611 3027 6149 645 2983 6237 4876

S2RDF-VP 63 173 289 104 219 325 114

S2RDF-ExtVP 898 2293 4112 6082 10261 14606 13899

SPARQLGX 143 508 908 106 380 749 105

Rya 854 3476 5735 1277 5084 12509 977

S3QLRDF 163 556 1009 279 766 1419 271

Fig. 7 Time Distributions with Datasets (log scale)

From Fig. 7, we notice that CliqueSquare, S2RDF-ExtVP, and Rya need more

time to load data compare to S2RDF-VP and SPARQLGX because of their

preprocessing methods. The lack of in-memory data processing framework in

CliqueSquare and Rya causes high overhead. S2RDF-ExtVP incurs significantly

higher overhead compared to S2RDF-VP because of additional pre-computation

phases. Although YAGO2 is the smallest dataset, S2RDF-ExtVP needs more

preprocessing time with YAGO2 due to its large number of predicates. We observe

that the data loading time of S2RDF-ExtVP depends not only on the size of the

dataset but also on the number of predicates. S3QLRDF has a moderate overhead in

terms of data loading time and storage space as compared to other systems.

Fig. 8 Performance Comparison for LUBM 10000 (log scale)

The performance comparison for LUBM 10000 is illustrated in Fig. 8 on a log

scale while absolute runtimes are given in Table 6. We can observe that S3QLRDF

outperforms all other systems by up to an order of magnitude on average (arithmetic

mean). Q1 and Q4 are the most selective queries, returning only a few results and can

be answered by S3QLRDF within 5200 milliseconds or less. These queries define a

star-shaped pattern, which can be answered very efficiently with the PTP table of

S3QLRDF. For the most unselective query, Q14, S3QLRDF outperforms all other

systems. Q2, Q8, and Q12 define the complex patterns where Q8 and Q12 produce

results of constant size as the size of the dataset increases. On the other hand, the

intermediate result set of Q2 increases when the input dataset increases. Also, for

these queries, runtimes of S3QLRDF are significantly faster than for all other

systems, which is below 9000 milliseconds. If we use the cacheTable functionality of

Spark SQL to cache PTP tables in memory, which we call S3QLRDF-CT, then we

achieve an order of magnitude faster response time despite that the caching table

incurs a little overhead due to caching time. We also report the number of query

executions per hour (Query/hr) where S3QLRDF and S3QLRDF-CT outperform all

other systems.

Table 6 LUBM Query Runtimes (milliseconds), AM: Arithmetic Mean

Query Q1 Q2 Q4 Q8 Q12 Q14 AM Query/hr

1
0
0
0

CliqueSquare 23004 131023 24005 55008 17003 25004 45841 78

S2RDF-VP 737 1447923 1417 3346 1291 249 242493 14

S2RDF-ExtVP 626 436253 773 2473 816 202 73523 48

SPARQLGX 7435 16159 15676 15320 9528 4654 11462 314

Rya 82519 TimeOut 24306 TimeOut TimeOut 19467 - -

S3QLRDF 1289 4275 318 875 809 839 1400 2569

S3QLRDF-CT 753 2708 162 579 529 468 866 4154

5
0
0
0

CliqueSquare 51008 547086 58008 221037 23004 61012 160192 22

S2RDF-VP 1170 7535191 4220 6630 1588 424 1258203 2

S2RDF-ExtVP 1045 2534103 811 5308 1012 364 423773 8

SPARQLGX 10820 24649 36834 28121 11966 5328 19619 183

Rya 393219 TimeOut 93028 TimeOut TimeOut 103257 - -

S3QLRDF 3672 6445 331 2045 984 1822 2549 1411

S3QLRDF-CT 1387 4430 187 1584 720 1013 1553 2317

1
0
0
0

0

CliqueSquare 85014 1149205 97020 429089 25005 109019 315725 11

S2RDF-VP 1899 18737030 8751 15377 1818 512 3127564 1

S2RDF-ExtVP 1813 9909611 1105 15261 1126 492 1654901 2

SPARQLGX 13780 36944 69986 51158 17697 7233 32799 109

Rya 820376 TimeOut 250340 TimeOut TimeOut 198825 - -

S3QLRDF 5193 8565 359 4005 1069 3298 3748 960

S3QLRDF-CT 2132 5841 209 2388 887 2016 2245 1603

Fig. 9 Performance Comparison for WatDiv SF10000 (log scale)

Fig. 9 compares the different systems on the largest dataset (SF10000) of WatDiv,

corresponding AM runtimes are listed in Table 7. For WatDiv, S3QLRDF and

S3QLRDF-CT show a competitive runtime performance for all query categories

when increasing the size of the dataset. In Table 7, we report the number of queries to

execute per hour (Query/hr) under all query categories for all competitors. Again,

S3QLRDF and S3QLRDF-CT outperform all of its competitors by an order of

magnitude in terms of Query/hr.

Table 7 WatDiv Query Runtimes (milliseconds), AM: Arithmetic Mean

Query L1 L2 L3 L4 L5 AM-L Query/hr

1
0
0
0

CliqueSquare 17004 17003 17003 16003 16002 16603 216

S2RDF-VP 1057 833 728 383 655 731 4923

S2RDF-ExtVP 693 668 483 203 345 478 7525

SPARQLGX 7499 6056 6266 5164 6513 6299 571

Rya 11553 13986 179566 2503 7850 43091 83

S3QLRDF 372 361 243 194 301 294 12236

S3QLRDF-CT 271 241 154 107 209 196 18329

5
0
0
0

CliqueSquare 21004 23005 20004 18004 23005 21004 171

S2RDF-VP 1193 864 788 476 817 827 4349

S2RDF-ExtVP 753 740 556 364 493 581 6194

SPARQLGX 9332 7233 7550 5295 7678 7417 485

Rya 93100 139321 2425292 16366 73631 549542 6

S3QLRDF 417 402 321 206 316 332 10830

S3QLRDF-CT 324 258 225 119 219 229 15720

1
0
0
0

0

CliqueSquare 24004 28004 22004 19004 29007 24404 147

S2RDF-VP 1214 1082 802 612 1079 957 3758

S2RDF-ExtVP 804 972 781 409 669 727 4951

SPARQLGX 10803 8740 8535 6330 10579 8997 400

Rya 201572 150843 3773827 32482 163556 864456 4

S3QLRDF 577 389 405 221 319 382 9419

S3QLRDF-CT 364 279 243 153 226 253 14229

Table 7 continued

Query F1 F2 F3 F4 F5 AM-F Query/hr

1
0
0
0

CliqueSquare 17003 34005 17003 17004 23004 21603 166

S2RDF-VP 3213 3299 2806 3100 1200 2723 1321

S2RDF-ExtVP 1195 1762 1590 1695 1020 1452 2478

SPARQLGX 9303 14175 12139 12256 16317 12838 280

Rya 118584 58966 3028489 36392 13775 651241 5

S3QLRDF 498 410 813 902 750 674 5336

S3QLRDF-CT 394 263 570 614 428 453 7933

5
0
0
0

CliqueSquare 22004 52010 29004 18004 45009 33206 108

S2RDF-VP 4015 4174 3186 4415 1804 3518 1023

S2RDF-ExtVP 1418 2393 1611 1996 1415 1766 2037

SPARQLGX 12077 26228 24835 14840 20742 19744 182

Rya 2935654 502117 TimeOut 244267 87633 - -

S3QLRDF 621 460 1343 1152 765 868 4146

S3QLRDF-CT 484 282 891 764 529 590 6101

1
0
0
0

0

CliqueSquare 23004 64009 51009 24005 69015 46208 77

S2RDF-VP 4707 5249 3743 5052 1899 4130 871

S2RDF-ExtVP 1666 2859 1759 2967 1586 2167 1660

SPARQLGX 14727 36746 41766 15964 23861 26612 135

Rya 16566663 955236 TimeOut 641823 161901 - -

S3QLRDF 903 543 1488 1502 802 1047 3436

S3QLRDF-CT 630 316 1093 1278 662 795 4523

Query S1 S2 S3 S4 S5 S6 S7 AM-S Query/hr

1
0
0
0

CliqueSquare 18003 17003 17003 17003 17003 18003 17003 17288 208

S2RDF-VP 1403 1351 802 993 2893 1998 974 1487 2419

S2RDF-ExtVP 1156 1015 381 468 1220 535 403 739 4866

SPARQLGX 17207 8156 6499 8221 5944 6999 7655 8668 415

Rya 14013 104851 2930 30746 4713 2020 129859 41304 87

S3QLRDF 347 218 211 339 160 178 308 251 14310

S3QLRDF-CT 242 115 120 210 117 112 227 163 22047

5
0
0
0

CliqueSquare 23006 18003 17003 18004 17003 20005 21003 19146 188

S2RDF-VP 1947 1618 1005 1063 3276 1863 1004 1682 2139

S2RDF-ExtVP 1224 1064 505 586 1890 689 454 916 3930

SPARQLGX 22275 15479 7560 11251 8751 8541 8845 11814 304

Rya 81997 976214 28658 167601 33253 33400 715782 290986 12

S3QLRDF 454 283 228 366 196 210 371 301 11954

S3QLRDF-CT 321 144 125 254 126 128 238 190 18862

1
0
0
0

0

CliqueSquare 31005 20003 18003 20005 18004 21004 26005 22004 163

S2RDF-VP 2071 1810 1276 1089 4049 3015 1012 2046 1759

S2RDF-ExtVP 1588 1665 738 627 2054 964 498 1162 3098

SPARQLGX 30205 15140 8251 12190 9846 10440 12707 14111 255

Rya 160363 1914860 66350 339725 64166 51112 1544922 591642 6

S3QLRDF 472 294 242 383 226 222 378 316 11366

S3QLRDF-CT 338 159 137 301 121 142 261 208 17272

Table 7 continued

Query C1 C2 C3 AM-C Query/hr

1
0
0
0

CliqueSquare 33005 37006 30005 33338 107

S2RDF-VP 3427 5250 5852 4843 743

S2RDF-ExtVP 3251 3189 5275 3905 921

SPARQLGX 19854 15152 21817 18941 190

Rya 15444 2992945 2173732 1727373 2

S3QLRDF 3854 2615 387 2285 1575

S3QLRDF-CT 1597 1686 212 1165 3090

5
0
0
0

CliqueSquare 49010 71018 92018 70682 50

S2RDF-VP 4625 8970 10709 8101 444

S2RDF-ExtVP 4092 4892 8705 5896 610

SPARQLGX 34894 32621 48768 38761 92

Rya 130440 TimeOut 13385691 - -

S3QLRDF 5199 2844 664 2902 1240

S3QLRDF-CT 2152 2332 302 1595 2256

1
0
0
0

0

CliqueSquare 65014 109017 190041 121357 29

S2RDF-VP 5880 10361 16488 10909 329

S2RDF-ExtVP 5292 5783 14382 8485 424

SPARQLGX 64319 29652 78596 57522 62

Rya 310289 TimeOut 28712939 - -

S3QLRDF 6370 4702 977 4016 896

S3QLRDF-CT 2968 3449 351 2256 1595

Fig. 10 Performance Comparison for YAGO2 (log scale)

 Table 8 YAGO2 Query Runtimes (milliseconds), AM: Arithmetic Mean

Query Y1 Y2 Y3 Y4 Y5 AM Query/hr

S2RDF-VP 2923 5585 9754 8620 3469 6070 593

S2RDF-ExtVP 1811 5188 7507 3445 1566 3903 922

SPARQLGX 169546 35260 Fail 22542 15141 - -

Rya 1329020 5288669 Fail TimeOut 632515 - -

S3QLRDF 3525 9610 1921 2284 632 3594 1001

S3QLRDF-CT 2544 8853 1407 1685 376 2973 1210

Fig. 10 illustrates the execution times for YAGO2 queries of all compared systems

while absolute runtimes, and Query/hr are given in Table 8. CliqueSquare fails to

execute YAGO2 queries; therefore, we did not include CliqueSquare in the YAGO2

query evaluation. We can observe that S3QLRDF and S3QLRDF-CT outperform

SPARQLGX and Rya by an order of magnitude on runtime in all queries. S2RDF has

faster query response times for Y1 and Y2 compared to S3QLRDF because of the

materialized join reduction tables of ExtVP and because S3QLRDF incurs a little

overhead while flattening a complex column. Since a number of complex columns are

required to be flattened in Y1 and Y2, S3QLRDF is slower in response time

compared to S2RDF, but in terms of average runtime and Query/hr, S3QLRDF

outperforms all of its competitors, including S2RDF.

In this section, we conduct a comparative performance evaluation of the SQL

system on a Hadoop cluster with the state-of-the-art systems CliqueSquare, S2RDF,

SPARQLGX, and Rya, using different query shapes, complexities with three different

datasets up to 1.4 billion triples. Our proposed S3QLRDF system outperforms state-

of-the-art distributed SPARQL query processors by an order of magnitude on average

for all query shapes.

6 Benchmarking S3QLRDF under Columnar File Formats

Columnar file formats have well known advantages that can improve the storage

efficiency by effective data compression, as well as helping to achieve significant

performance gains by moving only relevant portions of data into memory during

query processing. Columnar storage formats have been available for storing data in

HDFS for over a decade. Currently, Parquet and ORC formats are two of the most

popular ones for HDFS.

6.1 Relational Data Management Using Parquet and ORC

Relational data management including analysis is one of the most popular data

processing paradigms. Modern cloud-based relational data processing systems

typically do not manage their storage. They leverage a variety of external file formats

to store and access data. Over the last decade, a variety of external file formats such

as Parquet, ORC, etc., have been developed to store large volumes of relational data

in the cloud. High-performance networking and storage devices are used pervasively

to process this massive amount of data in Big Data frameworks like Spark and

Hadoop. The performance of a file format in terms of storage efficiency and data

access rate plays an important role in data management.

Parquet and ORC are columnar data storage in the Hadoop ecosystem. They offer

features that store data by employing different encoding, column-wise compression,

compression based on data type, and predicate pushdown. Typically, enhanced

compression ratios, or skipping blocks of data, involves reading fewer bytes from

HDFS, resulting in enhanced query performance. We use Parquet and ORC file

formats as the storage backend for our S3QLRDF system to run the experiments in

order to measure the RDF data storage efficiency, loading, and query execution

performance.

6.2 Empirical Comparison

We present an empirical comparison between Parquet and ORC file formats while

using S3QLRDF system with the PTP schema.

We performed our evaluation on a small cluster of 6 machines (1 master and 5

workers) using AWS EC2 instances. Each machine is equipped with 64 GB of

memory, 1 TB of disk space and with an 8 Core Intel Xeon Platinum 8175M CPU @

2.50 GHz. The cluster runs with Hadoop 2.7.7, Hive 2.3.6, and Spark 2.4.4 on Ubuntu

16.04 LTS. The resource manager, Yarn, uses 240 GB of memory and 40 virtual

cores. In our cluster configuration, a Spark partition size is equal to the default size of

an HDFS block (128 MB). We kept the default settings for both Parquet and ORC file

formats with filter pushdown enabled.

The experiments are conducted on a synthetic dataset, WatDiv, with around 109

million triples and 86 predicates, and a real-world dataset, a dump of YAGO (Yago2s

2.5.3), with a total size of 245 million triples and 104 predicates. The PT (Property

Table) creation is the prerequisite to create the PTP tables, therefore, we report total

time to create PT and PTP as data loading time. Both Parquet and ORC are efficient

formats in terms of storage size due to their use of columnar storage and built-in

compression. For this performance comparison, we use their default compression

codec when writing Parquet/ORC files using Spark 2.4.4.

Table 9 WatDiv and YAGO Loading Times and HDFS Sizes

Dataset File Format Load Time HDFS Size

WatDiv
Parquet 796 s 7.1 GB

ORC 768 s 6.6 GB

YAGO
Parquet 5621 s 16.7 GB

ORC 4871 s 12.1 GB

We report datasets loading times and HDFS sizes for PTP schema based on

Parquet and ORC file formats in Table 9. From Table 9, we can see that ORC

outperforms Parquet in terms of storage space and data loading time. These two

formats physically organize the data in different manners, which is why they differ

from one another in terms of their total size.

Fig. 11 CPU and RAM Consumptions During Data Loading Phase

Fig. 12 Total HDFS Bytes Read/Written During Data Loading Phase

Fig. 11 and 12 present resource usages (CPU and RAM) and the total amount of

bytes read from and written on the HDFS during the data loading process. The

percent of CPU and the amount of RAM usage are slightly less in ORC than Parquet.

Similarly, S3QLRDF reads and saves less amount of data while working with ORC

than Parquet.

WatDiv comes with a set of 20 predefined query templates called Basic Testing

Use Case that can be grouped in four categories according to their shape: complex

(C), snowflake (F), star (S), and linear (L). Each of the queries from the basic query

set is evaluated four times to get the average run time. Finally, the query run times are

aggregated by the query shapes. YAGO does not provide benchmark queries; we

have created four representative test queries (C, F, S, and L) based on the categories

of WatDiv basic query set where C, F, S, and L represent complex, snowflake, star,

and linear-shaped query. We submitted each query at a time as a single Spark

Application in the cold-start scenario when memory was free. The run times reported

for each query are the average of 4 execution times. Since Spark SQL has the

0

20

40

60

80

100

WatDiv YAGO

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

Parquet ORC

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

WatDiv YAGO

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
y
te

s)

Parquet ORC

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

WatDiv YAGO

T
o
ta

l
B

y
te

s
R

ea
d

Parquet ORC

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

WatDiv YAGO

T
o
ta

lB
y
te

s
W

ri
tt

en

Parquet ORC

cacheTable functionality to cache tables in memory before execution, we report

average query execution times for both caching (CT) and without caching (W/O-CT)

PTP tables. We also report the query run times (T-CT) including caching times to

investigate how the caching table affects the overall query runtimes.

Table 10 WatDiv Basic Testing (milliseconds)

WatDiv-C Parquet ORC

W/O-CT 18787 26521

CT 9932 8765

T-CT 34196 45296

WatDiv-F Parquet ORC

 30606 49703

 14596 13081

 52561 72198

WatDiv-S

W/O-CT 31561 49325

CT 8079 7011

T-CT 47936 67483

WatDiv-L

 22743 35096

 5454 4906

 35906 51103

Table 11 YAGO Query Run Times (milliseconds)

YAGO-C Parquet ORC

W/O-CT 146028 152791

CT 120097 122743

T-CT 136335 143867

YAGO-F Parquet ORC

 5228 8321

 1704 1593

 8819 12435

YAGO-S

W/O-CT 59349 78218

CT 58876 68082

T-CT 64776 76602

YAGO-L

 4974 8232

 1541 1394

 8302 13064

The performance comparison between Parquet and ORC storage formats based on

PTP schema in terms of the query execution times for WatDiv and YAGO are shown

in Tables 10 and 11 respectively. The first observation was that ORC with CT,

compared to that of other options, had the best query performance for all WatDiv

query types. For YAGO, ORC with CT shows the best performance except for the C

and S query types, although it is not significantly worse. We did not consider caching

times of PTP table in memory for CT, but if we report caching times along with query

runtimes (T-CT) then ORC has slightly worse performance for the majority of query

types. We also observe that Parquet without cacheTable method (W/O-CT) shows

reasonably better performance for all query types. For future experiments in section 7,

we will be using Parquet without cacheTable method to measure query runtimes.

From the above discussion, we can conclude that the caching table in memory

adds some overhead to the total query runtimes; therefore, the cacheTable method is

recommended only for batch execution of queries. We demonstrate query

performance while using cacheTable method for batch execution of queries in section

5.3.

7 Empirical Evaluation of Spark-based RDF Management Systems

Over the last few years, several systems have been designed to exploit the Spark

framework for building scalable RDF processing engines like S3QLRDF, S2RDF,

SPARQLGX, and PRoST. These systems load data as triples, and a simple

partitioning technique, like vertical partitioning or property table partitioning, is

applied to their raw form for further processing. In such systems, the RDD API, or

Spark SQL, is used to answer the SPARQL query.

7.1 Benchmarked SPARQL Evaluators

In this section, we present a brief overview on Spark-based RDF management

systems, namely S3QLRDF, S2RDF, SPARQLGX, and PRoST. Table 12 shows the

RDF data partitioning techniques used in the state-of-the-art Spark-based systems.

Table 12 Partitioning Strategies of Spark-based RDF Management Solutions

 VP WPT PTP ExtVP

S3QLRDF X

S2RDF X X

SPARQLGX X

PRoST X X

Spark-based systems listed in Table 12 use one or a combination of relational

partitioning techniques. S3QLRDF uses PTP schema to devise the RDF data storage

layout, S2RDF makes use of both VP and ExtVP approaches, SPARQLGX uses only

the VP approach, and PRoST combines the VP with the Wide Property Table (WPT)

[19] for their storage layout. Table 13 represents the RDF query processing methods

used in Spark-based systems based on Spark data abstraction.

Table 13 Data Access Model of Spark-based RDF Management Solutions

 RDD API DataFrame/Dataset (Spark SQL)

S3QLRDF X

S2RDF X

SPARQLGX X

PRoST X

Table 14 Experimental Setup - Dataset Statistics

Dataset Number of Triples (million) Number of Predicates HDFS Size (GB)

YAGO 245 104 35.5

DBLP 129 27 19.3

For the performance evaluation of Spark-based RDF management solutions, we

utilize two real datasets YAGO (Yago2s 2.5.3) and DBLP as shown in Table 14. The

YAGO is a semantic knowledge base, derived from Wikipedia, WordNet, and

GeoNames. Meanwhile, the DBLP Computer Science Bibliography provides

bibliographic information on computer science journals and proceedings. Both

YAGO and DBLP16 do not provide benchmark queries. Thus, we have created four

representative test queries C, F, S, and L for each dataset based on varying shape; like

complex, snowflake, star, and linear to model different scenarios respectively. These

query patterns actually affect the overall query performance. All YAGO and DBLP

queries are listed in appendix C and D respectively. We keep the same cluster

configuration mentioned in the section 6.2.

7.2 Experimental Results

We present an empirical comparison of 4 open-source Spark-based state-of-the-art

systems: S3QLRDF, S2RDF, SPARQLGX, and PRoST based on real datasets,

YAGO and DBLP. The store sizes and data loading times are listed in Table 15. From

Table 15, we can see that SPARQLGX has low space overhead; on the other hand,

S2RDF needs more storage space due to their underlying data layouts. SPARQLGX

also has low preprocessing overhead compared to other systems. S2RDF needs more

preprocessing time with YAGO due to its large number of predicates. We observe

that the data loading time of S2RDF depends not only on the size of the dataset but

also on the number of predicates which involve extensive precomputations with high

loading time; therefore, this system is not suitable for some datasets having a large

number of properties. S3QLRDF has a moderate overhead in terms of data loading

time when compared to other systems.

Table 15 Loading Times and HDFS Sizes

 YAGO DBLP

H
D

F
S

 S
iz

e
(G

B
)

S3QLRDF 16.7 23.8

S2RDF 32.8 29.1

SPARQLGX 3.4 2.2

PRoST 15.3 8.7

L
o

ad
in

g
 T

im
e

(s
ec

o
n
d

s)

S3QLRDF 5621 486

S2RDF 10999 2385

SPARQLGX 751 417

PRoST 1695 723

The following Fig. 13 and 14 present resource usages (CPU and RAM) and the

total amount of bytes read from and written on the HDFS during the data loading

phase. SPARQLGX has highest CPU utilization while reading and saving less

amount of data for both YAGO and DBLP datasets. On the other hand, S2RDF has

the highest amount of RAM usage compared to other systems. From the above

16 https://dblp.org/

discussion, we can conclude that S2RDF is the costliest system for the cluster because

of the highest data loading times and RAM usages.

We conduct a query performance evaluation of Spark-based RDF management

systems based on query execution times and cluster resource utilization. We report

the query run times including caching times for those systems that

use cacheTable functionality to cache table in memory. Not all systems offer to

execute a set of queries in the same Spark application to take advantage of in-memory

data left by a previously executed query. Thus, we submitted each query at a time as a

single Spark application to make a fair comparison among all systems. All

measurements are averaged over four runs.

Fig. 13 CPU and RAM Consumptions During Data Loading Phase

Fig. 14 Total HDFS Bytes Read/Written During Data Loading Phase (log scale)

0

10

20

30

40

50

60

70

80

90

100

YAGO DBLP

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

YAGO DBLP

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
y
te

s)

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

YAGO DBLP

T
o
ta

l
B

y
te

s
R

ea
d

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

YAGO DBLP

T
o
ta

l
B

y
te

s
W

ri
tt

en

S3QLRDF S2RDF

SPARQLGX PRoST

YAGO does not provide benchmark queries. Therefore, we use the YAGO test

queries C, F, S, and L listed in appendix C to benchmark the performance of different

Spark-based systems. The following Fig. 15 illustrates the performance comparison

for YAGO. S3QLRDF shows the best performance, except for query C and S,

although it is not significantly worse. S3QLRDF incurs a little overhead while

flattening a complex column. Since a number of complex columns are required to be

flattened in C and S, S3QLRDF is slower in response time compared to S2RDF,

which has the fastest query response times for C and S compared to all other systems

due to the materialized join reduction of ExtVP tables.

Fig. 15 YAGO Query Run Times (log scale)

Fig. 16 Total HDFS Bytes Read During YAGO Query Phase (log scale)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

C F S L

R
u

n
ti

m
e

(m
il

li
se

co
n

d
s)

S3QLRDF S2RDF SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

C F S L

T
o
ta

l
B

y
te

s
R

ea
d

S3QLRDF S2RDF SPARQLGX PRoST

Fig. 17 CPU and RAM Consumptions During YAGO Query Phase

S2RDF trades off the query performances with disk space and loading time.

SPARQLGX has poor runtimes for all queries among all systems. From Fig. 16 we

can see that the number of bytes required to read during query evaluation is less in

S3QLRDF for all of the queries, except C. We also figure out from Fig. 17 that the

system SPARQLGX, which is inexpensive in terms of data loading time, become

costly in cluster resource utilization (CPU and RAM) for evaluating most of the

queries, except query F.

Like YAGO, DBLP does not have benchmark queries; therefore, we use the

DBLP test queries C, F, S, and L listed in appendix D.

Fig. 18 DBLP Query Run Times (log scale)

0

10

20

30

40

50

60

70

80

90

100

C F S L

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

S3QLRDF S2RDF

SPARQLGX PRoST

0.E+00

1.E+10

2.E+10

3.E+10

4.E+10

5.E+10

6.E+10

7.E+10

8.E+10

9.E+10

C F S L

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
y
te

s)

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

C F S L

R
u

n
ti

m
e

(m
il

li
se

co
n

d
s)

S3QLRDF S2RDF SPARQLGX PRoST

Fig. 19 Total HDFS Bytes Read During DBLP Query Phase (log scale)

Fig. 18 illustrates the execution times for DBLP queries of all compared systems.

We can observe that S3QLRDF outperforms its competitors on runtime in most of the

queries, except F, where PRoST shows the best performance. Like YAGO,

SPARQLGX again shows poor query performance among all systems. We can also

observe from Fig. 19 that S3QLRDF reads relatively a less number of bytes to answer

queries C and F; on the other hand, PRoST requires less number of bytes to read

during query S and L evaluation. The average cluster CPU usage percent is high in

S2RDF and SPARQLGX while the average RAM usage is almost similar for all

systems (Fig. 20).

Fig. 20 CPU and RAM Consumptions During DBLP Query Phase

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

C F S L

T
o
ta

l
B

y
te

s
R

ea
d

S3QLRDF S2RDF SPARQLGX PRoST

0

10

20

30

40

50

60

70

80

90

100

C F S L

A
v
er

ag
e

C
P

U
 U

sa
g
e

(%
)

S3QLRDF S2RDF

SPARQLGX PRoST

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

C F S L

A
v
er

ag
e

R
A

M
 U

sa
g
e

(B
y
te

s)

S3QLRDF S2RDF

SPARQLGX PRoST

In this section, we conduct an empirical evaluation of 4 state-of-the-art Spark-

based RDF management solutions based on common criteria: preprocessing (loading)

times, store sizes, query execution times, and cluster resource utilization. All of these

systems use different data partitioning techniques to devise their relational storage

schemas for RDF triplestore on top of Hadoop. The aim of using Spark with Hadoop

is to provide efficient RDF management systems to improve query performance by

exploiting data parallelization. Moreover, data partitioning also plays a vital role in

efficient query processing which has a huge impact on query performance.

8 Conclusion

In this paper, we focus on two key elements in the distributed system for efficient

SPARQL query processing; data parallelization and data partitioning. We propose a

novel RDF data partitioning schema called Property Table Partitioning; and we use

Spark to exploit data parallelization for the distributed RDF management system. We

also demonstrate how columnar storage formats, like Parquet and ORC, can affect the

overall performance of the distributed RDF storage and SPARQL querying system.

We presented S3QLRDF, a distributed RDF management solution based on Property

Table Partitioning schema built on top of Spark. Based on our extensive evaluation of

S3QLRDF with other open-source state-of-the-art systems using real and synthetic

RDF datasets, we conclude that S3QLRDF system improves the efficiency of

SPARQL query processing.

For future work, we consider further improvements of S3QLRDF system in terms

of querying performance, especially for the query that involves flattening a number of

complex columns. We aim at generating a better query plan with complex properties

for less expensive retrieval.

Acknowledgements Authors gratefully acknowledge the support for this project under Google Cloud

Platform and AWS for Research sponsorship to run the experiments using their Cloud Computing services.

References

1. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “DBpedia: A nucleus for a

Web of open data,” in The semantic web, Springer, pp. 722–735, 2007.

2. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “YAGO2: A spatially and temporally

enhanced knowledge base from Wikipedia,” Artif. Intell., vol. 194, pp. 28–61, 2013.

3. A. Callahan, J. Cruz-Toledo, P. Ansell, and M. Dumontier, “Bio2RDF Release 2: Improved
Coverage, Interoperability and Provenance of Life Science Linked Data,” in Proc. 10th Int. Conf. The

Semantic Web: Semantics Big Data, pp. 200–212, 2013.

4. X. Dong et al., “Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion,” in
Proc. 20th ACM SIGKDD Int. Conf. Knowl. Disc. Data Mining, pp. 601–610, 2014.

5. W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A Probabilistic Taxonomy for Text
Understanding” in Proc. ACM SIGMOD Int. Conf. Management Data, Scottsdale, AZ, pp. 481–492,

2012.

6. G. Fu, C. Batchelor, M. Dumontier, J. Hastings, E. Willighagen, and E. Bolton, “PubChemRDF:
Towards the semantic annotation of PubChem compound and substance databases,” J. Cheminform.,
vol. 7, no. 1, pp. 1–15, 2015.

7. R. Apweiler et al., “Activities at the Universal Protein Resource (UniProt),” Nucleic Acids Res., vol.
42, no. D1, pp. 191–198, 2014.

8. C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The Story So Far,” Int. J. Semant. Web Inf.
Syst., vol. 5, no. 3, pp. 1–22, 2009.

9. L. Galárraga and R. Schenkel, “Partout : A Distributed Engine for Efficient RDF Processing,” in
World Wide Web, pp. 267–268, 2014.

10. M. Hammoud et al., “DREAM: Distributed RDF Engine with Adaptive Query Planner and Minimal
Communication,” in Proceedings of the VLDB Endowment, vol. 8, no. 6, pp. 654–665, 2015.

11. R. Punnoose, A. Crainiceanu, and D. Rapp, “Rya: A Scalable RDF Triple Store for the Clouds,” in
Proceedings of the ACM 1st International Workshop on Cloud Intelligence, ACM., p. 4, 2012.

12. N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, and N. Koziris, “H2RDF+: High-

performance distributed joins over large-scale RDF graphs,” in Proc. IEEE International Conference
on Big Data, pp. 255–263, 2013.

13. K. Rohloff and R. E. Schantz, “Clause-iteration with MapReduce to Scalably Query Datagraphs in

the SHARD Graph-store,” in Proc. 4th Int. Workshop Data-Intensive Distrib. Comput., pp. 35–44,

2011.

14. Z. Kaoudi, I. Manolescu, and S. Zampetakis, “CliqueSquare : Flat Plans for Massively Parallel RDF
Queries,” in Proc. IEEE 31st Int. Conf. Data Eng., pp. 771–782, 2015.

15. A. Schätzle, M. Przyjaciel-Zablocki, T. Hornung, and G. Lausen, “PigSPARQL: A SPARQL Query
Processing Baseline for Big Data,” in Proc. 12th Int. Semantic Web Conf. (Posters Demonstrations
Track), pp. 241–244, 2013.

16. A. Schätzle, M. Przyjaciel-Zablocki, A. Neu, and G. Lausen, “Sempala: Interactive SPARQL Query
Processing on Hadoop,” in Proc. 13th Int. Semantic Web Conf., pp. 164–179, 2014.

17. A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen, “S2RDF: RDF Querying with
SPARQL on Spark,” in Proc. of VLDB Endowment, vol. 9, no. 10, pp. 804–815, 2016.

18. D. Graux, L. Jachiet, P. Genevès, and N. Layaïda, “SPARQLGX: Efficient Distributed Evaluation
of SPARQL with Apache Spark,” Springer, Cham, 2016, pp. 80–87.

19. M. Cossu, M. Färber, and G. Lausen, “PRoST: Distributed execution of SPARQL queries using
mixed partitioning strategies,” in Proc. of the 21th International Conference on Extending Database
Technology, pp. 469–472, 2018.

20. J. Dean, S. Ghemawat, and I. Google, “MapReduce: Simplified Data Processing on Large Clusters,”
Sixth Symposium on Operating System Design and Implementation, vol. 51, no. 1, pp. 1–13, 2008.

21. M. Kornacker et al., “Impala: A Modern, Open-Source SQL Engine for Hadoop,” in Proceedings of
the Conference on Innovative Data Systems Research (CIDR’15), 2015.

22. K. Wilkinson, “Jena Property Table Implementation,” in Proc. Int. Workshop Scalable Semantic Web
Knowl. Base Syst., pp. 35–46, 2006.

23. D. J. Abadi, S. R. Madden, and K. Hollenbach, “Scalable Semantic Web Data Management Using

Vertical Partitioning,” in Proc. 33rd Int. Conf. Very Large Data Bases, pp. 411–422, 2007.

24. M. Hassan and S. K. Bansal, “Data Partitioning Scheme for Efficient Distributed RDF Querying
Using Apache Spark,” in Proceedings of the13th IEEE International Conference on Semantic

Computing, pp. 24–31, 2019.

25. M. Hassan and S. K. Bansal, “S3QLRDF: Property Table Partitioning Scheme for Distributed
SPARQL Querying of large-scale RDF data,” in 2020 IEEE International Conference on Smart Data
Services (SMDS), 2020, pp. 133–140.

26. Y. Huai et al., “Major technical advancements in Apache Hive,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data, pp. 1235–1246, 2014.

27. D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach, “SW-Store: A vertically partitioned

DBMS for semantic web data management,” VLDB J., vol. 18, no. 2, pp. 385–406, 2009.

Appendix

A. YAGO2 QUERIES

 BASE <http://yago-knowledge.org/resource/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Y1: SELECT ?GivenName ?FamilyName WHERE {

 ?p hasGivenName ?GivenName .

 ?p hasFamilyName ?FamilyName .

 ?p rdf:type ?scientist .

 ?scientist rdfs:label “scientist” .
 ?p wasBornIn ?city1 .

 ?city1 isLocatedIn “France” .
 ?p hasAcademicAdvisor ?a .

 ?a wasBornIn ?city2 .

 ?city2 isLocatedIn “United_States” .
}

Y2: SELECT ?name WHERE {

 ?a isCalled ?name .

 ?a rdf:type ?actor .

 ?actor rdfs:label “actor” .
 ?a actedIn ?m1 .

 ?a directed ?m2 .

 ?m1 rdf:type ?movie .

 ?movie rdfs:label “movie” .
 ?m1 isLocatedIn “Portugal” .
 ?m2 rdf:type ?movie .

 ?m2 isLocatedIn “Spain” .
}

Y3: SELECT DISTINCT ?name1 ?name2 WHERE {

 ?p1 hasFamilyName ?name1 .

 ?p2 hasFamilyName ?name2 .

 ?p1 rdf:type ?scientist .

 ?p2 rdf:type ?scientist .

 ?scientist rdfs:label “scientist” .
 ?p1 hasWonPrize ?award .

 ?p2 hasWonPrize ?award .

 ?p1 wasBornIn ?city .

 ?p2 wasBornIn ?city .

 FILTER (?p1 != ?p2)

}

Y4: SELECT DISTINCT ?name1 ?name2 WHERE {

 ?p1 isCalled ?name1 .

 ?p1 wasBornIn ?city1 .

 ?p1 actedIn ?movie .

 ?p2 isCalled ?name2 .

 ?p2 wasBornIn ?city2 .

 ?p2 actedIn ?movie .

 ?city1 isLocatedIn “United_States” .
 ?city2 isLocatedIn “United_States” .
 FILTER (?p1 != ?p2)

}

Y5: SELECT ?name1 ?name2 WHERE {

 ?p1 isCalled ?name1 .

 ?p1 wasBornIn ?city .

 ?p1 isMarriedTo ?p2 .

 ?p2 isCalled ?name2 .

 ?p2 wasBornIn ?city .

}

B. LUBM QUERIES
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

Q4: SELECT ?X ?Y1 ?Y2 ?Y3 WHERE {

 ?X rdf:type ub:FullProfessor .

 ?X ub:worksFor <http://www.Department0.University0.edu> .

 ?X ub:name ?Y1 .

 ?X ub:emailAddress ?Y2 .

 ?X ub:telephone ?Y3 .

}

Q8: SELECT ?X ?Y ?Z WHERE {

 ?X rdf:type ub:UndergraduateStudent .

 ?Y rdf:type ub:Department .

 ?X ub:memberOf ?Y .

 ?Y ub:subOrganizationOf <http://www.University0.edu> .

 ?X ub:emailAddress ?Z .

}

Q12: SELECT ?X ?Y WHERE {

 ?X rdf:type ub:FullProfessor .

 ?Y rdf:type ub:Department .

 ?X ub:worksFor ?Y .

 ?Y ub:subOrganizationOf <http://www.University0.edu> .

}

C. YAGO QUERIES
BASE <http://yago-knowledge.org/resource/>

C: SELECT ?country ?capital ?lang ?geo ?lon ?lat ?area ?population ?inst ?player ?city1 ?city2

WHERE {

 ?geo hasLongitude ?lon .

 ?geo hasLatitude ?lat .

 ?geo hasArea ?area .

 ?geo linksTo ?lang .

 ?country hasOfficialLanguage ?lang .

 ?country hasNumberOfPeople ?population .

 ?country hasCapital ?capital .

 ?capital linksTo ?inst .

 ?player playsFor ?inst .

 ?player wasBornIn ?city1 .

 ?player diedIn ?city2 .

}

F: SELECT ?gname1 ?gname2 ?fname1 ?fname2 ?city1 ?city2 WHERE {

 ?p1 hasGivenName ?gname1 .

 ?p2 hasGivenName ?gname2 .

 ?p1 hasFamilyName ?fname1 .

 ?p2 hasFamilyName ?fname2 .

 ?p1 isMarriedTo ?p2 .

 ?p1 wasBornIn ?city1 .

 ?p2 wasBornIn ?city2 .

 }

S: SELECT ?geo ?lon ?lat ?area ?wiki ?lang WHERE {

 ?geo hasLongitude ?lon .

 ?geo hasLatitude ?lat .

 ?geo hasArea ?area .

 ?geo hasWikipediaUrl ?wiki .

 ?geo linksTo ?lang .

 }

L: SELECT ?country ?capital ?lang ?geo ?area WHERE {

 ?geo hasArea ?area .

 ?geo linksTo ?lang .

 ?country hasOfficialLanguage ?lang .

 ?country hasCapital ?capital .

 }

D. DBLP QUERIES
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbp: <http://dbpedia.org/ontology/>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

C: SELECT ?v0 ?homepage ?name ?v1 ?year ?isbn ?publisher ?v2 ?title ?creator WHERE {

 ?v0 foaf:homepage ?homepage .

 ?v0 foaf:name ?name .

 ?v1 swrc:editor ?name .

 ?v1 dcterms:issued ?year .

 ?v1 swrc:isbn ?isbn .

 ?v1 dc:publisher ?publisher .

 ?v2 dcterms:partOf ?v1 .

 ?v2 dc:title ?title .

 ?v2 swrc:series <http://dblp.l3s.de/d2r/resource/collections/crypt> .

 ?v2 dc:creator ?creator .

}

F: SELECT ?v0 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 WHERE {

 ?v0 swrc:series <http://dblp.l3s.de/d2r/resource/conferences/genetic> .

 ?v0 foaf:homepage ?v2 .

 ?v0 dcterms:bibliographicCitation ?v3 .

 ?v0 dcterms:issued ?v4 .

 ?v0 dc:title ?v5 .

 ?v0 dc:creator ?v6 .

 ?v6 foaf:name ?v7 .

 ?v6 rdf:type ?v8 .

}

S: SELECT ?v0 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 ?v9 ?v10 ?v11 ?v12 ?v13 ?v14 ?v15 ?v16

WHERE {

 ?v0 swrc:journal <http://dblp.l3s.de/d2r/resource/journals/vldb> .

 ?v0 foaf:homepage ?v2 .

 ?v0 dc:creator ?v3 .

 ?v0 foaf:maker ?v4 .

 ?v0 rdfs:seeAlso ?v5 .

 ?v0 dc:identifier ?v6 .

 ?v0 dc:title ?v7 .

 ?v0 dc:type ?v8 .

 ?v0 dcterms:bibliographicCitation ?v9 .

 ?v0 dcterms:issued ?v10 .

 ?v0 swrc:number ?v11 .

 ?v0 swrc:pages ?v12 .

 ?v0 swrc:volume ?v13 .

 ?v0 rdf:type ?v14 .

 ?v0 rdfs:label ?v15 .

 ?v0 owl:sameAs ?v16 .

}

L: SELECT ?v0 ?v1 ?v2 WHERE {

 ?v0 dcterms:issued "2017" .

 ?v0 swrc:journal ?v1 .

 ?v1 rdfs:label ?v2 .

}

