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Abstract
Time Series Extrinsic Regression (TSER) involves using a set of training time series 
to form a predictive model of a continuous response variable that is not directly 
related to the regressor series. The TSER archive for comparing algorithms was 
released in 2022 with 19 problems. We increase the size of this archive to 63 prob-
lems and reproduce the previous comparison of baseline algorithms. We then extend 
the comparison to include a wider range of standard regressors and the latest ver-
sions of TSER models used in the previous study. We show that none of the pre-
viously evaluated regressors can outperform a regression adaptation of a standard 
classifier, rotation forest. We introduce two new TSER algorithms developed from 
related work in time series classification. FreshPRINCE is a pipeline estimator con-
sisting of a transform into a wide range of summary features followed by a rotation 
forest regressor. DrCIF is a tree ensemble that creates features from summary sta-
tistics over random intervals. Our study demonstrates that both algorithms, along 
with InceptionTime, exhibit significantly better performance compared to the other 
18 regressors tested. More importantly, DrCIF is the only one that significantly out-
performs a standard rotation forest regressor.

Keywords Time series regression · Extrinsic regression · Interval ensembles · 
Unsupervised feature extraction

1 Introduction

Time series analysis is a popular topic in machine learning and data mining research. 
Thousands of research papers in this field have been published in the last decade. 
Various algorithms have been proposed for disparate tasks across a wide range of 
applications. The main reason for this development is the increased ability to store 
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data over time and the spread of cheap sensor technology to most fields of science. 
For example, solar panels depend on sensors to maximise their potential (e.g. to tilt 
the solar panel so that the sun shines directly on it) and hospitals routinely record 
and store patient data such as vital signs. This vast wealth of data offers great poten-
tial for data mining.

Two of the most researched time series machine learning/analysis tasks are clas-
sification (Bagnall et al. 2017; Middlehurst et al. 2023; Ruiz et al. 2021) and fore-
casting (Makridakis et al. 2008). Time Series Classification (TSC) involves build-
ing a predictive model from (possibly multivariate) time series for a categorical 
target variable. TSC differs from standard classification in that the discriminatory 
features are often in the shape of the series or the autocorrelation. Forecasting con-
sists of predicting (usually numeric) values based on past observations. Forecast-
ing is usually approached through a model-based algorithm (e.g., autoregressive or 
exponential smoothing) or by reducing the forecasting problem to a regression prob-
lem through a sliding window then using deep learning or a global model such as 
XGBoost.

Tan et  al. (2021) formally specified a related, but distinct, type of time series 
regression problem: Time Series Extrinsic Regression (TSER). Rather than being 
derived from a forecasting problem, TSER involves a predictive model built on time 
series to predict a real-valued variable distinct from the training input series. For 
example, Fig. 1 shows soil spectrograms which can be used to estimate the potas-
sium concentration. Ground truth is found through expensive lab based experiments 
that take some time. Spectrograms (ordered data series we treat as time series) 
are cheap to obtain and the data can be collected in any environment. An accurate 
regressor from spectrogram to concentration would make land and crop manage-
ment more efficient.  A TSER example already in the archive is shown in Fig.  2. 
Each multivariate time series, comprising an electrocardiogram (ECG) and a photo-
plethysmogram (PPG), can be used for heart rate estimation.

TSER is related to TSC as traditional regression is to classification: the only dif-
ference is that the target variable is real-valued rather than categorical. The distinc-
tion extrinsic is required because of the prevalence of the term time series regression 
in the forecasting literature to mean reduce forecasting to regression through a slid-
ing window.

The first benchmarking work for TSER (Tan et al. 2021) introduced an archive of 
19 TSER problems, including four univariate and 15 multivariate datasets. They per-
formed an experimental comparison of the performance of 13 algorithms on these 
data. The two algorithms adapted from the TSC literature, the RandOm Convolu-
tional KErnel Transform (ROCKET)  (Dempster et  al. 2020) and the deep learner 
InceptionTime (Ismail Fawaz et al. 2020), were top-ranked. However, there was no 
significant difference in Root Mean Square Error (RMSE) between the ten best-per-
forming algorithms, possibly because of the relatively small number of datasets and 
the conservative nature of the adjustment for multiple tests used. The abstract of 
Tan et al. (2021) states that “we show that much research is needed in this field to 
improve the accuracy of ML models [for TSER]”.

Despite the paper’s popularity and the identification of a clear need for novel 
research, there has been little or no progress in addressing this challenge. We have 
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responded to this call to arms and developed and assessed a range of TSER algo-
rithms. We have proposed new algorithms that are significantly better than the ones 
evaluated in Tan et al. (2021).

Our starting point to TSER is to adapt TSC algorithms for regression. The 
ROCKET family of classifiers all involve transformations using randomised convo-
lutions and a pooling operation followed by a linear or ridge classifier. The original 
ROCKET was converted to TSER by switching the classifier for a ridge regressor. 
We extend this to consider a more recent ROCKET variant, MultiROCKET  (Tan 
et al. 2022). Deep learning algorithms are also simple to adapt, and we extend the 
previous study to include a convolutional neural network in addition to an ensemble 
regression version of InceptionTime (Ismail Fawaz et al. 2020).

An alternative approach to TSC is to use a large number of unsupervised sum-
mary features as a transform. A review of a range of alternatives (Middlehurst and 
Bagnall 2022) found that the Fresh Pipeline with RotatIoN forest Classifier (Fresh-
PRINCE) was the best transform pipeline for TSC. The FreshPRINCE uses the Time 
Series Feature Extraction based on Scalable Hypothesis Tests (TSFresh)  (Christ 
et al. 2018) followed by a Rotation Forest (RotF) classifier (Rodriguez et al. 2006). 
We implement the FreshPRINCE for TSER.

Interval-based classifiers also extract unsupervised features, but they do so by 
ensembling pipelines with randomly selected intervals and a fast base classifier. The 
first interval-based approach for TSC was the Time Series Forest (TSF) (Deng et al. 
2013). TSF generates a set of random intervals and concatenates each interval’s 
mean, standard deviation and slope to make a unique feature space for every base 
classifier. The Canonical Interval Forest (CIF)  (Middlehurst et al. 2020a), and the 
subsequent Diverse Representation Canonical Interval Forest (DrCIF) (Middlehurst 
et al. 2021), adopt a similar model to the TSF but use different summary features and 
data representations. CIF uses the Canonical Time Series Characteristics (Catch22) 
(Lubba et al. 2019) feature set. Details of these transformation-based algorithms and 
how we have adapted them to TSER are provided in Sect.  3. Implementations of 
these regressors are available in the aeon toolkit1 Our main contributions can be 
summarised as follows: 

1. We provide 44 new datasets to the TSER archive, including 24 univariate and 20 
multivariate datasets, to take the archive to 63 datasets;

2. We extend the study from Tan et al. (2021) on these new data to examine whether 
the conclusions translate to the larger collection;

3. We implement recently proposed convolutional-based, feature-based, interval-
based, and deep learning-based TSC algorithms to TSER;

4. We conduct an extensive experimental study using 21 regressors and demonstrate 
that feature-based and interval-based regressors, on average, achieve a signifi-
cantly better RMSE than any other assessed algorithms;

1 https:// www. aeon- toolk it. org.

https://www.aeon-toolkit.org
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Fig. 1  Three examples of soil spectrograms from the PotassiumConcentration dataset. These spectro-
grams are used to predict the target variable, the potassium concentration level, the values of which are 
shown in the legend

Fig. 2  Two examples of electrocardiograms and photoplethysmograms, with their corresponding heart 
rate values, from the BIDMC32HR dataset
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5. We carry out a comprehensive analysis and an ablative study of the two best 
proposed approaches: FreshPRINCE and DrCIF.

6. We provide open source implementations of scikit-learn compatible implemen-
tations, clear guidance on reproducibility, and detailed results on the associated 
repository2.

The rest of this paper is structured as follows. In Sect. 2, the background and related 
works are exposed. Sect. 3 describes our new TSER algorithms in detail. In Sect. 4, 
we give an overview of the new archive and describe our experimental setup. In 
Sect. 5, experimental results for the 21 approaches applied to the total of 63 datasets 
are presented. Section 6 looks at these results in more detail. Finally, Sect. 7 sum-
marises our findings and highlights future work.

2  Background and related work

TSER aims to create a mapping function between a time series and a scalar value 
(Tan et  al. 2021). A time series is composed of real-valued ordered observations. 
Formally, a univariate time series of length m is defined as x = {x1, x2,… , xm} . A 
multivariate time series with d channels is specified as X = {x1, x2,… , xd} , where 
xk = {x1,k, x2,k,… , xm,k} and a collection of n time series is denoted X . Hence, xi,j,k 
represents the j-th observation of the i-th case for the k-th channel. A dataset D is 
composed of n time series samples and an associated response variable, D = {X, y} , 
where y = {y1, y2,… , yn} are the output continuous values, i. e. the input time series 
xi (univariate) or Xi (multivariate) is associated to the target variable yi.

A TSER model is a mapping function T → R , where T  is the space of all time 
series and R a continuous value. A TSER model is trained on a dataset DTRAIN and 
evaluated on an independent test dataset DTEST.

TSER shares some similarities with Scalar-on-Function Regression 
(SoFR)  (Goldsmith and Scheipl 2014), a functional regression model where basis 
models are applied to the series prior to regression, i. e. the goal is to fit a regression 
model with scalar responses and functional data points as predictors  (Reiss et  al. 
2017). Tan et al. (2021) used two SoFR models in their comparison based on Gold-
smith and Scheipl (2014). These were Functional Principal Component Regression 
(FPCR) and FPCR with B-splines (FPCR-Bs).

Time series forecasting is often reduced to regression through the application of 
a sliding window to form a collection of time series S and a forecast horizon speci-
fying how to select the target y . The most common techniques used in Time Series 
Forecasting Regression (TSFR) include deep learning variants and global models, 
where channels are concatenated and a standard regressor such as Random Forest or 
XGBoost is applied.

2 https:// tsml- eval. readt hedocs. io/ en/ latest/ publi catio ns/ 2023/ tser_ archi ve_ expan sion/ tser_ archi ve_ expan 
sion. html.

https://tsml-eval.readthedocs.io/en/latest/publications/2023/tser_archive_expansion/tser_archive_expansion.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/tser_archive_expansion/tser_archive_expansion.html
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Our primary source for TSER  (Tan et  al. 2021) compared three standard 
regression algorithms (Support Vector Regressors (SVR)  (Drucker et  al. 1996), 
Random Forest (RandF)  (Breiman 2001), and eXtreme Gradient Boosting 
(XGBoost)  (Chen and Guestrin 2016)); two k-Nearest Neighbours models using 
Euclidean and Dynamic Time Warping distances with both one and five neigh-
bours; three deep learning approaches (Fully Convolutional Neural Network (FCN) 
(Wang et  al. 2017), Residual Network (ResNet)  (He et  al. 2016) and Inception-
Time   (Ismail Fawaz et al. 2020)); two functional analysis approaches (FPCR and 
FPCR with B-splines  (Goldsmith and Scheipl 2014)); and ROCKET (Dempster 
et al. 2020). The standard regressors adopt the approach of global forecasting regres-
sors: time series are flattened into a vector concatenating all the channels. Hence, a 
multivariate time series of length m and d channels is converted into a single vector 
of length m × d . Subsequently, there have been very few algorithmic advances for 
TSER. Most novel developments are domain specific and not aimed at TSER as a 
whole. Among them, a Linear Space State Layers (LSSL) model  (Gu et al. 2021) 
has been tested on three TSER datasets, achieving low error metrics. Another state-
space model, Liquid-S4 (Hasani et al. 2022) has also been evaluated on those three 
datasets, and claims better results. An architecture based on Graph Neural Networks 
called TISER-GCN (Bloemheuvel et al. 2022) has been applied to seismic data as 
an extrinsic regression task. In a similar context, Siddiquee et al. (2022) introduces 
Septor, a hierarchical neural network model developed to estimate the depth of seis-
mic events from waveform data, i.e. a domain-specific extrinsic regression task. 
ROCKET-XGBoost (Bayani 2022) has been the only novel algorithm evaluated on 
the 19 TSER archive datasets, but it offered no significant improvement over the 
algorithms evaluated in Tan et al. (2021).

2.1  Time series classification (TSC) algorithms

There are a plethora of algorithms for TSC that have been compared in reproducible 
comparative studies (Bagnall et al. 2017; Middlehurst et al. 2023; Ruiz et al. 2021). 
Broadly, algorithms can be grouped by how they extract and learn from temporal 
patterns in the time series. We provide a very brief overview with a focus on how 
classifiers have been or could be adapted to TSER.

Distance-based classifiers use a distance function in conjunction with an algo-
rithm such as Nearest Neighbour (NN) classifier. The two most commonly used dis-
tance functions are Euclidean distance and Dynamic Time Warping (DTW). A NN 
classifier can trivially be adapted for regression by averaging over the target variable 
of the NN. For multivariate data, using terminology presented in Shokoohi-Yekta 
et al. (2017), DTW can either be independent (find DTW distance on each channel 
separately them sum the values) or dependent (use all channels in the point wise 
distance calculation).

Feature-based algorithms transform series into features using unsupervised 
descriptive statistics, then complete the pipeline with a classifier trained on the new 
feature set.
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Interval-based classifiers are an extension of feature-based pipeline classi-
fiers where rather than form summary features over the whole series, they con-
catenate features found over different intervals. They then form an ensemble 
over different randomised intervals rather than use a single estimator. Together, 
we group feature-based and interval-based approaches together as unsupervised 
feature-based classifiers. Adapting these algorithms to TSER is our primary 
research goal, so we cover this topic in more detail in Sect. 3.

Kernel/convolution-based models find convolutions from the space of all 
possible subseries and use them to create features through a form of pooling 
operation. The most popular approach, ROCKET (Dempster et al. 2020) gener-
ates random convolutions and is used in conjunction with a ridge classifier in 
a pipeline. It was adapted for TSER by simply changing the ridge classifier for 
a ridge regressor  (Tan et  al. 2021). More recently, MultiROCKET  (Tan et  al. 
2022) was proposed as an improved version of ROCKET. ROCKET uses two 
pooling operations to generate features: max pooling and the percentage of posi-
tive values. MultiROCKET adds three new pooling operations: mean of positive 
values, mean of indices of positive values, and longest stretch of positive values. 
It also extracts features from first order differences in addition to the raw data.

Deep learning continues to be popular for TSC  (Ismail Fawaz et  al. 2019), 
although to our knowledge InceptionTime (Ismail Fawaz et al. 2020) is still the 
best performing deep learner. The study in Tan et al. (2021) used Residual Net-
works (ResNet), Fully Convolutional Neural Network (FCN), and Inception-
Time. The original InceptionTime paper (Ismail Fawaz et al. 2020) proposed an 
ensemble of five InceptionTime classifiers to obtain the final results. However, 
Tan et al. (2021) used a single InceptionTime model for TSER. We evaluate both 
a single InceptionTime (Inception) and an InceptionTime Ensemble (InceptionE) 
faithful to the TSC version for TSER. We also evaluate the Convolutional Neural 
Network (CNN) regressor based on the classifier described in Zhao et al. (2017).

Shapelet-based approaches (Bostrom and Bagnall 2017; Ye and Keogh 2011) 
base classification on the presence of selected phase-independent subseries 
found from the training data. For classification, shapelets are assessed with a 
supervised measure such as information gain. Furthermore, the most accurate 
shapelet-based approaches  (Middlehurst et  al. 2021) evaluate shapelets with 
a one vs many approach and balance the search procedure between classes to 
improve diversity. Adapting shapelets for TSER requires significant internal 
changes and design decisions, being beyond the scope of this paper.

Dictionary based algorithms use a bag of words-like approach to base clas-
sification on the number of occurrences of approximated subseries (patterns). 
The most successful dictionary-based classifiers  (Schäfer 2015; Schäfer and 
Leser 2023; Middlehurst et al. 2020b) involve a degree of supervised selection 
using accuracy for filtering/weighting or feature selection and their adaptation 
for TSER is also beyond the scope of this paper.
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3  Unsupervised feature‑based regressors

Approaches which extract features from time series in an unsupervised process 
have been shown to perform well in classification scenarios. ROCKET (Demp-
ster et al. 2020) and CIF (Middlehurst et al. 2020a) perform as well as or better 
than single representation approaches such as shapelet or dictionary algorithms. 
These algorithms also have the benefit of lower complexity, essentially consist-
ing of transform to classifier pipelines or an ensemble of pipelines. ROCKET 
and CIF  (Middlehurst et  al. 2020a) were also top ranked for Multivariate TSC 
(MTSC) in a recent survey (Ruiz et al. 2021).

We describe the features extracted and our adaptations for two additional 
algorithms based on unsupervised transformations. The first is the Fresh-
PRINCE (Middlehurst and Bagnall 2022), a pipeline using the TSFresh (Christ 
et al. 2018) feature set. The second is DrCIF (Middlehurst et al. 2021), an inter-
val-based ensemble.

3.1  FreshPRINCE

FreshPRINCE is a pipeline algorithm for regression with two components: the 
TSFresh feature extraction algorithm that transforms the input time series into a 
feature vector, and then a Rotation Forest (RotF) (Rodriguez et al. 2006) estima-
tor that builds a model and makes target predictions. The structure of a generic 
pipeline algorithm for TSER is displayed in Fig. 3. TSFresh (Christ et al. 2018) 
is a collection of just under 800 features that can be extracted from time series 
data. While the features can be used on their own, a feature selection method 
called Fresh is provided to remove irrelevant features. FreshPRINCE does not 
make use of this feature selection. It keeps all the transformation process unsu-
pervised and allows the RotF to decide the utility of features. TSFresh is gener-
ally popular within the data science community, and has shown to perform bet-
ter than other unsupervised transformation pipelines on classification problems 
as part of FreshPRINCE (Middlehurst and Bagnall 2022).

RotF is an ensemble of tree classifiers which has been shown to accurately 
make predictions for problems where the attributes are continuous  (Bagnall 
et al. 2018). The classifier has been used as a benchmark and as a part of other 
pipeline classifiers in TSC  (Bagnall et  al. 2017; Middlehurst et  al. 2021), and 
performed better than a ridge classifier and XGBoost (Chen and Guestrin 2016) 
when paired with unsupervised transforms for TSC  (Middlehurst and Bagnall 
2022). Full descriptions of the RotF algorithm are available in Rodriguez et al. 
(2006) and Bagnall et  al. (2018). RotF is easily adaptable for regression: the 
implementation we developed removes class subsampling  (Pardo et  al. 2013), 
replaces the C4.5 decision tree with a Classification and Regression Tree 
(CART) (Breiman 2017), and averages the target predictions for each tree in the 
forest. The full TSFresh transformation and altered RotF make up our Fresh-
PRINCE adaptation for TSER.
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3.2  DrCIF

Interval-based techniques select phase-dependent intervals of fixed offsets from which 
to extract summary features. These intervals share their position for all time series, with 
the aim of discovering discriminatory features from particular locations in time. Most 
interval techniques take the form of a forest of decision trees, using different intervals 
to achieve diversity in the ensemble. While some interval forests do make use of super-
vised feature extraction (Cabello et al. 2020), TSF (Deng et al. 2013) and DrCIF (Mid-
dlehurst et al. 2021) are completely unsupervised in their method for selecting intervals 
and extracting features from said intervals. All that we change for TSER from the clas-
sification implementation is a swapping of the tree algorithm used. TSF can be adapted 
for the regression task in the same way.

From a series of length m, there are m(m − 1)∕2 possible intervals when considering 
all interval lengths and positions. Even at small series lengths, it is unfeasible to extract 
features from or evaluate all possible intervals. To solve the issue of which intervals 
from this pool to select, DrCIF uses a random forest based approach. An ensemble of 
CART regressors is formed, built on the output of different random interval transfor-
mations. Algorithm 1 describes the full build process for DrCIF. The transformation 
has three steps. First, the base time series is split into three series representations: the 
original time series, the first order differences of the series, and the periodogram of 
the series (characterised in line 3 of Algorithm 1). The differences and periodogram 
series-to-series transformations have shown to provide useful information in classifica-
tion approaches (Flynn et al. 2019; Cabello et al. 2020; Tan et al. 2022; Keogh and Paz-
zani 2001). Then, a different transform is created for each base regressor. First, a pool 
of a features is selected from a candidate pool of 29 features (line 6). DrCIF makes use 
of the CAnonical Time series CHaracteristics (Catch22) (Lubba et al. 2019). Catch22 
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Fig. 3  A diagram visualising a simple transformation pipeline for TSER. A transformation will convert 
the series into a usable feature vector for a regression algorithm
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is a diverse set of 22 features filtered from the 7000+ available in the Highly Compara-
tive Time Series Analysis (HCTSA) toolbox (Fulcher and Jones 2017). The Catch22 
features were selected for use on normalised data, but we do not make that assump-
tion. Hence, seven additional summary statistics are also candidates: the mean, stand-
ard-deviation, slope, median, interquartile range, min, and max. Then, for each data 
representation, a set of k random intervals are selected (lines 10–13), and the a unsu-
pervised features are calculated and concatenated from a randomly selected channel 
(lines 13–15). Finally, a CART tree is trained on the feature set unique to each ensem-
ble member. Figure 4 visualises the transformation (upper figure) and ensemble (lower 
figure) process for DrCIF. Predictions for new cases are found by averaging the predic-
tions of the base regressors.
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Fig. 4  Diagrams visualising the transformation (top) and ensemble structure (bottom) of DrCIF
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Algorithm 1  DrCIF(A list of n cases of length m with d channels, T = (X, y))

4  Methodology

We summarise the new problems we have added, the regressors used in experi-
ments, and a description of our experimental method.

The previous version of the TSER archive includes 19 different datasets. We 
have increased the number of datasets in the archive to 63. There are now 28 uni-
variate problems and 35 multivariate, with number of channels ranging from 2 to 
24. Dataset size range from 93 to over 16,000. 70% are used for training, 30% for 
testing. Series length ranges from 14 to 7500. Nine of the problems contain miss-
ing values and two have unequal-length series.

The new datasets have been taken from Kaggle competitions and other archives 
and repositories/websites associated with applied research. Table  1 summarises 
the gathered data. More details on the datasets are available in “Appendix A” and 
on the associated repository. None of the datasets have been normalised. One 
of the new problems has unequal-length series. For experiments, keeping with 
the practice in Tan et  al. (2021), missing values in the series are linearly inter-
polated, and unequal-length series are truncated to the minimum length series. 
Full descriptions, and both unequal and missing values series are available on the 
associated website.
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Table 1  New TSER datasets

Name Prediction problem (response variable)

Economic analysis
DailyOilGasPrices Daily gas price with time series of oil  prices1.
Energy monitoring
Energy building predictors Estimate the energy consumption of different sorts on 

 buildings2.
OccupancyDetectionLight The average hourly occupancy of an office from sensor 

measurements (Candanedo and Feldheim 2016).
SolarRadiationAndalusia The average hourly solar radiation from atmospherical 

 measurements3.
TetuanEnergyConsumption The daily average power consumption in Tetouan from 

atmospherical measurements (Salam and El Hibaoui 
2018).

WindTurbinePower The daily power output of a wind turbine based on time 
series of torque  measurements4.

Environment monitoring
AcousticContaminationMadrid The 1st percentile of sound pressure levels from  LAeq5.
Africa Soil Chemistry A set of 12 problems derived from the Africa Soil Informa-

tion Service (AfSIS) Soil Chemistry 6.
BeijingIntAirportPM25Quality The daily average of PM25 in the Airport of Beijing from 

atmospherical data (Liang et al. 2015).
DailyTemperatureLatitude The latitude of a city based on the annual time series of 

daily  temperature7.
DhakaHourlyAirQuality The Air Quality Index in Dhaka using localised particular 

matter time  series8.
MadridPM10Quality The weekly average of PM10 in the city of Madrid, Spain, 

from measurements of  gases9.
MetroInterstateTrafficVolume The daily average traffic volume of a road in the USA from 

atmospherical  variables10.
ParkingBirmingham The daily occupancy rate from the hourly total number of 

parked cars (Stolfi et al. 2017).
PrecipitationAndalusia The yearly average of rainfall on Andalusia, Spain, from 

meterological  measurements11.
SierraNevadaMountainsSnow The amount of snow based on temperature time series 

(Osterhuber and Schwartz 2021).
Equipment monitoring
ElectricMotorTemperature The temperature of an electric motor based on time series of 

torque  readings12.
LPGas/Methane MonitoringHomeActivity The liquefied petroleum and methane concentration from 

gas sensors (Huerta et al. 2016).
GasSensorArray Ethanol/Acetone The concentrations of two analytes, acetone based on 16 

metal-oxide sensors (Ziyatdinov et al. 2015).
WaveTensionData The tension of a string based on wave elevation time 

 series13.
Health monitoring
BarCrawl6min The transdermal alcohol content by using an accelerometer 

(Killian et al. 2019).
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1 https:// perma. cc/ DAP4- JC2A
2 https:// perma. cc/ PA63- 7GVU
3 https:// perma. cc/ CH23- UVRJ
4 https:// perma. cc/ 8X2R- PRUD
5 https:// perma. cc/ 9V27- BF3F
6 https:// perma. cc/ TP5Y- KS6M
7 https:// perma. cc/ 3KPY- YHW2
8 https:// perma. cc/ 7865- ZAAD
9 https:// perma. cc/ ZUS5- E26E
10 https:// perma. cc/ B6FV- SLCG
11 https:// perma. cc/ 3APP- 2L43
12 https:// perma. cc/ A7FG- KFLT
13 https:// perma. cc/ BAG4- W8SL
14 https:// perma. cc/ RQW7- QH7L
15 https:// perma. cc/ J6LK- 99Q5

Table 1  (continued)

Name Prediction problem (response variable)

Covid19Andalusia The rate of deceased/contagions people from number of 
contagions in Andalusia, Spain (Díaz-Lozano et al. 2022).

VentilatorPressure The pressure of the inspiratory solenoid valve from control 
input and output of the same  valve14.

Sentiment analysis
Crypto Sentiment The sentiment of four cryptocurrencies based on the same 

days hourly  price15.
NaturalGasPriceSentiment Sentiment scores about natural gas prices based on the daily 

natural gas prices (Ghosh 2022).

Time Series Extrinsic 
Regression (TSER)

Distance-based - k Nearest Neighbours coupled with Euclidean Distance (kNN-ED)
- k Nearest Neighbours coupled with Dynamic Time Warping (kNN-DTW)

Interval-based - Time Series Forest (TSF)
- Diverse Representation Canonical Interval Forest (DrCIF)

Standard regressors

- Ridge regressor (Ridge)
- Support Vector Regressor (SVR)
- Random Forest (RandF)
- Rotation Forest (RotF)
- eXtreme Gradient Boosting (XGBoost)

Functional approaches - Functional Principal Component Analysis (FPCR)
- FPCR with B-splines (FPCR-Bs)

Convolution-based - RandOm Convolutional KErnel Transform (ROCKET)
- Multiple pooling operators and transformations ROCKET (MultiROCKET)

Deep learning
- Residual Networks (Resnet)
- Convolutional Neural Networks (CNN)
- Fully Connected Neural Networks (FCN)
- Inception (and its ensemble version, InceptionE)

Feature-based - Fresh Pipeline with RotatIoN forest regressor (FreshPRINCE)

Fig. 5  Taxonomy of current literature in TSER. All these regressors have been evaluated in Sect. 5

https://perma.cc/DAP4-JC2A
https://perma.cc/PA63-7GVU
https://perma.cc/CH23-UVRJ
https://perma.cc/8X2R-PRUD
https://perma.cc/9V27-BF3F
https://perma.cc/TP5Y-KS6M
https://perma.cc/3KPY-YHW2
https://perma.cc/7865-ZAAD
https://perma.cc/ZUS5-E26E
https://perma.cc/B6FV-SLCG
https://perma.cc/3APP-2L43
https://perma.cc/A7FG-KFLT
https://perma.cc/BAG4-W8SL
https://perma.cc/RQW7-QH7L
https://perma.cc/J6LK-99Q5
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4.1  Regression algorithms

The full list of the 21 regressors (with associated abbreviation) evaluated in Sect. 5 
is presented as a taxonomy in Fig. 5.

Parameter settings for all algorithms are described in “Appendix B”.

4.2  Experimental design

Each dataset is provided with a default train/test split. We repeat every experiment 
30 times to mitigate for sampling variation. The first experiment is with the default 
data test/train split. Subsequent experiments are conducted with data resampled by 
pooling the train and test and randomly partitioning the data with the same train/
test proportions as the original. Performance is measured with the RMSE to con-
form with Tan et al. (2021). To compare regressors, we first average RMSE over all 
resamples. We use ranks in all statistical tests. For multiple regressors over multi-
ple datasets we use an adaptation of the critical difference diagram (Demšar 2006), 
replacing the post-hoc Nemenyi test with a comparison of all classifiers using pair-
wise Wilcoxon signed-rank tests, and cliques formed using the Holm correction, as 
recommended in García and Herrera (2008), Benavoli et al. (2016).

5  Results

Our experiments are structured as follows. In Sect. 5.1 we recreate the results pre-
sented in Tan et al. (2021) on the original 19 datasets. We then extend the analysis 
to our larger collection of datasets to test whether the conclusions reached in Tan 
et al. (2021) generalise to the new archive of 63 problems. In Sect. 5.2 we compare 
the best performing regressors from the previous experiments to the new algorithms 
we are proposing, FreshPRINCE and DrCIF. We also include two improvements for 
regressors used in the previous study and other regressors available in open source 
toolkits. RMSE results for the best performing regressors on 63 TSER datasets are 
available in the accompanying website3.

5.1  Recreating results on the 19 TSER datasets

We ran the 13 regressors reported in Tan et al. (2021) on the current 19 datasets in 
the archive. Figure  6 shows a critical difference diagram of our results alongside 
the results presented in Tan et al. (2021). Broadly, the ordering of algorithms is the 
same and the cliques are similar. There are some differences in the ordering, with 
ROCKET and FCN lower ranked and Inception and ResNet higher in our experi-
ments than the original.

3 https:// tsml- eval. readt hedocs. io/ en/ latest/ publi catio ns/ 2023/ tser_ archi ve_ expan sion/ tser_ archi ve_ expan 
sion. html.

https://tsml-eval.readthedocs.io/en/latest/publications/2023/tser_archive_expansion/tser_archive_expansion.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/tser_archive_expansion/tser_archive_expansion.html
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Differences may be explained by a slight difference in experimental procedure. 
The experiments in Tan et al. (2021) involved five repetitions on the default train/
test split with a different random seed, whereas we resampled the data on each rep-
etition. We did this for consistency with our later experiments. We also have more 
diverse cliques than observed in Tan et al. (2021). This is because our adjustment for 
multiple testing is less conservative than the one used in Tan et al. (2021), where a 
full Bonferonni adjustment is used rather than a Holm correction.

In Fig. 7 we compare the 13 regressors used for Fig. 6 on the larger archive of 63 
datasets. For all subsequent experiments we extend the number of resamples on each 
dataset from five to 30. All resampling is done without replacement and maintains 
the same train/test sizes of the original datasets. The first resample is always the 
original train/test split and these resamples are seeded so can be exactly reproduced 
(see accompanying website for an example). We observe that RandF is now the best, 
improving significantly on ROCKET, and better in rank than Inception and ResNet, 
among others. Hence, the time series specific methods previously proposed for 
TSER are not better than using an off the shelf regressor with concatenated features.

5.2  Benchmarking the new TSER archive

For the next set of experiments, we take the top five algorithms in Fig. 7 and com-
pare these to some alternative adaptations of time series specific algorithms. The 
good performance of XGBoost and RandF suggests we should not overlook standard 
classifiers. Rotation Forest (RotF) (Rodriguez et al. 2006) is a classifier that can be 
easily adapted to regression by simple averaging  (Pardo et  al. 2013). It has been 
shown to be particularly effective for problems with all real valued attributes, includ-
ing time series  (Bagnall et  al. 2018, 2017). Hence, we include a regression adap-
tion in this round of experiments. We also add in the standard Ridge regressor for 
completeness sake. In addition, the open source toolkit aeon4 includes two regres-
sion implementations not previously evaluated in the context of TSER. Time Series 
Forest (TSF) regressor is an adaptation of the TSF classifier  (Deng et  al. 2013) 
and CNNRegressor (CNN) is Convolutional Neural Network based on the version 
described in Zhao et al. (2017). On further investigation, we found that the results 
for InceptionTime in Tan et  al. (2021) were created with a single InceptionTime 

4 https:// github. com/ aeon- toolk it/ aeon.

Fig. 6  Reproduction of the RMSE ranks on the original archive (using 19 datasets). Left is the original 
image from Tan et al. (2021). Right is our recreation using 5 resamples

https://github.com/aeon-toolkit/aeon
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model (Inception). However, in the original work  (Ismail  Fawaz et  al. 2020), the 
results supporting InceptionTime as a classifier are found with an ensemble of five 
InceptionTime models. We include an InceptionTime ensemble model for regres-
sion (InceptionE). Furthermore, an improved version of the ROCKET algorithm has 
been recently publish, known as MultiROCKET (Tan et al. 2022). We adapted it to 
the TSER paradigm accordingly. Finally, we also included the proposed regressors 
based on unsupervised feature extraction, DrCIF and FreshPRINCE. We provide 
implementations of all these approaches in the aeon toolkit. Figure  8 shows the 
results of the five best algorithms from experiments presented in Fig. 7 and eight 
new regressors. We have had to exclude the AustralianRainfall dataset and hence 
reduce the number of datasets in our study to 62 because we were unable to run 
experiments with the MultiROCKET regressor: it requires over 600GB memory for 
this dataset and takes more than 15 days to complete.

Figure 8 shows that DrCIF, FreshPRINCE and InceptionE form the top clique. 
DrCIF is the top rank regressor, and it is the only algorithm that is significantly 
better than RotF, the top performing standard approach of all those we have tried. 
FreshPRINCE achieves the second best averaged rank, though it is not significantly 
different to several regressors, such as RotF or MultiROCKET. InceptionE is the 
third best algorithm. InceptionE is often very good: it is top ranked on 13 of the 62 
problems, and it is significantly better than a single Inception network, which is top 
ranked only on one dataset. However, InceptionE also fails spectacularly on many 
problems. Furthermore, the CNN and Ridge regressors are not competitive with the 
other eleven algorithms. As expected, MultiROCKET is significantly better than 
ROCKET. Another interesting feature is that RotF is one of the top performing algo-
rithms, achieving similar results to MultiROCKET, InceptionE and FreshPRINCE. 
RotF is highly effective with real valued input  (Bagnall et  al. 2018) and the best 
performing standard algorithm for TSC (Bagnall et al. 2017), so this is perhaps not 
surprising. It does well with time series because it removes embedded correlations 
through randomised PCA transforms on subsets of algorithms. Despite this, the 
fact that an algorithm for standard regression outperforms a wide range of the deep 
learning and time series specific approaches is indicative of the scope for improve-
ment in the field of TSER. Thus far, DrCIF is the only regressor that is on average 
significantly better in terms of RMSE than RotF. In subsequent analyses, the focus 
is directed towards a subset with the seven top ranked regressors, as shown in Fig. 8.

Fig. 7  RMSE ranks for 13 
regressors used in Tan et al. 
(2021) on 63 TSER datasets
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Table 2 provides an overview of the mean and Standard Deviation (STD) of the 
RMSE and the Mean Absolute Error (MAE) for the top seven algorithms. Figure 9 
illustrates relative performance of the top seven regressors for RMSE with boxplot. 
The y-axis for Fig.  9 is the relative deviation of the RMSE, calculated as 

Fig. 9  Distribution of relative deviation of the Root Mean Square Error (RMSE), calculated as 
RMSE

RMSE+Median(RMSE)
 E for the top seven regressors (lower values are better)

Fig. 8  RMSE ranks for 13 
regressors on 62 TSER datasets

Table 2  Mean and Standard Deviation (STD) of RMSE and MAE over all problems. The STD is com-
puted as the average of the STD of the datasets

Bold values indicate the best performance, italic values indicate the second best

DrCIF Fresh-
PRINCE

InceptionE RotF Multi-
ROCKET

TSF Inception

RMSE Mean ���.���� 666.4411 856.9787 675.5686 777.5946 682.1765 852.5311
STD ���.���� 163.6923 281.7305 162.7472 339.7403 166.9817 291.0105

MAE Mean 324.2052 ���.���� 420.3192 310.5031 396.8601 344.3326 423.7530
STD 36.4575 46.0679 63.1505 43.5706 72.0082 ��.���� 69.3193
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RMSE

RMSE+Median(RMSE)
 , across all problems. Lower values are better and values below 0.5 

indicate performance better than the median algorithm. A tight distribution indicates 
an algorithm is consistent in its performance relative to other algorithms. When con-
sidered together, Table 2 and Fig. 9 highlight the relative performance of these algo-
rithms. DrCIF has the lowest average RMSE closely followed by FreshPRINCE. 
The latter achieves the lowest average MAE, followed by RotF. The standard devia-
tions demonstrate that the regressors have comparable variability, except for Incep-
tionE, Inception, and MultiROCKET, which have higher variance for both RMSE 
and MAE. DrCIF again stands out as the most robust and stable, followed by RotF, 
FreshPRINCE and TSF.

Examining all regressors on the x-axis of Fig. 9, only DrCIF and FreshPRINCE 
are consistently better than the median performance, and the distribution is tightly 
coupled. Inception and InceptionE have the widest spread.

Figure 10 summarises the performance of top seven algorithms using a heatmap 
derived from the average RMSE results. The table was generated with a recently pro-
posed results visualisation tool5. These results reinforce our previous observations.

6  Analysis

We explore our results in more detail to better profile the regressors and gain insights 
into the drivers behind their performance.

6.1  Run time

Figure 11 shows the average rank RMSE against the run time (on a log scale) for 
the six regressors from Fig. 9. Note that the timings for Inception are not considered 
reliable as it was executed on a combination of CPU and GPU, potentially leading 

5 https:// github. com/ MSD- IRIMAS/ Multi_ Compa rison_ Matrix.

Fig. 10  Summary performance results for the best seven regressors

https://github.com/MSD-IRIMAS/Multi_Comparison_Matrix
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to confusion. We see a direct trade off between runtime and performance. All algo-
rithms run on a single thread CPU except for InceptionE, which ran on a GPU. This 
means the graph is very flattering for InceptionE. Even on a GPU it is slower than 
RotF on a CPU.

6.2  Performance by data characteristics

We break down the performance of regressors by the core characteristics of the 
data to help gain insights into when different algorithms perform well. We stress 
this is purely exploratory: the relatively small number of datasets in each cat-
egory, in brackets, preclude useful significant testing.

Table  3 shows the average rank RMSE when we group problems by the num-
ber of training cases. The pattern is that DrCIF and FreshPRINCE are better with a 
small number of cases, whereas InceptionE is better with larger train set size.

Table 4 shows the average rank RMSE when we group problems by the number 
of channels. DrCIF is better with univariate problems. FreshPRINCE achieves better 
results when dealing with multivariate datasets. InceptionE has more potential with 
multivariate problems with 3 or 4 channels.

Table 5 shows the average rank RMSE when we group problems by the series 
length. The interval-based DrCIF performs relatively better than FreshPRINCE with 
long series but worse with shorter series (length <50). InceptionE achieves a good 
rank for relatively longer time series (150<length≤365).

DrCIF

FreshPRINCE

Incep�onE

RotF

Mul�ROCKETTSF

3

3.5

4

4.5

5

5.5

6

6.5

7

1.00E+05 1.00E+06 1.00E+07 1.00E+08

knaR ES
MR egarevA

Average Build Time (Milliseconds)

Fig. 11  Run time in milliseconds (log scale average over all datasets) plotted against average rank for 
RMSE
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Finally, we also assessed relative performance for different problem types but did 
not detect any interesting trends.

6.3  Ablation of FreshPRINCE

FreshPRINCE is a pipeline of a TSFresh transform and a RotF regressor. We address 
the question of whether the performance of this regressor is due to the transform, the 

Table 3  Average rank RMSE split by number of train cases

Bold values indicate the best performance for a category, italic values indicate the second best

<300 (15) 300–999 (23) 1000–5000 (13) >5000 (11)

DrCIF 2.93 �.�� 4.31 5.73
FreshPRINCE �.�� 4.61 4.62 4.73
InceptionE 7.53 5.48 �.�� �.��

RotF 4.80 5.78 4.77 7.00
MultiROCKET 7.20 4.96 6.62 7.64
TSF 5.13 6.22 7.00 7.55
Inception 8.93 7.39 6.39 4.64

Table 4  Average rank RMSE 
split by number of channels

Bold values indicate the best performance for a category, italic val-
ues indicate the second best

1 (28) 2 (10) 3 or 4 (13) ≥ 5 (11)

DrCIF �.�� 3.70 5.15 4.82
FreshPRINCE 4.32 �.�� 4.85 �.��

InceptionE 5.46 5.60 �.�� 4.55

RotF 5.11 5.30 7.54 4.55

MultiROCKET 5.32 7.69 5.32 7.36
TSF 5.07 6.10 7.23 8.82
Inception 7.89 5.77 7.89 6.09

Table 5  Average rank RMSE split by series length (there are no problems with length 366-999)

Bold values indicate the best performance for a category, italic values indicate the second best

<50 (13) 50–150 (13) 151–365 (16) ≥1000 (20)

DrCIF 3.39 �.�� 5.00 �.��

FreshPRINCE �.�� �.�� 4.13 5.80
InceptionE 6.39 6.69 �.�� 4.10
RotF 3.39 4.54 7.38 6.15
MultiROCKET 8.08 8.39 6.19 3.95

TSF 5.77 5.08 7.38 6.75
Inception 8.00 9.39 5.25 6.40
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Fig. 12  RMSE ranks for Fresh-
PRINCE, standard RotF and 
TSFresh (Fresh) with alternative 
regressors

5 4 3 2 1

1.6786 FreshPRINCE
2.6964 RotF
2.7857 Fresh-RandF

3.0893Fresh-XGBoost
4.75Fresh-Ridge

Fig. 13  Scatter plot of predicted vs actual for DrCIF on BarCrawl6min

regressor or both. Figure 12 summarises the performance of FreshPRINCE, RotF on 
the raw series and TSFresh transform followed by an alternative regressor. It demon-
strates that transforming followed by RandF or XGBoost are no better than simply 
applying RotF to the raw data. We conclude that it is the combination of transform 
and regressor that give significantly better performance.

There is very little agreement between InceptionE and the other regressors. We 
believe one reason InceptionE performance is so variable is it sometimes completely 
fails to find anything useful in a dataset where other models have at least some pre-
dictive power. To demonstrate this, we look at the standardised residuals of DrCIF 
and InceptionE on the BarCrawl6min dataset. The time series are accelerometer 
data, and the response variable is the transdermal alcohol concentration of the test 
subjects. The response variable is bounded below by zero. In traditional regression, 
the analyst might look to transform the response with, for example, a Yeo-Johnson 
transform (Yeo and Johnson 2000). We are interested in performance over multiple 
datasets without hand tailored transforms. The RMSE for the default train-test par-
tition for DrCIF is 0.0017 and for InceptionE it is 0.0045. If we plot the predicted 
response vs the actual response for DrCIF (Fig. 13) we see that DrCIF is making 
negative predictions for low actual values, underestimating higher values and there 
seems to be some heteroscedasticity in the residuals. Nevertheless, it has definitely 
found some relationship between the regressor series and the response. However, 
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Fig. 15  Scatter plot of relative RMSE for DrCIF and InceptionE
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Fig. 14  Scatter plot of predicted vs actual for InceptionE on BarCrawl6min

if we see the same plot for InceptionE (Fig. 14), we see that InceptionE is nearly 
always predicting the same value of 0.082. It is likely that careful configuration, tun-
ing and transform of the data may improve InceptionE. However, the same is true 
for DrCIF and freshPRINCE. We are using InceptionE in the way recommended by 
its creators (Ismail Fawaz et al. 2020).
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Furthermore, Fig. 15 shows the scatter plot of the relative RMSE used in Fig. 9 
for DrCIF vs InceptionE. There is no correlation. For context, for our top four 
regressors, the strongest correlation is between DrCIF-RotF ( R2 = 0.27 ) and DrCIF-
FreshPRINCE are very weakly correlated ( R2 = 0.13 ). This diversity suggests there 
may be some value in ensembling.

7  Conclusions

We have proposed new algorithms for Time Series Extrinsic Regression (TSER) 
based on classifiers and conducted an extensive experimental study. We have 
increased the TSER archive size from 19 to 63, introduced improved versions of 
regressors used in the previous study and shown our new adaptations of classifica-
tion algorithms are significantly better than the best alternatives. There are several 
limitations to this study. The data is not randomly sampled (we have taken problems 
from where ever we can find them) and some domains may be over represented; 
we have not tuned any of these regressors (the computation required to tune these 
algorithms over 63 datasets would be prohibitive); we have not looked at more com-
plex diagnostics of performance such as residual analysis. Nevertheless, we believe 
we have made a significant contribution to advance the new field of TSER. RotF 
outperforms all previously assessed regressors, and DrCIF and FreshPRINCE are 
the only TSER algorithms so far proposed to significantly outperform all standard 
regression algorithms. We have made all our experiments reproducible by releasing 
structured source code compatible with standard toolkits, guidance on reproducing 
experiments, and all of our results. We have hosted our results on the repository 6. 
The datasets and these results can be downloaded directly using the aeon toolkit 
and compared to results for new regressors 7. Detailed examples of how to do this 
are on the repository we use to run experiments8.

We believe there is scope for further improvement for algorithms for TSER. 
Adapting supervised Time Series Classification (TSC) approaches may help further 
leverage of this popular theme for research. InceptionE is the most promising deep 
learning approach, and perhaps it can be engineered to avoid the catastrophic fail-
ure it tends towards with smaller train set sizes. Heterogeneous ensembles are very 
successful for TSC, and the diversity in performance between the best performing 
algorithms suggest this may, with careful adaptation, translate to TSER. We will 
continue to enhance the repository with more problems and would welcome all 
donations.

6 https:// times eries class ifica tion. com/ resul ts/ Refer enceR esults/ regre ssion/.
7 https:// www. aeon- toolk it. org/ en/ latest/ examp les/ bench marki ng/ bench marki ng. html.
8 https:// tsml- eval. readt hedocs. io/ en/ latest/ examp les/ regre ssion_ exper iments. html.

https://timeseriesclassification.com/results/ReferenceResults/regression/
https://www.aeon-toolkit.org/en/latest/examples/benchmarking/benchmarking.html
https://tsml-eval.readthedocs.io/en/latest/examples/regression_experiments.html
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Appendix A: Data description

The list of all 63 datasets in the archive is shown in Table 6. More details on the 44 
datasets we have added are given in this section.

Table 6  Time series datasets in the TSER archive

Dataset Train size Test size Length # Dims Missing Category

AppliancesEnergy 95 42 144 24 No Energy monitoring
HouseholdPowerCon-

sumption1
745 686 1440 5 Yes Energy monitoring

HouseholdPowerCon-
sumption2

745 686 1440 5 Yes Energy monitoring

AustraliaRainfall 112186 48081 24 3 No Environment monitoring
BeijingPM10Quality 11918 5048 24 9 Yes Environment monitoring
BeijingPM25Quality 11918 5048 24 9 Yes Environment monitoring
BenzeneConcentration 3349 5163 240 8 Yes Environment monitoring
FloodModeling1 471 202 266 1 No Environment monitoring
FloodModeling2 466 201 266 1 No Environment monitoring
FloodModeling3 429 184 266 1 No Environment monitoring
LiveFuelMoistureContent 3493 1510 365 7 No Environment monitoring
BIDMC32HR 5550 2399 4000 2 No Health monitoring
BIDMC32RR 5471 2399 4000 2 No Health monitoring
BIDMC32SpO2 5550 2399 4000 2 No Health monitoring
Covid3Month 140 61 84 1 No Health monitoring
IEEEPPG 1768 1328 1000 5 No Health monitoring
PPGDalia 43215 21482 256-512D 4 No Health monitoring
NewsHeadlineSentiment 58213 24951 144 3 No Sentiment analysis
NewsTitleSentiment 58213 24951 144 3 No Sentiment analysis
DailyOilGasPrices 133 58 30 2 No Economic analysis
ChilledWaterPredictor 321 138 168 4 No Energy monitoring
ElectricityPredictor 567 243 168 4 No Energy monitoring
HotwaterPredictor 245 106 168 4 No Energy monitoring
OccupancyDetection-

Light
237 103 60 3 No Energy monitoring

SolarRadiationAndalusia 470 202 365 2 Yes Energy monitoring
SteamPredictor 210 90 168 4 No Energy monitoring
TetuanEnergyConsump-

tion
254 110 144 5 No Energy monitoring

WindTurbinePower 596 256 144 1 No Energy monitoring
AcousticContamination-

Madrid
166 72 365 1 Yes Environment monitoring

AluminiumConcentra-
tion

440 189 2542 1 No Environment monitoring

BeijingIntAirportPM-
25Quality

1099 472 24 6 No Environment monitoring
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For those datasets with unequal-length time series: S indicates that the unequal-length time series are 
with respect to the samples, whereas D indicates that is with respect to the dimensions

Table 6  (continued)

Dataset Train size Test size Length # Dims Missing Category

BoronConcentration 438 188 2542 1 No Environment monitoring
CalciumConcentration 444 191 2307 1 No Environment monitoring
CopperConcentration 440 189 2542 1 No Environment monitoring
DailyTemperatureLati-

tude
27440 11760 365 1 No Environment monitoring

DhakaHourlyAirQuality 1447 621 24 1 No Environment monitoring
IronConcentration 427 184 1716 1 No Environment monitoring
MadridPM10Quality 4845 2077 168 3 Yes Environment monitoring
MagnesiumConcentra-

tion
1560 669 3578 1 No Environment monitoring

ManganeseConcentra-
tion

427 184 1716 1 No Environment monitoring

MetroInterstateTraf-
ficVolume

849 365 24 4 No Environment monitoring

ParkingBirmingham 1391 597 14-18S 1 No Environment monitoring
PhosphorusConcentra-

tion
1573 675 3578 1 No Environment monitoring

PotassiumConcentration 1561 669 3578 1 No Environment monitoring
PrecipitationAndalusia 470 202 365 4 Yes Environment monitoring
SierraNevadaMountain-

sSnow
350 150 30 3 No Environment monitoring

SodiumConcentration 424 183 1716 1 No Environment monitoring
SulphurConcentration 444 191 2307 1 No Environment monitoring
ZincConcentration 445 191 2307 1 No Environment monitoring
ElectricMotorTempera-

ture
15503 6645 60 6 No Equipment monitoring

GasSensorArrayAcetone 324 140 7500 1 No Equipment monitoring
GasSensorArrayEthanol 324 140 7500 1 No Equipment monitoring
LPGasMonitoringHome-

Activity
2017 865 100 1 No Equipment monitoring

MethaneMonitoring-
HomeActivity

2017 865 100 1 No Equipment monitoring

WaveDataTension 1325 568 57 1 No Equipment monitoring
BarCrawl6min 140 61 360 3 No Health monitoring
Covid19Andalusia 142 62 91 1 No Health monitoring
VentilatorPressure 52815 22635 80 2 No Health monitoring
BinanceCoinSentiment 184 79 24 2 No Sentiment analysis
BitcoinSentiment 232 100 24 2 No Sentiment analysis
CardanoSentiment 74 33 24 2 No Sentiment analysis
EthereumSentiment 249 107 24 2 No Sentiment analysis
NaturalGasPricesSenti-

ment
65 28 20 1 No Sentiment analysis
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Economic analysis

Oil and natural gas prices

A dataset published on Kaggle9 consists of historical prices of Brent Oil, Crude Oil 
WTI, Natural Gas, and Heating Oil from 2000 to 2022. We created the DailyOilG-
asPrices by using 30 consecutive business days of Crude Oil WTI close prices and 
traded volumes as predictors and the average natural gas close price during each 
30-day time frame as the target variable. The final dataset has 191 2-dimensional 
time series of length 30, of which 70% were randomly sampled as training data 
and the remaining 30% as testing data. This type of model could help companies 
and governments to better analyse and predict economic situations and correlations 
regarding oil and natural gas.

Energy monitoring

ASHRAE: great energy predictor III

This dataset, published on Kaggle10, aims to assess the value of energy efficiency 
improvements. For that purpose, four types of sources are identified: electricity, 
chilled water, steam and hot water. The goal is to estimate the energy consumption 
in kWh.

Dimensions correspond to the air temperature, dew temperature, wind direc-
tion and wind speed. These values were taken hourly during a week, and the out-
put is the meter reading of the four aforementioned sources. In this way, we created 
four datasets: ChilledWaterPredictor, ElectricityPredictor, HotwaterPredic-
tor, and SteamPredictor. Each dataset has a different number of time series as 
they correspond to different buildings using those sources. In this sense, Chilled-
WaterPredictor resulted in 459 4-dimensional time series of length 168, Electric-
ityPredictor resulted in 810 4-dimensional time series of length 168, HotwaterPre-
dictor resulted in 351 4-dimensional time series of length 168, and SteamPredictor 
resulted in 300 4-dimensional time series of length 168. We randomly sampled 70% 
of those time series to use as train data and the remaining 30% as test data.

Even though there is a kaggle post indicating that there is one building with meter 
reading in kBTU they have been transformed into kWh accordingly.

Occupancy detection

In Candanedo and Feldheim (2016), measurements of temperature, light, CO2 , and 
humidity, collected every minute, were used to detect whether an office room was 
occupied or not. This data has been made available in the UCI Machine Learning 
repository11.

10 https:// perma. cc/ PA63- 7GVU.
11 https:// perma. cc/ 5ER3- MXG5.

9 https:// perma. cc/ DAP4- JC2A.

https://perma.cc/PA63-7GVU
https://perma.cc/5ER3-MXG5
https://perma.cc/DAP4-JC2A
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We created the OccupancyDetectionLight dataset by reformulating the problem. 
We used one hour of temperature (in ◦C ), humidity ratio, and CO2 concentration (in 
ppm) as predictors and the average light during that hour (in Lux) as the response 
variable. This resulted in 340 3-dimensional time series of length 60. We randomly 
sampled 70% of those time series to use as train data and the remaining 30% as test 
data. Better models for this data can lead to improvements in energy consumption 
analysis and prediction.

Solar radiation in Andalusia

This dataset has been obtained from the Andalusia Government (Spain)12. Data was 
retrieved from different stations of the 8 districts of Andalusia: Almería, Cádiz, Cór-
doba, Granada, Huelva, Jaén, Málaga, Sevilla, from 2000 until February 2014. The 
dataset is known as SolarRadiationAndalusia. Dimensions correspond to daily 
mean of humidity and temperature, whereas the output is the solar radiation for the 
same day. As time series take daily values during complete years, data from 2014 is 
not used.

The final dataset includes 672 time series with 2 dimensions with length of 365. 
The training dataset includes randomly samples 70%, whereas the remaining 30% 
forms the testing dataset.

Energy consumption in Tetuan

This dataset, published on UCI Machine Learning Repository13, aims to estimate 
the power consumption in three zones in Tetouan Salam and El Hibaoui (2018). The 
new dataset is known as TetuanEnergyConsumption. Data has been collected on a 
ten minute basis. Hence, time series have 144 values (6 values per hour). A total of 5 
dimensions have been identified: temperature, humidity, wind speed, general diffuse 
flows and diffuse flows. The goal is to estimate the daily average power consumption 
in the three zones of Tetouan.

The aforementioned dataset includes 364 5-dimensional time series of length 
144. 70% of those 364 time series have been randomly selected for the training set, 
whereas the remaining 30% belong to the testing set.

Wind turbine power generation

The “Wind Turbine Power (kW) Generation Data” dataset on Kaggle14 consists of 
large amounts of data collected from a wind turbine, from the temperatures at dif-
ferent parts of the turbines, to the angular position of each blade, and the turbine’s 
power output. The measurements were made on a 10-minute basis and span from 
2019 to 2021.

12 https:// perma. cc/ CH23- UVRJ.
13 https:// perma. cc/ NX65- A5B4.
14 https:// perma. cc/ 8X2R- PRUD.

https://perma.cc/CH23-UVRJ
https://perma.cc/NX65-A5B4
https://perma.cc/8X2R-PRUD
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We used this data to create the WindTurbinePower dataset. Each time series 
consists of 144 timepoints, i.e. one day of measurements, and its target variable is 
the turbine’s average power output on that day. From the 76 possible features, we 
used only the turbine’s torque as a predictor, since it was enough to achieve good 
results and the other features seemed secondary at best. Some instances were 
removed due to their respective days having fewer than 144 measurements. The 
resulting dataset has 852 instances, of which 70% were randomly sampled as train-
ing data and the remaining 30% as testing data.

Good regression models for this dataset should improve the logistics of green 
energy production, by better predicting the energy output of a wind turbine in a 
given place and/or season.

Environment monitoring

Acoustic contamination in Madrid, Spain

This dataset has been made publicly available by the Government of Madrid, 
Spain15. Data is collected by a number of stations located in the city of Madrid. This 
dataset is updated daily since 2014. However, we created the AcousticContamina-
tionMadrid dataset with data up to December 2021. The input time series is the 
LAeq, a fundamental measurement parameter designed to represent a varying sound 
source over a given time as a single number. Whereas the output time series is the 
LAS01, the first percentile of sound pressure levels, with A frequency weighting and 
slow time weighting, recorded during the corresponding period. Examples of such 
series and outputs are shown in Fig. 16.

The final dataset includes 238 univariate time series. Moreover, their length is 
365, which corresponds to daily values taken during a year. The training dataset is 
composed of randomly selected 70% of the samples, whereas the remaining 30% 
composes the testing dataset.

Africa soil chemistry

The Africa Soil Information Service (AfSIS) Soil Chemistry16 dataset contains large 
amounts of dry and wet chemistry data obtained from soil samples collected from 
many countries throughout Sub-Saharan Africa, from 2009 to 2013. Dry chemis-
try analysis, such as infrared spectroscopy and X-ray fluorescence, is comparably 
less expensive than wet chemistry. Therefore, a model which uses only dry chemis-
try to predict certain nutrients measured by wet chemical analyses is commercially 
interesting.

15 https:// perma. cc/ 9V27- BF3F.
16 https:// perma. cc/ TP5Y- KS6M.

https://perma.cc/9V27-BF3F
https://perma.cc/TP5Y-KS6M
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The dry chemical measurements were taken using many different machine mod-
els, of which we selected four: “Alpha ZnSe”, “Alpha KBr”, “HTSXT” and “MPA”. 
The wet chemistry data for each soil sample includes the quantity of 12 nutrients: 
Aluminium, Boron, Copper, Iron, Manganese, Sodium, Phosphorous, Potassium, 
Magnesium, Sulphur, Zync and Calcium. Each dry chemical measurement is a time 
series where the time axis is wavelength and the y-axis is the respective response.

We paired a third of each dry chemistry machine’s experiments to a different 
nutrient measurement, thus creating 12 datasets. They are AluminiumConcentra-
tion (629 cases of length 2542), BoronConcentration (626 cases of length 2542), 
CopperConcentration (629 cases of length 2542), IronConcentration (611 cases 
of length 1716), ManganeseConcentration (611 cases of length 1716), Sodium-
Concentration (607 cases of length 1716), PhosphorusConcentration (2248 cases 
of length 3578), PotassiumConcentration (2230 cases of length 3578), Magnesi-
umConcentration (2229 cases of length 3578), SulphurConcentration (635 cases 
of length 2307), ZincConcentration (636 cases of length 2307), and CalciumCon-
centration (635 cases of length 2307).

In each dataset, 70% of cases were randomly sampled as training data and the 
remaining 30% as testing data. Three example soil spectrograms are shown in Fig. 1.

Fig. 16  Two examples of yearly sound pollution in the AcousticContaminationMadrid dataset
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Beijing Airport PM2.5 contamination

This dataset was obtained from the UCI Machine Learning Repository17. Liang et al. 
(2015) collected hourly data containing the PM2.5 data of US Embassy in Beijing, as 
well as meteorological data from Beijing Capital International Airport. This dataset, 
known as BeijingIntAirportPM25Quality, includes 6-dimensional time series of 
24 points. The dimensions are the dew point, temperature, pressure, combined wind 
direction, and accumulated hours of snow and rain measured, as mentioned, in the 
Beijing Capital International Airport. The output is the PM2.5 data averaged daily.

The aforementioned dataset includes 1571 6-dimensional time series of length 
24. 70% of those 1571 time series have been randomly selected for the training set, 
whereas the remaining 30% belong to the testing set.

Daily temperature and latitude

A dataset published on Kaggle18 contains daily temperature data for the 1000 most 
populous cities in the world, along with their geographic coordinates, from 1980 to 
2020.

We used this data to create the DailyTemperatureLatitude dataset. We split 
each city’s temperature data into 1 year long time series, i.e. 365 timepoints. Leap 
years were shortened by averaging the temperatures on the  28th and  29th of Feb-
ruary. The predictors are the daily temperatures (in ◦C ) recorded during the year 
and the response variable is the corresponding city’s latitude. The final dataset has 
39200 univariate time series of length 365, of which 70% were randomly sampled as 
training data and the remaining 30% as testing data. Two samples of the constructed 
dataset are shown in Fig. 17.

With exploratory analysis and regression on this dataset, climate change and its 
effects can be better understood and predicted on a local basis.

Air quality in Dhaka

Data sourced from AirNow19 and made available on Kaggle20 comprises 7 years of 
hourly measurements of fine particulate matter ( PM2.5 ) concentrations at the United 
States Embassy in Dhaka, Bangladesh, along with each corresponding Air Quality 
Index (AQI).

We used this data to create the DhakaHourlyAirQuality dataset, in which the 
predictors are 24 hours of PM2.5 concentrations and the response variable is the 
average AQI on that respective day. Thus, better models can be created and tested 
to more cheaply and quickly evaluate air quality in different cities. The resulting 

17 https:// perma. cc/ G8VS- DKKY.
18 https:// perma. cc/ 3KPY- YHW2.
19 https:// perma. cc/ 2K2D- LT6T.
20 https:// perma. cc/ 7865- ZAAD.

https://perma.cc/G8VS-DKKY
https://perma.cc/3KPY-YHW2
https://perma.cc/2K2D-LT6T
https://perma.cc/7865-ZAAD
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dataset consists of 2068 univariate time series of length 24, of which 70% were ran-
domly sampled as training data and the remaining 30% as testing data.

Madrid PM10 contamination

This dataset is publicly available on Kaggle21, even though the data was origi-
nally published in the public repository of the Madrid Government22. The dataset 
is known as MadridPM10Quality. Its input data consists in measurements of the 
level of sulphur dioxide, carbon monoxide and nitric oxide. Time series correspond 
to hourly values measured during a week. The output value is the weekly averaged 
PM10.

The final dataset includes 6922 3-dimensional time series with a length of 168. 
The training dataset is composed of randomly selected 70% of the samples, whereas 
the remaining 30% forms the testing dataset.

21 https:// perma. cc/ ZUS5- E26E.
22 https:// perma. cc/ 5QNM- ZWGS.

Fig. 17  Examples of yearly temperature profiles from two different latitudes in the DailyTemperatureLat-
itude dataset

https://perma.cc/ZUS5-E26E
https://perma.cc/5QNM-ZWGS
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Metro Interstate Traffic Volume

This dataset is publicly available on the UCI Machine Learning Repository23. 
Data consists of hourly traffic volume for MN DoT ATR station 301, roughly 
midway between Minneapolis and St Paul, collected from 2012 to 2018. The 
dataset, known as MetroInterstateTrafficVolume, aims to estimate the daily 
average traffic volume for the aforementioned road. The input dimensions con-
sists of the average temperature, the amount of rain and snow, and the percentage 
of cloud cover.

The final dataset includes 1214 time series with 4 dimensions. Moreover, their 
length is 24, which corresponds to hourly measures taken during a day. The training 
dataset includes a randomly selected 70% of the whole data, whereas the remaining 
30% forms the testing dataset.

Parking Birmingham

This dataset is publicly available on the UCI Machine Learning Repository24. Stolfi 
et al. (2017) collected data from car parks in Birmingham (United Kingdom) oper-
ated by National Car Parks from Birmingham City Council. The dataset, known 
as ParkingBirmingham, aims to estimate occupancy rates from 2016/10/04 to 
2016/12/19. Input time series is the number of parked cars every hour, whereas the 
output is the occupancy rate. The total number of hours measured per day varies 
from 14 to 18.

The aforementioned dataset includes 1988 unequal length time series (with 
lengths between 14 and 18). 70% of those 1988 time series have been randomly 
selected for the training set, whereas the remaining 30% belong to the testing 
set.

Precipitation in Andalusia

This dataset has been obtained from the Andalusia Government (Spain)25. Data was 
retrieved from different stations in the 8 districts of Andalusia: Almeria, Cadiz, Cor-
doba, Granada, Huelva, Jaen, Malaga, and Sevilla, from 2000 until February 2014. 
This dataset, known as PrecipitationAndalusia, includes the daily averaged tem-
perature, humidity, and wind speed and direction as inputs, whereas the output is the 
average precipitation. Two examples are illustrated in Fig. 18.

This resulted in 672 4-dimensional time series of length 365. We randomly sam-
pled 70% of those time series to use as train data and the remaining 30% as test 
data.

23 https:// perma. cc/ B6FV- SLCG.
24 https:// perma. cc/ 3LAJ- YTSG.
25 https:// perma. cc/ 3APP- 2L43.

https://perma.cc/B6FV-SLCG
https://perma.cc/3LAJ-YTSG
https://perma.cc/3APP-2L43
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Sierra Nevada mountains measurements

A dataset published in Osterhuber and Schwartz (2021) and made available on 
Kaggle26 consists of daily measurements of minimum and maximum air tempera-
tures, precipiation, and snowpack characteristics made at a field station in Sierra 
Nevada, United States, between 1971 and 2019.

We split the measurements into groups of 30 consecutive days and used the 
minimum and maximum air temperature (in ◦C ) and precipitation (in mm) to 
create 3-dimensional time series of length 30. Using the amount of new snow 
(in cm) accumulated during each respective 30-day timeframe as the target vari-
able, we created the SierraNevadaMountainsSnow dataset, with 500 instances 
in total. Around 20 instances were removed due to missing values. The dataset is 
split into train and test sets by randomly sampling 30% of the data as test. This 
data can be used to train models to predict heavy snowfall and prepare cities and 
roads for harsh weather conditions.

26 https:// perma. cc/ 2KQT- C5AW.

Fig. 18  Two different years of measurements and the associated average precipitation in the Precipitatio-
nAndalusia dataset

https://perma.cc/2KQT-C5AW
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Equipment monitoring

Electric motor temperature

The authors Kirchgässner et  al. (2021) collected large amounts of sensor data, 
made available on Kaggle27, from a permanent magnet synchronous motor 

27 https:// perma. cc/ A7FG- KFLT.

Fig. 19  Example of currents, voltages, and ambient and coolant temperatures measurements used to pre-
dict maximum rotor temperature in the ElectricMotorTemperature dataset

https://perma.cc/A7FG-KFLT
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(PMSM) deployed on a test bench. The dataset consists of multiple measure-
ment sessions, each ranging between one and six hour long, whose recordings 
were sampled at 2Hz. The sensors collected a variety of features, such as current 
and voltage, ambient, coolant, and rotor temperatures, and motor speed. Rotor 
temperature, specifically, is not reliably and economically measurable in a com-
mercial vehicle, thus being an interesting candidate for response variable. The 
data is, therefore, useful for industrial processes and monitoring.

Therefore, we created the ElectricMotorTemperature dataset by first split-
ting the measurement sessions into groups of 30 consecutive seconds, i.e. 60 
timepoints. Then, we used the recorded ambient and coolant temperatures and 
d and q components of voltage and current as predictors to form 6-dimensional 
time series of length 60. The target variable is the maximum recorded rotor tem-
perature during each respective 30-second time frame. An example of such a 
time series is shown in Fig.  19. The resulting dataset has 22148 instances, of 
which 70% were sampled as training data and the remaining 30% as testing data.

Home activity monitoring of gases

This dataset has been obtained from UCI Machine Learning Repository28. The 
authors Huerta et  al. (2016) collected recordings of a gas sensor array composed 
of 8 MOX gas sensors, as well as a temperature and humidity sensor. Sensors were 
exposed to three different conditions: presence of wine, banana and background 
activity. Two datasets have been collated from this repository: LPGasMonitor-
ingHomeActivity and MethaneMonitoringHomeActivity. The first estimates the 
liquefied petroleum gas concentration from humidity measurements. On the other 
hand, the second one estimates the methane concentration from temperature meas-
urements. The latter is illustrated in Fig. 20.

This resulted in 2882 univariate time series of length 100. We randomly sampled 
70% of those time series to use as train data and the remaining 30% as test data.

Gas sensor array under flow modulation

Ziyatdinov et  al. (2015) combined an array of 16 metal-oxide gas sensors and an 
external mechanical ventilator to simulate sniffling behaviour within the biologi-
cal respiration cycle. The study extracted high and low frequency features from the 
signals and proposed a regression problem where the predictors are either of those 
features and the responses are the concentrations of two analytes used to form test 
gasses, acetone and ethanol. The data collected by the authors has been made avail-
able in the UCI Machine Learning repository29. The development of better regres-
sion techniques for this data should lead to improvements in early detection of gases 
in chemo-sensory systems.

28 https:// perma. cc/ 69GV- CR7S.
29 https:// perma. cc/ WD2S- KEV9.

https://perma.cc/69GV-CR7S
https://perma.cc/WD2S-KEV9
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We used the raw signal data with 58 samples, each one consisting of 16 sensors 
and totalling 928 time series, to create two datasets: GasSensorArrayEthanol, in 
which the target variable is the ethanol concentration in the tested gas, and Gas-
SensorArrayAcetone, in which the target is similarly the concentration of acetone. 
Both consist of 464 univariate time series of length 7500 and are split into train and 
test sets by randomly selecting 30% of instances as test.

Wave elevation and line tension

A dataset published on Kaggle30 consists of a simulation of a ship. The dataset’s 
goal is to predict the tension of a string given temporal wave elevation data. While 
the data is simulated, well-fitted models should improve monitoring of naval equip-
ment during harsh conditions.

Thus, we created the WaveTensionData dataset by separating the source data 
into univariate time series of length 57 and using wave height as the predictor and 
the corresponding average string tension as the target variable. The resulting dataset 

30 https:// perma. cc/ BAG4- W8SL.

Fig. 20  Temperature data and respective methane concentration in the MethaneMonitoringHomeActivity 
dataset

https://perma.cc/BAG4-W8SL
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has 1893 instances, of which 70% were sampled as training data and the remaining 
30% as testing data.

Health monitoring

Bar Crawl: detecting heavy drinking episodes

This dataset, made available in the UCI Machine Learning repository31 by their 
authors Killian et  al. (2019), consists in predicting heavy drinking episodes via 
mobile data. Data was collected from smartphones from 13 participants. The goal 
is to estimate the transdermal alcohol content by using an accelerometer. We have, 
therefore, created the BarCrawl6min dataset, where each input dimension cor-
responds to a different axis of the accelerometer. Moreover, even though data was 
recorded at 30 minutes intervals, in order to accurately estimate the drinking epi-
sode, only the last 6 minutes from the recording were kept. Two resulting samples 
are shown in Fig. 21. Note that all data is fully anonymised and that TAC readings 
were preprocessed/cleaned by the authors.

This resulted in 201 3-dimensional time series of length 360, which correspond 
to 6 minutes of secondly measurements. We randomly sampled 70% of those time 
series to use as train data and the remaining 30% as test data.

31 https:// perma. cc/ 7VP5- 79LN.

Fig. 21  Two samples of accelerometer data and alcohol concentration in the BarCrawl6min dataset

https://perma.cc/7VP5-79LN
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Covid‑19 in Andalusia

This dataset consists of estimating the mortality rate during Covid-19 waves and in 
different districts in eight different areas of Andalusia, its country’s second largest 
and most populated autonomous region, located in southern Spain. The output is the 
number of deaths in proportion to the total number of infected people in that district. 
This dataset, known as Covid19Andalusia, has been made public by the authors 
Díaz-Lozano et al. (2022), who took the data available in the Andalusia Government 
Website32. This dataset comprises 6 waves from a total of 34 districts. All waves are 
equal-length (91 points) since we have considered 45 days before and after the peak 
of the outbreak, as it has been demonstrated to be the most relevant data. Two such 
waves are illustrated in Fig. 22.

The aforementioned dataset includes 204 unidimensional time series of length 
91. 70% of those 204 time series have been randomly selected for the training set, 
whereas the remaining 30% belong to the testing set.

Pressure of a ventilator connected to a sedated patient’s lung

This dataset was made available by Kaggle in collaboration with Google Brain33. 
Data used in this competition was produced by connecting a ventilator to an artificial 

32 https:// perma. cc/ U55Q- U4KZ.
33 https:// perma. cc/ RQW7- QH7L.

Fig. 22  Two different Covid-19 waves and their mortality rates in the Covid19Andalusia dataset

https://perma.cc/U55Q-U4KZ
https://perma.cc/RQW7-QH7L
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bellows test lung through a respiratory circuit. The goal is to estimate the pressure, a 
value ranging from 0 to 100, representing how much the inspiratory solenoid valve 
is open to let air into the lung. The proposed dataset, named VentilatorPressure, 
includes time series corresponding to approximately 3-second breaths. Dimensions 
are the control input and output for the inspiratory solenoid valve.

The final dataset includes 75450 time series with 2 dimensions and length 80. 
The training dataset comprises randomly sampled 70% of the series, whereas the 
remaining 30% belong to the testing dataset.

Sentiment analysis

Cryptocurrency sentiment

By combining historical sentiment data for 4 cryptocurrencies, extracted from 
EODHistoricalData34 and made available on Kaggle35, with historical price data for 
the same cryptocurrencies, extracted from CryptoDataDownload36, we created the 
BitcoinSentiment, EthereumSentiment, CardanoSentiment, and BinanceCoin-
Sentiment datasets, with 332, 356, 107, and 263 total instances, respectively.

In all four datasets, the predictors are hourly close price (in USD) and traded 
volume for each respective cryptocurrency during a day, resulting in 2-dimensional 
time series of length 24. The response variable is the normalized sentiment score on 
the day spanned by the timepoints. The datasets were split into train and test sets by 
randomly selecting 30% of each set as test data. Using this data, companies can bet-
ter prepare for shifts of public perception regarding cryptocurrencies.

Sentiment on natural gas prices

Natural gas prices historical data was taken from the U.S. Energy Information 
Administration37 along with corresponding sentiment scores obtained by analysing 
relevant tweets on the topic. From this data, we created the NaturalGasPricesSenti-
ment dataset.

We first split the data into groups of 20 consecutive business days. We then used 
the daily natural gas prices as predictors and the average sentiment score during 
each 20-day time frame as the response variable. The final dataset has 93 univariate 
time series of length 20, of which 70% were randomly sampled as training data and 
the remaining 30% as testing data. Two of those time series are shown in Fig. 23. 
Again, companies and local governments can use the data to analyse and predict 
shifts in public perception on natural gas.

34 https:// perma. cc/ 37GN- BMRL.
35 https:// perma. cc/ J6LK- 99Q5.
36 https:// perma. cc/ 4M79- 7QY4.
37 https:// perma. cc/ 8AP5- 5R7R.

https://perma.cc/37GN-BMRL
https://perma.cc/J6LK-99Q5
https://perma.cc/4M79-7QY4
https://perma.cc/8AP5-5R7R
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Regressor configurations

Parameter settings for all algorithms are shown in Table 7.

Fig. 23  Examples of gas price time series from the NaturalGasPriceSentiment dataset and the respective 
sentiment score

Table 7  Regressor configurations for our experiments where m is the series length, d is the number of 
dimensions and rm is the lengths of DrCIF representations

Regressor Configuration

Ridge Regularization strength: ∈ {10−3, 10−2,… , 103}

grid-SVR Kernel ∈ {RBF, Sigmoid}

Regulatisation parameter ∈ {10−1, 100, … , 102}

Kernel Coefficient ∈ {10−3, 10−2, … , 100}

RandF Num. Estimators: 500
RotF Num. Estimators: 500
XGBoost Num. Estimators: 500

Learning Rate: 0.1
FPCR FPCA Num. Components: 10
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Regressor Configuration

FPCR-Bs Smooth: B-splines
FPCA Num. Components: 10
Num. Basis Functions: 10
Order: 4

ROCKET Num. Kernels: 10000
MultiROCKET Num. Kernels: 6250

Max. Num. Dilations per Kernel: 32
Num. Features per Kernel: 4

1NN-ED Num. Neighbours: 1 | 5
5NN-ED Distance measure: Euclidean
1NN-DTW Num. Neighbours: 1 | 5
5NN-DTW Distance measure: DTW
FreshPRINCE Num. Estimators: 500
TSF Num. Estimators: 500

Num. Intervals per Tree: 
√

m

DrCIF Num. Estimators: 500

Num. Intervals per Representation: 4 + (
√

d
√

rm)∕3

Num. Features per Tree: 10
CNN Num. Epochs: 2000

Batch size: 16
Kernel size: 7
Num. Convolutional Layers: 2

FCN Num. Epochs: 2000
Batch size: 16
Num. Components: 1 (InceptionE: 5)

Inception Num. Epochs: 1500
InceptionE Batch size: 64

Kernel size: 40
ResNet Num. Epochs: 1500

Batch size: 16

Table 7  (continued)
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