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SKEW-ENRICHED CATEGORIES

ALEXANDER CAMPBELL

Abstract. This paper introduces a skew variant of the notion of enriched category, suitable for
enrichment over a skew-monoidal category, the main novelty of which is that the elements of the
enriched hom-objects need not be in bijection with the morphisms of the underlying category.
This is the natural setting in which to introduce the notion of locally weak comonad, which is
fundamental to the theory of enriched algebraic weak factorisation systems. The equivalence,
for a monoidal closed category V , between tensored V-categories and hommed V-actegories is
extended to the skew setting and easily proved by recognising both skew V-categories and skew
V-actegories as equivalent to special kinds of skew V-proactegory.
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1. Introduction

Recent years have seen the introduction of “skew” variants of the categorical notions of
monoidal category [Szl12], closed category [Str13], and actegory [LS15]. The definitions of
these skew structures differ from those of their classical counterparts by not demanding the
invertibility of certain structural morphisms, for which directions must therefore be specified.
For example, the associativity and unit constraints of a (left) skew-monoidal category are
natural transformations a : (X⊗Y )⊗Z −→ X⊗(Y ⊗Z), l : I⊗X −→ X , and r : X −→ X⊗I,
none of which need be invertible; for a skew-closed category V, the natural transformation
i : [I,X ] −→ X and the composite functions

V(X, Y )
[X,−]

// V([X,X ], [X, Y ])
V(j,1)

// V(I, [X, Y ]) (1.1)

are not required to be invertible.
The extra freedom thus granted is well illustrated in the examples from [Bou17] of skew

monoidal closed structures on Quillen model categories (which descend to genuine monoidal
closed structures on the homotopy categories), where the elements of the domain and codomain
of the function (1.1) can be interpreted as “strict morphisms” and “weak morphisms” respec-
tively; for instance, there is a skew monoidal closed category of permutative categories, whose
strict and weak morphisms are the symmetric strict monoidal functors and symmetric strong
monoidal functors respectively. A perhaps more familiar example is the skew monoidal closed
structure on the category Gp of groups and group homomorphisms, whose internal hom [G,H ]
is the set of arbitrary functions from G to H equipped with the pointwise group structure. Fur-
thermore, whereas the category Set of sets and functions admits only one biclosed monoidal
structure, each monoid M determines a biclosed skew-monoidal structure on Set with tensor
product X ⊗ Y =M ×X × Y .
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2 ALEXANDER CAMPBELL

This paper introduces a skew variant of the notion of enriched category, the main novelty of
which is that the elements of the enriched hom-objects need not be in bijection with the mor-
phisms of the underlying category. The formulation of this notion requires that a skew-enriched
category be conceived as a category with structure, and not as an independent structure from
which an underlying category is derived, as in the common definition of enriched category (e.g.
[Kel05]). Thus, for a skew-monoidal category V, a skew V-category has hom-sets A(A,B) and
enriched hom-objects A(A,B) belonging to V, and the canonical functions

A(A,B)
A(A,−)

// V(A(A,A),A(A,B))
V(j,1)

// V(I,A(A,B)) (1.2)

need not be invertible. In Section 2 we define the 2-category of skew V-categories, and show that
its full sub-2-category on those skew V-categories for which the functions (1.2) are invertible is
equivalent to the 2-category of V-categories in the usual sense (defined for a skew-monoidal V
in [Str13]), at least when the left unit constraint l of the base V is invertible.

Every skew monoidal closed category is skew-enriched over itself, and the interpretation of
the elements of the domain and codomain of (1.2) as strict morphisms and weak morphisms
respectively may be profitably carried over to this more general context. For example, the
category of groups in a (locally small) category C with finite products is skew-enriched over
the skew monoidal closed structure on Gp, with strict and weak morphisms given by the group
homomorphisms and arbitrary morphisms in C respectively. For a monoid M , each M-set A
determines a skew-enrichment of any locally small category E over the skew-monoidal structure
on Set determined by M , with enriched hom-sets given by the powers E (X, Y )A.

Our main motivation for introducing the notion of skew-enriched category comes from a
problem in enriched homotopy theory. It is known that if V is a monoidal model category
in which every object is cofibrant, then any cofibrantly generated V-enriched model category
has a V-enriched cofibrant replacement comonad (see [Rie14]); conversely, if a monoidal model
category V (with cofibrant unit object) has a V-enriched cofibrant replacement comonad, then
every object of V must be cofibrant [LR16]. These results leave open the question of what extra
structure, if not an enrichment in the ordinary sense, is naturally possessed by the cofibrant
replacement comonad of an enriched model category when not every object of the base monoidal
model category is cofibrant. In a future paper (in the meantime see [Cam17]) we will answer
this question by showing that the cofibrant replacement comonad of an enriched algebraic weak
factorisation system is a locally weak comonad, a notion which we define in Section 3.

The notion of skew-enriched category arose in the study of locally weak comonads, in par-
ticular as the natural context in which to state and prove Proposition 3.7, which shows how a
new skew-enriched category can be constructed from a locally weak comonad on an old one. In
our motivating examples, this shows that, for a monoidal algebraic weak factorisation system
(L,R) on a monoidal category V and an (L,R)-enriched algebraic weak factorisation system
(H,M) on a V-category A, there is a skew-enrichment of A over the skew-monoidal structure
on V induced by the cofibrant replacement monoidal comonad for (L,R), for which the weak
morphisms are the weak maps for (H,M) (in the sense of [BG16]).

In Section 4 we further justify the notion of skew-enriched category by showing, for a skew-
monoidal category V, that to give a skew V-enrichment of a category A such that each functor
A(A,−) : A −→ V has a left adjoint is equivalently to give a skew V-action on A such that
each functor − ∗ A : V −→ A has a right adjoint, thereby extending to the skew setting the
equivalence, for a monoidal closed category V, between tensored V-categories and hommed
V-actegories. This follows immediately from the observation that both skew V-categories and
skew V-actegories are equivalent to special kinds of skew V-proactegory.

Acknowledgements. The support of Australian Research Council Future Fellowship
FT160100393 is gratefully acknowledged. The author also thanks Richard Garner for his helpful
comments on early presentations of this paper.
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2. Skew-enriched categories

Let (V,⊗, I, a, l, r) be a (left) skew-monoidal category. In this section we define the 2-category
of skew V-categories, and compare it with the 2-category of V-categories in the usual sense.

Definition 2.1. A skew V-category A consists of the following data:

(i) a category A,
(ii) a functor A(−,−) : Aop ×A −→ V,
(iii) a natural transformation M : A(B,C)⊗A(A,B) −→ A(A,C),
(iv) a natural transformation j : I −→ A(A,A),

subject to the following three axioms.

(A(C,D)⊗A(B,C))⊗A(A,B)
M⊗1

//

a

��

A(B,D)⊗A(A,B)

M

��

A(C,D)⊗ (A(B,C)⊗A(A,B))

1⊗M
��

A(C,D)⊗A(A,C)
M

// A(A,D)

I ⊗A(A,B)

l ##❍
❍❍

❍❍
❍❍

❍❍

j⊗1
// A(B,B)⊗A(A,B)

Mxxqq
qq
qq
qq
qq
q

A(A,B)

A(A,B)
1

//

r

��

A(A,B)

A(A,B)⊗ I
1⊗j

// A(A,B)⊗A(A,A)

M

OO

A skew V-category A is said to be normal when the composite function

A(A,B)
A(A,−)

// V(A(A,A),A(A,B))
V(jA,1)

// V(I,A(A,B)) (2.2)

is a bijection for each A,B ∈ A.

Recall that a skew-monoidal category is said to be left normal when its left unit constraints
l : I ⊗X −→ X are invertible [LSt12].

Remark 2.3. This definition departs from the usual definition of enriched category [EK66,
Kel05] by defining a (skew-)enriched category to be a structure on a given category A, rather
than an independent structure from which an underlying category is derived. Accordingly, in
our definition we require the enriched hom-objects to be the values of a functor and the families
of morphisms M and j to be natural with respect to the morphisms of A.

This departure frees us to capture the phenomenon of skew-enrichment, in which the elements
of the enriched hom-objects need not be in bijection with the morphisms of the categoryA. Note
that the usual definition of V-category carries over to a skew-monoidal base V (see [Str13]); over
a left normal base, V-categories in the usual sense are equivalent to normal skew V-categories
(Corollary 2.14), whereas over an arbitrary skew base, the latter is the stronger concept.

Example 2.4. A skew V-category structure on a discrete category A is precisely a V-category
(in the usual sense) with set of objects A.

Example 2.5. If V is a skew-monoidal category for which each functor − ⊗X : V −→ V has
a right adjoint [X,−] : V −→ V (that is, V is a skew monoidal closed category [Str13]), then
V is skew-enriched over itself, with hom-objects V(X, Y ) = [X, Y ]. This skew V-category V is
normal if and only if the skew-monoidal category V is left normal.

Remark 2.6. Inspired by the examples of skew monoidal closed categories V in [Bou17],
for which V(X, Y ) and V(I ⊗ X, Y ) ∼= V(I, [X, Y ]) are respectively the sets of strict and
weak morphisms from X to Y in V, we can think of the elements of the sets A(A,B) and
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V(I,A(A,B)) respectively as the “strict morphisms” and “weak morphisms” from A to B in
A. The functions (2.2) then assign to each strict morphism a corresponding weak morphism.

Example 2.7. Each small category C with set of objects O determines a skew-monoidal struc-
ture on the functor category [O,Set], with tensor product (X⊗Y )j =

∑
i∈O C(i, j)×Xi×Yj and

unit object 1j = 1 [LS15]. Each presheaf F on C determines a skew-enrichment of any locally
small category E over this skew-monoidal category, with hom-objects E (A,B)j = E (A,B)Fj,
composition ∑

i

C(i, j)× E (B,C)F i × E (A,B)Fj −→ E (A,C)Fj

given by (u, g, f) 7→ (g(Fu)x ◦ fx)x∈Fj, and unit 1 −→ E (A,A)F i the constant at 1A.

Example 2.8. For any object K of a locally small category A with powers and copowers, there
is a skew monoidal closed structure on A with tensor product A ⊗ B = A (K,B) × A, unit
object K, and internal hom [B,C] = CA (K,B). This left skew-monoidal structure is the reverse
of the right skew-monoidal structure induced by the skew right warping (A (K,−), K, v, v0, k)
riding the action of Set on A by copowers [LS15], where

vA,B : A (K,A)× A (K,B) −→ A (K,A (K,A)×B)

is the function that sends (f, g) to the composite inf ◦ g, where v0 : 1 −→ A (K,K) picks out
1K , and where kA : A (K,A)×K −→ A is the counit of the adjunction −×K ⊣ A (K,−).

For example, the category SetT of algebras in Set for a Lawvere theory T (e.g. the Lawvere
theory for monoids, groups, abelian groups, rings, pointed sets, M-sets, etc.) is skew monoidal
closed by takingK to be the free T -algebra on one generator; the tensor product classifies binary
functions that are T -homomorphisms in the first variable only, and the internal hom [A,B] is
the set of functions Set(UA,UB) between the underlying sets equipped with the pointwise T -
algebra structure. Moreover, for any locally small category C with finite products, the category
of T -algebras in C is skew-enriched over this skew-monoidal structure on SetT , with enriched
hom-objects C T (A,B) the hom-sets C (A,B) equipped with the pointwise T -algebra structure.

Example 2.9. The F -categories of [LSh12] are precisely the skew Cat-categories for which
each of the functions (2.2) is injective. The tight and loose morphisms of an F -category are
the strict and weak morphisms respectively of the corresponding skew Cat-category.

Definition 2.10. A V-functor (F, F ) : A −→ B between skew V-categories consists of the
following data:

(i) a functor F : A −→ B,
(ii) a natural transformation F : A(A,B) −→ B(FA, FB),

subject to the following two axioms.

A(B,C)⊗A(A,B)

F⊗F

��

M
// A(A,C)

F

��

B(FB, FC)⊗ B(FA, FB)
M

// B(FA, FC)

I
j

//

j
$$■

■
■■

■
■■

■■
■
■ A(A,A)

F

��

B(FA, FA)

Definition 2.11. A V-natural transformation θ : (F, F ) −→ (G,G) between V-functors consists
of the following data:

(i) a natural transformation θ : F −→ G,

subject to the following axiom.

A(A,B)
F

//

G

��

B(FA, FB)

B(1,θB)
��

B(GA,GB)
B(θA,1)

// B(FA,GB)
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Note that, in the terminology of Remark 2.6, the components of a V-natural transformation
are strict morphisms in B.

Skew V-categories, V-functors, and V-natural transformations form a 2-category V-SkCat,
with the obvious compositions. Moreover, we have the following result, which we record for
later reference.

Proposition 2.12. The assignment that sends a skew-monoidal category V to the 2-category
V-SkCat extends to a 2-functor from the 2-category of skew-monoidal categories to the 2-
category of “large” 2-categories.

Proof. The proof follows as in [EK66], with the further requirement that change of base along
a monoidal functor F : V −→ W between skew-monoidal categories sends a skew V-enrichment
of a category A to a skew W-enrichment of that same category A. �

While every skew V-category has an underlying V-category “of weak morphisms” (by for-
getting the morphisms of A, the functoriality of A(−,−), and the naturality of M and j), to
construct a skew V-category from a V-category requires the base skew-monoidal category V to
be left normal. In that case, normal skew V-categories are equivalent to V-categories in the
ordinary sense. Moreover, Richard Garner observed that in that case skew V-categories are
equivalently enriched categories over a certain base, to be described presently, and that the
former equivalence follows from the latter by change of base.

For each skew-monoidal category V, the functor V(I,−) : V −→ Set is monoidal, and hence
there exists a unique skew-monoidal structure on the comma category S (V) = Set ↓ V(I,−)
making the projection functors P1 : S (V) −→ Set and P2 : S (V) −→ V strict monoidal
[Lac05], which is left normal if V is so.

For each left normal skew-monoidal category V, let V-Cat denote the 2-category of V-
categories defined in [Str13].

Proposition 2.13. Let V be a left normal skew-monoidal category. Then the 2-category
V-SkCat of skew V-categories is isomorphic to the 2-category S (V)-Cat of S (V)-categories.

Proof. We first describe the 2-category S (V)-Cat in elementary terms. An S (V)-category
amounts to a category A and a V-category A with the same set of objects, and an identity
on objects functor from A to the underlying category of A. Such a functor amounts to a
family of functions ωA,B : A(A,B) −→ V(I,A(A,B)) such that: (i) for each object A we have
ωA,A(1A) = jA, and (ii) for each composable pair of morphisms f : A −→ B, g : B −→ C in the
category A, we have that ω(gf) is equal to the composite

I
r

// I ⊗ I
ω(g)⊗ω(f)

// A(B,C)⊗A(A,B)
M

// A(A,C).

An S (V)-functor (F, F ) : (A,A, ω) −→ (B,B, ω) amounts to a functor F : A −→ B and a V-
functor F : A −→ B (in the sense of [Str13]) which agree on objects, such that ω(Ff) = Fω(f)
for every morphism f in A. An S (V)-natural transformation θ : (F, F ) −→ (G,G) amounts
to a natural transformation θ : F −→ G such that ω(θ) : F −→ G is V-natural (in the sense of
[Str13]).

We now describe the isomorphism of 2-categories. In one direction, a skew V-category
(A,A(−,−)) is sent to the S (V)-category consisting of the category A, the V-category of
weak morphisms in A described above, and the family of functions (2.2). Similarly, V-functors
and V-natural transformations are sent to their evident underlying S (V)-functors and S (V)-
natural transformations.

In the other direction, an S (V)-category (A,A, ω) is sent to a skew V-enrichment of the
category A with enriched hom-objects A(A,B). Using left normality of V, we can extend
A(−,−) to a functor Aop ×A −→ V making M and j natural. For each g : B −→ C in A, we
define A(A, g) to be the composite

A(A,B)
l−1

// I ⊗A(A,B)
ω(g)⊗1

// A(B,C)⊗A(A,B)
M

// A(A,C),
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and for each f : A −→ B in A, we define A(f, C) to be the composite

A(B,C)
r

// A(B,C)⊗ I
1⊗ω(f)

// A(B,C)⊗A(A,B)
M

// A(A,C).

Moreover, the components of S (V)-functors and S (V)-natural transformations are natural
with respect to the morphisms of A under this definition of the functor A(−,−).

Both assignments are easily seen to define mutually inverse 2-functors. �

Corollary 2.14. Let V be a left normal skew-monoidal category. Then there is a 2-adjunction

V-Cat ⊢

//
V-SkCat

oo

whose counit is an identity, and whose right 2-adjoint restricts to a 2-equivalence between V-Cat

and the full sub-2-category of V-SkCat on the normal skew V-categories.

Proof. Identifying V-SkCat with the isomorphic 2-category S (V)-Cat, this 2-adjunction is
the image under the change of base 2-functor from Proposition 2.12 of the monoidal adjunction

V ⊢
//
S (V)

oo

whose left adjoint is the strict monoidal projection functor P2, and whose right adjoint sends an
object X of V to the object (V(I,X), 1V(I,X), X) of the comma category S (V). The counit of
this monoidal adjunction is an identity and hence so is the counit of the induced 2-adjunction.

The component of the unit of this monoidal adjunction at an object (E, f,X) of S (V) is an
isomorphism if and only if the function f : E −→ V(I,X) is a bijection. Hence the component
of the unit of the induced 2-adjunction at an S (V)-category (A,A, ω) is an isomorphism
if and only if all the functions ω : A(A,B) −→ V(I,A(A,B)) are bijections, that is, if the
corresponding skew V-category is normal. �

3. Locally weak comonads

In this section we define the notion of locally weak comonad, which is fundamental to the
theory of enriched algebraic weak factorisation systems, and show that a locally weak comonad
on a skew-enriched category gives rise to a new skew-enrichment of the same category. This
result is the analogue for skew-enriched categories of a result for monoidal comonads on skew-
monoidal categories [Szl12] and a result for closed comonads on skew-closed categories [Str13],
which we combine as Proposition 3.1 below.

Proposition 3.1 (Szlachányi, Street). Let (Q,ϕ, ϕ0, δ, ε) be a monoidal comonad on a skew-
monoidal category V. Then the following data define a skew-monoidal structure on V:

(i) tensor product functor X ⊗QY ,
(ii) unit object I,
(iii) associativity natural transformation

(X ⊗QY )⊗QZ
a

// X ⊗ (QY ⊗QZ)
1⊗(1⊗δ)

// X ⊗ (QY ⊗Q2Z)
1⊗ϕ

// X ⊗Q(Y ⊗QZ),

(iv) left unit natural transformation

I ⊗QX
l

// QX
ε

// X,

(v) right unit natural transformation

X
r

// X ⊗ I
1⊗ϕ0

// X ⊗QI.

Moreover, if the original skew-monoidal structure on V is closed with internal hom functor
[X, Y ], then the skew-monoidal structure defined above is closed with internal hom functor
[QX, Y ].
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Example 3.2. The strictification comonad st on the category 2-Cat of 2-categories and 2-
functors, which sends a 2-category to its strictification (a.k.a. its pseudofunctor classifier),
extends to a monoidal closed comonad with respect to the Gray symmetric monoidal closed
structure on 2-Cat [GPS95]. By the previous proposition, this induces a skew monoidal closed
structure on 2-Cat (considered in [Bou17]), whose internal homGray(stA,B) is the 2-category
of pseudofunctors A −→ B, pseudonatural transformations, and modifications.

Remark 3.3. More generally, given a monoidal comonad Q on a skew-monoidal category V,
we could think of the co-Kleisli morphisms of Q as “weak morphisms” in V; in the previous
example, the weak morphisms are the pseudofunctors. By Proposition 3.1, this agrees with
our previous notion of weak morphism (Remark 2.6) at least when the original skew-monoidal
structure on V is left normal. This informs our choice of terminology in the following definition.

Let (V,⊗, I) be a skew-monoidal category.

Definition 3.4. A locally weak V-comonad on a skew V-category A consists of the following
data:

(i) a monoidal comonad (Q,ϕ, ϕ0, δ, ε) on V,
(ii) a comonad (S, δ, ε) on the category A,
(iii) a natural transformation ψ : QA(A,B) −→ A(SA, SB),

subject to the following four axioms.

QA(B,C)⊗QA(A,B)
ϕ

//

ψ⊗ψ

��

Q(A(B,C)⊗A(A,B))
QM

// QA(A,C)

ψ

��

A(SB, SC)⊗A(SA, SB)
M

// A(SA, SC)

Q2A(A,B)
Qψ

// QA(SA, SB)
ψ

// A(S2A, S2B)

A(δ,1)
��

QA(A,B)

δ

OO

ψ
// A(SA, SB)

A(1,δ)
// A(SA, S2B)

QI
Qj

// QA(A,A)

ψ

��

I

ϕ0

OO

j
// A(SA, SA)

QA(A,B)
ψ

//

ε

��

A(SA, SB)

A(1,ε)
��

A(A,B)
A(ε,1)

// A(SA,B)

We will sometimes call a locally weak V-comonad a locally Q-weak V-comonad to indicate
its dependence on its underlying monoidal comonad Q.

Remark 3.5. Note that when Q is the identity monoidal comonad on V, a locally Q-weak
V-comonad is simply a comonad in the 2-category V-SkCat. In the general case, S fails to
be a V-functor because its action on homs ψ : QA(A,B) −→ A(SA, SB) is given by weak
morphisms (in the sense of Remark 3.3). Hence the name “locally weak V-comonad”.

Example 3.6. Any monoidal closed comonad Q on a skew monoidal closed category V is a
locally Q-weak V-comonad on the skew V-category V. (Note that any monoidal comonad or
closed comonad on such a V can be uniquely extended to a monoidal closed comonad on V by
adjointness.) In particular, the strictification comonad st on 2-Cat is a locally weak Gray-
comonad on the Gray-category Gray (the self-enrichment of 2-Cat over the Gray symmetric
monoidal closed structure). By the universal property of st as the pseudofunctor classifier
comonad, the locally weak Gray-functor structure morphisms for st correspond to pseudo-
functors Gray(A,B) −→ Gray(stA, stB).
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The notion of locally weak comonad enjoys the following two abstract descriptions (the second
of which was pointed out to the author by Richard Garner). A locally weak V-comonad (with
underlying monoidal comonad Q) is equally:

(i) a comonad in the 2-category SkEnrCat of skew-enriched categories over an arbitrary
skew-monoidal base, where SkEnrCat −→ SkMonCat is the 2-opfibration correspond-
ing to the change of base 2-functor SkMonCat −→ 2-CAT of Proposition 2.12 (see
[Buc14]);

(ii) a comonad in the 2-category of skew V-categories and “locally weak V-functors”, that is,
the co-Kleisli 2-category for the 2-comonad Q∗ on V-Cat defined by change of base along
Q (which is the image of the monoidal comonad Q under the change of base 2-functor
SkMonCat −→ 2-CAT).

Proposition 3.7. Let (Q, S, ψ) be a locally weak V-comonad on a skew V-category
(A,A(−,−),M, j). Then the following data define a skew-enrichment of the category A over
the skew-monoidal structure on V induced by the monoidal comonad Q (described in Proposition
3.1):

(i) hom functor A(SA,B),
(ii) composition natural transformation

A(SB,C)⊗QA(SA,B)
1⊗ψ

// A(SB,C)⊗A(S2A,SB)
M

// A(S2A,C)
A(δ,1)

// A(SA,C),

(iii) unit natural transformation

I
j

// A(A,A)
A(ε,1)

// A(SA,A).

Proof. The diagram for associativity is displayed on the following page, where we write X · Y

for X ⊗ Y and (A,B) for A(A,B).

I ⊗QA(SA,B)
1⊗ε

//

1⊗ψ
��

I ⊗A(SA,B)
l

//

1⊗A(ε,1)
��

A(SA,B)

A(ε,1)
��

1

��

I ⊗A(S2A, SB)
1⊗A(1,ε)

//

j⊗1

��

I ⊗A(S2A,B)
l

//

j⊗1

��

A(S2A,B)

1
��

A(B,B)⊗A(S2A, SB)
1⊗A(1,ε)

//

A(ε,1)⊗1
��

A(B,B)⊗A(S2A,B)
M

//

M
��

A(S2A,B)

A(δ,1)

��

A(SB,B)⊗A(S2A, SB)
M

// A(S2A,B)
A(δ,1)

// A(SA,B)

A(SA,B)⊗QI
1⊗Qj

// A(SA,B)⊗QA(A,A)
1⊗QA(ε,1)

//

1⊗ψ

��

A(SA,B)⊗QA(SA,A)

1⊗ψ
��

A(SA,B)⊗ I

1⊗ϕ0

OO

1⊗j
// A(SA,B)⊗A(SA, SA)

1⊗A(Sε,1)
//

M

��

A(SA,B)⊗A(S2A, SA)

M
��

A(SA,B)

r

OO

1
// A(SA,B)

A(Sε,1)
//

1
++❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲

A(S2A,B)

A(δ,1)

��

A(SA,B) �
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R
I
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S
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(SC,D) · (Q(SB, C) · Q(SA,B))
1·(1·δ)

// (SC,D) · (Q(SB,C) ·Q2(SA,B))
1·ϕ

//

1·(1·Qψ)

��

(SC,D) · Q((SB,C) · Q(SA,B))

1·Q(1·ψ)

��

((SC,D) · Q(SB, C)) · Q(SA,B)

a

OO

1·δ
//

1·ψ

��

((SC,D) ·Q(SB, C)) · Q2(SA,B)
1·Qψ

// ((SC,D) · Q(SB,C)) · Q(S2A,SB)
a

//

1·ψ

��

(SC,D) · (Q(SB,C) ·Q(S2A,SB))
1·ψ

//

1·(ψ·ψ)

��

(SC,D) · Q((SB,C) · (S2A,SB))

1·QM

��

((SC,D) · Q(SB,C)) · (S2A,SB)
1·(1,δ)

//

(1·ψ)·1

��

((SC,D) ·Q(SB, C)) · (S2A,S2B)

(1·ψ)·1

��

((SC,D) · Q(SB,C)) · (S3A,S2B)
1·(δ,1)
oo

(1·ψ)·1

��

((SC,D) · (S2B,SC)) · (S2A,SB)
1·(1,δ)

//

M·1

��

((SC,D) · (S2B,SC)) · (S2A,S2B)

M·1

��

((SC,D) · (S2B,SC)) · (S3A,S2B)
1·(δ,1)
oo

M·1

��

a
// (SC,D) · ((S2B,SC) · (S3A,S2B))

1·M

��

(S2B,D) · (S2A,SB)
1·(1,δ)

//

(δ,1)·1

��

(S2B,D) · (S2A,S2B)

M

��

(S2B,D) · (S3A,S2B)
1·(δ,1)

oo

M

��

(SB,D) · (S2A,SB)
M

// (S2A,D)

(δ,1)

��

(S3A,D)

(Sδ,1)

��

(δ,1)

oo (SC,D) · (S3A,SC)
M

oo

1·(Sδ,1)

��

(SC,D) ·Q(S2A,C)
1·ψ

oo

1·Q(δ,1)

��

(SA,D) (S2A,D)
(δ,1)

oo (SC,D) · (S2A,SC)
M

oo (SC,D) · Q(SA,C)
1·ψ

oo
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Example 3.8 (See [Cam17]). Let (L,R) be a monoidal algebraic weak factorisation system
on a (suitably nice) monoidal category V. Then the cofibrant replacement comonad Q for
(L,R) is a monoidal comonad on V. Furthermore, the cofibrant replacement comonad S for
an (L,R)-enriched algebraic weak factorisation system (H,M) on a V-category A is a locally
Q-weak V-comonad on A. Proposition 3.7 then defines a skew-enrichment of (the underlying
category of) A over the skew-monoidal structure on V induced by Q, from which it follows
that the co-Kleisli category for S (known as the category of weak maps for (H,M) [BG16]) is
enriched over this skew-monoidal structure on V.

4. Skew-proactegories

In this section we prove that the structure of a skew V-category (A,A(−,−)) for which every
functor A(A,−) : A −→ V is a right adjoint is equivalent to the structure of a skew V-actegory
[LS15] (A, ∗) for which every functor − ∗ A : V −→ A is a left adjoint. This is an extension
to the skew setting of the “often-rediscovered folklore” equivalence, for V a monoidal closed
category, between tensored V-categories and hommed V-actegories [GP97, JK02].

Our method of proof is an adaptation of a folklore argument that proves the equivalence be-
tween closed skew-monoidal categories and monoidal skew-closed categories (itself an extension
to the skew setting of a result of [EK66]) as a consequence of the result that both skew-monoidal
categories and skew-closed categories are equivalent to special kinds of skew-promonoidal cat-
egory [Str13]. Therefore we introduce the notion of skew V-proactegory, and show that both
skew V-categories and skew V-actegories are equivalent to special kinds of skew V-proactegory.

Note that throughout this section we take Set to be the category of sets belonging to some
universe with respect to which our categories bearing skew-promonoidal or skew-proactegory
structures are small.

Let (V, P, J, α, λ, ρ) be a left skew-promonoidal category [Str13].

Definition 4.1. A left skew V-proactegory (A, T, α, λ) consists of the following data:

(i) a category A,
(ii) a functor T : Vop ×Aop ×A −→ Set,
(iii) a natural transformation

α :

∫ B

T (X,B;C)× T (Y,A;B) −→

∫ Z

T (Z,A;C)× P (X, Y ;Z),

(iv) a natural transformation

λ : A(A,B) −→

∫ X

T (X,A;B)× JX,

subject to the following three axioms.

∫ B,C
T (X,C;D) × T (Y,B;C)× T (Z,A;B)

∫
B
α×1

//

∫
C 1×α

��

∫ U,B
T (U,B;D)× P (X,Y ;U)× T (Z,A;B)

∼=
��∫ V,C

T (X,C;D) × T (V,A;C) × P (Y,Z;V )

∫
V
α×1

��

∫ U,B
T (U,B;D)× T (Z,A;B) × P (X,Y ;U)

∫
U
α×1

��∫ V,W
T (W,A;D) × P (X,V ;W )× P (Y,Z;V ) ∫

W 1×α

//
∫ U,W

T (W,A;D) × P (U,Z;W )× P (X,Y ;U)
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∫ C
A(C,B)× T (X,A;C)

∫
C
λ×1

//

∼=

��

∫ U,C
T (U,C;B)× JU × T (X,A;C)

∼=
��

T (X,A;B)

∼=
��

∫ U,C
T (U,C;B)× T (X,A;C)× JU

∫
U
α×1

��∫W
T (W,A;B)× V(X,W ) ∫

W 1×λ

//
∫ U,W

T (W,A;B)× P (U,X ;W )× JU

∫ C
T (X,C;B)×A(A,C)

∼=
//

∫
C 1×λ

��

T (X,A;B)

∼=

��

∫ V,C
T (X,C;B)× T (V,A;C)× JV

∫
V
α×1

��∫ V,W
T (W,A;B)× P (X, V ;W )× JV ∫

W 1×ρ

//
∫W

T (W,A;B)× V(X,W )

A V-proactegory is a left skew V-proactegory for which α and λ are invertible.

One can define similarly the notion of right skew V-proactegory, for V a right skew-pro-
monoidal category, by reversing the directions of the natural transformations α and λ in the
above definition.

A left (right) skew V-proactegory is precisely a right (left) skew-action of the right (left)
skew-monoidale V [LSt12, AA17] in the monoidal bicategory of categories and profunctors,
under the convention that a profunctor from A to B is a functor Aop × B −→ Set.

Example 4.2. Every skew-promonoidal category (V, P ) is canonically a skew V-proactegory
with skew-proaction T = P .

Example 4.3. A right skew-promonoidal structure on a set O for which Ji = 1 for all i ∈ O

amounts precisely to a small category with set of objects O. The right skew-promonoidal
structure determined by such a category C has P (i, j; k) = C(i, j) if j = k and empty otherwise,
Ji = 1 for all i ∈ O, associativity constraint α given by the functions C(j, k) × C(i, j) −→

C(i, k) × C(j, k) sending (v, u) to (vu, v), left unit constraint λ given by the unique functions∑
i C(i, j) −→ 1, and right unit constraint ρ given by the functions 1 −→ C(i, i) picking out the

identity 1i. Moreover, the category C is a groupoid if and only if the associativity constraint α
is invertible.

A right skew-proaction on the terminal category 1 of the right skew-promonoidal category
determined as above by a small category C amounts precisely to a presheaf F on C, with
T (i, ∗; ∗) = Fi, associativity constraint α given by the functions Fj × C(i, j) −→ Fi × Fj

sending (x, u) to ((Fu)x, x), and unit constraint λ given by the unique function
∑

i Fi −→ 1.
Moreover, if C is a groupoid, then the presheaf F is a torsor if and only if the associativity
constraint α is invertible and the unit constraint λ is surjective.

Before commencing the main argument of this section, we give a brief treatment of the ana-
logues of Day convolution [Day70] for skew-proactegories. These take the form of “convolution
skew-actions” (Proposition 4.4) and “convolution skew-enrichments” (Proposition 4.5).

By Day convolution, to give a right (left) skew-promonoidal structure on a category V is
equivalently to give a left (right) skew-monoidal structure on the functor category [V,Set]
whose tensor product functor preserves colimits in each variable. The proof of this statement
can be adapted to prove the following result.
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Proposition 4.4. Let V be a right (left) skew-promonoidal category, and let (A, T ) be a right
(left) skew V-proactegory. Then the functor category [A,Set] is a left (right) skew [V,Set]-
actegory whose action functor, which is given by the formula

M ∗ F =

∫ X,A

T (X,A;−)×MX × FA,

preserves colimits in each variable. Moreover, every such left (right) skew [V,Set]-actegory
structure on [A,Set] arises in this way from a right (left) skew V-proactegory structure on A.

More generally, if X is a cocomplete left (right) skew-monoidal category whose tensor prod-
uct functor preserves colimits in each variable, and C is a cocomplete left (right) skew X -
actegory, then similar formulas define a left (right) skew action of [V,X ], equipped with the
Day convolution left (right) skew-monoidal structure, on the functor category [A,C ], such
that the action functor preserves colimits in each variable. We state our result on convolution
skew-enrichments at this level of generality.

Proposition 4.5. Let V be a right skew-promonoidal category, and let (A, T ) be a right skew
V-proactegory. Moreover, let X be a complete and cocomplete left skew-monoidal category
whose tensor product functor preserves colimits in each variable, and let (C ,C (−,−)) be a
skew X -category. Then the functor category [A,C ] is skew-enriched over [V,X ], equipped
with the Day convolution left skew-monoidal structure, with hom-objects given by the following
formula (where ⋔ denotes powers in X ).

Hom(F,G) =

∫
A,B

T (−, A;B) ⋔ C (FA,GB)

Example 4.6. Let C be a small category with set of objects O. The skew-enrichment of a locally
small category E over the skew-monoidal structure on [O,Set] determined by a presheaf on
C (Example 2.7) is the convolution skew-enrichment for the right skew-proaction of O on 1
determined by that presheaf (Example 4.3).

Example 4.7. In the ordinary (non-skew) setting, the special case of Proposition 4.5 in which A

is the canonical proaction of V on itself is a classical result (as are its enriched generalisations).
Familiar examples include: (1) the enrichment of the category of simplicial objects in any
locally small category over the cartesian monoidal category of simplicial sets, (2) the enrichment
of the category of chain complexes in any additive category over the symmetric monoidal
closed additive category of chain complexes of abelian groups, and (3) for V a sufficiently nice
monoidal category and C a V -category, the enrichment of the arrow category [2,C0] over the
arrow category [2,V ], with tensor product and hom-objects given respectively by the Leibniz
constructions of pushout-product and pullback-hom (see [RV14, Cam17]).

We now commence the main argument of this section by showing that both skew-enriched
categories and skew-actegories are equivalent to special kinds of skew-proactegory. Note that
for the remainder of this section, all skew structures will be left skew.

Proposition 4.8. Let V be a skew-monoidal category, let A be a category, and let
T : Vop ×Aop ×A −→ Set be a functor. Then the following are true.

(a) Given a representation

T (X,A;−) ∼= A(X ∗ A,−) : A −→ Set (4.9)

for eachX ∈ V, A ∈ A, there is a bijection between skew V-proactegory structures extending
(A, T ) and skew V-actegory structures extending (A, ∗) such that the isomorphisms (4.9)
are natural in each variable.

(b) Given a representation

T (−, A;B) ∼= V(−,A(A,B)) : Vop −→ Set (4.10)
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for each A,B ∈ A, there is a bijection between skew V-proactegory structures extending
(A, T ) and skew V-category structures extending (A,A(−,−)) such that the isomorphisms
(4.10) are natural in each variable.

Proof. By a standard argument, there are unique functors ∗ : V × A −→ A and
A(−,−) : Aop ×A −→ V making the isomorphisms (4.9) and (4.10) natural in each variable.

(a) By the representations (4.9), the associativity constraint for a skew V-proactegory struc-
ture extending (A, T ) is a natural transformation

α :

∫ B

A(X ∗B,C)×A(Y ∗A,B) −→

∫ Z

A(Z ∗ A,C)× V(X ⊗ Y, Z)

which, by the coend form of the Yoneda lemma, corresponds to a natural transformation

A(X ∗ (Y ∗ A), C) −→ A((X ⊗ Y ) ∗ A,C)

which, by the Yoneda lemma, corresponds to a natural transformation

a : (X ⊗ Y ) ∗ A −→ X ∗ (Y ∗ A).

Similarly, the unit constraint for such a skew V-proactegory structure is a natural transforma-
tion

λ : A(A,B) −→

∫ X

A(X ∗ A,B)× V(I,X) ∼= A(I ∗ A,B)

which, by the Yoneda lemma, corresponds to a natural transformation l : I∗A −→ A. Moreover,
the skew V-proactegory axioms are easily shown to be equivalent under these correspondences
to the skew V-actegory axioms.

(b) By the representations (4.10), the associativity constraint for a skew V-proactegory struc-
ture extending (A, T ) is a natural transformation

α :

∫ B

V(X,A(B,C))× V(Y,A(A,B)) −→

∫ Z

V(Z,A(A,C))× V(X ⊗ Y, Z),

which, by the univeral property of coends and the coend form of the Yoneda lemma, corresponds
to a natural transformation

(V ×V)((X, Y ), (A(B,C),A(A,B)) = V(X,A(B,C))×V(Y,A(A,B)) −→ V(X⊗Y,A(A,C)),

which, by the Yoneda lemma, corresponds to a natural transformation

M : A(B,C)⊗A(A,B) −→ A(A,C).

Similarly, the unit constraint for such a skew V-proactegory structure is a natural transforma-
tion

λ : A(A,B) −→

∫ X

V(X,A(A,B))× V(I,X) ∼= V(I,A(A,B))

which, by the Yoneda lemma, corresponds to a natural transformation j : I −→ A(A,A).
Moreover, the skew V-proactegory axioms are easily shown to be equivalent under these corre-
spondences to the skew V-category axioms. �

Corollary 4.11. Let V be a skew-monoidal category, A a category, and ∗ : V × A −→ A and
A(−,−) : Aop×A −→ V functors. Given a natural isomorphism A(X∗A,B) ∼= V(X,A(A,B)),
there is a bijection between skew V-actegory structures extending (A, ∗) and skew V-category
structures extending (A,A(−,−)).

Moreover, if V is monoidal closed, then there is a bijection between V-actegory structures
extending (A, ∗) and tensored V-category structures extending (A,A(−,−)).

Proof. Both kinds of structure in the first statement are equivalent, by Proposition 4.8, to
skew V-proactegory structures (A, T ) for which the functors T (X,A;−) : A −→ Set and
T (−, A;B) : Vop −→ Set are representable for all X ∈ V and A,B ∈ A.
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By the proof of Proposition 4.8, the invertibility of the unit constraint λ for such a skew V-
proactegory is equivalent both to the invertibility of the unit constraint l for the corresponding
skew V-actegory, and to the normality of the corresponding skew V-category. Similarly, the
invertibility of the associativity constraints α and a of the corresponding skew V-proactegory
and skew V-actegory are equivalent. Moreover, when V is closed, α corresponds to a natural
transformation∫ B

V(X,A(B,C))×A(Y ∗ A,B) −→

∫ Z

V(Z,A(A,C))× V(X, [Y, Z])

and hence, by the coend form of the Yoneda lemma, corresponds to a natural transformation

V(X,A(Y ∗ A,C)) −→ V(X, [Y,A(A,C)])

which, by the Yoneda lemma, corresponds to a natural transformation

k : A(Y ∗ A,C) −→ [Y,A(A,C)].

Hence the invertibility of α is equivalent to the invertibility of k.
When V is monoidal closed, we may conclude that V-actegory structures extending (A, ∗) and

tensored V-category structures extending (A,A(−,−)) are both equivalent to V-proactegory
structures on A for which the functors T (X,A;−) and T (−, A;B) are representable. �

Having obtained the desired equivalence of structures, we now proceed to show that it extends
to a 2-equivalence of 2-categories (over Cat).

Definition 4.12. A proactive functor (F, ϕ) : (A, T, α, λ) −→ (B, S, α, λ) between skew V-
proactegories consists of the following data:

(i) a functor F : A −→ B,
(ii) a natural transformation ϕ : T (X,A;B) −→ S(X,FA;FB),

subject to the following two axioms.
∫ B

T (X,B;C)× T (Y,A;B)
α

//

∫
B
ϕ×ϕ

��

∫ Z
T (Z,A;C)× P (X, Y ;Z)

∫
Z
ϕ×1

��∫ B
S(X,FB;FC)× S(Y, FA;FB)

α
//
∫ Z

S(Z, FA;FC)× P (X, Y ;Z)

A(A,B)
λ

//

F

��

∫ X
T (X,A;B)× JX

∫
X
ϕ×1

��

B(FA, FB)
λ

//
∫ X

S(X,FA;FB)× JX

Definition 4.13. A proactive natural transformation θ : (F, ϕ) −→ (G,ψ) between proactive
functors consists of the following data:

(i) a natural transformation θ : F −→ G,

subject to the following axiom.

T (X,A;B)
ϕ

//

ψ

��

S(X,FA;FB)

S(1,1;θB)
��

S(X,GA;GB)
S(1,θA;1)

// S(X,FA;GB)

For each skew-promonoidal category V, skew V-proactegories, proactive functors, and proac-
tive natural transformations form a 2-category V-SkProAct, with the obvious compositions.

For each skew-monoidal category V, let V-SkAct denote the 2-category of skew V-actegories
defined in [LS15], and let V-Act denote its full sub-2-category on the V-actegories.
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Proposition 4.14. Let V be a skew-monoidal category. Then the following are true.

(a) The 2-category V-SkAct is 2-equivalent over Cat to the full sub-2-category of
V-SkProAct on those skew V-proactegories (A, T ) for which the functor
T (X,A;−) : A −→ Set is representable for all X ∈ V, A ∈ A.

(b) The 2-category V-SkCat is 2-equivalent over Cat to the full sub-2-category of
V-SkProAct on those skew V-proactegories (A, T ) for which the functor
T (−, A;B) : Vop −→ Set is representable for all A,B ∈ A.

Proof. (a) Proactive functors (F, ϕ) : (A, T ) −→ (B, S) between such skew V-proactegories
correspond precisely to morphisms of skew V-actegories under the correspondence of Proposition
4.8. For the natural transformation ϕ corresponds to a natural transformation

A(X ∗ A,B) −→ B(X ∗ FA, FB)

which corresponds, by the Yoneda lemma, to a natural transformation

X ∗ FA −→ F (X ∗ A).

Under this correspondence the proactive functor axioms are equivalent to the skew V-actegory
morphism axioms.

Furthermore, a natural transformation θ : (F, ϕ) −→ (G,ψ) between proactive functors is
proactive if and only if the diagrams

A(X ∗ A,B)
ϕ

//

ψ

��

B(X ∗ FA, FB)

B(1,θB)
��

B(X ∗GA,GB)
B(1∗θA,1)

// B(X ∗ FA,GB)

commute, which is equivalent by the Yoneda lemma to θ being a transformation of skew V-
actegories between morphisms of skew V-actegories.

(b) Similarly, proactive functors (F, ϕ) : (A, T ) −→ (B, S) between such skew V-proactegories
correspond precisely to V-functors under the correspondence of Proposition 4.8. For the natural
transformation ϕ corresponds to a natural transformation

V(X,A(A,B)) −→ V(X,B(FA, FB))

which corresponds by the Yoneda lemma to a natural transformation

A(A,B) −→ B(FA, FB).

Under this correspondence the proactive functor axioms are equivalent to the V-functor axioms.
Furthermore, a natural transformation θ : (F, ϕ) −→ (G,ψ) between proactive functors is

proactive if and only if the diagrams

V(X,A(A,B))
ϕ

//

ψ

��

V(X,B(FA, FB))

V(1,B(1,θB))
��

V(X,B(GA,GB))
V(1,B(θA,1))

// V(X,B(FA,GB))

commute, which is equivalent by the Yoneda lemma to V-naturality of θ between the corre-
sponding V-functors. �

Corollary 4.15. Let V be a skew-monoidal category. Then the full sub-2-category of V-SkAct

on those skew V-actegories (A, ∗) for which − ∗ A : V −→ A has a right adjoint for all A ∈ A

is 2-equivalent over Cat to the full sub-2-category of V-SkCat on those skew V-categories
(A,A(−,−)) for which A(A,−) : A −→ V has a left adjoint for all A ∈ A.

Moreover, if V is monoidal closed, then the full sub-2-category of V-Act on those V-actegories
(A, ∗) for which − ∗ A : V −→ A has a right adjoint for all A ∈ A is 2-equivalent over Cat to
the full sub-2-category of V-Cat on the tensored V-categories.
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Proof. These results follow from Proposition 4.14 as Corollary 4.11 follows from Proposition
4.8. �
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[AA17] Ramón Abud Alcalá. Oplax actions and enriched icons with applications to coalgebroids and quantum
categories. PhD thesis, Macquarie University, 2017.

[Bou17] John Bourke. Skew structures in 2-category theory and homotopy theory. J. Homotopy Relat. Struct.,
12(1):31–81, 2017.

[BG16] John Bourke and Richard Garner. Algebraic weak factorisation systems II: Categories of weak maps.
J. Pure Appl. Algebra, 220(1):148–174, 2016.

[Buc14] Mitchell Buckley. Fibred 2-categories and bicategories. J. Pure Appl. Algebra, 218(6):1034–1074, 2014.
[Cam17] Alexander Campbell. Enriched algebraic weak factorisation systems. Talk at the International Category

Theory Conference, 2017. http://web.science.mq.edu.au/~alexc/ct2017.pdf.
[Day70] Brian J. Day. Construction of biclosed categories. PhD thesis, University of New South Wales, 1970.

http://maths.mq.edu.au/~street/DayPhD.pdf.
[EK66] Samuel Eilenberg and G. Max Kelly. Closed categories. In Proc. Conf. Categorical Algebra (La Jolla,

Calif., 1965), pages 421–562. Springer, New York, 1966.
[GP97] R. Gordon and A. J. Power. Enrichment through variation. J. Pure Appl. Algebra, 120(2):167–185,

1997.
[GPS95] R. Gordon, A. J. Power, and Ross Street. Coherence for tricategories. Mem. Amer. Math. Soc.,

117(558):vi+81, 1995.
[JK02] G. Janelidze and G. M. Kelly. A note on actions of a monoidal category. Theory Appl. Categ., 9:61–91,

2001/02. CT2000 Conference (Como).
[Kel05] G. M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+137, 2005.

Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714].
[Lac05] Stephen Lack. Limits for lax morphisms. Appl. Categ. Structures, 13(3):189–203, 2005.
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