Failure Prediction using Machine Learning in a Virtualised

HPC System and application.

t*Bashir Mohammed - *Irfan Awan -

Muhammad.

Abstract Failure is an increasingly important issue
in high performance computing and cloud systems. As
large-scale systems continue to grow in scale and com-
plexity, mitigating the impact of failure and provid-
ing accurate predictions with sufficient lead time re-
mains a challenging research problem. Traditional ex-
isting fault-tolerance strategies such as regular check-
pointing and replication are not adequate because of
the emerging complexities of high performance comput-
ing systems. This necessitates the importance of having
an effective as well as proactive failure management ap-
proach in place aimed at minimizing the effect of failure
within the system. With the advent of machine learn-
ing techniques, the ability to learn from past informa-
tion to predict future pattern of behaviours makes it
possible to predict potential system failure more accu-
rately. Thus, in this paper, we explore the predictive
abilities of machine learning by applying a number of
algorithms to improve the accuracy of failure predic-
tion. We have developed a failure prediction model us-
ing time series and machine learning, and performed
comparison based tests on the prediction accuracy. The
primary algorithms we considered are the Support Vec-
tor Machine (SVM), Random Forest(RF), k-Nearest
Neighbors (KNN), Classification and Regression Trees
(CART) and Linear Discriminant Analysis (LDA). Ex-
perimental results indicates that the average prediction
accuracy of our model using SVM when predicting fail-

*School of Electrical Engineering and Computer Science
University of Bradford, Bradford, UK, BD7 1DP
E-mail: tb.mohammed@bradford.ac.uk

4Department of Computing & Communication Tech-
nologies Oxford Brookes University, Oxford, OX33 1HX
UK.

*Hassan Ugail - 4+Younas

ure is 90% accurate and effective compared to other
algorithms. This finding implies that our method can
effectively predict all possible future system and appli-
cation failures within the system.

Keywords Failure - Machine Learning - High
Performance Computing - Cloud computing.

1 Introduction

Failure prediction using machine learning is a major
area of interest within the field of computing. It has
received a considerable attention because it is an im-
portant issue in high-performance computing cloud sys-
tem and plays an important role in proactive fault tol-
erance management. Research in large-scale comput-
ing relies on a thorough and deep understanding of
what system failures in real systems look like. For in-
stance, prior knowledge of failure characteristics can be
used to improve system and node availability using re-
source allocation [1,2]. Developing an accurate failure
prediction model requires a critical understanding of
the characteristics of real system failures. Additionally,
certain statistical properties of failure can aid fault tol-
erance system designers to analyze and design an effec-
tive and reliable fault tolerance system [3-5]. Failures
sources such as hardware, human error, software, ma-
licious logic faults and network can hamper the exe-
cution of applications on high-performance computing
cloud systems since the failure recovery process may
require and unexpected large amount of time and re-
sources. The impact of failure is even more consequen-
tial for large-scale distributed systems that consist of
many computing nodes and clusters.

On the other hand, mitigating the impact of fail-
ure in a high-performance computing cloud datacen-

ter infrastructure is possible if accurate failure predic-
tion mechanism are implemented [1]. For high speed,
high performance computing systems such as large com-
puter clusters with high risk of failure due to large
number of system components, a reliable failure pre-
diction technique is necessary [2]. Despite major efforts
by researchers in both academia and industry, predict-
ing system and component failure remains a primary
issue in running large-scale computing infrastructure
[3]. With the evolving new technological trends and
growing system complexity, focusing on failure when
designing systems for the next generation is vital. A
particularly big concern is ensuring and maintaining
high availability of the entire infrastructure. This is
extremely important because failure to have a prior
knowledge of the potential system failure might result
in the following: Firstly, failure of any hardware com-
ponent within the infrastructure might not only result
to a temporary data unavailability, but in some ex-
treme cases lead to permanent data loss. Secondly, mar-
ket forces and technology trends may combine to make
hardware system failures occur more frequently in the
future. Thirdly, the size of hardware storage systems in
modern large-scale high performance computing infras-
tructures might grow to an unprecedented scale with
thousands of storage devices, making component fail-
ures even more difficult to detect. While there are sev-
eral traditional fault tolerance techniques for dealing
with and mitigating the impact of failures, there is a
critical need to understand the future failure pattern
and behavior of real systems[1],[4]. Such an understand-
ing will not only help evaluate the future failure system
component by fine tuning the existing techniques, but
will aid in the design and development of new mecha-
nisms.

However, to limit the impact of failure, applications,
resources and services can be scheduled around pre-
dicted failures. Hardware or software failure can impede
the execution of applications in the infrastructure since
the amount of time and resources required to recover
from failure can be unexpectedly high and expensive [5].
therefore, the availability and reliability of the system
can be improved by predicting the system component
and application failures. This will in turn enable us to
improve the reliability of the system by predicting accu-
rate future failures and enabling us to fully harness the
potential of the next generation large-scale computing
systems.

It is pertinent to note that our technique cut across
on all the three layers of cloud computing, which are
Infrastructure as a service (IaaS), platform as a service
(PaaS) and software as a service (SaaS). Therefore, our
model can predict possible hardware, software and ap-

plication failure within the infrastructure. Details of the
layers are briefly described as follows:

— Infrastructure as a service (IaaS), is the most basic
and important cloud service model under which vir-
tual machines, load balancers, fault tolerance, fire-
walls and networking services are provided. The client
or cloud user, is provided with capability to provi-
sion processing, storage, networks and other funda-
mental computing resources, to deploy and run ar-
bitrary software such as operating system and appli-
cations. Common examples of these services include
Rackspace, Go-Grid, EC2, Google Apps, Concur,
Cisco Webex, Citrix GoTo Meetings, Adobe Mar-
keting Cloud, Facebook, Flickr) and Amazon cloud
[14] .

— Under the PaaS model, a computing platform in-
cluding APIs, operating system and development
environments are provided as well as programming
language execution environment and web servers.
The client maintains the applications, while the cloud
provider maintains the service run times,databases,
server software, integrated server oriented architec-
tures and storage networks. Various types of PaaS
vendors offerings can include complete application
hosting, development, testing and extensive inte-
grated services that include scalability and mainte-
nance. Some key players include Microsoft Windows
Azure and Google Apps engine GoDaddy, Windows
Azure, Apprenda, Google App Engine, Amazon Web
Services, WordPress. The main benefit of these ser-
vices include focus on high value software rather
than infrastructure, leverage economies of scale and
provide scalable go-to-market capability [15].

— SaaS provides clients the capability to use provider
application executing on a cloud infrastructure. An
entire application is available remotely and accessi-
ble from multiple client devices through thin client
interfaces such as web browsers. Cloud user do not
manage or control the underlying cloud infrastruc-
ture [2] but providers install and operate the ap-
plication software. Example providers for this ser-
vice include Salesforce, Facebook and Google Apps,
Amazon EC2, Rackspace, Microsoft Azure, Google
Compute Engine and Amazon Web Services [15-17].

The rest of the paper is structured as follows. Section 2
presents the related background of failure prediction us-
ing various strategies and algorithm. Section 3 presents
the architecture of our study and a complete method-
ology of our research which include; the development
of a predictive failure model using time series and ma-
chine learning.Section 4 presents an overview of ML
approaches in container based HPC systems .Section
5 presents the discussion of our results obtained from

both the time series modelling and machine learning
and summarizes the results. Section 6 provides some
concluding remarks and findings and recommends a fu-
ture research direction.

2 Related Work

Failure prediction using machine learning techniques in
a large-scale distributed high performance cloud sys-
tem has gained enormous attention in recent times,
and a lot of research has been conducted in this area.
However, very few work has attempted to fully analyze
and predict high performance cloud system data empir-
ically using a failure-in-production real-time data.The
authors in [18] have made a good attempt to analyse the
failure data of a large-scale production Cloud environ-
ment consisting of over 12,500 servers, which includes
a study of failure and repair times and characteristics
for both Cloud workloads and servers, but they never
looked at the failure correlation between workload in-
tensity and size of the system respectively. The author
in [19] developed a machine learning approach for pre-
dicting individual component times until failure which
they reported it as far more accurate than the tradi-
tional MTBF approach. Their algorithm was built to be
able to monitor the health of 14 hardware samples and
notify them of an impending failure well ahead of ac-
tual failure, providing adequate time to fix the problem
before actual failure occurred. But the only drawback
was that their model has not been trained on a mod-
ule with real time failure. Hence, there is no assurance
that this model will predict failure accurately and the
data they used has not been made publicly available.
While the authors in [20] introduced a new system fail-
ure prediction method using Support Vector Machines
(SVM) based on the information contained in log files,
where their proposed approach takes advantage of the
sequential nature of log messages and determines which
sequence of messages are precursors to failure. The au-
thor in [21] analyzed failure data that has been collected
over the past 9 years at Los Alamos National Labora-
tory and includes 23000 failures recorded on more than
20 different systems, mostly large clusters of SMP and
NUMA nodes. They studied the statistics of the data,
including the root cause of failures, the mean time be-
tween failures and the mean time to repair, but they
never applied any prediction techniques. Authors in [22]
analysed the empirical and statistical properties of sys-
tem errors and failures from a network of nearly 400
heterogeneous servers running a diverse workload over
a year. Their results show that the system error and
failure patterns are comprised of time-varying behav-
ior containing long stationary intervals. These station-

ary intervals exhibit various strong correlation struc-
tures and periodic patterns, which impact performance
but also can be exploited to address such performance
issues. Authors in [23] characterizes the hardware re-
liability of Cloud datacenters from a number of data
sources, but failed to analyze the failure of workloads
and did not utilised a publicly available dataset in their
experiment. Kavulya et al. [24] present workload failure
characteristics from a production MapReduce super-
computing cluster, but this work is confined to MapRe-
duce type jobs and does not consider workload repair or
server failure characteristics.They also did not utilised
publicly available dataset in their work. In [25], they
used Bayesian network to predict failure probabilities.
While the research seamed interesting, they did not
disclose the dataset they used, thus making it hard
to compare other Machine Learning (ML) Algorithms
to their proposed model. Authors in [26] used an en-
semble classifier to achieve hard drive failure predic-
tion on a cloud infrastructure. The data they conducted
their work on was acquired through two sources, Win-
dows performance counts and Self-Monitoring, Anal-
ysis and Reporting Technology. This research closely
resembles the intended work. However, they only con-
sidered hard disk failure in the cloud architecture while
business systems relies on other components and not
only hard drive. Rather a host of Hardware (such as:
CPU, Disk, DIMM,Cable.etc) Recently,the authors in
[27] used data acquired from cycles to predict Inte-
grated Circuit (IC) failures. As in the case of [26] they
also considered only one Hardware failure occurrence.
They analyzed fourteen (14) hardware samples. The au-
thors in [50] proposed an adaptive resource provisioning
method using an application-aware machine learning
technique that is based on the job history in heteroge-
neous infrastructures. Their experimental result indi-
cates their proposed method can gratify user requests
(cost and execution time) regarding its application and
enhance resource usage effectiveness. The authors in
[48] looked at an an adaptive overload threshold se-
lection process using Markov decision processes of vir-
tual machine in cloud data center. To address the prob-
lem, they modelled the overload threshold selection as
a Markov decision process. With the solution of the im-
proved Bellman optimality equation by the value itera-
tion method, they claim their optimization model was
resolved, and the optimum overload threshold is adap-
tively selected. The authors in [44][46], concentrated
on software reliability modelling and software defect
prediction using neural network classifier approaches.
While the authors in [45] proposed a cost-effective and
fault resilient reusability prediction mocek by using ge-
netic algorithm, the authors in [47] proposed a deep

neural network based hybrid approach for software de-
fect prediction using software metrics. Our approach is
to use publicly available hardware dataset using time
series and machine leaning (ML) algorithms to predict
potential failure of all he system component and appli-
cations. Contrary to most of the state- of- the art re-
search, we decided to use a public dataset so that other
researchers in the field can compare their outcome with
our proposed model and obtained results. Furthermore,
in this work we are not limiting our experiments to a
single system or application component failure, rather
we attempt to predict several failures across the entire
infrastructure. For more comprehensive review on other
literatures the reader is referred to [28-36],[47-53].

3 Methodology

This section describes the complete methodology that
would be deployed in this study. As the aim of this is to
developed a model that that can predict possible failure
system components and application in a high perfor-
mance cloud system. We first start by using time-series
modelling approach because the failure occurred a 5-
year period, then we identified an ARIMA(1,1,1) model
for the compounded failure dataset extracted from the
computer failure database repository(CFDR) [38]. The
data is a collection of different system components fail-
ure recorded over a given period of time. From the data
set we were able to visualize the time stamps of the spe-
cific system component that failed (output), without
the sources of the failure (input). Therefore, we were
left with no option than to apply time series as each
failure was recorded at a regular intervals at different
point over time.

On the other hand, we went a step further by trans-
forming the data and applying machine learning.The
following steps were followed. We defined and identi-
fied our problem as multi-classification problem (multi-
norminal)which requires some prediction to enable us
identify specific components that will fail in the fu-
ture. We prepared and transformed our data and ap-
plied some supervised learning algorithms and also per-
formed a comparison amongst them. We evaluated our
algorithms and improved our result by selecting the
best algorithm based on performance and accuracy The
caret package in R was deployed because it provides a
consistent interface into a number of machine learning
algorithms and provides useful convenience methods for
data visualization, data re-sampling, model tuning and
model comparison. However, we decided to diversify the
methodology by deploying five different ML algorithm
which include support vector machines (SVM) and ran-
dom forest (RF), linear discriminant analysis (LDA) k-

nearest neighbors (kNN), and classification and regres-
sion trees (CART) and see the ramification. All of the
above are supervised learning technique that require in-
put and output so that the algorithms can learned. In
order to apply different ML algorithm on our dataset,
we generated the sources of failure of the system com-
ponents from the study in [21], where the dataset used
was also collected from CFDR database repository [37].

3.1 Data Collection

A historical dataset on system components failure for
a period of five (5) years starting from 2001-2006 was
collected [37]. The data was collected with the purpose
of providing failure specifics for I/O related systems
and components in as much detail as possible so that
analysis might produce some useful findings. Data were
collected for storage, networking, computational ma-
chines, and file systems in production use at NERSC.
The data was extracted form a database used for track-
ing system troubles, called Remedy, and is currently
stored in a MySQL database and available for export
to Excel format. As part of the SciDAC Petascale Data
Storage Institute (PDSI) project Collaboration this is
the failure data for the High Performance Computing
System-2 (MPP2) operated by the Environmental and
Molecular Science Laboratory EMSL), Molecular Sci-
ence Computing Facility (MSCF)[37],[38].

3.1.1 Data Pre-processing

The dataset [37] constituted an output variable repre-
senting the failed system components. In order to ap-
ply supervised machines learning algorithms, we needs
to incorporates the input variables to dataset. As ealier
mentioned we obtained the input variables from the
study in [21] where the data used was extracted from
the same domain [38].

In Table 1, we present five (5) sources of system
components failure such as hardware; software; human
error; network and undermined[21]. Throughout this
study we would use the following acronyms HW, SW,
HE, NW and UD respectively to denote the sources of
system component failure. In the entire dataset, the un-
dermined sources of failure appeared only once within
the period under study. We therefore discard its effects
in the analysis due to it less likelihood of occurrence.

We deployed combinatorics analysis[39],[40] and al-
located the possible combinations of sources of system
components failure to the output variables. Table 2
shows how the output variables are assigned to differ-
ent combinations of input variables. This allocation is
designed as follows:

Table 1 The sources of failure of a cloud-based systems con-
sidered in this study.

S/N Sources of failure Acronyms
1 Hardware HW
2 Software SW
3 Human Error HE
4 Network NW
5 Undetermined UD

Supposed we have n different possible failure of a
system components failure and out of which we are in-
terested to take only k different combinations at a time.
We are applying the combinatorics in order to avoid a
repetition of the same combinations of sources of sys-
tem components failure to a single output variables.
The combinatorics is defined mathematically as: "Cj =
k'(nnilk)' provided that n > k, where both n and k£ are
positive integer. This procedure would be continue se-
rially for each category of the input variable in accor-
dance with the order of the dataset. We presents in
short the overview of the transformed dataset in Table
2.

Table 2 Sample of transformed dataset used and their de-
scriptions for model development.

S/N X1 Xz X3 X4 Output
1 HW SW HE NW APPL

2 HW SW HE UD APPL

3 HW SW NW UD APPL

4 HW HW NW UD APPL

5 SW HW NW UD CABLE
6 SW HW NW NW CABLE
7 SW HW HE NW CABLE
8 SW SW HE NW CABLE
3380 SW HW NW UD SCI.BP
381 SW HW NW NW SCI.BP
382 SW HW HE NW SCI_BP
383 SW SW HE NW SCI_.BP

3.2 Failure Prediction using Time Series

We define time series in the context of a HPC or cloud-
based infrastructure as a number of failures occurred to
a system over a given period of time.

Let X1, X5, X3, -+, X; be the number of failures of a
system, and is mathematically defined as:

Xe = (X1, Xm0, Xyg, -+, Xyon) + &4 (1)

where X; is the value of X at time ¢,
then X1, X;_o, X¢—3, -+, X¢_,, represents the past val-
ues of X;, and &; denotes white noise which has the
distribution &, ~ WN(0,0?). The ¢ is a stochastic
term which does not follow any pattern and cannot be
predicted. Basically, system failures are random, but
it is rarely deterministic in a narrow sense from some
identifiable causes.

For several decades, a time series models has been
utilized in all fields of study for prediction[42]. The
models like autoregressive (AR), moving average (MA)
and exponential smoothing ranging from linear to non-
linear regression and a host of many others. Box and
Jenkins[43] developed a classical time series model called
autoregressive integrated moving average (ARIMA).
These techniques was successfully applied in various do-
main such as data center, complex industrial system
and transportation networks and healthcare to predicts
the failure of their systems..

3.2.1 The Autoregressive process (AR)

Suppose the time series {X;} at time ¢ has p past val-
ues X¢_1,X¢—2, Xy—3, -+, Xy_p, then AR process of or-
der p is denoted by AR(p) defined as:

Xi = "X +02 X o403 X3+ -+, X p+ee,(2)

where ¢, ~ WN(0,0?) and &; is uncorrelated with
X, for each r < t. Using backshift operator (2) can be
written in short form as concise by X; = 9(L) 'e;. In
this process, the failure of a system dependent on the
past causes or failure.

3.2.2 The Moving average process (MA)

This process is a memoryless, because the failure of a
system does not depends on past causes or failure. In
many situations, cloud-based infrastructure failed er-
ratically and this type of process could be best to de-
scribed such scenario. Let the time series {X;} is a
moving average of order ¢ denoted by M A(q) and math-
ematically defined as:

Xy = e+ dree—1 + dacro + P3er_z + -+ Pger—q(3)

where e; ~ WN(0,0?) and ¢1, o, ¢3,- - -, ¢, are
constants. The X; is a linear combination of ¢+ 1 white
noise variables and are uncorrelated for all lags s > g,
e.g X; and X;_,. The M A(q) process can written in
short form as X; = ¢(L)e,

3.2.3 The Autoregressive moving average (ARMA)

This process is a hybrid of AR and M A where the pat-

tern of the failure of a system can be attributed to two

causes. The ARM A model is a combination AR and M A
models of order pand g respectively. Then, ARM A(p, q)

model is given by:

L)X = ¢(L)e (4)

3.3 Failure Prediction using Machine Learning

In this section we explore and discuss in detail some
well-known and commonly used machine learning meth-
ods for the prediction of failure in a high performance
computing cloud based environment. We fitted the al-
gorithm into our model, then compared and selected
the best out of all of them. The machine learning tech-
niques deal with the issues of how to build and design
computer programs that improve their performance and
accuracy for some specific task based on past events or
observations. As earlier stated, the methods we consid-
ered are: Linear Discriminant Analysis (LDA), Classifi-
cation and Regression Trees (CART), k-Nearest Neigh-
bors (kNN), Support Vector Machines (SVM) with a
linear kernel and random forest (RF).

3.3.1 Linear Discriminant Analysis (LDA)

This is a method used in machine learning to find a lin-
ear combination of features that characterizes or sepa-
rates two or more different classes of objects or events.
The resulting combination may be used as a linear clas-
sifier or dimensionality reduction before later classifica-
tion.
Consider a set of observations T for each sample of an
even with known class y. This is s set of sample called
the training set. The problem is now to find a good
predictor for the class y of any sample of the same dis-
tribution given an observation T

Assuming that the conditional probability density
functions (PDF)
p(Z|ly = 0) and p(ZT|]y = 1) are both normally distributed
with mean and covariance parameters (g, ~o) and (1,
X1) respectively. The Bayes optimal solution under this
assumption is to predict points as being from the sec-
ond class if the log of the likelihood ratios is bigger than
some T'H,
where TH = Threshold,
so that:

@ —m)")Xy (@ — o) + I |So| - (@ —)"
Y@ —m) - In | S| > TH

3.8.2 Classification and Regression Trees (CART)

The CART algorithm is based on Classification and Re-
gression Trees by Breiman et al (1984). A CART tree
is a binary decision tree that is constructed by splitting
a node into two child nodes repeatedly, beginning with
the root node that contains the whole learning sam-
ple. Decision Tree is a recursive partitioning approach
and CART split each of the input node into two child
nodes, so CART decision tree is Binary Decision Tree.
At each level of decision tree, the algorithm identifies a
condition, which variable and level to be used for split-
ting input node (data sample) into two child nodes.
Decision Tree building algorithm involves a few simple
steps which are as follows:

— Step — 1 Take labelled input data with a target
variable and a list of Independent Variables.

— Step—2 Best Split: Find the best split for each of
the independent variables.

— Step—2 Best variable: Select the best variable for
the split.

— Step — 4 Split the input data into left and right
nodes.

— Step — 5 Continue step 2-4 on each of the nodes
until it meets the stopping criteria.

— Step — 6 Decision tree pruning : Steps to prune
decision tree built.

3.3.8 Random Forest (RF)

Random forest is another version of supervised learning
algorithms in data mining. In this study, we proposed to
build a model for predicting system components failure
using this technique to enable comparing with SVMs.

Random forests consist of ensembles of classification
or regression trees. This method allow the use bootstrap
sampling on the training dataset and random feature
selection during tree induction.

Suppose for a given number of features M the ran-
dom forests samples m >> M to split at each cre-
ation of a tree node. In this case, the predictions are
obtained through averaging. In random forest using re-
gression trees, the results is the percentage increase of
mean squared errors from 0-100%, with higher values
indicating more important variables.

3.8.4 Support Vector Machines (SVM)

Support vector machines (SVMs) are supervised learn-
ing techniques used for regression analysis, classification
problem and novelty detection. The fundamental idea
behind SVMs is to choose the hyperplane that opti-
mally differentiate two classes with the maximum mar-
gin.

For instance, given a training data D, defined a set
of n points and represented in the form:

D = {(zyi)|wieRP,y;e{—1,—1}}i=12,....n, Where
y; denotes the two classes either +1 or -1 to indicating
the class for the point x; belongs.

The hyperplane function g(x) gives a linear discrim-
inant in d-dimensions and splits the original space into
two half-space: g(r) = wlx + b, w is a d-dimensional
weight vector and b is scalar bias. If the dataset is lin-
early separable, a separating hyperplane can be found
such that for all points with label -1, g(z) < 0 and V
points labelled +1, g(z) > 0.

SVMs are capable for solving problems with non-
linear decision boundaries by mapping the original d-
dimensional space into d*-dimensional space. So that
the points d* > d are possibly be linearly separable.
Using the transformation function ¢, a new dataset is
obtained in the form of transformation space Dy =
{¢(x;),yi}i=1,2,.. n. This operation required to trans-
formed space in the inner product ¢(z;)7 ¢(x;), which
is the kernel function (K) between z; and x;. The ker-
nels commonly used in SVMs are presented in Table 3.

Table 3 The kernel functions commonly used in SVM

Function Kernels Parameters
Polynomial K(z;,z;) = (zTz; + 1);1 q

Gaussian K(zi,zj) =e~ %

Radial basis K(x;,z;) = e=lwi=ail> 4 >0

3.3.5 k-Nearest Neighbors (kNN)

The k — nearest neighbors algorithm(kNN) is a non-
parametric method used for classification and regres-
sion.In both cases, the input consists of the k£ closest
training examples in the feature space. The output de-
pends on whether kNN is used for classification or re-
gression:

In kNN classification, the output is a class mem-
bership. An object is classified by a majority vote of its
neighbors, with the object being assigned to the class
most common among its k nearest neighbors, & is a pos-
itive integer, typically small). If kK = 1, then the object
is simply assigned to the class of that single nearest
neighbor.

In kNN regression, the output is the property value
for the object. This value is the average of the values
of its k nearest neighbors. Both for classification and
regression, a useful technique can be to assign weight
to the contributions of the neighbors, so that the nearer

neighbors contribute more to the average than the more
distant ones. For instance, a common weighting scheme
consists in giving each neighbor a weight of 1/d, where
d is the distance to the neighbor.

The neighbors are taken from a set of objects for
which the class (for kNN classification) or the object
property value (for kNN regression) is known. This
can be thought of as the training set for the algorithm,
though no explicit training step is required. A peculiar-
ity of the kNN algorithm is that it is sensitive to the
local structure of the data.The algorithm is not to be
confused with k-means, another popular machine learn-
ing technique.

3.8.6 Architecture of the Study

In Fig. 1, we presents the proposed schematic diagram
of failure prediction model of this study. This com-
prises of three (3) phases; The pre-processing phases,
the training phase and the prediction phase respec-
tively.

— Pre-processing phase (Model Identification and pro-
cessing)
The model identification is the first stage of build-
ing time series model after stationarity is achieved.
With the aid of the autocorrelation function (ACF)
and partial autocorrelation function (PACF), we can
identify the appropriate model based on the pattern
and order shown by the correlogram as shown in Fig.
4 and Fig. 5 receptively

— The Training phase (Model estimation and valida-
tion)
After the appropriate model is identified, the next
is the estimation of parameters using some conven-
tional techniques such as least squares method, max-
imum likelihood estimation and method of moment
etc. The model is then checked for accuracy and
validation, even though postulation has been made
that all models are wrong but some are better than
others. For example, considering the properties of
the residuals and check whether the residuals from
an ARMA is normal regular distribution or random.

— The Model prediction phase
At this stage, the identified model would be used
to forecast future ahead. The estimated residuals of
the model would be carefully examined to follow a
white noise process.

Model
|dentification & Processing

A 4

Model i
Estimation & Validation

Model Prediction

v | plAcugy A3) Algorithm | !
| Visualisation |+ o | Evaluation f+ %+ f comparison | ¢ v
Input —}E + P . :___’i L_* PreQ|cted
' Data : o| Predictor | o| predictor | Failures
t| Preparation |; (Classifer) A (Selector) |
; Dol Pl =
bemmmmean- : i R C o :
i !
PRE-PROCESSING PHASE | TRAINING PHASE | PREDICTION PHASE
i i

Fig. 1 Proposed System Model

4 Overview of ML approaches in Container
based HPC systems

Container is a type of virtualization that takes place
at the OS level[54]. It communicates with the host OS
through system calls to the kernel. It simplifies and
accelerate the process of building and isolating appli-
cations. They are lightweight and come with low over-
head. They enable easier application sharing and repro-
ducibility, because the container image includes both

the application and its development environment, thereby

making the OS kernel the interface layer between user-
space containerized applications and the hardware re-
sources of the host system that the application accesses
during deployment[55], [56]. Recently, researchers have
shown an increased interest in container based HPC
systems and specifically how machine learning systems
and approaches can be combined with its deployment
capabilities[54], [55], [57]. Docker, LXC, LXD and Sin-
gularity are examples of some of the technologies which
enable containerization[58]. They all have their merits
and demerits and their suitability based on different
use case scenarios. With respect to HPC systems which
enables application processing at a much larger scale,
such as MPI and schedulers (slurm, torque), Singular-
ity may be the preferred option[59][56]. On the other
hand, if the use case scenario is a micro service-based
scaling, Docker, combined with orchestration technolo-
gies such as Kubernetes or Docker swarm may provide a

better option[54], [60]. In addition, the recent develop-
ment in the field of data science have led to the renewed
interest in containerization especially with respect to
Deep learning which is part of a broader family of ma-
chine learning methods[57], [61], [62]. Every deep learn-
ing framework has many dependencies and each depen-
dent library has special version requirements resulting
to all deep learning frameworks changing frequently.
Containerization helps developers overcome these chal-
lenges[63]. Everything is bundled up into a single pack-
age that includes all the necessary pieces and parts[57].
However, deploying ML applications as containers and
clustering them has the following advantages:

— The ability to make ML applications self-contained.
They can be mixed and matched on any number of
platforms and can operate in a highly distributed
environment.

— The ability to expose the ML services systems that
exist inside the containers as services or microser-
vices. This in turn allows external applications and
container-based to utilize those services at any time,
without having to move the code inside the appli-
cation.

— The ability to cluster and schedule container pro-
cessing which allows the ML application that ex-
ists in containers to scale optimally. Even though
the applications can be placed on cloud-based sys-
tems that are more efficient, container management

systems such as Google’s kubernetes or Docker’s
Swarm are mostly recommended[64].

— Containers have mechanisms built in for external
and distributed data access, so it they have the abil-
ity to leverage on common data-oriented interfaces
that support many data models, thereby having ac-
cess to data using well-defined interfaces that deal
with complex data using simplified abstraction lay-
ers.

Following from the above summary and discussion, we
can extend our ML based approach for container based
HPC system, even though both the container and ma-
chine learning technologies are still at their emerging
and development stages, both are based upon past tech-
nology patterns.

5 Discussion of Results

In this section we divided the discussion of results into
two: The first presents and discusses the time series ap-
proach and the obtained results while the second dis-
cussion presents the five ML algorithm and their com-
parison based on our model . Fig. 2 presents the dis-
tribution of different system components failure based
on their frequencies of occurrences. This is preliminary
analysis in order to gain insight into the pattern of the
components failure and to test for the normality of the
failure data.

5.1 Discussion 1

In this section, we presents the analysis of system failure
distribution across the time under study. The model
formulation and their properties as well as prediction
and evaluation are also presented.

5.1.1 System failure model

In Fig. 2, we plot the frequency of time dependent sys-
tem failure in order to understand the pattern of its oc-
currence. The pattern of the system failure shows that it
is not stationary as the mean and variance of the series
keep changing over time. To remedy this scenario, we
needs to deploy some technique of data transformations
such as log-transformation and differencing method as
well as discussing their properties.

We presents the plots of system failure frequency
transformation in Fig. 3 using differencing and log, re-
spectively. The log-transformation would not be appro-
priate in this case because there are some indefinite out-
come as a results of zero recorded system failure. This

is shown by the pattern of the system failure where
the means and variances of the series are considerably
unstable. In this study, we choose differencing method
over log. This is because, the pattern exhibited by the
differencing shows that mean and variance of system
failure series is fairly constant.

5.2 Model Identification

We plots correlogram showing autocorrelation function
(ACF) and partial autocorrelation function (PACF) of
the system failure series (see Fig. 4 and Fig. 5). Using
the ACF correlogram, we were able to identify mov-
ing average model of order 1, MA (1). While the au-
toregressive model is of order 1 as well, AR (1). The
combination of the two models gives ARIMA (1,1,1)
model, where 1 at the centre is the number of times the
model is differenced. The system failure frequency of
the series was differenced just once, because stationar-
ity was achieved. All the values of the autocorrelation
that fall within the two blue dotted lines are indicat-
ing non-significant at 95%. While those values that falls
outside the 95% confidence interval indicates that they
are significant.

5.2.1 Estimation of Parameter

Having identified the ARIMA (1,1,1) model for the sys-
tem failure frequency, we can then estimate the param-
eters of the model. The ARIMA (1,1,1) model is math-
ematically represented by

Yt = Qys—1 + ¢ + V1641 (5)

where ¢, is the random shock occurring at time ¢, which
has the distribution as &z ~ WN(0,0%). We esti-
mated the following parameters ¢; = —0.1016 and ¥, =
—0.5784, log-likelihood = -178.3, AIC = 362.61, and
the association standard errors of the model are 0.2531
and 0.2085 respectively. We therefore write the ARIMA
(1,1,1) model for system failure frequency as

yr = —0.1016,_1 + &, — 0.5784,_, (6)

where e, ~ WN(0,1.534).

We presents in Fig. 6 the decomposition of additive
time series plot and Fig. 7 the prediction capability of
ARIMA (1,1,1) which shows the prediction region. We
also evaluates the accuracy of the model. Having evalu-
ated the model, we were able to obtained the following
indices RMSE = 38.6%, MAE = 31.6% and MASE =
23.5% respectively. This shows that the model is very
robust as it gives error allowance of less than 40%.

10

><10'3‘ ‘
1.6 —— Failure datal |
—Normal fit
1.4 -
1.2
> 1T
ey
[0
0.8
o
C
0.6 - —
0.4 / \
0.2 \\
0 | | |
500 1000 1500 2000 2500 3000
Failure
Fig. 2 Failure data Normal distribution test
(a) (b.)
200 - 8 -
gl B 5 = _f‘\ » \.'/(\ ,'\ 03 /\\ '\.
§100 =i I g WA ‘/'/ g ‘_‘_,ﬁ/ '_Jf \'_,\ -
& y A Ao : 4 it
(AT f ol .
ﬁ AW 1 X AR ES |
1 ORI A
§ ' ‘t’ |“f \‘(I b / ‘\/ “ f \\ '# !‘g 2 -
¥ y Hid . v £
&-100 i 214
0 -
200 T T T T I T T T
| I [I | [] 0 5 10 15 20 25 30 35
Time (months)
) 5 10 15 2 25 30 3% @
(€) Time (months) 2
2 —
v v
ﬁ " T LSRR SRR SRR ISUEYRSEE T INR LA o :E 1 ' S A p \'/" { r
% A PR J ! A S AR
, i 8 I : i : Pl Y SLTY IR
E 0) fl 1‘ .'f 1’ “’ L\ ! \\\ i’l‘ i E 0 o J‘f ,R, l,f,/ ,I ’, | } \' r(“‘I" 1}] i
Rl T A . bt {4] g i i Lr U i
oy N S VLA ‘P 'R T Y
244 Y %) ¥ Ray i - ! Y
: f
3
.2 - B
[I [| [[I [T T [T il | T [
0 5 10 %5 m&? 25 30 35 0 5 10 15 20 25 30 35
e Time (months)

Fig. 3 Differenced and log failure frequency transformation plots

5.3 Discussion 2

In this section we developed some models of our failure
data and estimated their prediction accuracy . In other
to achieve more concrete estimate of the accuracy of

the best model , we first split the loaded dataset into
two, 80 % of which we will use to train our models and
20% that we will hold back as a validation dataset. The
following steps were followed:

1. Set-up the test harness to use 10-fold cross validation

11

8
L

=3

a

=3

.o

o

=

ACF Diflog(Frequency offalure)

PACF Dif og(Frequency offalure)

Partial ACF

seasonal
-20 O
T

lay

Fig. 4 ACF and PACF diff log function

.8
L

.6
L

.a

=1

.o

=1

ACF Residul failure frequency)

PAGF Residualfalure frequency)

Partial ACF

Lay

Fig. 5 ACF Residual and PACF residual diff log function

to estimate accuracy.
2. We developed five different models to predict the
component failure pattern from the failure data.

3. The best model is selected.

Furthermore, we will split our dataset into 10 parts,

train in 9 and test on 1 and release for all combinations
of train-test splits. Table 4 shows the summary of each

Decomposition of additive time series

3 4
8.—
g
g,—
a g4
8 °

o -

B /_,_\
ke
c o |
o ©
=
= o

©

o |

3

-

o

«

random
-40 0 40
L

T T T T T T T
2006.0 2006.5 2007.0 2007.5 2008.0 2008.5 2009.0

Time

Fig. 6 Decomposition of additive time series plot of failure

g
A |
|
bl | ‘ [
A |
N — | .
g I (N |
: ARTRY A |
.@ AN RN |
bl VTN]
AN o w e
c " ‘ | \ [| /
: \ “/ | P \“ ‘\ |
Pl \d U ‘ /
I i Vo | it |
0 1\ |Regiun;‘
0] | /
\‘ o Fellure Recorded | |
|1 Regon
ﬂ /
I
0 r
T T T T I
060 20065 2070 2075 2080 2085 080

Year

Fig. 7 Predicted region of the failure data

attribute distribution and the failure sources. In an ef-
fort to get a more accurate estimation, the process will
be repeated 3 times for each algorithm with different
splits of the data into 10 groups. We used the metric of
accuracy (MOE) to evaluate our model. This is simply
defined as the ratio of the number of correctly predicted
instances divided by the total number of instances in

12

the dataset multiplied by 100 to give a percentage of
above 90% accuracy.

5.8.1 Model Evaluation and Prediction

In this section, we evaluate our developed models. We
need to compare the models to each other and select the
most accurate. Based on the results obtained from Fig.
8, Fig. 9 and Fig 10 which shows the density plot and
box plot of the failure data by class value and also the
failure distribution based on individual components, we
now a better insight and idea of how the pattern of how
our data looks like, which shows that some of the classes
are partially linearly separable in some dimensions. We
then reset the random number seed before reach run
to ensure that the evaluation of each algorithm is per-
formed using exactly the same data splits. This ensures
the results are directly comparable.Here we compare
the five models and their respective accuracy estima-
tions. In Table 5 we selected the best three models out
of the five while Table 6 presents the accuracy of mea-
surement.

Table 4 Summary of each attribute distribution

FS Min 1stQu. Med. Mean 3rdQu. Max
HW 1.0 35.0 43.0 46.8 52.7 103.0
SW 2.0 37.0 45.0 48.5 54.0 104.0
HE 3.0 38.0 47.0 50.0 56.0 105.0
NW 4.0 41.0 50.0 51.8 57.0 106.0

Table 5 Comparison analysis between the support vector
machines, random forest and linear discriminant analysis by
the their ability to predict the actual output variables.

S/N Output SVM RF LDA
1 Disk Disk Dimm Dimm
2 Disk Dim CNTRL Disk
3 APPL APPL APPL CNTRL
4 Disk Disk Dimm APPL
5 Disk Dim CNTRL Disk
6 APPL APPL APP CNTRL
18 Disk Dim CNTRL Dimm
19 APPL APPL APPL CNTRL

20 Disk Disk Dimm APPL

Table 6 Accuracy measurement between the predicted the
the actual output variable

Algorithm Accuracy Kappa
RF 0.70861 0.54586
LDA 0.83853 0.61902
SVM 0.90761 0.75429
KNN 0.48385 0.39293
CART 0.58825 0.41725

Table 7 Error measurement between the predicted and the
actual output variable using five algorithm.

ML Algorithm RMSE ROC Sensitivity
RF's 0.2572 0.8320 0.8360
LDA 0.2980 0.7790 0.7130
SVM 0.1718 0.9370 0.6753
KNN 0.3294 0.6740 0.9841
CART 0.2724 0.45930 0.9253

5.4 Summary of Analysis of our Failure prediction
models using ML algorithm

We can infer from Table 6 and Table 7 that the SVM
has the highest prediction accuracy (0.90761) and sen-
sitivity(0.6753) , where LDA also performs better than
RF with a accuracy (0.83853) and (0.70861) respec-
tively. It is apparent from Table 7 that SVM is the
best performed model with a sensitivity of (0.6753) ,
followed by LDA with a sensitivity of (0.7130) , then
RF with sensitivity of (0.8360) and CART and KNN
with (0.58825) and (0.48385) respectively. Furthermore,
Table 7 also shows the calculated RMSE and ROC ,
where SVM has it’s maximum RMSE value of 0.1718
and LDA RF KNN and CART has their different max-
imum value of RMSE to be (0.2980),(0.2572),(0.3294)
and (0.2724) respectively. Overall KNN has the high-
est RMSE value which indicates it is the lowest per-
formed model and SVM has the lowest RMSE value
which shows it is the best performed out of all of them.
Overall in all ramification, it is apparent that SVM is
our best model. Hence, the results clearly validate that
our model using SVM has accurate enough to predict
system failures with minimum values of RMSE and Sen-
sitivity.Hence, SVM based model has higher prediction
accuracy as compared to other models.

6 Conclusion and Future work

This paper provides an effective approach to failure pre-
diction using time series and machine learning. Our pro-
posed models have been exemplified with the dataset
collected from the NERSC with the purpose of provid-

13

BO

80

20

02 04 06

a0

00 0.2 04 06 08 10

Failure frequency.

Hurman.Ermor Netbwarle
, sos . o ™ L i
| - - - - = - :]s]
. - - i
.l - o - - - . s e - - - 60
- - b 40
ol - = s e <2 e L oo
|- i - o
Hardware Software
— e - - A |
Il o - e - i
= - - P - L
- -
N % & =
— - - - = L
- - = g - = b o
- - - -
Human.Errar MNetworic
[| sl | |
| (=1 [}
Lot et & L 0
| | |/ | | l]l]‘ A f | ,H rl | | 2 ‘ | b | _|r| .I. J || |
11 i (11 S0 . Al - fl [
fid 1] ol T [s | H.‘,D | /1] WIS
4 o L: o e e L; ™ o en! st & 24 b g e o deen cchom lm b lg e b lo g
(I] E:D 4‘0 é] BIO 1 0‘0 2‘0 42] SIO 8‘0 1 EI:O
Hardware Software
i r | 1| l |
i | |
2 LU LLUL B e AL AR
i (] | | ‘ I 1 . s (] [
|L |L| | h |!LI lH 1] R | | | \I 11 ,".l 3 | I| | | | | |
1 00480 AL 1§18 APARA LA L RUAVITAYA
b e @ ot W o o et 24 ol]a: e o W s W s b |
[I) 20 4'0 ﬁ;] BID 1 [I:Cl DI 2'[) 4'0 BID BIO 1 [I:Cl
Feature
Fig. 8 Density plot and box plot of the failure data by class value
Summary of Failure components
Q-
[[}] 8
o] EN g] [] 8
g 7]] 8 4
] i ! e
S 4 51 — —4— : ;
8 g
2 -
¢ - :
2 i
8 | — — Rl
le=l 00 =l _H0=HE ! : 3 °
o) mElmm I s m o ‘ i ‘ ‘
APPL CORE CTRL DISK FAN HSV oS PS SCI_BP Hardware Soffwere Human Error Network
Components.

Fig. 9 Distribution of reported system component failure
frequency

Fig. 10 Box plot of the components failure sources

14

ing failure specifics for I/O related systems and compo-
nents. The Data was collected for storage, networking,
computational machines, and file systems in production
use at NERSC from the 2001-2006 time-frame [37].
The experimental results for failure prediction mod-
els have also been evaluated through support vector
machine, random forest, k-nearest neighbors, linear dis-

criminant analysis and classification and regression trees.

As the aim was to develop a model that can accu-
rately predict possible system and application failure,
we first used time-series modeling approach and identi-
fied an ARIMA(1,1,1) model for the compounded fail-
ure dataset extracted from the Computer Failure Data
Repository (CFDR) [38]. Then we applied ML algo-
rithm on our dataset by comparing and fine-tuning our
model before selecting the best algorithm. The analy-
sis of our results indicates SVM as the best model in
terms of sensitivity, followed by LDA and RF. This was
achieved with SVM by comparing the actual system
component failures and the predicted failures. Finally,
the failure prediction model using support vector ma-
chine has shown the effectiveness with average accuracy
of (90%) as compared to RF, KNN, CART and LDA.
In the future, we suggest selecting the best performed
model and further applying model-tuning to achieve a
100% accuracy for predicting failures in a large scale
high performance cloud system. We will also aim to
demonstrate more clearly the specific application of the
results obtained in a cloud,HPC traditional network
and containerization approaches such as Docker and
Vertex.

Acknowledgement

The authors would like to thank the anonymous review-
ers for their useful review in improving the quality of
this paper. We would also like to thank Bill Kramer and
Akbar Mokhtarani from NERSC for collecting the data
and sharing it. One of the authors Bashir Mohammed
is a Petroleum Technology Development Fund (PTDF)
scholar. We would like to express our sincere gratitude
to PTDF for its funding support under the OSS scheme
with grant number (PTDF/E/OSS/PHD/MB/651/14).

References

1. O. Beaumont, L. Eyraud-Dubois, and J. A. Lorenzo-Del-
Castillo, Analyzing real cluster data for formulating allo-
cation algorithms in cloud platforms, Parallel Comput.,
vol. 54, pp. 8396, 2016.

2. K. Singh, S. Smallen, S. Tilak, and L. Saul, Failure anal-
ysis and prediction for the CIPRES science gateway Kri-
tika, Concurr. Comput. Pract. Exp., vol. 22, no. 6, pp.
685701, 2016.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. Garraghan, P. Townend, and J. Xu, An empirical
failure-analysis of a large-scale cloud computing environ-
ment, Proc. - 2014 IEEE 15th Int. Symp. High-Assurance
Syst. Eng. HASE 2014, pp. 113120, 2014.

J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira,
and C. Engelmann, Combining partial redundancy and
checkpointing for HPC, Proc. - Int. Conf. Distrib. Com-
put. Syst., pp. 615626, 2012.

B. Mohammed, M. Kiran, K. M. Maiyama, M. M. Ka-
mala, and I.-U. Awan, Failover strategy for fault tol-
erance in cloud computing environment, Softw. Pract.
Exp., 2017.

R. Ghosh, L. Francesco, F. Frattini, S. Russo, and S.
T. Kishor, Scalable analytics for IaaS cloud availability,
IEEE Trans. Cloud Comput., vol. 2, no. 1, pp. 5770, 2014.
T. Chalermarrewong, T. Achalakul, and S. C. W. See,
The Design of a Fault Management Framework for Cloud,
2012 9th Int. Conf. Electr. Eng. Comput. Telecommun.
Inf. Technol., pp. 14, 2012.

A. Elzamly, B. Hussin, A. Samad, H. Basari, and C. Tech-
nology, Classification of Critical Cloud Computing Secu-
rity Issues for Banking Organizations: A cloud Delphi
Study, Int. J. Grid Distrib. Comput., vol. 9, no. 8, pp.
137158, 2016.

ITProPortal, ITProPortal.com: 24/7 Tech Commentary
and Analysis, 2012. [Online]. Available: http://www. it-
proportal.com/. [Accessed: 24-Jun-2016].

Bilal K, Khalid O, Malik SU, Khan MUS, Khan S,
Zomaya A. Fault tolerance in the cloud. In Fault Tol-
erance in the Cloud Encyclopedia on Cloud Comput-
ing, vol. 2015. John Wiley and Sons: Hoboken, NJ, USA,
2015: 291300.

C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Ra-
jarajan, A survey on security issues and solutions at dif-
ferent layers of Cloud computing, J. Supercomput., vol.
63, no. 2, pp. 561592, 2013.

D. Gnanavelu and D. G. Gunasekaran, Survey on Se-
curity Issues and Solutions in Cloud Computing, Int. J.
Comput. Trends Technol., vol. 8, no. 8, pp. 126130, 2014.
B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, DDoS
attack protection in the era of cloud computing and
Software-Defined Networking, Comput. Networks, vol.
81, pp. 308319, 2015.

Z. Pantic and M. Babar, Guidelines for Building a Private
Cloud Infrastructure, I'TU Tech. Rep. - TR-2012-153TR-
2012-153, 2012.

O. Sefraoui, M. Aissaoui, and M. Eleuldj, Cloud com-
puting migration and IT resources rationalization, 2014
Int. Conf. Multimed. Comput. Syst., pp. 11641168, Apr.
2014.

A. Sen and S. Madria, Off-Line Risk Assessment of Cloud
Service Provider, 2014 IEEE World Congr. Serv., pp.
5865, Jun. 2014.

S. Yadav, Comparative Study on Open Source Software
for Cloud Computing Platform: Eucalyptus , Openstack
and Opennebula, Res. Inven. Int. J. Eng. Sci. Vol.3, Issue
10, vol. 3, no. 10, pp. 5154, 2013.

G. Bontempi, S. Ben Taieb, and Y. A. Le Borgne, Ma-
chine learning strategies for time series forecasting, Lect.
Notes Bus. Inf. Process., vol. 138 LNBIP, pp. 6277, 2013.
A. Chigurupati, R. Thibaux, and N. Lassar, Predicting
hardware failure using machine learning, 2016 Annu. Re-
liab. Maintainab. Symp., pp. 16, 2016.

E. Fulp, G. Fink, and J. Haack, Predicting Computer
System Failures Using Support Vector Machines., Proc.
First USENIX Conf. Anal. Syst. logs, pp. 55, 2008.

15

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

B. Schroeder and G. a Gibson, A Large-Scale Study of
Failures in High-Performance Computing Systems, IEEE
Trans. Dependable Secur. Comput., vol. 7, no. 4, pp.
337350, 2010.

R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and
Y. Z. Y. Zhang, Failure data analysis of a large-scale
heterogeneous server environment, Int. Conf. Dependable
Syst. Networks, 2004, pp. 110, 2004.

K. V. Vishwanath and N. Nagappan, Characterizing
Cloud Computing Hardware Reliability, Proc. 1st ACM
Symp. Cloud Comput. - SoCC 10, p. 193, 2010.

S. Kavulya, J. Tany, R. Gandhi, and P. Narasimhan, An
analysis of traces from a production MapReduce cluster,
CCGrid 2010 - 10th IEEE/ACM Int. Conf. Clust. Cloud,
Grid Comput., pp. 94103, 2010.

A. Abu-Samah, M. K. Shahzad, E. Zamai, and A. Ben
Said, Failure prediction methodology for improved proac-
tive maintenance using Bayesian approach, IFAC Proc.
Vol., vol. 48, no. 21, pp. 844851, 2015.

A. Khan, B. Bussone, J. Richards, and A. Miguel, A prac-
tical Approach to Hard Disk Failure Prediction in Cloud
Platforms, in 2016 IEEE Second International Confer-
ence on Big Data Computing Service and Applications??,
2016, pp. 105116.

G. H. Thomas Gentner, Klau p. Gungl, Patent
US9319030 - Integrated circuit failure prediction using
clock duty cycle recording 2016.

S. A. E. Keke Gai, Meikang Qiu, Security-Aware Informa-
tion Classifications Using Supervised Learning for Cloud-
Based Cyber Risk Management in Financial Big Data, in
2016 IEEE 2nd International Conference on Big Data Se-
curity on Cloud, IEEE International Conference on High
Performance and Smart Computing, IEEE International
Conference on Intelligent Data and Security, 2016, pp.
197202.

L. Zhang, K. Rao, R. Wang, and Y. Jia, Risk Prediction
Model Based on Improved AdaBoost Method for Cloud
Users, Open Cybern. Syst. Journal, 2015, vol. 9, pp. 4449,
2015.

D. Pop, Machine Learning and Cloud Computing: Sur-
vey of Distributed and SaaS Solutions, Inst. e-Austria
Timisoara, Tech. Rep 1, 2012.

S. Bsch, V. Nissen, and A. Wnscher, Automatic clas-
sification of data-warehouse-data for information lifecy-
cle management using machine learning techniques, Inf.
Syst. Front., 2016.

D. Fall, T. Okuda, Y. Kadobayashi, and S. Yamaguchi,
Risk Adaptive Authorization Mechanism (RAdAM) for
Cloud Computing, J. Inf. Process., vol. 24, no. 2, pp.
371380, 2016.

C. Guo, Y. Liu, and M. Huang, Obtaining Evidence
Model of an Expert System Based on Machine Learn-
ing in Cloud Environment, J. Internet Technol., vol. 16,
no. 7, pp. 13391349, 2015.

Z. Amin, N. Sethi, and H. Singh, Review on fault tol-
erance techniques in cloud computing, Int. J. Comput.
Appl., vol. 116, no. 18, pp. 1117, 2015.

A. Pellegrini, P. Di Sanzo, and D. R. Avresky, Proac-
tive Cloud Management for Highly Heterogeneous Multi-
cloud Infrastructures, in 2016 IEEE International Par-
allel and Distributed Processing Symposium Workshops
(IPDPSW), 2016, pp. 13111318.

S. P. P. K.S. Thakur., T. R.Godavarthi., 10.1.1.416.6042,
vol. 3, no. 6, pp. 698703, 2013.

B. Schroeder and G. Gibson, The computer failure data
repository (CFDR), Reliab. Anal. Syst. Fail. Data , no.
March, p. 6, 2007.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

B. Schroeder and G. Gibson, The Computer Failure Data
Repository (CFDR): collecting, sharing and analyzing
failure data, SC 06 Proc. 2006 ACM/IEEE Conf. Super-
comput., no. March, p. 154, 2006.

V. N. Vapnik, An Overview of Statistical Learning The-
ory, IEEE Trans. Neural Networks, vol. 10, no. 5, pp.
988999, 1999

M. C. Medeiros, A. Veiga, and M. G. C. Resende, A
Combinatorial Approach to Piecewise Linear Time Se-
ries Analysis, J. Comput. Graph. Stat., vol. 11, no. 1,
pp. 236258, 2002.

M. Coombs, A. S. Jarrah, and R. C. Laubenbacher, Foun-
dations of Combinatorial Time Series Analysis, System,
pp. 117.

Y. Zhou, Failure Trend Analysis Using Time Series
Model, 2017 29th Chinese Control and Decision Con-
forence., no. 1, pp. 859862, 2017.

S. Ho, M. Xie, and T. Goh, A comparative study of neu-
ral network and Box-Jenkins ARIMA modeling in time
series prediction, Comput. Ind. Eng., vol. 42, no. 24, pp.
371375, 2002.

R. Jayanthi and L. Florence, Software defect prediction
techniques using metrics based on neural network classi-
fier, Cluster Comput., pp. 112, 2018.

N. Padhy, R. P. Singh, and S. C. Satapathy, Cost-effective
and fault-resilient reusability prediction model by using
adaptive genetic algorithm based neural network for web-
of-service applications, Cluster Comput., vol. 9, pp. 123,
2018.

K. Kumaresan and P. Ganeshkumar, Software reliability
modeling using increased failure interval

C. Manjula and L. Florence, Deep neural network based
hybrid approach for software defect prediction using soft-
ware metrics, Cluster Comput., pp. 117, 2018.

Z. Li, An adaptive overload threshold selection process
using Markov decision processes of virtual machine in
cloud data center, Cluster Comput.,

C. Shen, W. Tong, K. K. R. Choo, and S. Kausar, Perfor-
mance prediction of parallel computing models to analyze
cloud-based big data applications, Cluster Comput., pp.
116, 2017.

J. Choi and Y. Kim, Adaptive resource provisioning
method using application-aware machine learning based
on job history in heterogeneous infrastructures, Cluster
Comput., vol. 20, no. 4, pp. 35373549, 2017.

D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J.
Kim, A survey of deep learning-based network anomaly
detection, Cluster Comput., pp. 113, 2017.

D. Muthusankar, B. Kalaavathi, and P. Kaladevi, High
performance feature selection algorithms using filter
method for cloud-based recommendation system, Clus-
ter Comput., vol. 0, no. i, pp. 112, 2018.

S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M.
Abdulhamid, Recent advancements in resource allocation
techniques for cloud computing environment: a system-
atic review, Cluster Comput., vol. 20, no. 3, pp. 24892533,
2017.

E. Casalicchio, A study on performance measures for
auto-scaling CPU-intensive containerized applications,
Cluster Comput., vol. 1, 2019.

L. Nussbaum, F. Anhalt, O. Mornard, J. Gelas, L. Nuss-
baum, F. Anhalt, O. Mornard, J. G. Linux-based, L.
Nussbaum, and O. Mornard, Linux-based virtualization
for HPC clusters To cite this version: Linux-based virtu-
alization for HPC clusters, Montr. Linux Symp., 2009.
L. Benedicic, F. A. Cruz, A. Madonna, and K. Mariotti,
Portable, high-performance containers for HPC, Cornell
Univ., 2017.

16

57

58.

59.

60.

61.

62.

63.

64.

. S. Nanda and T. J. Hacker, Racc: Resource-Aware
Container Consolidation using a Deep Learning Ap-
proach, Proc. First Work. Mach. Learn. Comput. Syst.
- MLCS18, no. May, pp. 15, 2018.

CANONICAL LTD, Linux Containers, Infrastruc-
ture for container projects, 2018. [Online]. Available:
https://linuxcontainers.org/. [Accessed: 21-Jan-2019].

T. Dwyer, A. Fedorova, S. Blagodurov, M. Roth, F.
Gaud, and J. Pei, A practical method for estimating per-
formance degradation on multicore processors, and its
application to HPC workloads, Int. Conf. High Perform.
Comput. Networking, Storage Anal. SC, 2012.

R. Buyya, R. Ranjan, and R. N. Calheiros, Modeling
and simulation of scalable cloud computing environments
and the cloudsim toolkit: Challenges and opportunities,
Proc. 2009 Int. Conf. High Perform. Comput. Simulation,
HPCS 2009, pp. 111, 2009.

C. Manjula and L. Florence, Deep neural network based
hybrid approach for software defect prediction using soft-
ware metrics, Cluster Comput., pp. 117, 2018.

D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J.
Kim, A survey of deep learning-based network anomaly
detection, Cluster Comput., pp. 113, 2017.

Adeesh Fulay, Database Containerization Plat-
form Checklist - Container Journal, CON-
TAINER JOURNAL, 2016. [Online]. Available:
https://containerjournal.com/2016/09/19/1860/. [Ac-
cessed: 21-Jan-2019).

C. Onur, Utilizing Containers for HPC and Deep
Learning Workloads — CIO, DELL EMC: INNO-
VATING TO TRANSFORM, 2018. [Online]. Available:
https://www.cio.com/article/3269351/analytics/utilizing-
containers-for-hpc-and-deep-learning-workloads.html.
[Accessed: 21-Jan-2019].

