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Abstract

Recent work has shown that Neural Ordinary Differential Equations (ODEs)
can serve as generative models of images using the perspective of Continuous
Normalizing Flows (CNFs). Such models offer exact likelihood calculation, and
invertible generation/density estimation. In this work we introduce a Multi-
Resolution variant of such models (MRCNF), by characterizing the conditional
distribution over the additional information required to generate a fine image
that is consistent with the coarse image. We introduce a transformation between
resolutions that allows for no change in the log likelihood. We show that this
approach yields comparable likelihood values for various image datasets, with
improved performance at higher resolutions, with fewer parameters, using only
one GPU. Further, we examine the out-of-distribution properties of MRCNFs, and
find that they are similar to those of other likelihood-based generative models.

Keywords: Continuous Normalizing Flows, Image generation, wavelet
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1 Introduction

Reversible generative models derived through the use of the change of variables
technique [1ś4] are growing in interest as alternatives to generative models based on
Generative Adversarial Networks (GANs) [5] and Variational Autoencoders (VAEs) [6].
While GANs and VAEs have been able to produce visually impressive samples of
images, they have a number of limitations. A change of variables approach facilitates
the transformation of a simple base probability distribution into a more complex model
distribution. Reversible generative models using this technique are attractive because
they enable efficient density estimation, efficient sampling, and computation of exact
likelihoods.

A promising variation of the change-of-variable approach is based on the use of
a continuous time variant of normalizing ŕows [7ś9], which uses an integral over
continuous time dynamics to transform a base distribution into the model distribution,
called Continuous Normalizing Flows (CNF). This approach uses ordinary differential
equations (ODEs) speciőed by a neural network, or Neural ODEs. CNFs have been
shown to be capable of modelling complex distributions such as those associated with
images.

Fig. 1: The architecture of our Multi-Resolution Continuous Normalizing Flow
(MRCNF) method (best viewed in color). Continuous normalizing ŕows (CNFs) gs are
used to generate images xs from noise zs at each resolution, with those at őner resolu-
tions conditioned (dashed lines) on the coarser image one level above xs+1, except at
the coarsest level where it is unconditional. Every őner CNF produces an intermediate
image ys, which is then combined with the immediate coarser image xs+1 using a linear
map M from Equation 11 to form xs. The multiscale maps are deőned by Equation 20.

While this new paradigm for the generative modelling of images is not as mature as
GANs or VAEs in terms of the generated image quality, it is a promising direction of
research as it does not have some key shortcomings associated with GANs and VAEs.
Speciőcally, GANs are known to suffer from mode-collapse [10], and are notoriously
difficult to train [11] compared to feed forward networks because their adversarial loss
seeks a saddle point instead of a local minimum [12]. CNFs are trained by mapping
images to noise, and their reversible architecture allows images to be generated by
going in reverse, from noise to images. This leads to fewer issues related to mode
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collapse, since any input example in the dataset can be recovered from the ŕow using
the reverse of the transformation learned during training. VAEs only provide a lower
bound on the marginal likelihood whereas CNFs provide exact likelihoods. Despite the
many advantages of reversible generative models built with CNFs, quantitatively such
methods still do not match the widely used Fréchet Inception Distance (FID) scores of
GANs or VAEs. However their other advantages motivate us to explore them further.

Furthermore, state-of-the art GANs and VAEs exploit the multi-resolution prop-
erties of images, and recent top-performing methods also inject noise at each
resolution [13ś16]. While shaping noise is fundamental to normalizing ŕows, only
recently have normalizing ŕows exploited the multi-resolution properties of images. For
example, WaveletFlow [4] splits an image into multiple resolutions using the Discrete
Wavelet Transform, and models the average image at each resolution using a normaliz-
ing ŕow. While this method has advantages, it suffers from many issues such as high
parameter count and long training time.

In this work, we consider a non-trivial multi-resolution approach to continuous
normalizing ŕows, which őxes many of these issues. A high-level view of our approach
is shown in Figure 1. Our main contributions are:

1. We propose a multi-resolution transformation that does not add cost in terms of
likelihood.

2. We introduce Multi-Resolution Continuous Normalizing Flows (MRCNF).
3. We achieve comparable Bits-per-dimension (BPD) (negative log likelihood per

pixel) on image datasets using fewer model parameters and signiőcantly less
training time with only one GPU.

4. We explore the out-of-distribution properties of (MR)CNF, and őnd that they are
similar to non-continuous normalizing ŕows.

2 Background

2.1 Normalizing Flows

Normalizing ŕows [1, 17ś20] are generative models that map a complex data distribution,
such as real images, to a known noise distribution. They are trained by maximizing the
log likelihood of their input images. Suppose a normalizing ŕow g produces output z

from an input x i.e. z = g(x). The change-of-variables formula provides the likelihood
of the image under this transformation as:

log p(x) = log

∣

∣

∣

∣

det
dg

dx

∣

∣

∣

∣

+ log p(z) (1)

The őrst term on the right (log determinant of the Jacobian) is often intractable,
however, previous works on normalizing ŕows have found ways to estimate this efficiently.
The second term, log p(z), is computed as the log probability of z under a known noise
distribution, typically the standard Gaussian N (0, I). The normalizing ŕow is trained
by maximizing the log-likelilhood of the data x in the real distribution i.e. log p(x),
using Equation 1.
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2.2 Continuous Normalizing Flows

Continuous Normalizing Flows (CNF) [7ś9] are a variant of normalizing ŕows that
operate in the continuous domain. A CNF creates a geometric ŕow between the input
and target (noise) distributions, by assuming that the state transition is governed
by an Ordinary Differential Equation (ODE). It further assumes that the differential
function is parameterized by a neural network, this model is called a Neural ODE [7].
Suppose CNF g transforms its state v(t) using a Neural ODE, with the differential
deőned by the neural network f parameterized by θ. v(t0) = x is, say, an image, and
at the őnal time step v(t1) = z is a sample from a known noise distribution.

dv(t)

dt
= f(v(t), t, θ) =⇒ v(t1) = g(v(t0)) = v(t0) +

∫ t1

t0

f(v(t), t, θ) dt (2)

This integration is typically performed by an ODE solver. Since this integration can
be run backwards as well to obtain the same v(t0) from v(t1), a CNF is a reversible
model. Equation 1 can be used to compute the change in log-probability induced by
the CNF. However, [7] and [8] proposed a more efficient variant in the CNF context,
the instantaneous change-of-variables formula:

∂ log p(v(t))

∂t
= −Tr

(

∂fθ
∂v(t)

)

(3)

=⇒ ∆ log pv(t0)→v(t1) = −

∫ t1

t0

Tr
(

∂fθ
∂v(t)

)

dt (4)

Hence, the change in log-probability of the state of the Neural ODE i.e. ∆log pv is
expressed as another differential equation. The ODE solver now solves both differential
equations Equation 2 and Equation 4 by augmenting the original state with the above.
Thus, a CNF provides both the őnal state v(t1) as well as the change in log probability
∆ log pv(t0)→v(t1) together.

Prior works [8, 9, 21ś23] have trained CNFs as reversible generative models of
images by maximizing the image likelihood:

z = g(x) ; log p(x) = ∆ log px→z + log p(z) (5)

where x is an image, z and ∆log px→z are computed by the CNF using Equation 2
and Equation 4, and log p(z) is the likelihood of z under a known noise distribution,
typically the standard Gaussian N (0, I). Novel images are generated by sampling z

from the noise distribution, and running the CNF in reverse.

3 Our method

Our method is a reversible generative model of images that builds on top of CNFs.
We introduce the notion of multiple resolutions in images, and connect the different
resolutions in an autoregressive fashion. This helps generate images faster, with better
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likelihood values at higher resolutions, using only one GPU in all our experiments. We
call this model Multi-Resolution Continuous Normalizing Flow (MRCNF).

3.1 Multi-Resolution image representation

Multi-resolution representations of images have been explored in computer vision for
decades [24ś29]. Much of the content of an image at a resolution is a composition of
low-level information captured at coarser resolutions, and high-level information not
present in the coarser images. We take advantage of this by őrst decomposing an image
in resolution space i.e. by expressing it as a series of S images at decreasing resolutions:
x → (x1,x2, . . . ,xS), where x1 = x is the őnest image, xS is the coarsest, and every
xs+1 is the average image of xs. This called an image pyramid [24, 26, 27, 29, 30]. In this
work, we obtain a coarser image simply by averaging pixels in every 2x2 patch, thereby
halving the width and height. We then express x as a series of high-level information
ys not present in the immediate coarser images xs+1, and a őnal coarse image xS , and
our overall method is to map these S terms to S noise samples using S CNFs.:

x → (y1,x2) → (y1,y2,x3) → · · · → (y1,y2, . . . ,yS−1,xS) (6)

3.2 Defining the high-level information ys

Fig. 2: Tetrahedron in 3D space with 4 corners. c = 22/3

We choose to design a linear transformation with the following properties: 1)
invertible i.e. it should be possible to deterministically obtain xs from ys and xs+1,
and vice versa ; 2) volume preserving i.e. determinant is 1, change in log-likelihood is 0
; 3) angle preserving ; and 4) range preserving.

Consider the simplest case of 2 resolutions where x1 is a 2x2 image with pixel
values x1, x2, x3, x4, and x2 is a 1x1 image with pixel value x̄ = 1

4 (x1 + x2 + x3 + x4).
We require three values (y1, y2, y3) = y1 that contain information not present in x2,
such that x1 is obtained when y1 and x2 are combined.

This could be viewed as a problem of őnding a matrix M such that:
[x1, x2, x3, x4]

⊤ = M [y1, y2, y3, x̄]
⊤. We őx the last column of M as [1, 1, 1, 1]⊤, since

every pixel value in x1 depends on x̄. Finding the rest of the parameters can be viewed
as requiring four 3D vectors that are spaced such that they do not degenerate the
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number of dimensions of their span. These can be considered as the four corners of
a tetrahedron in 3D space, under any conőguration (rotated in 3D space), and any
scaling of the vectors (see Figure 2).

Out of the many possibilities for this tetrahedron is the matrix that performs the
Discrete Haar Wavelet Transform [28, 31]:
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(7)

However, this transformation incurs a cost in terms of log-likelihood:

∆ log p(x1,x2,x3,x4)→(y1,y2,y3,x̄) = log
∣

∣det(M−1)
∣

∣ = log(1/2) (8)

and is therefore not volume preserving. Other simple scaling of Equation 7 has been
used in the past, for example multiplying the last row of Equation 7 by 2, yielding an
orthogonal transformation, such as in WaveletFlow [4]. However, this transformation
neither preserves the volume i.e. the log determinant is not 0, nor the maximum i.e.
the range of xs changes.

We wish to őnd a transformation M where: one of the results is the average of
the inputs, x̄; it is unit determinant; the columns are orthogonal; and it preserves
the range of x̄. Fortunately such a matrix exists ś although we have not seen it
discussed in prior literature. It can be seen as a variant of the Discrete Haar Wavelet
Transformation matrix that is unimodular, i.e. has a determinant of 1 (and is therefore
volume preserving), while also preserving the range of the images for the input and its
average (shown in Figure 2):
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(9)

where c = 22/3, a = 4. Hence, there is no cost to the log-likelihood due to the
transformation:

∆ log p(x1,x2,x3,x4)→(y1,y2,y3,x̄) = log
∣

∣det(M−1)
∣

∣ = log(1) = 0 (10)

This can be scaled up to larger spatial regions by performing the same calculation
for each 2x2 patch. Let M be the function that uses matrix M from above and combines
every pixel in xs+1 with the three corresponding pixels in ys to make the 2x2 patch at
that location in xs using Equation 9:

xs = M(ys,xs+1) ⇐⇒ ys,xs+1 = M−1(xs) (11)
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Equation 1 can be used to compute the change in log likelihood from this transformation
xs → (ys,xs+1):

log p(xs)

= ∆ log pxs→(ys,xs+1) + log p(ys,xs+1)

= log
∣

∣det(M−1)
∣

∣+ log p(ys,xs+1) (12)

where log
∣

∣det(M−1)
∣

∣ can be determined for the Wavelet transform in Equation 7 using
Equation 8 as log

∣

∣det(M−1)
∣

∣ = dims(xs+1) log(1/2) where łdimsž is the number of
pixels times the number of channels (typically 3) in the image, and for our unimodular
transform in Equation 9 using Equation 10 as :

log
∣

∣det(M−1)
∣

∣ = 0 (13)

3.3 Multi-Resolution Continuous Normalizing Flows

Using the multi-resolution image representation in Equation 6, we characterize the
conditional distribution over the additional degrees of freedom (ys) required to generate
a higher resolution image (xs) that is consistent with the average (xs+1) over the
equivalent pixel space. At each resolution s, we use a CNF to reversibly map between
ys (or xS when s=S) and a sample zs from a known noise distribution. For generation,
ys only adds information missing in xs+1, but conditional on it.

This framework ensures that one coarse image could generate several potential őne
images, but these őne images have the same coarse image as their average. This fact
is preserved across resolutions. Note that the 3 additional pixels in ys per pixel in
xs+1 are generated conditioned on the entire coarser image xs+1, thus maintaining
consistency using the full context.

In principle, any generative model could be used to map between the multi-resolution
image and noise. Normalizing ŕows are good candidates for this as they are probabilistic
generative models that perform exact likelihood estimates, and can be run in reverse to
generate novel data from the model’s distribution. This allows model comparison and
measurement of generalization to unseen data. We choose to use the CNF variant of
normalizing ŕows at each resolution. CNFs have recently been shown to be effective in
modeling image distributions using a fraction of the number of parameters typically used
in normalizing ŕows (and non ŕow-based approaches), and their underlying framework
of Neural ODEs have been shown to be more robust than convolutional layers [32].

Training: We train an MRCNF by maximizing the average log-likelihood of the
images in the training dataset under the model. The log probability of each image
log p(x) can be estimated recursively using the sequence of variables in Equation 6,
and the corresponding simpliőcation of the log-probability using Equation 12 as (here,
x1 = x):

log p(x) = ∆ log px1→(y1,x2) + log p(y1,x2)

= ∆ log px1→(y1,x2) + log p(y1 | x2) + log p(x2)

= ∆ log px1→(y1,x2) + log p(y1 | x2)
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+∆ log px2→(y2,x3) + log p(y2 | x3) + log p(x3)

...

=

S−1
∑

s=1

(

∆ log pxs→(ys,xs+1) + log p(ys | xs+1)
)

+ log p(xS) (14)

where ∆ log pxs→(ys,xs+1) is given by Equation 13, while log p(ys | xs+1) and log p(xS)
(at the coarsest resolution S) are given by Equation 5:

zs = gs(ys | xs+1); log p(ys | xs+1) = ∆ log p(ys→zs)|xs+1
+ log p(zs) (15)

zS = gS(xS); log p(xS) = ∆ log pxS→zS
+ log p(zS) (16)

The coarsest resolution S can be chosen such that the last CNF operates on the
image distribution at a small enough resolution that is easy to model unconditionally.
All other CNFs are conditioned on the immediate coarser image. The conditioning
itself is achieved by concatenating the input image of the CNF with the coarser image.
This model could be seen as a stack of CNFs connected in an autoregressive fashion.

Typically, likelihood-based generative models are compared using the metric of bits-
per-dimension (BPD), i.e. the negative log likelihood per pixel in the image. Hence, we
train our MRCNF to minimize the average BPD of the images in the training dataset,
computed using Equation 17:

BPD(x) = − log p(x)/dims(x) (17)

We use FFJORD [8] as the baseline model for our CNFs. In addition, we use to two
regularization terms introduced by RNODE [9] to speed up the training of FFJORD
models by stabilizing the learnt dynamics: the kinetic energy K(θ) and the Jacobian
norm B(θ) of the ŕow f(v(t), t, θ) described in subsection 2.2:

K(θ) =

∫ t1

t0

∥f(v(t), t, θ)∥22 dt ; (18)

B(θ) =

∫ t1

t0

∥ϵ⊤∇zf(v(t), t, θ)∥
2
2 dt, ϵ ∼ N (0, I) (19)

Parallel training: Note that although the őnal log likelihood log p(x) involves
sequentially summing over values returned by all S CNFs, the log likelihood term
of each CNF is independent of the others. Conditioning is done using ground truth
images. Hence, each CNF can be trained independently, in parallel.

Generation: Given an S-resolution model, we őrst sample zs, s = 1, . . . , S from
the latent noise distributions. The CNF gs at resolution s transforms the noise sample
zs to high-level information ys conditioned on the immediate coarse image xs+1 (except
gS which is unconditioned). ys and xs+1 are then combined to form xs using M from
Equation 9. This process is repeated progressively from coarser to őner resolutions,
until the őnest resolution image x1 is computed (see Figure 1). It is to be noted that the
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generated image at one resolution is used to condition the CNF at the őner resolution.

{

xS = g−1
S (zS) s = S

ys = g−1
s (zs | xs+1); xs = M(ys,xs+1) s = S-1 → 1

(20)

3.4 Multi-Resolution Noise

We further decompose the noise image as well into its respective coarser components.
This means ultimately we use only one noise image at the őnest level, and it is
decomposed into multiple resolutions using Equation 9. xs+1 is mapped to noise of 1/4
variance, ys is mapped to noise of c-factored variance (see Figure 1). Although this is
optional, it preserves interpretation between the single- and multi-resolution models.

4 Related work

Multi-resolution approaches already serve as a key component of state-of-the-art
GAN [33ś35] and VAE [16, 36] based deep generative models. The idea is to take
advantage of the fact that much of the information in an image is contained in a
coarsened version, which allows us to deal with simpler problems (coarser images) in a
progressive fashion. This helps make models more efficient and effective. Deconvolutional
CNNs [37, 38] use upsampling layers to generate images more effectively. Modern
state-of-the-art generative models have also injected noise at different levels to improve
sample quality [13, 15, 16]. Several works [36, 39ś41] have also shown how the inductive
bias of the multi-resolution structure helps alleviate some of the problems of image
quality in likelihood-based models.

Several prior works on normalizing ŕows [2ś4, 42ś48] build on RealNVP [1].
Although they achieve great results in terms of BPD and image quality, they nonethe-
less report results from signiőcantly higher number of parameters (some with 100x!),
and several times GPU hours of training.

STEER [21] introduced temporal regularization to CNFs by making the őnal time
of integration stochastic. However, we found that this increased training time without
signiőcant BPD improvement.

STEER [21]:

{

v(t1) = v(t0) +
∫ T

t0
f(v(t), t) dt;

T ∼ Uniform(t1 − b, t1 + b); b < t1 − t0
(21)

“Multiple scales” in prior normalizing flows: Normalizing ŕows [1, 2, 8] try
to be łmulti-scalež by transforming the input in a smart way (squeezing operation)
such that the width of the features progressively reduces in the direction of image to
noise, while maintaining the total dimensions. This happens while operating at a single

resolution. In contrast, our model stacks normalizing ŕows at multiple resolutions in
an autoregressive fashion by conditioning on the images at coarser resolutions.

Other classes of generative models that map from a complex distribution to a
known noise distribution are Denoising diffusion probabilistic models (DDPM) [49ś51]
which use a predeőned noising process, and score-based generative models [52ś55]
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which estimate the gradient of the log density with respect to the input (i.e. the score)
of corrupted data with progressively lesser intensities of noise. In contrast, CNFs learn
a reversible noising/denoising process using a Neural ODE.

4.1 Wavelet Flow [4]

WaveletFlow is a recent innovation on the normalizing ŕow, wherein the image is
decomposed into a lower-resolution average image, and 3 other informative components
using the Discrete Wavelet Transformation. The 3 components at each resolution are
mapped to noise using a normalizing ŕow conditioned on the average image at that
resolution. WaveletFlow builds on the Glow [2] architecture. It uses an orthogonal
transformation, which does not preserve range, and adds a constant term to the log
likelihood at each resolution. Best results are obtained when WaveletFlow models with
a high parameter count are trained for a long period of time. We őx these issues using
our MRCNF.

Comparison to WaveletFlow: We emphasize that there are important and cru-
cial differences between our MRCNF and WaveletFlow. We generalize the notion of a
multi-resolution image representation (subsection 3.2), and show that Wavelets are
one case of this general formulation. WaveletFlow builds on the Glow [2] architecture,
while ours builds on CNFs [8, 9]. We also make use of the notion of multi-resolution
decomposition of the noise, which is optional, but is not taken into account by Wavelet-
Flow. WaveletFlow uses an orthogonal transformation which does not preserve range ;
our MRCNF uses Equation 9 which is volume-preserving and range-preserving. Finally,
WaveletFlow applies special sampling techniques to obtain better samples from its
model. We have so far not used such techniques for generation, but we believe they
can potentially help our models as well. By making these important changes, we őx
many of the previously discussed issues with WaveletFlow. For a more detailed ablation
study, please check subsection 5.3.

5 Experimental results

We train MRCNF models on the CIFAR10 [61] dataset at őnest resolution of 32x32,
and the ImageNet [62] dataset at 32x32, 64x64, 128x128. We build on top of the code
provided in [9]1. In all cases, we train using only one NVIDIA RTX 20280 Ti GPU
with 11GB.

In Table 1, we compare our results with prior work in terms of (lower is better in all
cases) the BPD of the images of the test datasets under the trained models, the number
of parameters used by the model, and the number of GPU hours taken to train. The
most relevant models for comparison are the 1-resolution FFJORD [8] models, and their
regularized version RNODE [9], since our model directly converts their architecture into
multi-resolution. Other relevant comparisons are previous ŕow-based methods [1ś4, 44],
however their core architecture (RealNVP [1]) is quite different from FFJORD.

BPD: At lower resolution spaces, we achieve comparable BPDs in lesser time with
far fewer parameters than previous normalizing ŕows (and non ŕow-based approaches).
However, the power of the multi-resolution formulation is more evident at higher

1https://github.com/cfinlay/ffjord-rnode

10



Table 1: Bits-per-dimension (BPD) (lower is better) of images in the corresponding
evaluation sets for CIFAR10, ImageNet (32x32), and ImageNet (64x64). We also report
the number of Parameters (P) in the models (in millions), and the Time taken to
train (in GPU hours). All our models were trained on only one GPU. Lower is better
in all cases.

CIFAR10 ImageNet32 ImageNet64

(↓) BPD P Time BPD P Time BPD P Time

Non Flow-based Prior Work

Gated PixelCNN [56] 3.03 - - 3.83 - 60 3.57 - 60

SPN [41] - - - 3.85 150.0M - 3.53 150.0M -

Sparse Transformer [57] 2.80 59.0M - - - - 3.44 152.0M 7days

NVAE [16] 2.91 - 55 3.92 - 70 - - -

DistAug [58] 2.56 152.0M - - - - 3.42 152.0M -

Flow-based Prior Work

RealNVP [1] 3.49 - - 4.28 46.0M - 3.98 96.0M -

Glow [2] 3.35 44.0M - 4.09 66.1M - 3.81 111.1M -

MaCow [45] 3.16 43.5M - - - - 3.69 122.5M -

Flow++ [3] 3.08 31.4M - 3.86 169.0M - 3.69 73.5M -

DenseFlow [59] 2.98 - 250 3.63 - 310 3.35 - 224

1-Resolution Continuous Normalizing Flow

FFJORD [8] 3.40 0.9M ≥5days 3.96‡ 2.0M‡
>5days‡ x x x

RNODE [9] 3.38 1.4M 31.8 3.49§ 1.6M§
40.4§ 3.83∗ 2.0M 256.4∗

FFJORD + STEER [21] 3.40 1.4M 86.3 3.84 2.0M >5days - - -

RNODE + STEER [21] 3.397 1.4M 22.2 3.49§ 1.6M§
30.1§ - - -

(Ours) Multi-Resolution Continuous Normalizing Flow (MRCNF)

2-resolution MRCNF 3.65 1.3M 19.8 3.77 1.3M 18.2 3.44 2.0M 42.3

2-resolution MRCNF 3.54 3.3M 36.5 3.78 6.7M 18.0 x 6.7M x

3-resolution MRCNF 3.79 1.5M 17.4 3.97 1.5M 13.8 3.55 2.0M 35.4

3-resolution MRCNF 3.60 5.1M 38.3 3.93 10.2M 41.2 x 7.6M x

- Unreported values.
†As reported in [60].
‡As reported in [21].
§Re-implemented by us.
‘x’: Fails to train.
∗RNODE [9] used 4 GPUs to train on ImageNet64.

resolutions: we achieve better BPD for ImageNet64 with signiőcantly fewer parameters
and lesser time using only one GPU. A more complete table can be found in the
appendix.

Train time: All our experiments used only one GPU, and took signiőcantly less
time to train than 1-resolution CNFs, and all prior works including ŕow-based and
non-ŕow-based models. For example on CIFAR-10, Glow [2] used 8 GPUs for 7 days,
MintNet [44] used 2 GPUs for ≈ 5 days, 1-resolution FFJORD [8] used 6 GPUs for ≈
5 days. All our models used 1 GPU for ≤ 1 day.

To make a fair comparison with previous methods, we report the total time taken to
train the CNFs of all resolutions one after another on a single GPU. We also maintained
the batch size of the őnest resolution the same as that in the previous CNF works, but
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used bigger batch sizes to train coarser resolutions. However, since all the CNFs can
be trained in parallel, the actual training time in practice could be much lower.

5.1 Super-resolution

Our formulation also allows for super-resolution of images (Figure 3) free of cost since
our framework is autoregressive in resolution. At any stage, one can condition on a
ground truth low-resolution image and generate the corresponding high-resolution
image.

Fig. 3: ImageNet: Example of super-resolving to 64x64 from ground truth 16x16. Row
1: ground truth 16x16, Row 2: generated 32x32, Row 3: generated 64x64 Row 4: ground
truth 64x64.

5.2 Progressive training

We trained an MRCNF model on ImageNet128 by training only the őnest resolution
(128x128) conditioned on the immediate coarser (64x64) images, and attached it to a
3-resolution model trained on ImageNet64. The resultant 4-resolution ImageNet128
model gives a BPD of 3.31 (Table 2) with just 2.74M parameters in ≈60 GPU hours.

Table 2: Metrics for unconditional ImageNet128 gen-
eration. Param is number of parameters, Time is in
hours. ‘-’ indicates unreported values.
ImageNet128 (↓) BPD Param Time

Parallel Multiscale [40] 3.55 - -
SPN [41] 3.08 250.00M -

(Ours) 4-resolution MRCNF 3.31 2.74M 58.59

5.3 Ablation study

Our MRCNF method differs from WaveletFlow in three respects:
1. we use CNFs, while WaveletFlow uses the discrete vairant of normalizing ŕows,
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2. we use Equation 9 instead of Equation 7 as used by WaveletFlow,
3. we use multi-resolution noise.
We check the individual effects of these changes in an ablation study in Table 3,

and conclude that:
1. Simply replacing the normalizing ŕows in WaveletFlow with CNFs does not

produce the best results. It does improve the BPD and training time compared to
WaveletFlow.

2. Using our unimodular transformation in Equation 9 instead of the original Wavelet
Transformation of Equation 7 not only improves the BPD, it also consistently
decreases training time.

3. As expected, the use of multi-resolution noise does not have a critical impact on
either BPD or training time. We use it anyway so as to retain interpretation with
1-resolution models.

Table 3: Ablation study across using Wavelet in Equation 7, and multi-resolution
noise formulation in subsection 3.4. P is number of parameters, Time is in hours. Lower
is better in all cases. ‘-’ indicates unreported values. ‘x’ : Fails to train.

CIFAR10 ImageNet64

(↓) BPD P Time BPD P Time

WaveletFlow [4] - - - 3.78 98.0M 822.00

1-resolution CNF (RNODE) [9] 3.38 1.4M 31.84 3.83 2.0M 256.40

2-resolution

eq. (7) WaveletFlow with CNF w/o multi-res noise 3.68 1.3M 27.25 x 2.0M x

eq. (7) WaveletFlow with CNF w/ multi-res noise 3.69 1.3M 25.88 x 2.0M x

eq. (9) MRCNF w/o multi-res noise 3.66 1.3M 19.79 3.48 2.0M 42.33

eq. (9) MRCNF w/ multi-res noise (Ours) 3.65 1.3M 19.69 3.44 2.0M 42.30

3-resolution

eq. (7) WaveletFlow with CNF w/o multi-res noise 3.82 1.5M 22.99 3.62 2.0M 43.37

eq. (7) WaveletFlow with CNF w/ multi-res noise 3.82 1.5M 25.28 3.62 2.0M 44.21

eq. (9) MRCNF w/o multi-res noise 3.79 1.5M 17.25 3.57 2.0M 35.42

eq. (9) MRCNF w/ multi-res noise (Ours) 3.79 1.5M 17.44 3.55 2.0M 35.39

Thus, our MRCNF model is not a trivial replacement of normalizing ŕows with CNFs
in WaveletFlow. We generalize the notion of multi-resolution image representation, in
which the Discrete Wavelet Transform is one of many possibilities. We then derived a
unimodular transformation that adds no change in likelihood.

5.4 Adversarial Loss

Several works [63ś66] have found it useful to add an adversarial loss to pre-existing losses
to generate images that better resemble the true data distribution. Similar to [64], we
conducted experiments with an additional adversarial loss at each resolution. However
in our experiments so far, we could achieve neither better BPDs nor better Fréchet
Inception Distance (FID)s [67]. As noted in [68], since likelihood-based models tend to
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cover all the modes by minimizing KL-divergence while GAN-based methods tend to
mode collapse by minimizing JS-divergence, it is possible that the two approaches are
incompatible, and so combining them is not trivial.

6 Examining Out-of-Distribution behaviour

Fig. 4: Histogram of log likelihood per dimension i.e. −BPD (estimated using normal-
ized empirical Kernel Density Estimation) of OoD datasets (TinyImageNet, SVHN,
Constant) under (MR)CNF models trained on CIFAR10. As with other likelihood-based
generative models such as Glow & PixelCNN, OoD datasets have higher likelihood
under (MR)CNFs.

The derivation of likelihood-based models suggests that the density of an image
under the model is an effective measure of its likelihood of being in-distribution.
However, recent works [68ś71] have pointed out that it is possible that images drawn
from other distributions have higher model likelihood. Examples have been shown
where normalizing ŕow models (such as Glow) trained on CIFAR10 images assign
higher likelihood to SVHN [72] images. This could have serious implications on their
practical applicability. Some also note that likelihood-based models do not generate
images with good sample quality as they avoid assigning small probability to out-of-
distribution (OoD) data points, hence model likelihood (-BPD) is not effective for
detecting OoD data in such models.

We conduct the same experiments with (MR)CNFs, and őnd that similar conclusions
can be drawn. Figure 4 plots the histogram of log likelihood per dimension (-BPD) of
OoD images (SVHN, TinyImageNet) under MRCNF models trained on CIFAR10. It can
be observed that the likelihood of the OoD SVHN is higher than CIFAR10 for MRCNF,
similar to the őndings for Glow, PixelCNN, VAE in earlier works [69ś71, 73, 74].

One possible explanation put forward by [71] is that łtypicalž images are less łlikelyž
than constant images, which is a consequence of the distribution of a Gaussian in high
dimensions. Indeed, as our Figure 4 shows, constant images have the highest likelihood
under MRCNFs, while randomly generated (uniformly distributed) pixels have the
least likelihood (not shown in őgure due to space constraints).
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[71, 73] suggest using łtypicalityž as a better measure of OoD. However, [70] observe
that the complexity of an image plays a signiőcant role in the training of likelihood-based
generative models. They propose a new metric S as an out-of-distribution detector:

S(x) = BPD(x)− L(x) (22)

where L(x) is the complexity of an image x measured as the length of the best
compressed version of x (we use FLIF [75] following [70]) normalized by the number of
dimensions.

We perform a similar analysis as [70] to test how S compares with -bpd for OoD
detection. For different MRCNF models trained on CIFAR10, we compute the area
under the receiver operating characteristic curve (auROC) using -bpd and S as standard
evaluation for the OoD detection task [70, 76]. Table 4 shows that S does perform
better than -bpd in the case of (MR)CNFs, similar to the őndings in [70] for Glow and
PixelCNN++. SVHN seems easier to detect as OoD for Glow than MRCNFs. However,
OoD detection performance is about the same for TinyImageNet. We also observe that
MRCNFs are better at OoD than CNFs.

Other OoD methods [76ś81] are not suitable, as identiőed in [70].

Table 4: auROC for OoD detection
using -bpd and S[70], for models
trained on CIFAR10.
CIFAR10 SVHN TIN
(trained) -BPD S -BPD S

Glow 0.08 0.95 0.66 0.72
1-res CNF 0.07 0.16 0.48 0.60
2-res MRCNF 0.06 0.25 0.46 0.66
3-res MRCNF 0.05 0.25 0.46 0.66

6.1 Shuffled in-distribution images

Prior work [74] concludes that normalizing ŕows do not represent images based on
their semantic contents, but rather directly encode their visual appearance. We verify
this for continuous normalizing ŕows by estimating the density of in-distribution test
images, but with patches of pixels randomly shuffled. Figure 5 (a) shows an example
of images of shuffled patches of varying size, Figure 5 (b) shows the graph of the their
log-likelihoods.

That shuffling pixel patches would render the image semantically meaningless is
reŕected in the FID between CIFAR10-Train and these sets of shuffled images Ð 1x1:
340.42, 2x2: 299.99, 4x4: 235.22, 8x8: 101.36, 16x16: 33.06, 32x32 (i.e. CIFAR10-Test):
3.15. However, we see that images with large pixel patches shuffled are quite close in
likelihood to the unshuffled images (Figure 5 (b)), suggesting that since their visual
content has not changed much they are almost as likely as unshuffled images under
MRCNFs.
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(a) (b)

Fig. 5: (a) Example of shuffling different-sized patches of a 32x32 image: (left to right,
top to bottom) 1x1, 2x2, 4x4, 8x8, 16x16, 32x32 (unshuffled) (b) Histogram of log
likelihood per dimension (normalized empirical Kernel Density Estimate) for MRCNF
models at different resolutions, trained on CIFAR10.

7 Conclusion

We have presented a Multi-Resolution approach to Continuous Normalizing Flows
(MRCNF). MRCNF models achieve comparable or better performance in signiőcantly
less training time, training on a single GPU, with a fraction of the number of parameters
of other competitive models. Although the likelihood values for 32x32 resolution datasets
such as CIFAR10 and ImageNet32 do not improve over the baseline, ImageNet64 and
above see a marked improvement. The performance is better for higher resolutions,
as seen in the case of ImageNet128. We also conducted an ablation study to note the
effects of each change we introduced in the formulation.

In addition, we show that (Multi-Resolution) Continuous Normalizing Flows have
similar out-of-distribution properties as other Normalizing Flows.
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Appendix A Full Table 1

Table A1 presents the full version of Table 1 including other results relevant to the
conclusion but not mentioned in the main paper for brevity.

Appendix B Qualitative samples

Here we present qualitative examples of our method for the datasets of MNIST and
CIFAR10.

(a) Generated samples at 16x16
(b) Corresponding generated samples at
32x32

Fig. B1: Generated samples from MNIST.
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Table A1: Unconditional image generation metrics (lower is better in all cases): parameters
in the model, bits-per-dimension, time (in hours). All our models were trained on only one

NVIDIA V100 GPU. ‡As reported in [21]. ∗used 4 GPUs. ‘x’: Fails to train.

CIFAR10 ImageNet32 ImageNet64
BPD P Time BPD P TimeBPD P Time

Non Flow-based Prior Work

PixelRNN [39] 3.00 3.86 3.63
Gated PixelCNN [56] 3.03 3.83 60 3.57 60
Parallel Multiscale [40] 3.95 3.70
Image Transformer [82] 2.90 3.77
PixelSNAIL [83] 2.85 3.80
SPN [41] 3.85150.0M 3.53 150.0M

Sparse Transformer [57] 2.80 59.0M 3.44 152.0M 7days

Axial Transformer [84] 3.76 3.44
PixelFlow++ [85] 2.92
NVAE [16] 2.91 55 3.92 70
Dist-Aug Sparse Tx [58] 2.56 152.0M 3.42 152.0M

Flow-based Prior Work

IAF [86] 3.11
RealNVP [1] 3.49 4.28 46.0M 3.98 96.0M
Glow [2] 3.35 44.0M 4.09 66.1M 3.81 111.1M

i-ResNets [87]
Emerging [42] 3.34 44.7M 4.09 67.1M 3.81 67.1M
IDF [43] 3.34 4.18 3.90
S-CONF [88] 3.34
MintNet [44] 3.32 17.9M≥5days 4.06 17.4M
Residual Flow [60] 3.28 4.01 3.76
MaCow [45] 3.16 43.5M 3.69 122.5M

Neural Spline Flows [46] 3.38 11.8M 3.82 15.6M
Flow++ [3] 3.08 31.4M 3.86169.0M 3.69 73.5M
ANF [89] 3.05 3.92 3.66
MEF [90] 3.32 37.7M 4.05 37.7M 3.73 46.6M
VFlow [47] 2.98 3.83
Woodbury NF [91] 3.47 4.20 3.87
NanoFlow [48] 3.25
ConvExp [92] 3.218
Wavelet Flow [4] 4.08 64.0M 3.78 96.0M 822
TayNODE [93] 1.039

1-resolution Continuous Normalizing Flow

FFJORD [8] 3.40 0.9M≥5days
‡
3.96

‡2.0M‡
>5days x x

RNODE [9] 3.38 1.4M 31.84 ‡
2.36 2.0M ‡

30.1
∗
3.83 2.0M∗

256.4
§
3.49

§1.6M §
40.39

FFJORD + STEER [21] 3.40 1.4M 86.34 3.84 2.0M>5days
RNODE + STEER [21] 3.397 1.4M 22.24 2.35 2.0M 24.90

§
3.49

§1.6M §
30.07

(Ours) Multi-Resolution Continuous Normalizing Flow (MRCNF)

2-resolution MRCNF 3.65 1.3M 19.79 3.77 1.3M 18.18 3.44 2.0M 42.30
2-resolution MRCNF 3.54 3.3M 36.47 3.78 6.7M 17.98 x 6.7M x
3-resolution MRCNF 3.79 1.5M 17.44 3.97 1.5M 13.78 3.55 2.0M 35.39
3-resolution MRCNF 3.60 5.1M 38.27 3.93 10.2M 41.20 x 7.6M x
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(a) Generated samples 8x8
(b) Generated samples
16x16 (c) Generated samples 32x32

Fig. B2: Generated samples from CIFAR10.

Appendix C Simple example of density estimation

For example, if we use Euler method as our ODE solver, for density estimation
Equation 2 reduces to:

v(t1) = v(t0) + (t1 − t0)fs(v(t0), t0 | c) (C1)

where fs is a neural network, t0 represents the "time" at which the state is image x,
and t1 is when the state is noise z. We start at scale S with an image sample xS , and
assume t0 and t1 are 0 and 1 respectively:































zS = xS + fS(xS , t0 | xS−1)

zS−1 = xS−1 + fS−1(xS−1, t0 | xS−2)
...
z1 = x1 + f1(x1, t0 | x0)

z0 = x0 + f0(x0, t0)

(C2)

Appendix D Simple example of generation

For example, if we use Euler method as our ODE solver, for generation Equation 2
reduces to:

v(t0) = v(t1) + (t0 − t1)fs(v(t1), t1 | c) (D3)
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i.e. the state is integrated backwards from t1 (i.e. zs) to t0 (i.e. xs). We start at scale
0 with a noise sample z0, and assume t0 and t1 are 0 and 1 respectively:































x0 = z0 − f0(z0, t1)

x1 = z1 − f1(z1, t1 | x0)
...
xS−1 = zS−1 − fS−1(zS−1, t1 | xS−2)

xS = zS − fS(zS , t1 | xS−1)

(D4)

Appendix E Models

We used the same neural network architecture as in RNODE [9]. The CNF at each
resolution consists of a stack of bl blocks of a 4-layer deep convolutional network
comprised of 3x3 kernels and softplus activation functions, with 64 hidden dimensions,
and time t concatenated to the spatial input. In addition, except at the coarsest
resolution, the immediate coarser image is also concatenated with the state. The
integration time of each piece is [0, 1]. The number of blocks bl and the corresponding
total number of parameters are given in Table E2.

Table E2: Number of
parameters for different
models with different
total number of resolu-
tions (res), and the num-
ber of channels (ch) and
number of blocks (bl)
per resolution.

MRCNF

resolutions ch bl Param

1
64 2 0.16M

64 4 0.32M

64 14 1.10M

2
64 8 1.33M

64 20 3.34M

64 40 6.68M

3
64 6 1.53M

64 8 2.04M

64 20 5.10M

Appendix F Gradient norm

In order to avoid exploding gradients, We clipped the norm of the gradients [94]
by a maximum value of 100.0. In case of using adversarial loss, we őrst clip the
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gradients provided by the adversarial loss by 50.0, sum up the gradients provided by
the log-likelihood loss, and then clip the summed gradients by 100.0.

Appendix G 8-bit to uniform

The change-of-variables formula gives the change in probability due to the transforma-
tion of u to v:

log p(u) = log p(v) + log

∣

∣

∣

∣

det
dv

du

∣

∣

∣

∣

Speciőcally, the change of variables from an 8-bit image to an image with pixel
values in range [0, 1] is:

b
(p)
S =

a
(p)
S

256

=⇒ log p(aS) = log p(bS) + log

∣

∣

∣

∣

det
db

da

∣

∣

∣

∣

=⇒ log p(aS) = log p(bS) + log

(

1

256

)DS

=⇒ log p(aS) = log p(bS)−DS log 256

=⇒ bpd(aS) =
− log p(aS)

DS log 2

=
−(log p(bS)−DS log 256)

DS log 2

=
− log p(bS)

DS log 2
+

log 256

log 2

= bpd(x) + 8

where bpd(x) is given from Equation 17.

Appendix H FID v/s Temperature

Table H3 lists the FID values of generated images from MRCNF models trained on
CIFAR10, with different temperature settings on the Gaussian.

Conflict of Interest (COI) statement. Conŕict of Interest: The authors declare
that they have no conŕict of interest.

data availability statement (DAS). All data generated or analysed during this
study are included in their respective published articles, as mentioned in the main
draft: CIFAR10 [61], ImageNet [62]
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Temperature

1.0 0.9 0.8 0.7 0.6 0.5

1-resolution CNF 138.82 147.62 175.93 284.75 405.34 466.16

2-resolution MRCNF 89.55 106.21 171.53 261.64 370.38 435.17

3-resolution MRCNF 88.51 104.39 152.82 232.53 301.89 329.12

4-resolution MRCNF 92.19 104.35 135.58 186.71 250.39 313.39

Table H3: FID v/s temperature for MRCNF models trained on CIFAR10.
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