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On transition matrices of Markov chains
corresponding to Hamiltonian cycles

Konstantin Avrachenkov∗ Ali Eshragh† Jerzy A. Filar‡

November 25, 2016

Abstract

In this paper, we present some algebraic properties of a particular class of
probability transition matrices, namely, Hamiltonian transition matrices. Each
matrix P in this class corresponds to a Hamiltonian cycle in a given graph G on
n nodes and to an irreducible, periodic, Markov chain. We show that a number
of important matrices traditionally associated with Markov chains, namely, the
stationary, fundamental, deviation and the hitting time matrix all have elegant
expansions in the first n−1 powers of P , whose coefficients can be explicitly derived.
We also consider the resolvent-like matrices associated with any given Hamiltonian
cycle and its reverse cycle and prove an identity about the product of these matrices.

1 Introduction

One of the central concepts in graph theory is the Hamiltonian cycle. Given a graph
G, a simple path that starts from one node, visits all nodes exactly once and returns to
the initial node is called a Hamiltonian cycle or a tour. It should be noted that in this
context, terms “Hamiltonian cycle” and “tour” are used, interchangeably. Accordingly,
we can define the Hamiltonian Cycle Problem (HCP), which is a well-known problem in
graph theory. Particularly, given a directed graph G, we are asked to determine whether
it contains at least one tour or not. If G contains at least one tour, then the graph is
called Hamiltonian and otherwise, that is, if there exists no tour in G, it is called a non-
Hamiltonian graph. In spite of its simple appearance, HCP is an NP-complete problem
[7, Chapter 3].

One of the approaches to tackle this problem was proposed in Filar and Krass [5], where
the deterministic Hamiltonian cycle problem is converted to a particular average-reward
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Markov decision process. In that setting a stationary policy selects a Markov chain whose
transitions represent probabilities of travelling on various arcs of a given graph. Of course,
if the stationary policy is deterministic, the resulting probability transition matrix has only
0− 1 entries and thus defines a spanning subgraph of the original graph. If, in addition,
the latter chain is irreducible the spanning subgraph becomes a Hamiltonian cycle. That
was the motivation of a new line of research for the HCP that was summarized in [6].
Essential in this approach are the expansions of key matrices such as the stationary and
fundamental matrices associated with various Markov chains induced by the graph G
under consideration. Of course, in general, these expansions are infinite series. However,
if we restrict ourselves to probability transition matrices induced by Hamiltonian cycles,
the preceding expansions reduce to elegant finite series with easily computable coefficients.

The bulk of this paper is devoted to collecting and deriving the above series expansions
with the help of Markov chains techniques. To the best of our knowledge the explicit
forms of all these series - with closed form expressions for their coefficients - have not
been reported elsewhere. In addition, we derive (by similar techniques) an apparently
novel identity for the product of the resolvent-like matrices associated with a Hamiltonian
cycle and its reverse. Recall that, in an undirected graph, every Hamiltonian cycle is
accompanied by a reverse cycle whose probability transition matrix is simply the transpose
of that corresponding to the original cycle.

We note that general properties of probability transition matrices and their companions
such as fundamental and first hitting time matrices were studied extensively in the classical
literature on Markov chains (e.g., see Kemeny and Snell [9]). In more recent years,
perturbation properties of these matrices received special attention (e.g., see the book [1]
and Hunter [8]).

2 Hamiltonian Transition Matrices

Consider a given labeled graph G on n nodes. Suppose V = {1, 2, . . . , n} and A are,
respectively, sets of all nodes and arcs in graph G. For each node i, we can define two
subsets A(i) = {a ∈ V | (i, a) ∈ A} and B(i) = {b ∈ V | (b, i) ∈ A}. If G is Hamiltonian,
then corresponding to each tour τ in G, we can construct a probability transition matrix,
namely a Hamiltonian transition matrix.

Definition 2.1. Suppose the Hamiltonian graph G is given and τ is a tour in G. We say
the probability transition matrix P is a “Hamiltonian transition matrix” induced by τ if
it is a 0− 1 matrix such that its positive elements correspond to the arcs of the tour τ in
G.

For instance, the components of the Hamiltonian transition matrix1 P associated with

1Henceforth, for simplicity, we call Hamiltonian transition matrices just Hamiltonian matrices.
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the standard tour “1→ 2→ · · · → n→ 1” is

pij =


1 for i = 1, 2, . . . , n− 1 , j = i+ 1

1 for i = n , j = 1

0 otherwise

.

Of course, Hamiltonian matrices are special permutation matrices but, in this note, it is
their nature as special probability transition matrices of Markov chains that we focus on.
Undoubtedly, results we present here could also be derived by other methods that do not
exploit Markov chain interpretations but matrices such as the fundamental, deviation and
stationary distribution matrix are, perhaps, of most interest to researchers using Markov
chains as modelling tools.

It should be noted that in all subsequent sections, we suppose that P is a Hamiltonian
matrix induced by a tour in the Hamiltonian graph G on n nodes, unless, otherwise stated.
Also, we adopt the convention that matrix AT denotes the transpose of the matrix A.

We begin by recalling a number of obvious properties of Hamiltonian matrices that
follow directly definitions and Chapman-Kolmogorov equations. These are summarised
in the following lemma.

Lemma 2.2. Suppose that the Hamiltonian matrix P is induced by the tour τ :
“`0( = i )→ `1 → · · · → `n−1 → `0”.

(i) For values of r = 0, 1, . . . , n− 1, the ijth component of matrix P r will be equal to

p
(r)
ij = δ`r j ,

where δ is the Kronecker delta.

(ii) The Hamiltonian matrix P has period n and, more generally

P kn+r = P r for k = 0, 1, 2, . . . and r = 0, 1, 2, . . . , n− 1 . (1)

(iii) The eigenvalues of P are the n roots of unity.

3 Markov Chains

According to Definition 2.1, any Hamiltonian matrix is a probability transition matrix.
This implies that we can derive all properties of probability transition matrices for them,
as well.

Remark 3.1. According to Lemma 2.2, the Markov chain defined by each Hamiltonian
matrix is irreducible. This indicates that for each Hamiltonian matrix, there exists a
unique stationary distribution, as well as, Cesaro limit matrix. Moreover, it is easy to see
that the former follows the uniform distribution.
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Proposition 3.2. For Hamiltonian matrix P ,

(i) the Cesaro limit matrix, denoted by P ∗, is equal to 1
n
J , where J is a square matrix

with all entries equal to 1;

(ii) matrix P ∗ can be expressed in a finite sum of powers of P as follows

P ∗ =
1

n

n−1∑
r=0

P r.

Proof.

(i) This result can be obtained immediately from Remark 3.1.

(ii) By considering part (i), we just need to show that
∑n−1

r=0 P
r = J . Let us suppose

that the Hamiltonian matrix P is associated with the tour “`0(= i) → `1 → · · · →
`n−1 → `0”. Now, by considering Lemma 2.2, the ijth component of summation∑n−1

r=0 P
r is equal to

n−1∑
r=0

p
(r)
ij =

n−1∑
r=0

δ`rj =
n∑
k=1

δkj = 1 .

�
One may be interested in defining the (first) hitting time matrix H, such that its ijth

component, hij, identifies the hitting time of node j, starting from node i and following
Markov chain defined by the Hamiltonian matrix P . From Lemma 2.2, it is readily seen
that

hij = min
0≤r≤n−1

{r| p(r)ij > 0} .

Accordingly, we can express the hitting time matrix in terms of the first n− 1 powers of
P .

Lemma 3.3. For a Hamiltonian matrix P , the hitting time matrix can be expressed in
terms of the first n− 1 powers of P as follows

H =
n−1∑
r=0

rP r . (2)

Proof. Without loss of generality, suppose that the Hamiltonian matrix P is
associated with tour “`0(= i) → `1 → · · · → `k(= j) → · · · → `n−1 → `0”, that is,
hij = k, for i, j ∈ V . By considering Lemma 2.2, the ijth element of the right hand side
of (2) is equal to

n−1∑
r=0

rδ`r j = k = hij .
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�
Surprisingly, irrespective of the Hamiltonian cycle that defines matrix P , we can show

that the inverse of corresponding hitting time matrix H can be expressed in sum of finite
powers of P , as well. For this purpose, firstly, we need to show the following lemma.

Lemma 3.4. Consider a Hamiltonian matrix P and its corresponding hitting time matrix
H. We have

(i) HP = H − J + nI ;

(ii) HJ = n(n−1)
2

J .

Proof.

(i) By considering Lemma 3.3, Lemma 2.2 and Proposition 3.2, we will have

HP =
n−1∑
r=0

rP r+1 =
n∑
r=1

(r − 1)P r

=
n∑
r=1

rP r −
n∑
r=1

P r = (
n−1∑
r=0

rP r + nI)−
n−1∑
r=0

P r

= H − J + nI .

(ii) It is clear that J = 11T . The ith component of vector H1 is equal to

n∑
k=1

hik =
n−1∑
r=0

r =
n(n− 1)

2
.

This implies that H1 = n(n−1)
2

1, and accordingly, H11T = n(n−1)
2

J .

�

Proposition 3.5. Consider a Hamiltonian matrix P and its corresponding hitting time
matrix H. The inverse of matrix H exists and can be expressed as a finite sum of powers
of matrix P as follows:

H−1 = −n
2 − n− 2

n2(n− 1)
I +

n2 − n+ 2

n2(n− 1)
P +

2

n2(n− 1)

n−1∑
r=2

P r . (3)

Proof. Obvjously, if we can show that the product of matrix H and the right hand
side of (3) is equal to I, then, simultaneously, we have shown that the inverse of matrix
H exists and also equal to (3). For this purpose, we denote the right hand side of (3) by
Γ and rewrite it as follows:

Γ =
2

n2(n− 1)

n−1∑
r=0

P r − 1

n
I +

1

n
P ,
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which is, from Proposition 3.2, equivalent to

Γ =
2

n2(n− 1)
11T − 1

n
I +

1

n
P .

Now, by exploiting Lemma 3.4, we will have

HΓ =
2

n2(n− 1)
HJ − 1

n
H +

1

n
HP

=
2

n2(n− 1)

(
n(n− 1)

2
J

)
− 1

n
H +

1

n
(H − J + nI)

= I .

Consequently, the H−1 exists and is equal to Γ. �

4 Matrices Associated with Markov Chains

In this section, we, mainly, want to derive explicit formulation for classical matrices in
Markov decision processes induced by Hamiltonian matrices. At the outset, we recall such
matrices from [10, Appendix A]. It must be noted that following definitions hold not only
for Hamiltonian matrices, but also for any probability transition matrix P .

The fundamental matrix is denoted by F and defined as follows

F := (I − P + P ∗)−1 , (4)

where P is a probability transition matrix and P ∗ is its Cesaro limit matrix. Accordingly,
we can define the deviation matrix through

D := F − P ∗ . (5)

The main properties of these matrices asserted in the following theorem (e.g., see [10,
Appendix A]):

Theorem 4.1. If P is a probability transition matrix with Cesaro limit matrix P ∗, then
(i) P ∗2 = P ∗; (ii) PP ∗ = P ∗P = P ∗; (iii) (P − P ∗)k = P k − P ∗ for k = 1, 2, . . .;
(iv) FP ∗ = P ∗F = P ∗; (v) DP ∗ = P ∗D = 0.

Based on mentioned definitions and notations, we want to know if we can express the
fundamental matrix, as well as, the deviation matrix induced by a Hamiltonian matrix P
as a finite sum of powers of P .

Proposition 4.2. For a Hamiltonian matrix P , the corresponding fundamental matrix
F and deviation matrix D, can be expressed as follows:

F =
n−1∑
r=0

n+ 1− 2r

2n
P r ; (6)

D =
n−1∑
r=0

n− 1− 2r

2n
P r . (7)
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Proof. It is apparent from (4) that, if we can show (I −P +P ∗)
∑n−1

r=0
n+1−2r

2n
P r = I,

then we shall conclude that (6) holds. Hence, by exploiting part (ii) of Theorem 4.1 and
Proposition 3.2, we will have

(I − P + P ∗)
n−1∑
r=0

n+ 1− 2r

2n
P r

=
n−1∑
r=0

n+ 1− 2r

2n
P r −

n−1∑
r=0

n+ 1− 2r

2n
P r+1 +

n−1∑
r=0

n+ 1− 2r

2n
P ∗

=
n−1∑
r=0

n+ 1− 2r

2n
P r −

n∑
r=1

n+ 3− 2r

2n
P r + P ∗

=
n− 1

n
I − 1

n

n−1∑
r=1

P r + P ∗

=
n− 1

n
I − (P ∗ − 1

n
I) + P ∗

= I .

Now, we just need to utilize (5), as well as Proposition 3.2 to show (7) holds.

D = F − P ∗ =
n−1∑
r=0

n+ 1− 2r

2n
P r − 1

n

n−1∑
r=0

P r

=
n−1∑
r=0

n− 1− 2r

2n
P r .

�

Corollary 4.3. If P is a Hamiltonian matrix, then the ijth component of its corresponding
fundamental matrix F is equal to

n+ 1− 2hij
2n

. (8)

Proof. Recalling Lemma 3.3, we know that for a fixed pair (i, j), all components

p
(r)
ij are equal to zero, except for r = hij. More precisely, p

(r)
ij = δr hij . Therefore, from

Proposition 4.2 we can see that the ijth component of the fundamental matrix F is equal
to

n+1−2hij
2n

. �

Remark 4.4. Borkar et. al. [2] exploited the optional sampling theorem to develop
explicit formulae for entries of a fundamental matrix F induced by a doubly stochastic
matrix2 P . More precisely, they expressed each entry of F in terms of the hitting times.
As each Hamiltonian matrix is also a doubly stochastic matrix, naturally, (8) coincides
with results in [2].

2 A matrix is called doubly stochastic, if its entries are non-negative, as well as, all rows and columns
sum up 1.
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Corollary 4.5. For a given Hamiltonian matrix, the powers of the corresponding
fundamental matrix as well as deviation matrix can be expressed as a sum of the first
n− 1 powers of matrix P , that is,

F k =
n−1∑
r=0

fkr P
r for k = 1, 2, . . . (9)

Dk =
n−1∑
r=0

dkrP
r for k = 1, 2, . . . , (10)

where fkr and dkr are real coefficients.

Proof. As Proposition 4.2 expresses both F and D as a sum of the first n powers
of matrix P , and also, due the periodicity of matrix P mentioned in Lemma 2.2, the
existence of finite series in (9) and (10) will yield. �

Now, one may be interested in finding coefficients fkr and dkr . Obviously, from
Proposition 4.2, we know that,

f 1
r =

n+ 1− 2r

2n
; d1r =

n− 1− 2r

2n
,

for r = 0, 1, . . . , n− 1. Hence, if we can find a recursive formulation for them, we will be
able to calculate them, directly.

Proposition 4.6. For a given Hamiltonian matrix P and its corresponding fundamental
matrix, the following hold for k = 1, 2, . . .:

(i)
n−1∑
r=0

fkr = 1 ,

(ii)


fk+1
0 = fk0 +

1

n

n−1∑
s=1

sfks −
n− 1

2n

fk+1
r = fk+1

0 +
r∑
s=1

fks −
r

n
for r = 1, 2, . . . , n− 1

.

Proof.

(i) If we multiply both sides of Equation (9) by P ∗ and utilize parts (ii) and (iv) of
Theorem 4.1, we will have

P ∗ =
n−1∑
r=0

fkr P
∗ for k = 1, 2, . . . ,

or equivalently,

n−1∑
r=0

fkr = 1 for k = 1, 2, . . . .
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(ii) We start with the trivial equation F k = F k+1F−1 for k = 1, 2, . . .. By definition of
F , we can write it as F k = F k+1(I −P +P ∗). Now, analogous to the previous part,
we can simplify the latter as follows:

n−1∑
r=0

fkr P
r =

n−1∑
r=0

fk+1
r P r −

n−1∑
r=0

fk+1
r P r+1 +

n−1∑
r=0

fk+1
r P ∗ .

Now by considering part (i) of this proposition, as well as, part (ii) of Proposition
3.2, we will have

n−1∑
r=0

fkr P
r =

n−1∑
r=0

fk+1
r P r −

n−1∑
r=0

fk+1
r P r+1 +

1

n

n−1∑
r=0

P r ,

or, equivalently,

fk0 I +
n−1∑
r=1

fkr P
r = (fk+1

0 − fk+1
n−1 −

1

n
)I +

n−1∑
r=1

(fk+1
r − fk+1

r−1 +
1

n
)P r . (11)

Similar to the previous part, by equating coefficients of the same powers of P in
both sides of (11), we can derive the following recursive equation:

fk+1
r = fk+1

0 +
r∑
s=1

fks −
r

n
for r = 1, 2, . . . , n− 1 . (12)

Now, by substituting (12) into equation
∑n−1

r=0 f
k+1
r = 1, grouping terms involving

fk+1
0 on the left side, we will obtain

fk+1
0 =

n+ 1

2n
− 1

n

n−1∑
r=1

r∑
s=1

fks =
n+ 1

2n
− 1

n

n−1∑
s=1

n−1∑
r=s

fks

=
n+ 1

2n
− 1

n

n−1∑
s=1

(n− s)fks =
n+ 1

2n
− 1

n

(
n
n−1∑
s=1

fks −
n−1∑
s=1

sfks

)

=
n+ 1

2n
− (1− fk0 ) +

1

n

n−1∑
s=1

sfks = fk0 +
1

n

n−1∑
s=1

sfks −
n− 1

2n
.

�
In order to derive analogous recursive formula for coefficients dkr , we first find a linear

relationship between coefficients dkr and fkr , and then, exploit Proposition 4.6.

Lemma 4.7. For a given Hamiltonian matrix P and the corresponding fundamental and
deviation matrices,

dkr = fkr −
1

n
for r = 0, 1, . . . , n− 1 , k = 1, 2, . . . .
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Proof. Recalling definition of deviation matrix D given in (5), we have D = F −P ∗.
This implies that

Dk = (F − P ∗)k =
k∑
s=0

(
n

s

)
F s(−P ∗)k−s = F k −

k∑
s=1

(
n

s

)
(−1)k−sP ∗ = F k − P ∗.

Therefore, by considering (9), (10) and Proposition 3.2, we have

n−1∑
r=0

dkrP
r =

n−1∑
r=0

fkr P
r − 1

n

n−1∑
r=0

P r =
n−1∑
r=0

(fkr −
1

n
)P r. (13)

Now, by equating coefficient of the same powers of P in both sides of (13), we derive

dkr = fkr −
1

n
.

�

Corollary 4.8. For a given Hamiltonian matrix P and the corresponding deviation
matrix, the following hold for k = 1, 2, . . .:

(i)
∑n−1

r=0 d
k
r = 0 ,

(ii)


dk+1
0 = dk0 +

1

n

n−1∑
s=0

sdks

dk+1
r = dk+1

0 +
r∑
s=1

dks for r = 1, 2, . . . , n− 1
.

Proof. Both two parts (i) and (ii) can be easily found by replacing fkr with dkr + 1
n

in
parts (i)–(ii) of Proposition 4.6. �

Another matrix that plays an essential role in the theory of discounted Markov decision
processes we shall name the β-resolvent matrix. More precisely, if P is a probability
transition matrix and β ∈ (0, 1) is a discount factor, the β-resolvent matrix, R(β), is
defined as follows:

R(β) := (I − βP )−1 . (14)

Analogous to the fundamental and deviation matrices, for the special case of
Hamiltonian matrix P , we can derive a finite sum of powers of matrix P for R(β), as
expressed in the following proposition.

Proposition 4.9. If P is a Hamiltonian matrix, then for any discount factor β ∈ (0, 1),

R(β) =
1

1− βn
n−1∑
r=0

βrP r .

10



Proof. By exploiting Lemma 2.2, we will have

R(β) =
∞∑
i=0

βiP i =
∞∑
s=0

n−1∑
r=0

βsn+rP sn+r =
n−1∑
r=0

∞∑
s=0

βsn+rP r =
1

1− βn
n−1∑
r=0

βrP r .

�

Corollary 4.10. If P is a Hamiltonian matrix, the ijth component of its β-resolvent
matrix R(β) is equal to

βhij

1− βn
.

Proof. Recalling Lemma 3.3, we know that for a fix pair (i, j), all components p
(r)
ij are

equal to zero, except for r = hij. More precisely, p
(r)
ij = δr hij . Therefore, from Proposition

4.9, we can see that the ijth component of the β-resolvent matrix is equal to βhij

1−βn . �

5 Undirected Graphs

Let us consider the class of undirected graphs. Clearly, if a given undirected graph G is
Hamiltonian, then corresponding to each tour τ : “`0 → `1 → · · · → `n−1 → `0” in G,
its reverse, τR : “`0 → `n−1 → · · · → `1 → `0”, also exists in G. Accordingly, if the
Hamiltonian matrix P is corresponding to tour τ , then its transpose, P T is corresponding
to the reverse tour τR. Hence, the following result can be obtained, immediately:

(P T )r = P n−r for r = 0, 1, . . . , n− 1 . (15)

It should be noted that in this section, our results concern undirected graphs, unless
otherwise is mentioned.

We can also derive the following result for hitting time matrix in an undirected graph.

Lemma 5.1. Consider the Hamiltonian matrix P corresponding to tour τ and its
corresponding hitting time matrix H. If HR denotes the hitting time matrix associated
with the reverse tour τR, we will have

(i) HR =
n−1∑
r=1

(n− r)P r ;

(ii) H +HR = n(J − I) .

Proof.

11



(i) By utilizing Lemma 3.3, as well as, Equation (15), we will have

HR =
n−1∑
r=0

r(P T )r =
n−1∑
r=1

r(P T )r

=
n−1∑
r=1

rP n−r =
n−1∑
r=1

(n− r)P r

=
n−1∑
r=1

(n− r)P r .

(ii) Now, by considering part (i), we should have

H +HR =
n−1∑
r=0

rP r +
n−1∑
r=1

(n− r)P r

=
n−1∑
r=1

nP r = n
n−1∑
r=1

P r

= n(J − I) ,

where the last equality comes from Proposition 3.2.

�
Consider the Hamiltonian matrix P and its corresponding β-resolvent matrix R(β).

Let RR(β) denote the β-resolvent matrix associated with the reverse tour corresponding
to P , that is, RR(β) = (I − βP T )−1. The following proposition expresses an interesting
relationship between them. However, we need the following lemma to prove it, in advance.

Lemma 5.2. For a Hamiltonian matrix P , the ijth component of its corresponding matrix
RR(β) is equal to

rRij (β) =
βhji

1− βn
.

Proof. By considering Corollary 4.10,

rRij (β) =
βh
R
ij

1− βn
,

where hRij is the length of the path from i to j in the reverse tour. Apparently, such length
is equal to the length of the path from j to i in the direct tour, i.e., hji. �

Proposition 5.3. If P is a Hamiltonian matrix corresponding to a tour τ , then for any
discount factor β ∈ (0, 1),

R(β)RR(β) =
1

1− β2

(
R(β) +RR(β)− I

)
. (16)
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Proof. Recalling Corollary 4.10 and Lemma 5.2, it is readily seen that the right hand
side of (16) is equal to

1

1− β2

(
βhij

1− βn
+

βhji

1− βn
− δij

)
. (17)

Therefore, we just need to show that the corresponding components of the left hand side
are equal to (17), as well. The ith diagonal element of the left hand side is equal to

[R(β)RR(β)]ii =
n∑
k=1

rik(β)rRki(β) =
n∑
k=1

(
βhik

1− βn
)(

βhik

1− βn
)

=
1

(1− βn)2

n∑
k=1

β2hik =
1

(1− βn)2

n−1∑
s=0

β2s

=
1

(1− βn)2

(
1− β2n

1− β2

)
=

1 + βn

(1− βn)(1− β2)

=
1

1− β2

(
1

1− βn
+

1

1− βn
− 1

)
=

1

1− β2

(
βhii

1− βn
+

βhii

1− βn
− δii

)
.

Analogously, let us consider the ijth component of R(β)RR(β) for j 6= i. It follows that

[R(β)RR(β)]ij =
n∑
k=1

rik(β)rRkj(β) =
n∑
k=1

(
βhik

1− βn
)(

βhjk

1− βn
)

=
1

(1− βn)2

n∑
k=1

βhik+hjk . (18)

Now, let us partition the set of all nodes V into two subsets V1 and V2, such that the
former comprises all nodes in tour τ , starting from i up to one before j and the latter is
its complement. Obviously, the cardinality of subsets V1 and V2 are equal to hij and hji,
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respectively. Hence, (18) is equal to

[R(β)RR(β)]ij =
1

(1− βn)2

(∑
k∈V1

βhik+hjk +
∑
k∈V2

βhik+hjk

)

=
1

(1− βn)2

(∑
k∈V1

β2hik+hji +
∑
k∈V2

βhij+2hjk

)

=
1

(1− βn)2

(
βhji

∑
k∈V1

β2hik + βhij
∑
k∈V2

β2hjk

)

=
1

(1− βn)2

βhji hij∑
s=0

β2s + βhij
hji∑
s=0

β2s


=

1

(1− βn)2

(
βhji

1− β2hij

1− β2
+ βhij

1− β2hji

1− β2

)
=

1

(1− βn)2(1− β2)

(
βhji − βhji+2hij + βhij − βhij+2hji

)
.

Now, by exploiting the fact that hij + hji = n, we will have

[R(β)RR(β)]ij =
1

(1− βn)2(1− β2)

(
βhji − βn+hij + βhij − βn+hji

)
=

1

(1− βn)2(1− β2)

(
βhij(1− βn) + βhji(1− βn)

)
=

1

(1− β2)

(
βhij

1− βn
+

βhji

1− βn

)
=

1

(1− β2)

(
rij + rRij − δij

)
.

�

6 A New Parameter-Free Polytope

In this section we introduce an application of theoretical results presented in previous
sections to design a heuristic algorithm to determine the non-Hamiltonicity of a given
graph. It is known that each Discounted Markov Decision Process (DMDP) is associated
with the system of linear equations (e.g., see [6, Chapter 2] and [10, Chapter 6]):

xf (β)T (I − βPf ) := γT , (19)

or, equivalently,

n∑
i=1

xi(δij − βpij) = γj for j = 1, 2, . . . , n , (20)

14



where γ is the initial distribution. Furthermore, by assuming xf (β) > 0 and defining
xia := xi f(i, a), we can rewrite the left hand side of (20) as below:

n∑
i=1

xi(δij − βpij) =
n∑
i=1

xi
∑
a∈A(i)

(δij − βpij(a))f(i, a) =
n∑
i=1

xi
∑
a∈A(i)

(δij − βpij(a))
xia
xi

=
∑
a∈A(j)

xja − β
∑
b∈B(j)

xbj .

Thus, (20) is simplified as below:∑
a∈A(j)

xja − β
∑
b∈B(j)

xbj = γj for j = 1, 2, . . . , n . (21)

In 2000, Feinberg [4] converted HCP to a class of DMDPs and showed that HCP can
be reduced to the problem of finding a feasible deterministic policy for a DMDP with
constraints by proving the following theorem:

Theorem 6.1. Consider the following linear constraints regarding the given graph G:∑
a∈A(i)

yia − β
∑
b∈B(i)

ybi = δi1 for all i ∈ V (22)

∑
a∈A(1)

y1a =
1

1− βn
(23)

yia ≥ 0 for all i ∈ V , a ∈ A(i) (24)

where β is a fixed discount factor chosen arbitrarily from interval [0, 1). The graph G
is Hamiltonian if and only if the linear Constraints (22)–(24) have at least one feasible
solution y corresponding to a deterministic policy the so-called “Hamiltonian policy”.
That is, if for each i ∈ V, there is exactly one a ∈ A(i) such that, yia > 0. In other words,

f(i, a) :=
yia∑

j∈A(i)

yij
∈ {0, 1} ; ∀ i ∈ V , a ∈ A(i) .

If such solution is found, then the corresponding deterministic policy f traces out a
Hamiltonian cycle in G.

As an example, let us construct Constraints (22)–(24) for the graph given in Figure 1,
as below:

y12 + y13 + y14 − βy21 − βy41 = 1

y21 + y23 − βy12 − βy32 = 0

y32 + y34 − βy13 − βy23 − βy43 = 0

y41 + y43 − βy14 − βy34 = 0

y12 + y13 + y14 =
1

1− β4

y12, y13, y14, y21, y23, y32, y34, y41, y43 ≥ 0

15



Figure 1: A directed Hamiltonian graph on four nodes

It is easy to check that{
y12 = 1

1−β4 , y23 = β
1−β4 , y34 = β2

1−β4 , y41 = β3

1−β4

y13 = y14 = y21 = y32 = y43 = 0

is a feasible solution of above constraints. Furthermore, this solution is associated with
the Hamiltonian policy{

f(1, 2) = 1 , f(2, 3) = 1 , f(3, 4) = 1 , f(4, 1) = 1

f(1, 3) = f(1, 4) = f(2, 1) = f(3, 2) = f(4, 3) = 0
,

that traces out the standard tour “1→ 2→ 3→ 4→ 1”.
Now, suppose that the Hamiltonian graph G on n nodes is given and P is a

corresponding Hamiltonian matrix. Similarly to Feinberg’s approach [4] to derive
Constraints (22)–(24), we can define the following set of constraints:

xk(β)T (I − βP ) := (1− βn)eTk for k = 1, 2, . . . , n , (25)

where ek is a unit vector with one 1 at kth element 0 elsewhere. By exploiting Proposition
4.9 we have:

xk(β)T = (1− βn)eTkR
−1(β) = ekI + βekP + β2ekP

2 + · · ·+ βn−1ekP
n−1 .

Now, one may define a new vector xkr := ekP
r for r = 0, 1, 2, . . . , n − 1. Clearly, all

components of vector xkr are equal to 0 except that one of them that is equal to 1. This
unique element identifies the rth node visited on a Hamiltonian cycle starting from node
k. Hence, we can rewrite xk(β) in terms of vectors xkr as follows:

xk(β) = xk0 + βxk1 + β2xk2 + · · ·+ βn−1xkn−1 . (26)

It is readily seen that (26) supports the generic structure of solutions corresponding to
Hamiltonian policies given in Theorem 6.1 and developed in [3]. Let us move back to
Constraints (25) with the right side of (26) in place of xk(β) to obtain

(xk0 + βxk1 + β2xk2 + · · ·+ βn−1xkn−1)
TR := (1− βn)eTk for k = 1, 2, . . . , n .
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Or, equivalently,

xk0 + β(xk1 − P Txk0) + β2(xk2 − P Txk1) + · · ·
+βn−1(xkn−1 − P Txkn−2)− βnP Txkn−1 = ek − βnek . (27)

Now, by equating coefficients of powers of β in both sides of the latter equation, we obtain
the following set of linear constraints which is free of the parameter β:

xk0 = ek (28)

xkr − P Txkr−1 = 0 for r = 2, 3, . . . , n− 1 (29)

P Txkn−1 = ek .‘ (30)

Analogous to the way that we derived (21), we can expand (28)–(30) as follows:∑
a∈A(i)

xk0,ia = δki for i, k = 1, 2, . . . , n (31)

∑
a∈A(i)

xkr,ia −
∑
b∈B(i)

xkr−1,bi = 0 for i, k = 1, 2, . . . , n, r = 1, 2, . . . , n− 1 (32)

∑
b∈B(i)

xkn−1,bi = δki for i, k = 1, 2, . . . , n . (33)

Based on the way we define vectors xkr , we now have an interesting interpretation for
components xkr,ia. More precisely, if these vectors indeed came from a Hamiltonian
transition matrix P , then we may demand that xkr,ia be equal to 1 if arc (i, a) is visited
at the rth step of a Hamiltonian cycle starting from node k and otherwise equal to 0.
However, due to complexity associated with the introduction of 0-1 variables, we can
relax them to vary between 0 and 1 and try to establish new linear constraints designed
to induce them to behave somewhat like 0-1 variables. New constraints which can be
augmented by utilizing this interpretation are listed below:

(i) If a node i is visited at rth step of a Hamiltonian cycle starting from node k, then
on the same tour, node k should be visited at n− r steps starting from node i:∑

a∈A(i)

xkr,ia −
∑
a∈A(k)

xin−r,ka = 0 for i, k = 1, 2, . . . , n, i 6= k, r = 1, 2, . . . , n− 1 ;

(34)

(ii) If an arc (i, a) belongs to a particular Hamiltonian cycle, then it should be visited
from any starting node on that tour, in particular from starting nodes k and j:

n−1∑
r=0

xkr,ia −
n−1∑
r=0

xjr,ia = 0 for i, k, j = 1, 2, . . . , n, k < j, a ∈ A(i) ; (35)
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(iii) If an arc (i, a) belongs to a particular Hamiltonian cycle, then based on the starting
node, it can be visited at any steps of 0, 1, . . . , n− 1 on that tour:

n∑
k=1

xkr,ia −
n∑
k=1

xkt,ia = 0 for i = 1, 2, . . . , n, r, t = 0, 1, . . . , n− 1, r < t, a ∈ A(i) ;

(36)

Of course, if (i, a) does not belong to a Hamiltonian cycle, both terms on the left
side of (36) are 0.

(iv) Starting from node k, we must visit node i at some step in the next n− 1 steps:

n−1∑
r=0

∑
a∈A(i)

xkr,ia = 1 for i, k = 1, 2, . . . , n ; (37)

(v) Starting from node k, we must visit exactly one node at rth step:
n∑
i=1

∑
a∈A(i)

xkr,ia = 1 for k = 1, 2, . . . , n, r = 0, 1, . . . , n− 1 ; (38)

(vi) In order to tighten the whole feasible region, we can exploit the notion of a “shortest
path”. For this purpose, let us assign length 1 to all arcs of graph G. If θki is the
length of the shortest path between nodes k and i in graph G, starting from node
k, node i cannot be visited earlier than θki steps. Moreover, starting from node k,
node i cannot be visited later than n− θik steps (on a Hamiltonian cycle), as well:

xkr,ia = 0 for k, i = 1, 2, . . . , n, a ∈ A(i), r < θki, r ≥ n− θak ; (39)

(vii) If k is the starting node, it should not be revisited before the last step:

xkr,ka = 0 for k = 1, 2, . . . , n, a ∈ A(k), r = 1, 2, . . . , n− 1 (40)

xkr,bk = 0 for k = 1, 2, . . . , n, b ∈ B(k), r = 0, 1, . . . , n− 2 ; (41)

(viii) Finally, all variables should be non-negative:

xkr,ia ≥ 0 for i, k = 1, 2, . . . , n, r = 0, 1, . . . , n− 1, a ∈ A(i) . (42)

Let us denote the polytope defined by the set of linear Constraints (31)–(42), PF . This
model comprises “n2|A|” variables and “2n3+n2+n+n(n−1)|A|” constraints (excluding
non-negativity). Therefore, the number of variables and constraints are bounded above
by n4−n3 and n4+2n2+n, respectively. Moreover, for the special family of cubic graphs3,
the number of variables and constraints will be 3n3 and 5n3 − 2n2 + n, respectively.

Clearly, if we force all xkr,ia variables to be binary variables, then the polytope PF
will be infeasible for all non-Hamiltonian graphs. However, we hope that by relaxing
such 0-1 condition, this model could still recognize non-Hamiltonian graphs by showing
infeasibility.

3 A graph is called cubic, if degrees of all its nodes are equal to three.
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n Number of Bridge Graphs Eliminated Number of NBNH Eliminated Ratio
10 1 1 1 0 0
12 4 4 1 0 0
14 29 29 6 1 0.167
16 186 186 33 6 0.182
18 1435 1435 231 42 0.182

Table 1: Solving HCP for non-Hamiltonian cubic graphs varying from 10-18 nodes

6.1 Numerical Results

We have tested several Hamiltonian and non-Hamiltonian cubic graphs through polytope
PF . So far, it has been successful in recognizing all bridge cubic graphs4 on 10, 12, 14,
16 and 18 nodes by showing infeasibility. Surprisingly, perhaps, it could also eliminate
some of the non-bridge non-Hamiltonian cubic graphs (NBNH for short) by showing
infeasibility. Table 1 displays the result of these experiments.

In Table 1, from left, the first column shows the number of nodes in the family of cubic
graphs, the second column indicates the total number of bridge graphs in that particular
family, the third columns displays the number of such bridge graphs which made the
corresponding polytope PF infeasible, the fourth column indicates the total number of
NBNH graphs in that particular family, the fifth columns displays the number of such
NHNB graphs which made the corresponding polytope PF infeasible and the last column
gives the ratio of the fifth column over the fourth one.
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