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Abstract

In this note, we propose and study the notion of modified Fejér sequences. Within a
Hilbert space setting, we show that it provides a unifying framework to prove convergence
rates for objective function values of several optimization algorithms. In particular, our
results apply to forward-backward splitting algorithm, incremental subgradient proximal
algorithm, and the Douglas-Rachford splitting method including and generalizing known
results.
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1 Introduction

The notion of Fejér monotonicity captures essential properties of the iterates generated by

a wide range of optimization methods and provides a common framework to analyze their
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convergence [8]. Quasi-Fejér monotonicity is a relaxation of the above notion that allows for

an additional error term [15, 10]. In this paper, we propose and study a novel, related notion

to analyze the convergence of the objective function values, in addition to that of the iterates.

More precisely, we modify the notion of quasi-Fejér monotonicity, by adding a term involving

the objective function and say that a sequence satisfying the new requirement is modified

Fejér monotone (modified Fejér for short). In this paper, we show the usefulness of this new

notion of monotonicity by deriving convergence rates for several optimization algorithms in a

unified way. Based on this approach, we not only recover known results, such as the sublinear

convergence rate for the proximal forward-backward splitting algorithm, but also derive new

results. Interestingly, our results show that for projected subgradient, incremental subgradient

proximal, and Douglas-Rachford algorithm, considering the last iteration leads to essentially

the same convergence rate as considering the best iterate selection rule [26, 25], or ergodic

means [5, 27], as typically done.

2 Modified Fejér Sequences

Throughout this paper, we assume that f : H → ]−∞,∞] is a proper function on H. Assume

that the set

X = {z ∈ H | f(z) = min
x∈H

f(x)}

is nonempty. We are interested in solving the following optimization problem

f∗ = min
x∈H

f(x). (2.1)

Given x ∈ H and a subset S ⊂ H, d(x, S) denotes the distance between x and S, i.e.,

d(x, S) = infx′∈S ‖x − x′‖. R+ is the set of all non-negative real numbers and N
∗ = N \ {0}.

For any S ⊂ H, we denote by 1{·} the characteristic function of S.

The following definition introduces the key notion we propose in this paper.

Definition 1. A sequence {xt}t∈N ⊂ H is modified Fejér monotone with respect to the target

function f and the sequence {(ηt, ξt)}t∈N in R
2
+, if

(∀x ∈ domf) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 − ηt(f(xt)− f(x)) + ξt. (2.2)

Remark 2.1.

(i) Choosing x ∈ X in (2.2), we get

ηtf(xt) ≤ ξt + ηtf∗ + ‖xt − x‖2 <∞.

This implies that {xt}t∈N ⊂ domf .
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(ii) By setting x = xt in (2.2), a direct consequence is that, for all t ∈ N,

‖xt+1 − xt‖
2 ≤ ξt. (2.3)

(iii) All the subsequent results hold if condition (2.2) is replaced by the following weaker

condition

(∀x ∈ X ∪ {xt}t∈N) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 − ηt(f(xt)− f(x)) + ξt. (2.4)

However, in the proposed applications, condition (2.2) is always satisfied for every x ∈

domf .

In the following remark we discuss the relation with classical Fejér sequences.

Remark 2.2 (Comparison with quasi-Fejér sequences).

Let C be a nonempty subset of H. If
∑

t∈N ξt < +∞, Definition 1 applied to the function

f + ιC, implies that the sequence {xt}t∈N is quasi-Fejér monotone with respect to C [15, 10].

Indeed, (2.2) implies

(∀x ∈ C) ‖xt+1 − x‖2 ≤ ‖xt − x‖2 + ξt.

Note that, in the study of convergence properties of quasi-Fejér sequences corresponding to a

minimization problem, the property is considered with respect to the set of solutions X , while

here we will consider modified Fejér monotonicity for a general constraint set or the entire

space H.

We next present two main results to show how modified Fejér sequences are useful to

study the convergence of optimization algorithms. The first result shows that if a sequence is

modified Fejér monotone, one can bound its corresponding excess function values in terms of

{(ηt, ξt)}t∈N explicitly.

Theorem 2.3. Let {xt}t∈N ⊂ H be a modified Fejér sequence with respect to f and {(ηt, ξt)}t∈N
in R

2
+. Let {ηt}t∈N be a non-increasing sequence. Let T ∈ N, T > 1. Then

ηT (f(xT )− f∗) ≤
1

T
d(x1,X )2 +

T−1∑

t=1

1

T − t
ξt + ξT . (2.5)
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Proof. Let {uj}j∈N be a sequence in R and let k ∈ {1, · · · , T − 1}. We have

1

k

T∑

j=T−k+1

uj −
1

k + 1

T∑

j=T−k

uj

=
1

k(k + 1)

{
(k + 1)

T∑

j=T−k+1

uj − k
T∑

j=T−k

uj

}

=
1

k(k + 1)

T∑

j=T−k+1

(uj − uT−k).

Summing over k = 1, · · · , T − 1, and rearranging terms, we get

uT =
1

T

T∑

j=1

uj +

T−1∑

k=1

1

k(k + 1)

T∑

j=T−k+1

(uj − uT−k). (2.6)

For any x ∈ domf , choosing (∀t ∈ N) ut = ηt(f(xt) − f(x)) and rearranging terms, we have

the following error decomposition [18]:

ηT (f(xT )− f(x)) =
1

T

T∑

t=1

ηt(f(xt)− f(x))

+
T−1∑

k=1

1

k(k + 1)

T∑

t=T−k+1

ηt(f(xt)− f(xT−k))

+

T−1∑

k=1

1

k + 1

[
1

k

T∑

t=T−k+1

ηt − ηT−k

]
{f(xT−k)− f(x)} .

Let x = x∗ ∈ X . Since {ηt}t∈N is a non-increasing sequence and f(xT−k) − f∗ ≥ 0, the last

term of the above inequality is non-positive. Thus, we derive that

ηT (f(xT+1)− f∗) ≤
1

T

T∑

t=1

ηt(f(xt)− f(x∗))

+

T−1∑

k=1

1

k(k + 1)

T∑

t=T−k+1

ηt(f(xt)− f(xT−k)). (2.7)

For every j ∈ {1, . . . , T}, and for every x ∈ domf , summing up (2.2) over t = j, · · · , T , we get

T∑

t=j

ηt(f(xt)− f(x)) ≤ ‖xj − x‖2 +

T∑

t=j

ξt. (2.8)

The above inequality with x = x∗ and j = 1 implies

1

T

T∑

t=1

ηt(f(xt)− f(x∗)) ≤
1

T
‖x1 − x∗‖

2 +
1

T

T∑

t=1

ξt. (2.9)
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Inequality (2.8) with x = xT−k and j = T − k yields

T−1∑

k=1

1

k(k + 1)

T∑

t=T−k+1

ηt(f(xt)− f(xT−k))

=

T−1∑

k=1

1

k(k + 1)

T∑

t=T−k

ηt(f(xt)− f(xT−k))

≤
T−1∑

k=1

1

k(k + 1)

T∑

t=T−k

ξt. (2.10)

Exchanging the order in the sum, we obtain

T−1∑

k=1

1

k(k + 1)

T∑

t=T−k

ξt =
T−1∑

t=1

T−1∑

k=T−t

1

k(k + 1)
ξt +

T−1∑

k=1

1

k(k + 1)
ξT

=

T−1∑

t=1

(
1

T − t
−

1

T

)
ξt +

(
1−

1

T

)
ξT

=
T−1∑

t=1

1

T − t
ξt + ξT −

1

T

T∑

t=1

ξt. (2.11)

The result follows by plugging (2.9),(2.10), and (2.11) into (2.7).

In the special case when, for every t ∈ N, ξt = 0, we derive the following result.

Corollary 2.4. Let {xt}t∈N ⊂ H be a modified Fejér sequence with respect to f and a sequence

{(ηt, ξt)}t∈N in R
2
+. Assume that ξt = 0 for every t ∈ N, and {ηt}t∈N is non-increasing. Let

T ∈ N, T > 1. Then

f(xT )− f∗ ≤
1

ηTT
d(x1,X )2.

The second main result shows how to derive explicit rates for the objective function values

corresponding to a modified Fejér sequence with respect to polynomially decaying sequences

{(ηt, ξt)}t∈N in R
2
+. Interestingly, the following result (as well as the previous ones) does not

require convexity of f .

Theorem 2.5. Let {xt}t∈N ⊂ C be a modified Fejér sequence with respect to a target function

f and {(ηt, ξt)}t∈N ⊂ R
2
+. Let η ∈ ]0,+∞[, let θ1 ∈ [0, 1[, and set ηt = ηt−θ1. Let (θ2, ξ) ∈ R

2
+

and suppose that ξt ≤ ξt−θ2 for all t ∈ N. Let T ∈ N, T ≥ 3. Then

f(xT )− f∗ ≤
d(x1,X )2

η
T θ1−1 +

ξcθ2
η

(log T )1{θ2≤1}T θ1−min{θ2,1}. (2.12)
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Here,

c : R+ → R+, θ2 7→ cθ2 =






5 +
2

1− θ2
if θ2 < 1,

9 if θ2 = 1,

2θ2 + 3θ2 − 1

θ2 − 1
if θ2 > 1.

(2.13)

To prove this result, we will use Theorem 2.3 as well as the following lemma.

Lemma 2.6. Let q ∈ R+ and T ∈ N, T ≥ 3. Then

T−1∑

t=1

1

T − t
t−q ≤





(4 + 2/(1− q)) T−q log T, when q < 1,
8T−1 log T , when q = 1,
(2q + 2q)/(q − 1)T−1, when q > 1,

Proof. We split the sum into two parts

T−1∑

t=1

1

T − t
t−q =

∑

T/2≤t≤T−1

1

T − t
t−q +

∑

1≤t<T/2

1

T − t
t−q

≤ 2qT−q
∑

T/2≤t≤T−1

1

T − t
+ 2T−1

∑

1≤t<T/2

t−q

= 2qT−q
∑

1≤t≤T/2

t−1 + 2T−1
∑

1≤t<T/2

t−q.

Applying, for T ≥ 3,

T∑

t=1

t−θ2 ≤ 1 +

∫ T

1

u−θ2du ≤





T 1−θ2/(1− θ2), when θ2 < 1,
2 log T , when θ2 = 1,
θ2/(θ2 − 1), when θ2 > 1,

we get
T−1∑

t=1

1

T − t
t−q ≤ 2q+1T−q log T +





(2/(1− q))T−q, when q < 1,
4T−1 log T , when q = 1,
2qT−1/(q − 1), when q > 1,

which leads to the desired result by using T−q+1 log T ≤ 1/(2(q − 1)) when q > 1.

Now, we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. It follows from Theorem 2.3 that (2.5) holds. Substituting ηt = ηt−θ1 ,

ξt ≤ ξt−θ2 ,

ηT−θ1(f(xT )− f∗) ≤
1

T
d(x1,X )2 + ξ

T−1∑

t=1

1

T − t
t−θ2 + ξT−θ2.
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Lemma 2.6 yields

ηT−θ1(f(xT )− f∗) ≤
1

T
d(x1,X )2 + ξcθ2(log T )

1{θ2≤1}T−min{θ2,1}.

The results follows dividing both sides by ηT−θ1.

3 Applications in Convex Optimization

In this section, we apply previous results to some convex optimization algorithms, includ-

ing forward-backward splitting, projected subgradient, incremental proximal subgradient, and

Douglas-Rachford splitting methods. Convergence rates for the objective function values are

obtained by using Theorem 2.5. The key observation is that the sequences generated by these

algorithms are modified Fejér monotone.

Throughout this section, we assume that H is a Hilbert space, and f : H →]−∞,∞] is a

proper, lower semicontinuous convex function. Recall that the subdifferential of f at x ∈ H is

∂f(x) = {u ∈ H : (∀y ∈ H) f(x) + 〈u, y − x〉 ≤ f(y)}. (3.1)

The elements of the subdifferential of f at x are called subgradients of f at x. More generally,

for ǫ ∈ ]0,+∞[, the ǫ-subdifferential of f at x is the set ∂ǫf(x) defined by

∂ǫf(x) = {u ∈ H : (∀y ∈ H) f(x) + 〈u, y − x〉 − ǫ ≤ f(y)}. (3.2)

The proximity operator of f [20] is

proxf(x) = argmin
y∈H

{
f(y) +

1

2
‖y − x‖2

}
. (3.3)

3.1 Forward-Backward Splitting

In this subsection, we consider a forward-backward splitting algorithm for solving Prob-

lem (2.1), with objective function

f = l + r (3.4)

where r : R → ]−∞,∞] and l : H → R are proper, lower semicontinuous, and convex. Since l

is real-valued, we have dom ∂l = H [2, Proposition 16.14].

Algorithm 1. Given x1 ∈ H, a sequence of stepsizes {αt}t∈N ⊂ ]0,+∞[, and a sequence

{ǫt}t∈N ⊂ [0,+∞[ set, for every t ∈ N,

xt+1 = proxαtr(xt − αtgt) (3.5)

with gt ∈ ∂ǫtl(xt).
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The forward-backward splitting algorithm has been well studied [28, 7, 9, 6] and a review of

this algorithm can be found in [11] under the assumption that l is differentiable with a Lipschitz

continuous gradient. Convergence is proved using arguments based on Fejér monotonicity of

the generated sequences [10]. Under the assumption that l is a differentiable function with

Lipschitz continuous gradient, the algorithm exhibits a sublinear convergence rate O(T−1) on

the objective f [3]. If l is not smooth, the algorithm has been studied first in [24], and has a

convergence rate O(T−1/2), considering the best point selection rule [27]. Our objective here

is to provide a convergence rate for the algorithm considering the last iteration, which shares

the same rate (up-to logarithmic factors) and to allow the use of ǫ-subgradients, instead of

subgradients.

Theorem 3.1. Let α ∈ ]0,+∞[, let θ ∈ ]0, 1[, and let, for every t ∈ N
∗, αt = αt−θ. Let

ǫ ∈ ]0,+∞[, {ǫt}t∈N∗ ⊂ [0,+∞], and assume that ǫt ≤ ǫαt. Let {xt}t∈N∗ be the sequence

generated by Algorithm 1. Assume that there exists B ∈ ]0,+∞[ such that

(∀g ∈ ∂lǫt(xt) ∪ ∂r(xt)) ‖g‖ ≤ B, (3.6)

and let c be defined as in (2.13). Let T ∈ N, T > 3. Then

f(xT )− f∗ ≤
d(x1,X )2

2α
T θ−1 + α(5B2 + ǫ)c2θ(log T )

1{2θ≤1}T−min{θ,1−θ}.

Proof. Let t ∈ N
∗. By Fermat’s rule (see e.g. [2, Theorem 16.2]),

0 ∈ xt+1 − xt + αtgt + αt∂r(xt+1).

Thus, there exists qt+1 ∈ ∂r(xt+1), such that xt+1 in (3.15) can be written as

xt+1 = xt − αtgt − αtqt+1. (3.7)

Note that {xt}t∈N∗ ⊂ domf and let x ∈ domf . Using (3.7) and expanding ‖xt+1 −x‖2, we get

‖xt+1 − x‖2 = ‖xt − x‖2 + α2
t‖gt + qt+1‖

2 − 2αt〈xt − x, gt〉 − 2αt〈xt − x, qt+1〉. (3.8)

By (3.6),

α2
t‖gt + qt+1‖

2 ≤ 4α2
tB

2. (3.9)

By (3.2),

〈xt − x, gt〉 ≥ l(xt)− l(x)− ǫt, (3.10)

and convexity of r implies

〈xt − x, qt+1〉 = 〈xt − xt+1, qt+1〉+ 〈xt+1 − x, qt+1〉

≥ 〈xt − xt+1, qt+1〉+ r(xt+1)− r(x).

8



Using (3.7) and then applying Cauchy inequality,

〈xt − x, qt+1〉 ≥ 〈xt − xt+1, qt+1〉+ r(xt+1)− r(x)

= αt〈gt, qt+1〉+ αt‖qt+1‖
2 + r(xt+1)− r(x)

≥ −αt‖gt‖‖qt+1‖+ r(xt+1)− r(x)

≥ −αtB
2 + r(xt+1)− r(x)

= −αtB
2 + [r(xt)− r(x)] + [r(xt+1)− r(xt)].

Let qt ∈ ∂r(xt). By convexity, r(xt+1) − r(xt) ≥ 〈xt+1 − xt, qt〉. Moreover, recalling the

expression in (3.7), we get

〈xt − x, qt+1〉 ≥ −αtB
2 + [r(xt)− r(x)] + 〈xt+1 − xt, qt〉

= −αtB
2 + [r(xt)− r(x)]− αt〈gt + qt+1, qt〉

≥ −αtB
2 + [r(xt)− r(x)]− αt(‖gt‖+ ‖qt+1‖)‖qt‖

≥ −αtB
2 + [r(xt)− r(x)]− 2αtB

2. (3.11)

It follows from (3.8), (3.9), (3.10), and (3.11) that

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2αt[l(xt)− l(x)]− 2αt[r(xt)− r(x)] + 10α2
tB

2 + 2αtǫt

= ‖xt − x‖2 − 2αt[f(xt)− f(x)] + α2
t (10B

2 + 2ǫ)

Thus, {xt}t∈N∗ is a modified Fejér sequence with respect to the target function f and

{(2αt, (10B
2 + 2ǫ)α2

t )}t∈N∗ . The statement follows from Theorem 2.5, applied with θ1 = θ,

θ2 = 2θ, η = 2α and ξ = (10B2 + 2ǫ)α.

The following remark collects some comments on the previous result.

Remark 3.2.

1. Setting θ = 1/2, we get a convergence rate O(T−1/2 log T ) for forward-backward algorithm

with nonsummable diminishing stepsizes, considering the last iteration.

2. In Theorem 3.1, the assumption on bounded approximate subgradients, which is equiva-

lent to Lipschitz continuity of l and r, is satisfied for some practical optimization prob-

lems. For example, when r is the indicator function of a closed, bounded, and convex

set D ⊂ R
N , it follows that {xt}t∈N is bounded, which implies {gt}t∈N is bounded as well

[1]. For general cases, similar results may be obtained by imposing a growth condition

on ∂f , using a similar approach to that in [18] to bound the sequence of subgradients.

If the function l in (3.4) is differentiable, with a Lipschitz differentiable gradient, we recover

the well-known O(1/T ) convergence rate for the objective function values.

9



Proposition 3.3. [3, Theorem 3.1] Let β ∈ [0,+∞[ and assume that ∇l is β-Lipschitz con-

tinuous. Consider Algorithm 1 with ǫ = 0 and αt = β for all t ∈ N
∗. Then, for every T ∈ N,

T > 1

f(xt)− f∗ ≤
βd(x1,X )2

2T
(3.12)

Proof. It follows from [3, Equation 3.6] that

(∀t ∈ N
∗)

2

β
(f(xt)− f∗) ≤ ‖xt+1 − x∗‖

2 − ‖xt − x∗‖
2. (3.13)

Thus, {xt}t∈N∗ is a modified Fejér sequence with respect to the target function f and the

sequence {(ηt, ξt)}t∈N∗ with (∀t ∈ N) ηt = 2/β and ξt = 0. The statement follows from

Corollary 2.4.

3.2 Projected approximate subgradient method

Let D be a convex and closed subset of H, and let ιD be the indicator function of D. In this

subsection, we consider Problem (2.1) with objective function given by

f = l + ιD (3.14)

where l : H → R is proper, lower semicontinuous, and convex. It is clear that (3.14) is a special

case of (3.4) corresponding to a given choice of r. The forward-backward algorithm in this

case reduces to the following projected subgradient method (see e.g. [26, 25, 5] and references

therein), which allows to use ǫ-subgradients, see [1, 8].

Algorithm 2. Given x1 ∈ H, a sequence of stepsizes {αt}t∈N ⊂ ]0,+∞[, and a sequence

{ǫt}t∈N ⊂ [0,+∞[ , set, for every t ∈ N,

xt+1 = PD(xt − αtgt) (3.15)

with gt ∈ ∂ǫtl(xt).

The algorithm has been studied using different rules for choosing the stepsizes. Here, as a

corollary of Theorem 3.1, we derive the convergence rate for the objective function values, for

a nonsummable diminishing stepsize.

Theorem 3.4. For some α1 > 0, ǫ ≥ 0 and θ ∈ [0, 1), let αt = η1t
−θ and ǫt ≤ ǫαt for all

t ∈ N
∗. Let {xt}t∈N be a sequence generated by Algorithm 2. Assume that for all t ∈ N

∗,

‖gt‖ ≤ B. Then, for every T ∈ N, T > 3

f(xT )− f ∗ ≤
d(x1,X )2

2α1
T θ−1 + α1(B

2 + 2ǫ)c̃2θ(log T )
1{2θ≤1}T−min(θ,1−θ)
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Choosing θ = 1/2, we get a convergence rate of order O(T−1/2 log T ) for projected approx-

imate subgradient methods with nonsummable diminishing stepsizes, which is optimal up to

a log factor without any further assumption on f [12, 23]. Since the subgradient method is

not a descent method, a common approach keeps track of the best point found so far, i.e., the

one with smallest function value:

(∀T ∈ N
∗) bT = argmin

1≤t≤T
f(xt).

Projected subgradient method with diminishing stepsizes of the form {αt−θ}t, with θ ∈ ]0, 1],

satisfies bT − f∗ = O(T−1/2). Our result shows that considering the last iterate for projected

approximate subgradient method essentially leads to the same convergence rate, up to a loga-

rithmic factor, as the one corresponding to the best iterate, even in the cases that the function

value may not decrease at each iteration. To the best of our knowledge, our result is the

first of this kind, without any assumption on strong convexity of f , or on a conditioning

number with respect to subgradients (as in [16] using stepsizes {γt/‖gt‖}t). Note that, using

nonsummable diminishing stepsizes, convergence rate O(T−1/2) was shown, but only for a sub-

sequens of {xt}t∈N∗ [1]. Finally, let us mention that using properties of quasi-Fejér sequences,

convergence properties were proved in [8].

3.3 Incremental Subgradient Proximal Algorithm

In this subsection, we consider an incremental subgradient proximal algorithm [4, 21] for

solving (2.1), with objective function f given by, for some m ∈ N
∗,

m∑

i=1

(li + ri),

where for each i, both li : H → R and ri : H → ]−∞,+∞] are convex, proper, and lower

semicontinuous. The algorithm is similar to the proximal subgradient method, the main

difference being that at each iteration, xt is updated incrementally, through a sequence of m

steps.

Algorithm 3. Let t ∈ N
∗. Given xt ∈ H, an iteration of the incremental proximal subgradient

algorithm generates xt+1 according to the recursion,

xt+1 = ψm
t , (3.16)

where ψm
t is obtained at the end of a cycle, namely as the last step of the recursion

ψ0
t = xt, ψi

t = proxαtri(ψ
i−1
t − αtg

i
t), ∀git ∈ ∂li(ψ

i−1
t ), i = 1, · · · , m (3.17)

for a suitable sequence of stepsizes {αt}t∈N∗ ⊂ ]0,+∞[.
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Several versions of incremental subgradient proximal algorithms have been studied in [4],

where convergence results for various stepsizes rules and both for stochastic of cyclic selection

of the components are given. Concerning the function values, the results are stated in terms

of the best iteration. See also [22] for the study of the special case of incremental subgradient

methods under different stepsizes rules. The paper [17] provides convergence results using

approximate subgrdients instead of gradients.

In this section, we derive a sublinear convergence rate for the incremental subgradient prox-

imal algorithm in a straightforward way, relying on the properties of modified Fejér sequences

assuming a boundedness assumption on the subdifferentials, already used in [22].

Theorem 3.5. Let α ∈ ]0,+∞[, let θ ∈ ]0, 1[, and let, for every t ∈ N
∗, αt = αt−θ. Let

{xt}t∈N∗ be the sequence generated by Algorithm 3. Let B ∈ ]0,+∞[ be such that

(∀t ∈ N
∗)(∀g ∈ ∂li(xt) ∪ ∂ri(xt)) ‖g‖ ≤ B,

and let c be defined as in (2.13). Then, for every T ∈ N
∗,

f(xT )− f∗ ≤
d(x1,X )2

2α
T θ−1 +

α(4m+ 5)mB2

2
c2θ(log T )

1{2θ≤1}T−min{θ,1−θ}.

Proof. It was shown in [4, Proposition 3 (Equation 27)] that,

‖xt+1 − x‖2 ≤ ‖xt − x‖2 − 2αt[f(xt)− f(x)] + α2
t (4m+ 5)mB2.

Thus, {xt}t∈N∗ is a modified Fejér sequence with respect to the target function f , and

{(2αt, α
2
t (4m+ 5)mB2)}t∈N∗ . The proof is concluded by applying Theorem 2.5 with θ1 =

θ, θ2 = 2θ, η = 2α and ξ = α2 (4m+ 5)mB2.

An immediate consequence of Theorem 3.5, is that the choice θ = 1/2 yields a convergence

rate of order O(T−1/2 log T ).

As a corollary of Theorem 3.5, we derive convergence rates for the projected incremental

subgradient method. Analogously to what we have done for the forward-backward algorithm

in Section 3.1, Theorem 3.5 can be extended to analyze convergence of the approximate and

incremental subgradient method in [17].

3.4 Douglas-Rachford splitting method

In this subsection, we consider Douglas-Rachford splitting algorithm for solving (2.1). Given

l : H → R and r : H → R proper, convex, and lower semincontinuous functions, we assume

that f = l + r in (2.1).

12



Algorithm 4. Let {αt}t∈N∗ ⊂ ]0,+∞[. Let t ∈ N
∗. Given xt ∈ H, an iteration of Douglas-

Rachford algorithm generates xt+1 according to




yt+1 = proxαtl(xt)
zt+1 = proxαtr(2yt+1 − xt),
xt+1 = xt + zt+1 − yt+1.

(3.18)

The algorithm has been introduced in [14] to minimize the sum of two convex functions, and

then has been extended to monotone inclusions involving the sum of two nonlinear operators

[19]. A review of this algorithm can be found in [11]. The convergence of the iterates is

established using the theory of Fejér sequences [10]. Our objective here is to establish a new

result, namely a convergence rate for the objective function values.

Theorem 3.6. Let α ∈ ]0,+∞[, and let θ ∈ ]0, 1[. For every t ∈ N
∗, let αt = αt−θ. Let

{(yt, xt, zt}t∈N∗ be the sequences generated by Algorithm 4. Assume that there exists B ∈

]0,+∞[ such that

(∀t ∈ N
∗)(∀g ∈ ∂l(yt) ∪ ∂r(zt) ∪ ∂l(xt) ∪ ∂r(xt)) ‖g‖ ≤ B.

Let c be the function defined in (2.13). Then, for every T ∈ N, T > 3,

f(xT )− f∗ ≤
d(x1,X )2

2α
T θ−1 + 8αB2c2θ(log T )

1{2θ≤1}T−min{θ,1−θ}.

Proof. Let t ∈ N
∗, set v = (xt − yt+1)/αt and w = (2yt+1 − xt − zt+1)/αt. By Fermat’s rule,

v ∈ ∂l(yt+1) and w ∈ ∂r(zt+1). (3.19)

We can rewrite (3.18) as 



yt+1 = xt − αtv,
zt+1 = (2yt+1 − xt)− αtw,
xt+1 = xt + zt+1 − yt+1,

(3.20)

Thus

xt+1 = xt − αt(v + w). (3.21)

Using (3.21) and expanding ‖xt+1 − x‖2, we get

‖xt+1 − x‖2 = ‖xt − x‖2 + α2
t‖v + w‖2 + 2αt〈x− xt, v〉+ 2αt〈x− xt, w〉. (3.22)

Let u ∈ ∂l(xt). It follows from (3.19) (3.1) and (3.20) that

〈x− xt, v〉 = 〈x− yt+1, v〉+ 〈yt+1 − xt, v〉

≤ l(x)− l(yt+1)− αt‖v‖
2

≤ l(x)− l(xt) + l(xt)− l(yt+1)

≤ l(x)− l(xt) + 〈xt − yt+1, u〉

= l(x)− l(xt) + αt〈v, u〉

≤ l(x)− l(xt) + αtB
2.
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Similarly, Let s ∈ ∂r(xt). We bound 〈x− xt, w〉 as follows

〈x− xt, w〉 = 〈x− zt+1, w〉+ 〈zt+1 − xt, w〉

≤ r(x)− r(zt+1)− αt〈2v + w,w〉

≤ r(x)− r(xt) + r(xt)− r(zt+1) + 2αtB
2

≤ r(x)− r(xt) + 〈xt − zt+1, s〉+ 2αtB
2

= r(x)− r(xt) + αt〈2v + w, s〉+ 2αtB
2

≤ r(x)− r(xt) + 5αtB
2.

Introducing the above two estimates into (3.22), we get

‖xt+1 − x‖2 ≤‖xt − x‖2 + 16α2
tB

2 +2αt(f(x)− f(xt)).

Thus, {xt}t∈N∗ is a Super Quasi-Fejér sequence with respect to the target function f and

{(2αt, 16α
2
tB

2)}t∈N∗ . The statement follows from Theorem 2.5 with θ1 = θ and θ2 = 2θ.

Again, choosing θ = 1/2, we get a convergence rate O(T−1/2 log T ) for the algorithm with

nonsummable diminishing stepsizes. Nonergodic convergence rates for the objective function

values corresponding to the Douglas-Rachford iteration can be derived by [13, Corollary 3.5],

under the additional assumption that l is the indicator function of a linear subspace of H.
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