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Abstract
Consider a water supplier who determines sales rates with the goals of maximizing prof-
its, protecting consumer welfare, and ensuring adequate future water supplies. Buyers are
differentiated and can use the water for domestic, agricultural, and industrial purposes. We
propose a leader-follower finite-horizon differential game. The leader (the water supplier)
determines the selling price and the followers (consumers) react by requesting their optimal
amount of water. We calculate a feedback Stackelberg equilibrium assuming that all user
demand is satisfied (interior equilibrium). We compare two different tariff schemes: linear
tariffs (the price paid is a multiple of the volume of water purchased), and increasing block
tariffs (the unit price is lower for quantities of water that do not exceed a fixed threshold).
We show that block pricing is never optimal and linear pricing is always preferred.

Keywords Water pricing · Block tariffs · Differential games · Stackelberg equilibrium ·
Corner solutions

Mathematics Subject Classfication 91A23 · 91B76 · 91B15

JEL Classification C72 · C73 · Q25

1 Introduction

In 1992 the Dublin Water Principles claimed “water as an economic good” for the first
time in a UN setting. In the late 1980s the World Bank and other multilateral and bilateral
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institutions discovered the virtues of “privatization” in the provision of public services and
with privatization all of the attendant problems of setting tariffs and prices (Rogers et al.,
2002).
Water is often a scarce commodity and at the same time a basic necessity. Policymakers
need to set rules for the sale and distribution of water that allow both the coverage of costs
(extraction, maintenance of systems, etc.) and access to the asset by a large number of users
and, in any case, the satisfaction of basic needs. There are many tools to achieve these goals.
Pricing can be an allocation mechanism, directing water to where it is more valuable to use
(OECD, 2010).

According to Leflaive and Hjort (2020) “Tariffs for water supply (WS) constitute an
important instrument for economic, financial, social, and environmental policy objectives,
potentially reflecting costs of service provision. The issue ofWSpricing is all themore impor-
tant as developed and developing countries face severe challenges in financing the operation
and maintenance, renewal or extension of WS infrastructure and services. In this context,
it is critical that governments, national and local, develop adequate financing strategies and
make the best use of tariffs to provide and sustain WS services.”

Tariff structures can combine various elements in different ways. Linear (or volumetric)
tariffs require customers to pay a fixed per-unit price, multiplied by the volume of water
consumed in a charging period; each additional unit of water costs the same. If an increasing
block tariff (IBT) applies, the volumetric charge increases in steps with volumes consumed.
The IBTs are applied in many countries mainly to domestic users. South Africa introduced
a first block that provides basic water volumes for free, funded by tax revenue. In some
countries (Belgium, Canada, France) decreasing block tariffs are applied for large industrial
users. IBTs ensure inexpensive, or even free, access to a given amount of water for low-
income households. The higher prices for subsequent blocks are intended to subsidize water
use of poorer households and strengthen overall cost recovery by chargingmore to households
using more water. The higher prices in the upper blocks should also discourage inappropriate
water use (Grafton et al., 2014; OECD, 2016). However, in practice, the implementation of
IBTs may be challenging, and can potentially have some adverse social consequences, if
such variables as household size—which can drive domestic water consumption—are not
taken into account (Leflaive & Hjort, 2020).

Nonetheless, the question of whether block tariffs are preferred to linear tariffs remains
controversial. This is demonstrated by the fact that tariff structures for water supply vary
within and across OECD countries. Some countries implement linear tariffs (Denmark, Ger-
many, UK), others implement block tariffs (Italy, Japan, Spain) and others implement both
(Australia, Canada, USA) (OECD, 2010).

There is a large literature on mathematical models for water resource management. The
main strand deals with groundwater management and focuses on issues such as the type of
access to the resource (open access or restricted access), and the type of interaction between
potential users (competition, cooperation). In many of these models, the price is not critical
and sometimes it is an exogenous variable.

A seminal paper in this stream is Gisser and Sánchez (1980). Here, the economic aspects
of a model for the problems of farmers pumping groundwater out of an aquifer are discussed.
The authors assume that the demand and the extraction cost are linear decreasing functions
of the water’s price and of the level of water in the aquifer above the level of the sea,
respectively. The farmer determines the water’s demand maximizing the present value of
his future profits (income minus costs). The authors compare the optimal strategies with
the perfect competition strategies and they find no relevant differences. The same topics are
addressed in Allen and Gisser (1984) but with a nonlinear demand function.

123



Annals of Operations Research (2024) 337:1135–1165 1137

More recently, a large number of papers have addressed the problem of how a public
agency allocates water from one or more underground aquifers to different types of users
(e.g. farmers andmunicipalities) to ensure collective welfare for users and sufficient drainage
to preserve the ecosystem (Pereau et al., 2019; Pereau, 2020; Augeraud-Veron & Pereau,
2022). The authors analyze both viable solutions and the social optimum in a discrete and
continuous dynamic model.

InBiancardi et al. (2020), the authors address the issue of ensuring the use of the groundwa-
ter resource for future generations and develop a differential game to determine the efficient
extraction among overlapping generations. The effects of legal and illegal firms’ actions and
the contribution of taxes and penalties imposed by public authorities are analyzed, using the
framework of differential and evolutionary games, in Biancardi et al. (2021, 2022a, b, 2023).

An important and widely discussed topic in the literature is the allocation of a scarce
resource such as water among a multiplicity of users who normally have a higher water
requirement than the available quantity. Among others, we cite Du et al. (2018) who analyze
a static leader-follower game in which two competitive water resources supply chains derive
their optimal decision strategies under different power structures, Zomorodian et al. (2017)
who use a dynamic Nash bargaining approach, Xiao et al. (2016) who address the issue in a
coalitional game through core-based and non-core-based solution concepts, Sechi and Zucca
(2015) and Zheng et al. (2022) who use the Bankruptcy Games techniques.

In Europe, the Water Framework Directive (WFD) 2000/60/EC1 recommends that the
pricing politics in a river basin take into account the cost recovery and the economic sustain-
ability of the water use. Sechi et al. (2013) present, in the framework of cooperative game
theory, a methodology to allocate water service costs in a water resource system among dif-
ferent users that attempts to fulfill the WFD requirements. Sadegh et al. (2010) investigate
the problem of optimal allocation of shared water resources in water transfer projects through
a methodology based on crisp and fuzzy Shapley games.

In Erdlenbruch et al. (2014), a group of farmers overexploits a groundwater stock and
causes excessive pollution. Specifically, the authors study a differential game in which (i)
a water agency decides how to tax the use of water and fertilizers and how much to invest
in policies to reduce pollution caused by the use of fertilizers, and (ii) companies compete
with each other, after observing the choices of the social planner. Moreover, the payoff of the
social planner and that of companies are assumed to be linear quadratic. Over-exploitation of
groundwater resources is also investigated in Esteban et al. (2021). The possibility of regime
shifts in freshwater ecosystems is included in themodel when a critical water level is reached.

Rubio and Casino (2001) compare socially optimal and private extraction of a common
property aquifer. Open-loop and feedback equilibria in linear strategies have been computed
to characterize private extraction. The results show that strategic behavior increases the over-
exploitation of the aquifer compared to the open-loop solution.

de Frutos Cachorro et al. (2019, 2021) study groundwater management under a regime
shock affecting water availability, using differential games. Water users have water demand
quadratic functions. Players are symmetric in de Frutos Cachorro et al. (2019) while in
de FrutosCachorro et al. (2021) the different players correspond to different groundwater uses
(irrigation or urban water supply) and have different demand functions and different discount
rates. Cooperative and non-cooperative solutions are compared using linear strategies with
respect to the water stock.

1 http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/
DOC_1&format=PDF.
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In Provencher and Burt (1993), the rate of groundwater extraction under the common
property arrangement is the outcome of a dynamic game played with feedback strategies.
The analysis identifies risk externalities that arise when firms are risk-averse. Negri (1989)
compares open-loop and feedback equilibria using a common property aquifer model finding
two sources of dynamic inefficiency: a pumping cost externality and a “strategic externality”
that arises from the competition among users to capture the groundwater reserves.

A topic of considerable practical interest which, as far as we know, has so far found
inadequate space in the literature is the following: how to fix the price of water in the presence
of users capable of regulating the demand for water as a result of the supplier’s decision?

An interesting contribution in this direction is given by Kogan and Tapiero (2010). The
authors consider a vertical supply chain consisting of a water provider and a consumer
(municipality). The inherent conflicts over stocks and supply costs that emerge among the
parties in the water supply chain are modeled as a zero-sum stochastic differential game.
Kogan (2021) and Kogan et al. (2022) address the problem of dynamic interaction between
two firms committing to provide water supply within a limited time horizon. In Kogan (2021)
the author finds that competition does not necessarily reduce product scarcity compared to
the monopolistic industry while a longer contract results in lower scarcity of the products. In
Kogan et al. (2022), the authors compare the spot-market-based competitive supply model
for water with a supply chain approach, in which a non-profit public entity encourages
competition between private water providers within the framework of a regulated, time-
invariant price. They find that the public-private partnership can have an advantage in the
form of both higher consumption and higher consumer welfare.

In the European Union, water supply services are referred to as ‘services of general
interest’, meaning that they are subject to multiple, potentially conflicting, public service
obligations. Martins et al. (2013) consider empirical data for Portuguese municipalities and
provide a comprehensive approach to evaluate whether the concerns of universal access to
water services for basic needs, affordability, and equity are embodied in the corresponding
water supply block’s tariff. InBrill et al. (1997), efficientwater pricing schemes are introduced
for non-profit water agencies, where members have property rights based on historical usage.
The authors analyze three policy options of water agencies to reduce water supply: average
cost pricing with the administration of quota allocation; block rate pricing; a transferable
water rights regime. Fridman (2015) compares alternative transition paths to efficient water
pricing. The analysis is based on the representative agent model, where two sources of water
supply exist: exhaustible groundwater stock and a renewable substitute. Two alternative
water pricing reforms are considered: gradual tariff increase and block pricing. The results
of comparative analysis prove that under the same reform time horizon block pricing is
preferred to the gradual tariff increase. Elnaboulsi (2001) determines the optimal nonlinear
pricing rules for water services. The optimization process of a welfare utility function subject
to different kinds of constraints provides the optimal pricing rules for water. These prices
reflect efficiently the costs of systems constraints, the cyclicity of demands, the time-of-
use, heterogeneity types of consumers, and the real value of water resources scarcity. An
interesting review on the applications of game theory to water management is given by Dinar
and Hogarth (2015).

In the context of competitive games that model the withdrawal of water by a multiplicity
of users, the Nash equilibria of the game are normally studied in the literature if the players
are only the users. The case is different when, in addition to the users, a player is also a
supplier (typically an agency) who makes some decisions (such as price, taxation, etc.) that
the users observe before in turn deciding their strategies. In this case, it is natural to look for
Stackelberg equilibria by assuming the supplier is the leader and the users are followers. See,
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for example, Erdlenbruch et al. (2014), Du et al. (2018), Biancardi et al. (2022a), Biancardi
et al. (2022b) and Biancardi et al. (2023). Moreover in Kogan et al. (2022) the authors say
“Another important variation that requires investigation is to assume that the state agent is
no longer a non-profit entity and acts instead as a Stackelberg leader who sets the water price
optimally at the initial period under duopoly competition.”

In this paper, we consider an agency (public or private) that sells and distributes water to
a group of users (domestic, agricultural, industrial) of a given territory. The seller has several
goals: to maximize revenue, minimize costs, take into account the well-being of users, and
preserve the necessary availability of the resource for the future. The seller determines the
price to apply to each user. It can vary over time and depends on the availability ofwater. Users
adjust their demand for water in response to its price and their current (possibly seasonal)
needs.

We address the following research questions: what is the water demand of different
users in response to the tariffs applied; is the block pricing scheme preferable to the linear
one? We characterize, through the Hamilton-Jacobi-Bellman (HJB) equations, an interior
leader-follower feedback equilibrium of the game (Stackelberg equilibrium). Furthermore,
supported by a series of numerical simulations, we analyze the interesting properties of this
solution. Finally, the problem of the possible depletion of the water resource and the impos-
sibility of fully satisfying the water demand is discussed. In this case, it is also necessary
to study corner solutions. The latter analysis is limited to an essentially static version of the
game.

To the best of our knowledge, this is the first article that explicitly addresses the problem
of optimal water pricing by a “socially aware” seller towards an audience of different types
of buyers and where the water demand is determined by buyers who react strategically to the
prices set by the seller. All the papers cited previously, in fact, focus on different problems
and essentially on the best allocation of groundwater or desalinated water owned by buyers
(generally farmers).

The rest of the paper is organized as follows. Section2 presents the model. In Sect. 3,
two different tariff schemes are discussed. In Sect. 4, an interior feedback equilibrium of the
game is characterized using theHJB equations. In Sect. 5, numerical simulations are provided
and some properties of the solution and policy implications are discussed. In Sect. 6, corner
solutions are examined, but the analysis is restricted to an essentially static version of the
game. Section7 concludes. All proofs are provided in the appendix.

2 Themodel

Consider an agency that sells water from one or more aquifers to customers which can be
farms that use it for irrigation of farmland, industrial companies or private individuals that use
it for domestic needs. Unlike what is usually done in groundwater management models, here
the users do not observe the water reserve available to the seller. They purchase water based
on their needs, which can be seasonal (this is plausible both for irrigation of agricultural
land and for domestic use: there is greater consumption in the hottest periods of the year
and with less rainfall). Users also adjust their water purchase volume based on price—the
higher the price, the less they buy. The available water reserve depends on consumption and
natural recharge which depends on the flow rate of the tributaries which, in turn, depends
on rainfall and also has a seasonal pattern. The costs incurred by the seller are of two types:
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fixed costs and costs that may depend, as in the case of groundwater management models,
on the available water reserve.

Water sales contracts usually have a fixed term, often one year. For this, we consider a
finite time horizon equal to one year. We assume that there are n buyers, n ∈ N; n ≥ 1. Let:

• S(t) be the stock of the aquifer at time t , 0 ≤ S(t) ≤ Smax ; Smax > 0 is the capacity of
the aquifer.

• C(S(t)) = c0+c1 (Smax − S(t)) be the pumping cost of water per unit of volume at time
t , c0 > 0, c1 ≥ 0. The unitary cost is c0 if the aquifer is completely full and it increases
as the water stock decreases reaching the maximum c0 + c1Smax when the aquifer is
empty.

• Di (t) be the amount of water demanded by user i = 1, ..., n at time t , Di (t) ≥ 0.
• Wi (t) be the amount of water supplied to the user i = 1, ..., n at time t , 0 ≤ Wi (t) ≤

Di (t).
• R(t) be the natural recharge of the aquifer at time t , R(t) ≥ 0. R(·) is a continuous

function.

User i pays to the agency the amount

Zi (t,Wi ) ≥ 0,

to buy the quantity of water Wi at the time t ∈ [0, 1]. The function Zi is assumed to be
continuous with respect to t and Wi and increasing in Wi .

The net income of the seller agency at time t is

π(t) =
n∑

i=1

[Zi (t,Wi (t)) − C(S(t))Wi (t)] . (1)

The buyer i gets a utility ψi from the water purchase. The utility function ψi must be
increasing with respect to Wi : the more water the user i has available, the greater his well-
being; however, it is reasonable to assume that marginal utility is decreasing instead. We will
therefore assume that ψi is a strictly increasing and concave function with respect to Wi . To
obtain partially explicit results and/or implement numerical simulations, it is appropriate to
use an explicit form for theψi functions.Wewill use quadratic utility functions, in agreement
with a significant part of the literature in this field. See e. g. Rubio and Casino (2001), Roseta-
Palma (2003), Erdlenbruch et al. (2014), de Frutos Cachorro et al. (2019, 2021), Esteban et
al. (2021), Biancardi et al. (2021, 2022a, b, 2023).

We assume that

ψi (t,Wi (t)) := φi (t) (αi − βiWi (t))Wi (t);
where φi (t) > 0 ∀t ∈ [0, 1], αi > 0, βi > 0.
The parameterφi (t) in the utility functionψi emphasizes the common notion that the need for
water is greater at some seasons of the year than in others. This is certainly true for agricultural
and domestic users; it may also be true for some industrial users. For these reasons, the
parameter φi (t) can be interpreted as the seasonal factor of the buyer’s utility. Furthermore,
considering that the concavity of the utility function represents decreasing marginal utility,
we can say that the larger βi is, the more accentuated this “demand saturation” effect is.

The payoff of the buyer i at time t is

πi (t) = ψi (t,Wi (t)) − Zi (t,Wi (t)); i = 1, ..., n. (2)
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The dynamics of the water stock is given by

dS(t)

dt
= R(t) − W (t); S(0) = S0 > 0, (3)

where

W (t) =
n∑

i=1

Wi (t),

and

0 ≤ S(t) ≤ Smax ; ∀t ∈ [0, 1]. (4)

The game is played as follows:

1. The agency discloses the water tariff regimes Zi (t, ·), i = 1, ..., n.
2. The buyer, having observed the tariffs for all buyers but not S(t), determines the quantity

of water Di (t) to request, maximizing the present value of his net income.
3. The agency provides the buyer with the amount of water Wi (t) ≤ Di (t).

The agency makes its choices to maximize the present value of its overall net income. It can
also take into account the welfare of the buyers (which is reasonable when the seller is a
public agency). Since the time horizon of the model is short, we neglect any discount factors.

3 Tariff schemes and water demands

The seller chooses from several pricing schemes. There is substantial literature on the subject
and a vast typology of schemes adopted in practice. The simplest is to charge each user a fixed
price per unit of volume purchased. However, to discourage the excessive and sometimes
inappropriate use of a scarce commodity such as water, tariff schemes in which the user pays
a marginal price that increases with the volume of water consumed have been proposed. The
best known of these schemes is the so-called block tariffs: the unit price ofwater is established
for blocks of volumes ofwater purchased and increases as consumption increases. Finally, the
tariff scheme can be different according to the type of user (agricultural, industrial, private)
(price discrimination).

Assume that, for any i = 1, ..., n and t ∈ [0, 1], the function Zi (t, x) is strictly increasing
with respect to x and Zi (t, 0) = 0.

First-order conditions applied to the payoff (2) give

φi (t)(αi − 2βi Di (t)) − ∂Zi (t, Di (t))

∂Di
= 0.

3.1 Pricing schemes

1. Linear pricing scheme. If water scarcity is not taken into account, the most reasonable
choice seems to be to charge the same price for each unit volume of water purchased. In
this case

Zi (t, Di (t)) := pi (t)Di (t); i = 1, ..., n,
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where pi (t) > 0 is the unitary price paid by the i-th user. The optimal demand D̂i (t) is

D̂i (t) = αiφi (t) − pi (t)

2βiφi (t)
.

Note that, as expected, D̂i decreases as the unitary price pi (t) increases.

2. Block tariffs. Block tariffs are enforced to discourage the overuse of a scarce resource
such as water. Let us consider the simplest case with two blocks. At any time t , there is
a threshold Bi (t) such that the buyer i pays a unit price pi,1(t) for each unit of water
below the threshold Bi (t) while paying a higher unit price pi,2(t) for water consumption
above the threshold Bi (t). The Bi (·) are established by the public authority and therefore
represent given exogenous parameters.2

Zi (t, Di (t)) :=
⎧
⎨

⎩

pi,1(t)Di (t) if Di (t) ≤ Bi (t);

pi,1(t)Bi (t) + pi,2(t) (Di (t) − Bi (t)) if Di (t) > Bi (t);
where pi,1(t) ≤ pi,2(t) are the unit price paid by the i-th user for blocks 1 and 2,
respectively.
The optimal demand is:

D̂i (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αiφi (t) − pi,2(t)

2βiφi (t)
> Bi (t), if pi,1(t) ≤ pi,2(t) < σi (Bi (t));

Bi (t), if pi,1(t) ≤ σi (Bi (t)) ≤ pi,2(t);
αiφi (t) − pi,1(t)

2βiφi (t)
< Bi (t), if σi (Bi (t)) < pi,1(t) ≤ pi,2(t);

where

σi (Bi (t)) := φi (t)(αi − 2βi Bi (t)).

Remark 1 . Note that

pi,h(t) < σi (Bi (t)) ⇐⇒ Bi (t) <
αiφi (t) − pi,h(t)

2βiφi (t)
; h = 1, 2.

Given pi,1(t) and pi,2(t) we have that:

• if the block threshold Bi (t) is large enough, then it is optimal to buy a quantity of water
D̂i (t) < Bi (t) at the lowest price pi,1(t) and the block tariff provides exactly the same
solution as the linear fare scheme;

• if the block threshold Bi (t) is small enough, then it is optimal to buy a quantity of water
D̂i (t) > Bi (t) by paying the quantity Bi (t) at the lower price and the excess quantity at
the higher price; moreover, the demand is lower than in the case of the linear price;

• if the block threshold Bi (t) is neither too high nor too low, then it is optimal to buy a
quantity of water equal to Bi (t) at the cheapest price pi,1(t) and the block tariff reduces
the water demand compared to the linear price case.

2 It is certainly realistic to have different tariffs for different types of users. For example, in the document
https://www.arera.it/allegati/docs/17/251-17.pdf from the (Italian) Authority for electricity, gas and the water
system (ARERA) we read that: “The water tariff system is divided into user groups: the tariff is differentiated
according to the uses of the resource (for example, domestic, industrial, agricultural, public, etc.).”
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4 The feedback Stackelberg equilibrium

In this section we characterize the feedback Stackelberg equilibrium, assuming that the
agency is the leader. We are looking for interior solutions which mean, among other things,
that the water basin never empties during the time horizon. A discussion of corner solutions
will take place in a later section. Therefore here we set

Wi (t) = Di (t); t ∈ [0, 1]; i = 1, ..., n.

The game is a leader-follower game. The agency determines its tariff schemes Zi (t,Wi (t))
maximizing its overall payoff J which is given by

J (Z1, ..., Zn) = JA + ρ

n∑

i=1

JBi + μ(S(1)),

where

JA =
∫ 1

0
π(t)dt, JBi =

∫ 1

0
πi (t)dt,

subject to the state variable constraints (3) and (4). π and πi ; i = 1, ..., n are defined in
(1) and (2), respectively.

The J payoff of the agency is the sum of three contributions: the first addendum is given
by the current value of the agency’s profits (revenueminus costs), the second addendum takes
into account the overall payoff of all users and is due to the social role that a public agency
plays, the third addendum (scrap value) takes into account the value for the agency of the
water stock at the end of the time horizon considered. The coefficient ρ ∈ [0, 1] weighs the
social role of the agency. In particular, ρ = 0 corresponds to the case of a fully private agency
with no social obligations. We assume that the scrap value μ(·) is a quadratic function:

μ(x) = μ1x
2 + μ2x; μ1 ≥ 0; μ2 ≥ 0; μ1 + μ2 > 0.

We solve the game by backward induction. At the second stage, a buyer i , having observed
the price scheme Zi (t, ·) determines the quantity of water Wi (t) to demand.

At the first stage, the seller, foreseeing the buyer’s response, solves the following optimal
control problem

max
Z1,...,Zn

J (Z1, ..., Zn)

subject to the state variable constraints (3) and (4).
The special tariff schemes introduced in Sect. 3 must be analyzed separately.

4.1 Linear pricing schemes

The agency, foreseeing the buyers’ response, calculates its optimal pricing strategy by choos-
ing water unit prices as a function of time t and the observed state of the stock S:

pi = pi (t, S); i = 1, ..., n.

The following proposition holds:
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Proposition 1 Assuming interior equilibria, there exists a unique feedback Stackelberg equi-
librium where the optimal pricing strategies of the (leader) agency are, for any i = 1, ..., n,

p∗
i (t, S) = [φi (t)(1 − ρ)αi + c0 + c1Smax + y(t)] + [2x(t) − c1] S

2 − ρ
; (5)

where the functions x(·) and y(·) are the solutions of the following system of ordinary differ-
ential equations

ẋ = −γ (t)
(2x − c1)2

4(2 − ρ)
;

ẏ = a(t, x)y + b(t, x);
and

a(t, x) := −γ (t)
(2x − c1)

2(2 − ρ)
;

b(t, x) := −2R(t)x + (δ − γ (t) (c0 + c1Smax ))
(2x − c1)

2(2 − ρ)
;

γ (t) :=
n∑

j=1

1

β jφ j (t)
; δ :=

n∑

j=1

α j

β j
.

The terminal conditions are

x(1) = μ1; y(1) = μ2.

Moreover, for any buyer i = 1, ..., n, the optimal quantity of water demanded (and
supplied) is

W ∗
i (t) = αiφi (t) − p∗

i (t, S(t))

2βiφi (t)
.

Proof See Appendix. 	


Remark 2 The solutionof the equation ẋ = −γ (t)
(2x − c1)2

4(2 − ρ)
with terminal condition x(1) =

μ1 is

x(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1
2

+
[

2

2μ1 − c1
− �(t)

2 − ρ

]−1

, if μ1 �= c1
2

;

μ1, if μ1 = c1
2

;
(6)

where

�(t) :=
n∑

j=1

1

β j

∫ 1

t

1

φ j (s)
ds.

Note that the solution is bounded on interval [0, 1] ifμ1 <
c1
2

+ 2 − ρ

�(0)
.Moreover, ifμ1 = c1

2

then p∗
i (t, S) = [φi (t)(1 − ρ)αi + c0 + c1Smax + y(t)]

2 − ρ
is independent of S.
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The optimal state variable S∗(t) is the solution of the linear differential equation

Ṡ∗(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R(t) − δ

2(2 − ρ)
+ γ (t)

c0 + c1Smax + y(t)

2(2 − ρ)
+ χ(t)S∗(t), if μ1 �= c1

2
;

R(t) − δ

2(2 − ρ)
+ γ (t)

c0 + c1Smax + y(t)

2(2 − ρ)
, if μ1 = c1

2
;

(7)

where

χ(t) := γ (t)

2 − ρ

[
2

2μ1 − c1
− �(t)

2 − ρ

]−1

.

4.2 Block tariffs

Block rates are a generalization of linear rates. The latter is a particular case of the block
rates if the two prices (of the first and second block) coincide. The following proposition
shows that it is never optimal to choose two different prices for the two blocks and therefore
the seller adopts a linear price scheme.

Proposition 2 Assume block tariffs and that interior feedback Stackelberg equilibria exist.
Let

(
p∗
i,1(t, S), p∗

i,2(t, S)
) ; i = 1, ..., n

be an interior equilibrium. Let t ∈ [0, 1] and
E1(t) =

{
i ∈ {1, ..., n} |p∗

i,1(t, S) < σi (Bi (t))
}

;

E2(t) =
{
i ∈ {1, ..., n} |p∗

i,1(t, S) = σi (Bi (t))
}

;

E3(t) =
{
i ∈ {1, ..., n} |p∗

i,1(t, S) > σi (Bi (t))
}

.

1. If i ∈ E1(t), then p∗
i,2(t, S) = p∗

i,1(t, S) and W ∗
i (t) > Bi (t); the demand exceeds the

threshold but all the water demanded is sold at the same price.
2. If i ∈ E2(t), then p∗

i,2(t, S) is any price greater or equal to p∗
i,1(t, S) and W ∗

i (t) = Bi (t);
the demand equals the threshold, all thewater demanded is sold at the sameprice p∗

i,1(t, S)

and the price p∗
i,2(t, S) does not matter.

3. If i ∈ E3(t), then then p∗
i,2(t, S) is any price greater or equal to p∗

i,1(t, S) and W ∗
i (t) <

Bi (t); the demand is below the threshold, all the water demanded is sold at the same price
p∗
i,1(t, S) and the price p∗

i,2(t, S) does not matter.

Proof See Appendix. 	

Remark 3 For simplicity, let us call the price applied to the quantity of water below the
threshold “basic price” and the price applied to the quantity of water above the threshold
“excess price”. In essence, in the case of block tariffs, either it is optimal to set a high basic
price that corresponds to a demand lower than the threshold (in this case any excess price
does not intervene at all and has no importance), or it is optimal to set a low basic price
which corresponds to a demand above the threshold (in this case the optimal excess price
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Table 1 Model parameters

Parameter Description

S0 Initial level of the aquifer

Smax Maximum capacity

c0 Fixed pumping cost

c1 Marginal pumping cost

kr Average value of the Natural Recharge

Ar Amplitude of Natural Recharge cycle

ϕr Phase of Recharge cycle

αi Linear coefficient of buyers utility

βi Quadratic coefficient of buyers utility

ϕi Phase of φi cycle

ki Average value of the seasonal factor of buyer’s utility

Ai Amplitude of buyer preferences’ cycle

μ1 Quadratic term of the scrap value

μ2 Linear term of the scrap value

ρ Social role of the agency

coincides with the basic price). In summary, the optimal solution in the case of block tariffs
substantially coincides with the optimal solution in the case of linear tariffs.

5 Numerical results

In this section, we propose several numerical exercises to discuss the implications of the
analytical results obtained above. To this end, we assume, without loss of generality, the
presence in the market of only two buyers (n = 2).

To obtain the optimal pricing strategies, we numerically calculate the functions x , y and
the state variable S (see Prop. 1). Note that x is the solution of a Riccati equation that can
be solved analytically by (6). After calculating the function x , the function y is the solution
of a linear differential equation that can be easily integrated numerically. The optimal state
variable S is also the solution of a linear differential equation (7). From x , y and S, the
optimal pricing strategies are given by formula (5).

Furthermore, both rainfall and consumption by agricultural or domestic users have an
essentially seasonal temporal trend. Therefore, we have specified both the natural recharge
function R(t) and the parameters φi (t) of the functions ψi (t) as follows:

R(t) = kr + Ar sin(2π t + ϕr ), (8)

φi (t) = ki + Ai sin(2π t + ϕi ), with i = 1, 2. (9)

where kr , ki > 0, Ar , Ai ≥ 0 and−π ≤ ϕr , ϕi ≤ π .3 In order tomake the following numer-
ical exercises more understandable, we summarize in Table 1 the set of model parameters in
the case where all the functions are specified.

In all the numerical exerciseswe perform in this section,we adopt the following parameters
configuration: S0 = 100, Smax = 500, c0 = 10, c1 = 0.1, kr = 30, Ar = 15, ϕr = 0, αi =
3 The functions defined in (8) and (9) have the same period, T = 1.
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10, ki = 20.4 Recalling the functions defined in (8) and (9), we can notice that both the
natural recharge of the basin and buyers’ preferences are driven by seasonal cycles, and these
cycles reflect on the dynamics of state and control variables. Having assigned to the natural
recharge R(t) the seasonal cycles determined by kr = 30 and Ar = 15, two degrees of
heterogeneity can be discussed in the model: the first concerning the possible difference in
the demand saturation (defined by βi ) that buyers experience toward the resource, and the
second related to the possible heterogeneous seasonal factors in buyers’ utilities (defined by
ϕi and Ai ).

5.1 The effect of water demand saturation

A first numerical investigation can be made on the demand saturation effect. Assuming the
demand saturation effect of buyer 2 as fixed, we analyze what happens to the optimal price
and demand levels for buyer 1 as β1 varies,5 and in addition we observe the dynamics of the
water stock in the basin. Specifically, as shown in Fig. 1, while an increase in β1 has no effects
on the optimal price dynamics6, it drastically affects both the dynamics of optimal demand
W ∗

1 (t) and the evolution of S∗(t). Recalling that the higher the β1 the less the amount of water
that saturates the needs of buyer 1 (the same would be true for buyer 2), we note that as β1

increases, the dynamics of optimal demand appears increasingly squeezed to low values (see
Panel (b) in Fig. 1). Panel (c) in Fig. 1 then allows to observe how as β1 increases, the optimal
demand W ∗

1 (t) exhibits increasingly lower values than W ∗
2 (t). Concerning the dynamics of

the water stock in the basin, an increase in β1 induces that S∗(t) expresses higher levels.
Moreover, both the natural recharge and the reduced amount of water purchased by the buyer
1 contribute to transforming multimodal basin dynamics to monotonically increasing ones
(see Panel (d) in Fig. 1). From an economic point of view, an example of the scenario with
β1 > β2 can be represented by the coexistence of two companies that produce two different
types of food goods (e.g., Christmas cakes and pasta). Both the production activities have
seasonal water needs, but while the former will constantly saturate its need with a lower level
of water the latter will constantly have more need for water (lower β).

5.2 The effect of seasonal factors

Even the seasonal factors of buyers’ preferences are prone to dictate different dynamics
for the optimal price and the optimal demand, and then for the water stock in the basin.
Specifically, we can observe how the dynamics of optimal values of the model changes when
(i) Ai or (ii) ϕi vary. In case (i), by setting A2 = 10, we can notice that starting from the
case A1 = 0 (i.e., no seasonal cycle in water preferences for buyer 1) in which the optimal
demand W ∗

1 (t) is constant over time, we have that as A1 increases, the optimal dynamics
can significantly change. In particular, although the optimal price p∗

1(t) negligibly increases
as A1 changes (see Panel (a) in Fig. 2), an increase in A1 makes the optimal demand’s peaks

4 The parameters that have not been assigned a value are the parameters against which the numerical simula-
tions will be performed.
5 In Panels of Fig. 1, for a higher readability of the graphs (but without loss of generality of the results), only
a few (but representative) number of numerical simulations are shown. The same approach is applied also in
the successive figures.
6 As highlighted by Equation (5), the optimal prices are not affected by βi with i = 1, 2. Therefore, the
dynamics of p∗

i are not affected by variations in βi and p∗
1 and p∗

2 are identical if the buyers differ only for
βi .
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Fig. 1 Parameter set: A1 = A2 = 10, ϕ1 = ϕ2 = 0, ρ = 0.1, μ1 = 0.1, μ2 = 10, β2 = 0.1. Panels a,
b, c show, respectively, the dynamics of p∗

1(t),W∗
1 (t), S∗(t) as β1 varies. Differently, Panel c displays the

dynamics of p∗
2(t) and W∗

2 (t) exclusively for β2 = 0.1

more suddenly. Consequently, the stock dynamics S∗(t) becomes increasingly multimodal
(for a given optimal demand W ∗

2 (t) as shown in Panel (c) of Fig. 2). The latter phenomenon
can be directly observed in Panel (d) of Fig. 2.
In case (ii), by setting ϕ2 = 0, we explore how the optimal dynamics vary as the phase of the
cycles in buyer 1’s seasonal preference changes. Specifically, we note that as ϕ1 increases,
the cycles related to the dynamics of optimal price and optimal demand of buyer 1 shift more
and more to the left (see Panels (a) and (b) in Fig. 3), inducing the loss of multimodality in the
stock dynamics S∗(t) and a gradual rise in the positive peak of available water that the basin
experiences immediately after the negative peak of optimal demand W ∗

1 (t) is reached (see
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Fig. 2 Parameter set: β1 = β2 = 0.1, ϕ1 = ϕ2 = 0, A2 = 10, ρ = 0.1, μ1 = 0.1, μ2 = 10. Panels a,
b, d show, respectively, the dynamics of p∗

1(t), W∗
1 and S∗(t) as A1 varies. Differently, Panel c displays the

dynamics of p∗
2(t) and W∗

2 (t) exclusively for A2 = 10

Panel (d) in Fig. 3).7 This phenomenon becomes extreme when ϕ1 = 3.14, and the resultant
sequence of cycles in the optimal demand is reversed. In such a case, the interplay between an
initial saving of water (buyer 1 initially reduces its water demand) and natural recharge ends
up producing an even greater peak in water availability that will then be gradually eroded by
the increasing demand for water made by buyer 1 in the second half of period.

7 This scenario occurs for the given dynamics of W∗
2 (t) described by Panel (c) in Fig. 3.

123



1150 Annals of Operations Research (2024) 337:1135–1165

Fig. 3 Parameter set: β1 = β2 = 0.1, ϕ2 = 0, A1 = A2 = 10, ρ = 0.1, μ1 = 0.1, μ2 = 10. Panels a,
b, d show, respectively, the dynamics of p∗

1(t), W∗
1 and S∗(t) as ϕ1 varies. Differently, Panel c displays the

dynamics of p∗
2(t) and W∗

2 (t) exclusively for ϕ2 = 0

5.3 The effect of agency’s social role

Assuming, without loss of generality, only the heterogeneity related to the seasonal factors,
we can observe the role in the dynamics dictated by the parameter ρ, i.e., the degree of the
agency’s social involvement to water needs of buyers. The numerical exercises in Panels
(a), (b) and (c) of Fig. 4 show that as ρ increases, optimal prices decrease, optimal demands
increase, and the basin level decreases, respectively. This effect is due to the social feature
of ρ. Indeed, if a higher level of ρ results in a higher agency interest in maximizing buyers’
needs, this will be reflected in more affordable optimal pricing. It will therefore follow that
buyers will choose a higher quantity of the resource to purchase, and as a result, regardless
of the natural recharge capacity, the basin will be more eroded.
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Fig. 4 Parameter set: A1 = A2 = 10, β1 = β2 = 0.1, ϕ1 = 0, ϕ2 = π, μ1 = 0.1, μ2 = 10. As ρ increases,
a dynamics of p∗

1(t) assume lower values (the same phenomenon occurs for p∗
2(t)); b dynamics of W∗

1 (t)
assume higher values (the same phenomenon occurs for W∗

2 (t)); c dynamics of S(t) assume lower values

This phenomenon can be further observed by simulating the payoffs JB1 and JB2 of the
two heterogeneous buyers as ρ varies. Indeed, we note that as ρ increases, the payoffs grow
monotonically (see Panel (a) in Fig. 5). Differently, the simulations show that ρ plays an
ambiguous role in the agency payoff J . Indeed, as shown in Panel (b) of Fig. 5, the agency’s
optimal payoff exhibits an inverted U-shaped behavior with respect to ρ and reaches its
maximum point at an intermediate level (ρ � 0.3) of social involvement. This result shows
that a scenario in which an intermediate degree of altruism for buyers is assumed may be
advantageous for the agency in terms of its payoff, compared to the extreme case ρ = 0 (e.g.,
no social obligations).
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Fig. 5 Parameter set: A1 = 10, A2 = 0, β1 = β2 = 0.1, ϕ1 = 0, ϕ2 = π, μ1 = 0.2, μ2 = 20. a As
ρ increases, the payoffs of the two buyers increase. The solid curve and the dashed one depict the payoffs
JB1 and JB2 , respectively. The dash-dotted curve describes the sum of buyers’ payoffs. b As ρ increases, the
payoff of the agency shows an inverted U-shaped behavior

5.4 Linear vs. block tariffs

To complete the numerical analysis that highlights the analytical results obtained in the
previous sections, we provide some numerical simulations on the sub-optimal dynamics
generated by the employment of block tariffs. Indeed, in Fig. 6 we show the payoffs of the
buyers (Panel (a)) and the payoff of the agency (Panel (b)) in the case of block tariffs. For
simplicity, we set B1 = B2. Starting from the linear optimal price (i.e. basic and excess
prices are the same, p∗

i,1 = p∗
i,2), we calculated the optimal quantity of water demanded

and the corresponding payoffs, setting pi,2 = (1 + η)p∗
i,1, where η ≥ 0. As η increases, the

payoffs decrease up to η equal to approximately 30%.After this value the payoffs became flat.
This indicates that the quantity of water demanded is below the threshold Bi and therefore
only the basic price p∗

i,1 is applied. According to Proposition 3, block tariffs lead to lower
payoffs than those obtainedwith linear pricing. Aiming also to provide insights on the buyer’s
perspective in the case of block tariffs, we show what happens to the optimal demandW ∗

i (t)
as η varies. Recalling that as η increases the price p∗

i,2 grows, the consumption of water above
the threshold consequently decreases. Indeed, the buyer’s optimal demand will experience
(net of the seasonal preferences towards the resource) longer phases in which it is given by
threshold B. Panel (c) in Fig. 6 highlights this phenomenon for the buyer 1 (the same applies
to buyer 2).

6 Corner solutions

In the previous sections, we have characterized and studied the solution of the differential
game assuming that the solution is interior, i.e. that the water stock remains strictly positive
and below the maximum capacity of the aquifer for the entire time interval. In general, it
is difficult to identify cases in which the solution is actually interior. The problem should

123



Annals of Operations Research (2024) 337:1135–1165 1153

Fig. 6 Parameter set: A1 = A2 = 10, β1 = β2 = 0.1, ϕ1 = 0, ϕ2 = π, μ1 = 0.1, μ2 = 10, B1 = B2 = 10.
a As η increases, the payoffs of the two buyers decrease. The solid curve and the dashed one depict the payoffs
JB1 and JB2 , respectively. b As η increases, the payoff of the agency decreases. c Different optimal water
demand dynamics W∗

1 (t) as η varies

be formulated as an optimal control problem with pure inequality constraints in the state
variable. In this case, necessary and/or sufficient conditions are known in literature but are
generally very difficult to apply (see eg Seierstad and Sydsæter 1987).

In this section, we simply address the problem of corner solutions by studying a static ver-
sion of the proposed model. The purpose of this analysis is to establish the role of parameters
with respect to the existence of corner solutions. From a practical point of view, the question
is relevant as regards the possible scarcity of the water reserve compared to the needs due to,
for example, too low rainfall.
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Consider a two-stage game with a single buyer: in the first phase the agency, by predicting
the buyer’s demand for water, chooses the price. In the second stage, the buyer decides the
amount of water to be consumed and the agency provides a quantity of water not exceeding
the needs. We limit ourselves to the linear tariff scheme. Let

• S0 > 0 and S1 be the stocks of the aquifer at time t = 0, 1, respectively.
• Smax the capacity of the aquifer.
• p ≥ 0 the sale price of water per unit of volume at time t = 0.
• c = c0 + c1(Smax − S0) ≥ 0 the pumping cost of water per unit of volume at time t = 0,

where c0 > 0 and c1 ≥ 0.
• D = D(p) ≥ 0 the water demanded at time t = 0.
• W ∈ [0, D] the water supplied at time t = 0.
• R ≥ 0 the natural recharge of the aquifer at time t = 1.

The dynamics of the stock of the aquifer is given by the following equation:

S1 = min{Smax , S0 + R − W }.
The net income of the seller is

π = (p − c)W .

The buyer derives a utility ψ(D) = φ [α − βD] D; φ > 0, α > 0, β > 0 from the
demanded water.
The payoff for the buyer is

π1 = ψ(D) − pD.

The agency set the price p and the supply W to maximize its payoff

J (p,W ) = π + ρπ1 + μ(S1), 0 ≤ ρ < 1,

The agency solves the following optimization problem

max
p≥0; 0≤W≤D

J (p,W ),

subject to the state constraint8

S1 = min{Smax , S0 + R − W } ≥ 0.

As we are mainly interested in the water shortage situation, we assume in the following that

R < Smax − S0,

so that S0 + R − W < Smax and

S1 = S0 + R − W ; S0 > 0.

We assume thatμ(x) = kx , k > 0. The buyer, having observed p ≥ 0 but not S0, determines
the quantity of water D to consume, solving the following optimization problem

max
D≥0

π1(D).

Themodel therefore consists of a Stackelberg game. Solving the gamebybackward induction,
we have the following results.

8 One way to make S1 ≥ 0 is to provide the user, in the case of excessive demandW , with a quantity of water
D = δW , 0 ≤ δ < 1, such that S1 = 0. However, this strategy is not necessarily optimal.
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Proposition 3 Let

σ = αφ − k − c0 − c1 (Smax − S0) .

M1 = 2(2 − ρ)βφS0 − αφ + k + c0 + c1 (Smax − S0)

2βφ(2 − ρ)
; M2 = α − 2βS0

2β
.

p1 = φ [α − 2β(S0 + R)] ; p̂ = k + c0 + c1 (Smax − S0) + αφ(1 − ρ)

2 − ρ
.

We distinguish two cases:

1. σ > 0. In this case we have:

(a) If 0 ≤ R ≤ M1, then J is decreasing as p̃ ≤ p ≤ αφ so that the optimal price
is p∗ = p1. The quantity of water demanded and consumed is W ∗ = S0 + R. The
aquifer after consumption is empty, that is S1 = 0.

(b) If M1 < R, then J is increasing in the interval p̃ ≤ p ≤ p̂ and decreasing for
p̂ ≤ p ≤ αφ. The optimal price is p∗ = p̂. The quantity of water demanded and
consumed is

W ∗ = σ

2βφ(2 − ρ)
= αφ − k − c0 − c1 (Smax − S0)

2βφ(2 − ρ)
> 0.

The volume of water that remains in the aquifer after consumption is S1 = S0 + R −
W ∗ > 0.

2. σ ≤ 0. In this case we have:

(a) If 0 ≤ R < M2, then p̃ = p1, J is decreasing as p̃ ≤ p ≤ αφ so that the optimal
price is p∗ = p1. The quantity of water demanded and consumed is W ∗ = S0 + R.

The aquifer after consumption is empty, that is S1 = 0.
(b) If M2 ≤ R, then p̃ = 0, J is decreasing as p̃ ≤ p ≤ αφ so that the optimal price is

p∗ = 0. The quantity of water demanded and consumed is W ∗ = α

2β
. The volume of

water that remains in the aquifer after consumption is S1 = S0 + R − α

2β
> 0.

Proof See Appendix. 	

Remark 4 Prop. 3 states that if the amount of rainfall (i.e. the recharge of the aquifer) is
below a given threshold (M1 when σ > 0 and M2 > M1 when σ ≤ 0), then the aquifer
will be empty at the end of the period (and therefore we have a corner solution). Thresholds
Mi , i = 1, 2 depend on the initial water stock and the other parameters of the problem.

M1 = M1(S0; Smax , α, β, φ, k, ρ, c0, c1); M1 = M2(S0;α, β).

1. Let σ > 0.

• M1 decreases compared to k, c0, c1, Smax , β. In other words, the more the agency is
attentive to the water stock at the end of the period or the extraction costs are high or
the capacity of the basin is high, the lower the amount of rain necessary to ensure that
the aquifer will not be empty at the end of the period.

• M1 increases with respect to φ, ρ, α. In other words, the more the water is important
to the user or the agency cares about the immediate well-being of the buyer, the higher
the quantity of rainfall necessary to guarantee that the aquifer will not be empty at the
end of the period.
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• The dependence of M1 on S0 varies according to the value of all the other parameters.
Precisely M1 increases with respect to S0 if c1 > 2βφ(2−ρ), it decreases otherwise.

2. Let σ ≤ 0.

• M2 decreases with respect to S0, β.
• M2 increases with respect to α.

7 Conclusions

Water is an increasingly scarce resource and it is necessary to distribute it where it creates
more benefits for society. At the same time, the collection, abstraction and distribution of
water impose significant costs and it is recommended that these costs are covered by the
tariffs paid by the users. Water is a basic necessity and must remain accessible, at least in
indispensable quantities, even to the poorest sections of the population. One of the tools to
achieve the objectives mentioned above is pricing. In this paper, we considered the case of
a water supplier who determines sales rates pursuing not only the usual goal of maximizing
profits but also the protection of consumer welfare and the need to preserve adequate water
supplies for the future. Buyers are assumed to be heterogeneous and can use the water for
domestic, agricultural, and industrial purposes. Different prices are allowed (as happens in
real life) for different types of users (price discrimination). We calculated the water demand
of the various customers assuming that their choices are determined by the price offered, as
well as by their needs, but that they are not conditioned by the available water stocks, either
because they are not observable or simply because the buyers do not take care of it (myopic
behavior).
The model we studied is a leader-follower differential game with a finite horizon. The leader
(the water supplier) determines the selling price and the followers (consumers) react by
requesting the resulting amount of water. From an analytical point of view, we calculated a
Stackelberg feedback equilibrium assuming that all user demand is satisfied (interior equi-
librium). Subsequently, by applying periodic functions for the natural recharge of water
(thinking it is dependent on seasons) and for the seasonal coefficient in the buyers’ utility,
we presented several numerical simulations to better illustrate how the model solutions are
sensitive to the various parameters included. The most important result expressed by the
analysis of the model and also highlighted by the numerical simulations is the comparison of
two different tariff schemes: linear tariffs (the price paid is a multiple of the volume of water
purchased), and increasing block tariffs (the unit price is lower for quantities of water that do
not exceed a fixed threshold). What we showed is that although block tariffs are increasingly
popular inmany countries and usually justified by determining larger equity to heterogeneous
consumers, it is never optimal for the seller to propose this type of pricing (in fact, linear
pricing is always preferred). This result, seemingly peculiar in a model in which the agency
takes into account both the scarcity of the resource and the welfare of consumers, turns out
instead to be consistent with both theoretical (see Monteiro and Roseta-Palma 2011; Sibly
and Tooth 2014) and empirical (see Martins et al. 2013; Al-Saidi 2017) growing literature.
Numerical simulations then showed how buyer heterogeneity can spill over into oscillating
dynamics of optimal prices and the onset of monotonic or multimodal trajectories for the
stock of water in the basin. Such results may represent an important policy suggestion that
an agency may consider to avoid situations in which total demand fully empties the basin
or in which the demand cannot be completely satisfied. In this regard, limiting ourselves
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to a static version of the game, we analyzed the possible existence of corner solutions, i.e.
solutions that imply the total emptying of the water basin. As expected, we demonstrated
that corner solutions exist if the amount of precipitation is excessively low. Finally, we stud-
ied the sensitivity of the optimal values to changes in the social role of the agency. What
emerged is that although an increasing agency’s social altruism is reflected in lower prices
and thus higher demands (for a scarce resource this phenomenon cannot always be seen
as positive), excessive agency’s altruism may result in unsatisfactory agency performance
(the relationship between altruism and agency payoff is de facto U-shaped). The latter result
therefore provides an additional policy suggestion to the agency, pointing out that a positive
(but sufficiently low) level of social altruism can simultaneously ensure affordable prices,
adequate stock levels, and satisfactory performance.
This research can be extended in several directions. We would like to point out here two
questions that seem to us of greater interest. The hypothesis that thewater demand can be fully
satisfied is somewhat restrictive and contrasts withwhat actually happens, for example during
long periods of drought. However, the study of solutions that make it impossible to satisfy
the demand due to the emptying of the aquifer basin as well as the determination of equilibria
that preserve a minimum stock of water present considerable difficulties (non-regularity of
the state equation and of the HJB equation). Another interesting question is to consider more
general tariff schemes: in fact, consumers pay bills made up not only of volumetric prices but
also of fixed components, determined by the type of user and independent of consumption.
Furthermore, an alternative way to meet the needs of the poorest part of the population can
be to provide them with government subsidies. Our future research will go in the directions
indicated above.
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Appendix

Proof of Proposition 1 Let V (t, S) be the value of the game for the agency at the time t with
the state S. Then pi (t, S); i = 1, ..., n solve the agengy-HJB equation

− ∂V

∂t
= max

p1,...,pn
RHS, V (1, S) = μ(S), (10)

where

RHS := π + ρ

n∑

j=1

π j + ∂V

∂S
(R − W ), W =

n∑

j=1

Wj ,

π =
n∑

j=1

p jW j − C(S)W ,

π j = φ j
[
α j − β jW j

]
Wj − p jW j .
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Let Vi (t, S) be the value of the game for the buyer i ∈ {1, ..., n} at the time t with the
state S. Then Vi (t, S) solves the HJB equation

− ∂Vi
∂t

= max
Wi

RHSi , Vi (1, S) = 0, (11)

where

RHSi := πi + ∂Vi
∂S

(R − W ), W =
n∑

j=1

Wj ,

πi = φi [αi − βiWi ]Wi − piWi .

Wesolve the game by backward induction.At the second stage the buyers, having observed
the prices decided by the agency, determine the water demands Wi .
First order conditions give that the maximum of RHSi is attained at Ŵi , where

Ŵi =
αiφi − pi − ∂Vi

∂S
2βiφi

We look for a solution of the HJB equation that doesn’t depend on S, i.e.

Vi (t, S) = zi (t); i = 1, ..., n.

It is9

∂Vi
∂t

= żi (t); ∂Vi
∂S

= 0.

Substituting in (11) we obtain that zi (t) is the unique solution of the ODE

żi = − (αiφi − pi )2

4βiφ
; zi (1) = 0.

Consequently, it is

Ŵi = αiφi − pi
2βiφi

.

Let’s go back to the first stage of the game.
Note that

RHS = ∂V

∂S
R +

n∑

j=1

ω j ,

where

ω j :=
[
(1 − ρ)p j − C(S) + ρφ j

(
α j − β j Ŵ j

)
− ∂V

∂S

]
Ŵ j ,

Ŵ j (t) := α jφ j (t) − p j (t, S)

2β jφ j (t)
. (12)

9 As usual the superscript˙denotes the time derivative.
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First-order conditions give that the maximum of RHS is attained at 10

p̃ j =
α jφ j (1 − ρ) + C(S) + ∂V

∂S
2 − ρ

. (13)

Substituting (13) in (12) we obtain

W̃ j =
α jφ j − C(S) − ∂V

∂S
2β jφ j (2 − ρ)

.

Substituting in (10), the HJB equation becomes

− ∂V

∂t
= ˜RHS, V (1, S) = μ(S), (14)

where

˜RHS = ∂V

∂S
R +

n∑

j=1

ω̃ j ,

and

ω̃ j :=

[
α jφ j − C(S) − ∂V

∂S

]2

4β jφ j (2 − ρ)
.

Due to the structure of the problem, we look for a quadratic solution of the HJB equation
with respect to S, i.e.

V (t, S) = x(t)S2 + y(t)S + z(t).

It is11

∂V

∂t
= ẋ(t)S2 + ẏ(t)S + ż(t); ∂V

∂S
= 2x(t)S + y(t).

Substituting in (14) we obtain

− ẋ S2 − ẏS − ż − [2xS + y]R −
n∑

j=1

{[
2xS + y + c0 + c1(Smax − S) − α jφ j

]2

4β jφ j (2 − ρ)

}
= 0

(15)

10 Note that
∂2ω j

∂ p2j
= ρ − 2

2β jφ j
< 0 iff ρ < 2. Hence, since ρ ≤ 1, first-order conditions give maxima.

11 As usual the superscript˙denotes the time derivative.
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The left side of (15) is a second degree polynomial in S which must be zero for every value
of S. Therefore all its coefficients must be zero. You get

ẋ = −γ
(2x − c1)2

4(2 − ρ)
;

ẏ = a(t, x)y + b(t, x);

ż = −Ry −
⎛

⎝
n∑

j=1

Q j (y)

⎞

⎠ 1

4(2 − ρ)
;

where

γ :=
n∑

j=1

1

β jφ j
;

a(t, x) := −γ
(2x − c1)

2(2 − ρ)
;

b(t, x) := −2Rx + (δ − γ (c0 + c1Smax ))
(2x − c1)

2(2 − ρ)
;

δ :=
n∑

j=1

α j

β j
;

Q j (y) :=
[
c0 + c1Smax + y − α jφ j

]2

β jφ j
.

The terminal conditions are

x(1) = μ1; y(1) = μ2; z(1) = 0.

	


Proof of Proposition 2 Suppose, for simplicity of exposition, that n = 1. The proof extends
trivially to the case n > 1 following the approach of the proof of the previous proposition.
We denote by

p1(t, S) := p1,1(t, S); p2(t, S) := p1,2(t, S).

Assume that an interior feedback equilibrium
(
p∗
1(t, S), p∗

2(t, S)
)

exists.
Let V (t, S) be the value of the game at the time t with the state S. Then

(
p∗
1(t, S), p∗

2(t, S)
)

solve the HJB equation

−∂V

∂t
= max

0≤p1(·)≤p2(·)
RHS, V (1, S) = μ(S),

123



Annals of Operations Research (2024) 337:1135–1165 1161

where

RHS = π + ρπ1 + ∂V

∂S
(R − Ŵ1),

π = Z1(t, Ŵ1) − C(S)Ŵ1,

π1 = φ1

[
α1 − β1Ŵ1

]
Ŵ1 − Z1(t, Ŵ1),

Z1(t, Ŵ1(t)) =

⎧
⎪⎨

⎪⎩

p1(t)Ŵ1(t) if Ŵ1(t) ≤ B1(t);

p1(t)B1(t) + p2(t)
(
Ŵ1(t) − B1(t)

)
if Ŵ1(t) > B1(t);

Ŵ1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1φ1(t) − p2(t)

2β1φ1(t)
> B1(t), if p1(t) ≤ p2(t) < σ1(B1(t));

B1(t), if p1(t) ≤ σ1(B1(t)) ≤ p2(t);
α1φ1(t) − p1(t)

2β1φ1(t)
< B1(t), if σ1(B1(t)) < p1(t) ≤ p2(t);

σ1(B1(t)) := φ1(t)(α1 − 2β1B1(t)).
(
p∗
1, p

∗
2

)
maximizes RHS in the region

D = {(p1, p2)|0 ≤ p1 ≤ p2} .

The region D is the union of three subsets D = D1 ∪ D2 ∪ D3 having no internal points in
common.

D1 = {(p1, p2)|0 ≤ p1 ≤ p2 ≤ σ1} ;

D2 = {(p1, p2)|0 ≤ p1 ≤ σ1 ≤ p2} .

D3 = {(p1, p2)|σ1 ≤ p1 ≤ p2} ;
Assume that an equilibrium

(
p∗
1, p

∗
2

) ∈ D exists.
We distinguish three cases:

1.
(
p∗
1, p

∗
2

) ∈ D1.
In D1 it is

∂RHS

∂ p1
= (1 − ρ)B1 > 0.

It follows that p∗
1 = p∗

2 .
2.

(
p∗
1, p

∗
2

) ∈ D2.
In D2 it is

∂RHS

∂ p1
= (1 − ρ)B1 > 0.

It follows that p∗
1 = σ1. Moreover, since RHS does not depend on p2, there are infinite

equilibria (p∗
1 = σ1, p∗

2 = k) k ≥ σ1. In particular, (p∗
1 = σ1, p∗

2 = σ1) is an equilibrium.
Note that the value RHS(p∗

1 = σ1, p∗
2 = k) is the same for any k ≥ σ1.
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3.
(
p∗
1, p

∗
2

) ∈ D3.
In D3 RHS does not depend on p2 and

p∗
1 = argmax RHS(p1).

At each point (p∗
1, k), k ≥ p∗

1 RHS reaches its maximum. Hence there are infinite equi-
libria (p∗

1, k) k ≥ p∗
1 . In particular (p∗

1, p
∗
1) is an equilibrium.

Note that the value RHS(p∗
1, p

∗
2 = k) is the same for any k ≥ p∗

1 .

	

Proof of Proposition 3 At the second stage, first order condition gives the optimal demand for
water

D̂ = αφ − p

2βφ
.

At the first stage, the agency, foreseeing the response of the buyer, solves the following
optimization problem

max
p≥0; 0≤W≤D̂(p)

J (p,W ), (16)

subject to the state constraint S1 = S0 + R − W ≥ 0 (that is W ≤ S0 + R,) where

J (p,W ) = π + ρπ1 + μ(S1).

Since
∂ J

∂ p
= (1 − ρ)W ≥ 0, we have that the maximum of J occurs on the set

S = {(p,W ) | p̃ ≤ p ≤ αφ; W = D̂(p},
where

p̃ = max {0, p1} ; p1 = φ [α − 2β(S0 + R)] ;
p1 is the price such that D̂( p̃) = S0 + R. Problem (16) becomes

max
p̃≤p≤αφ

J (p, D̂(p)),

where

J (p) = (p − c0 − c1(Smax − S0))D̂(p) + ρ
[
φ(α − β D̂(p))D̂(p) − pD̂(p)

]
+ k(S0

+R − D̂(p)).

First order condition
d J (p)

dp
= 0 gives p = p̂, where

p̂ = k + c0 + c1 (Smax − S0) + αφ(1 − ρ)

2 − ρ
.

Note that p̂ > 0 and that p̂ < p1 iff R < M1, where

M1 := 2(2 − ρ)βφS0 − αφ + k + c0 + c1 (Smax − S0)

2βφ(2 − ρ)
.

Moreover p̂ < αφ iff σ > 0, where

σ := αφ − k − c0 − c1 (Smax − S0) .
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Note that p1 > 0 iff R < M2 where

M2 := α − 2βS0
2β

.

It is M1 < M2.
We distinguish two cases:

1.

σ > 0.

(a) If 0 ≤ R ≤ M1, then J is decreasing as p̃ ≤ p ≤ αφ so that the optimal price is
p∗ = p1. The quantity of water demanded and consumed is W ∗ = S0 + R. The
aquifer after consumption is empty, that is S1 = 0.

(b) If M1 < R, then J is increasing in the interval p̃ ≤ p ≤ p̂ and decreasing for
p̂ ≤ p ≤ αφ. The optimal price is p∗ = p̂. The quantity of water demanded and
consumed is

W ∗ = σ

2βφ(2 − ρ)
= αφ − k − c0 − c1 (Smax − S0)

2βφ(2 − ρ)
> 0.

The volume of water that remains in the aquifer after consumption is S1 = S0 + R −
W ∗ > 0.

2.

σ ≤ 0.

(a) If 0 ≤ R < M2, then p̃ = p1, J is decreasing as p̃ ≤ p ≤ αφ so that the optimal
price is p∗ = p1. The quantity of water demanded and consumed is W ∗ = S0 + R.

The aquifer after consumption is empty, that is S1 = 0.
(b) If M2 ≤ R, then p̃ = 0, J is decreasing as p̃ ≤ p ≤ αφ so that the optimal price is

p∗ = 0. The quantity of water demanded and consumed is W ∗ = α

2β
. The volume

of water that remains in the aquifer after consumption is S1 = S0 + R − α

2β
> 0.
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