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Abstract  
The application of optimization theory and the algorithms that are generated from it has 
increased along with science and technology’s continued advancement. Numerous issues in 
daily life can be categorized as combinatorial optimization issues. Swarm intelligence opti-
mization algorithms have been successful in machine learning, process control, and engi-
neering prediction throughout the years and have been shown to be efficient in handling 
combinatorial optimization issues. An intelligent optimization system called the chicken 
swarm optimization algorithm (CSO) mimics the organic behavior of flocks of chickens. 
In the benchmark problem’s optimization process as the objective function, it outperforms 
several popular intelligent optimization methods like PSO. The concept and advancement 
of the flock optimization algorithm, the comparison with other meta-heuristic algorithms, 
and the development trend are reviewed in order to further enhance the search performance 
of the algorithm and quicken the research and application process of the algorithm. The 
fundamental algorithm model is first described, and the enhanced chicken swarm optimiza-
tion algorithm based on algorithm parameters, chaos and quantum optimization, learning 
strategy, and population diversity is then categorized and summarized using both domes-
tic and international literature. The use of group optimization algorithms in the areas of 
feature extraction, image processing, robotic engineering, wireless sensor networks, and 
power. Second, it is evaluated in terms of benefits, drawbacks, and application in compari-
son to other meta-heuristic algorithms. Finally, the direction of flock optimization algo-
rithm research and development is anticipated.
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1 Introduction

The majority of real-world engineering applications frequently center on optimization chal-
lenges in the domains of computer, electrical, Internet of Things, robotics, and other engi-
neering (Li and Zhou 2023). The term "optimization problem" refers to the design of an 
optimization algorithm to determine the combination of schemes or parameters under the 
given restriction conditions that causes the performance index to reach the highest value 
among all of the schemes or parameters, using the specific performance index of the entire 
project as the optimization object (Singh and Kumar 2023; Jiang et al. 2024). Traditional 
optimization algorithms such as the gradient descent method (Rostami et al. 2021), conju-
gate gradient method, Newton method, Lagrange multiplier method, etc. must traverse the 
entire parameter space while being processed (Cao et al. 2023). As a result, they frequently 
take a long time to find due to the difficulty of the traversal and the size of the parameter 
space. The failure of the solution might even be caused by the ideal solution (Cao et al. 
2022). Therefore, finding accurate and effective optimization algorithms has become one 
of the primary study themes of associated disciplines due to the increasingly complicated 
practical engineering application challenges (Bai et al. 2023).

 Numerous academics have suggested and begun research on intelligent optimiza-
tion algorithms for the optimization of complicated engineering applications, drawing 
inspiration from human intelligence, biological group dynamics, and natural laws (Tang 
et  al. 2024; Wang et  al. 2022a). By modeling certain natural ecosystem systems, intelli-
gent optimization algorithms may handle difficult optimization issues (Chen et al. 2024). 
According to their functional properties, these algorithms are classified as general opti-
mization algorithms, evolutionary algorithms, and swarm intelligence optimization algo-
rithms (Yue et al. 2022). The general optimization algorithm is based on the greedy algo-
rithm, which always searches for the optimal solution in the local range of the current 
position when solving the problem (Yue et al. 2021), and the typical representative is the 
hill-climbing algorithm. However, the algorithm is easy to fall into the local optimal solu-
tion in the process of solving, so it cannot obtain the global optimal solution. There are 
two fixes for this issue. Setting a probability parameter comes first. It will hop out of the 
present place with a fixed probability and solve it again once the entire solution space has 
reached a local optimum solution. Simulated annealing algorithm is the model algorithm. 
The second is to emulate human memory, create a taboo list to record the local optimum 
solution, avoid the local optimal solution in the list in subsequent searches, and alter the 
search range to be global. The taboo search algorithm (Wang et al. 2024; Yue et al. 2023) is 
a good example of an algorithm.

The evolutionary algorithm simulates a number of biological evolution processes, such 
as genetics, selection, and mutation, as a parameter replacement process. It then calculates 
the value of the corresponding solution after each replacement to arrive at the best possible 
solution (Bai et al. 2022). Evolutionary algorithms can be categorized into genetic algo-
rithms, cooperative evolutionary algorithms (CCEAS) (Cai et al. 2021a), immune evolu-
tionary algorithms (IA) (Li et al. 2021a), differential evolutionary algorithms (DE) (Deng 
et al. 2021), multi-objective evolutionary algorithms (MOP) (Falcón-Cardona et al. 2021), 
and others based on the various replacement processes. Through the use of bionics, the 
swarm intelligence optimization method resolves challenging optimization issues (Tawhid 
and Ibrahim 2023). The fundamental idea behind this kind of algorithm is to treat the 
optimization problem’s parameters as individuals within a group, update each individual 
parameter sequentially by simulating animal group behavior, set the fitness value to assess 
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the updated parameters, and then output all parameters that correspond to the optimal solu-
tion in the solution (Jaafari et al. 2022). Representatives of swarm intelligence optimiza-
tion algorithms include the Ant Colony Optimization Algorithm (ACO) (Maheshwari et al. 
2021) that simulates the foraging behavior of ants, the Particle Swarm Optimization Algo-
rithm (PSO) (Yue et al. 2024) that simulates the foraging behavior of birds, and the Shuf-
fled Frog Leaping Algorithm (SFLA) (Maaroof et  al. 2022) that simulates the foraging 
process of frogs, artificial bee colony optimization algorithm (ABC) (Kaya et al. 2022) for 
simulating the foraging behavior of bee colonies, wolf search algorithm (WSA) (Devika 
et al. 2021) for simulating the predation behavior of wolves, dragonfly optimization algo-
rithm (DA) (Aghelpour et al. 2021) for simulating the predation behavior of dragonflies, 
etc. The swarm intelligence optimization algorithms listed are shown in Table 1.

The self-organization capability of swarm intelligence algorithms is the primary cause 
of the new bionic swarm intelligence algorithms’ recent rapid growth trend, as can be seen 
from the table (Jaafari et al. 2022). Self-organization capability indicates that each param-
eter in the algorithm operates independently and is only changed and altered in accordance 
with a predetermined set of rules (Rosado-Olivieri and Brivanlou 2021). The intelligent 
optimization of the whole algorithm population finally reflects this "decentralized" param-
eter modification process.

Meng (46), who first introduced the Chicken Swarm Optimization algorithm (CSO), 
describes CSO as an intelligent optimization algorithm that plans the parameter change 
process in accordance with the behavior of the flock. This algorithm simulates the pop-
ulation behavior of chickens, divides the parameter variables into three groups of hens, 
roosters, and chicks, sets the parameter self-organization transformation process in accord-
ance with the rigid foraging hierarchy of the chicken flock (Ishikawa et al. 2020), integrates 
the optimization process of the optimization problem, etc. The result can be compared to 
how flocks of chickens forage. Since it was first developed, the chicken swarm optimiza-
tion technique has received a lot of interest, and several academics have investigated it 
from various perspectives. From the viewpoint of algorithm convergence, In the literature 
(Nagarajan 2023), the author demonstrated the Markov chain theory-based chicken swarm 
optimization algorithm’s global convergence. Researchers, including the algorithm’s origi-
nal creator, evaluate and compare the benefits and drawbacks of the chicken swarm opti-
mization algorithm and other intelligent optimization algorithms using a number of bench-
mark functions for optimization problems. They then conduct simulation experiments 
to determine the algorithm’s solution speed and accuracy. It outperforms the differential 
evolution algorithm, bat algorithm, and particle swarm algorithm in terms of resilience 
and robustness (Saif et al. 2023). Some academics have enhanced the chicken swarm opti-
mization technique and used it to solve real-world engineering challenges in addition to 
providing evidence and analysis. By examining the drawbacks of mindlessly following the 
hen’s parameters in the chicken flock and readily slipping into local optimal solutions, the 
author of the literature (Wang et al. 2023) developed a better CSO method based on Gauss-
ian migration strategy. In the literature (Nuvvula et al. 2022), the author used the differ-
ential improved CSO algorithm for the smart grid’s energy management and solved the 
algorithm’s optimal solution to find a way to reduce power consumption and cost. In the 
literature (Yu et al. 2022), the author utilized the CSO algorithm to extract features, and 
via comparison studies with various optimization algorithms, confirmed that the flock opti-
mization approach has the advantages of rapid speed and high accuracy in feature extrac-
tion application situations. The demands for the accuracy and speed of optimization prob-
lem solutions have been increasing in recent years due to engineering applications such as 
data mining (Gordan et al. 2022), wireless sensor networks (Majid et al. 2022), robotics 
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engineering (Macenski et al. 2022), electric power (Silvestre et al. 2021), feature extraction 
(Zhang et al. 2022), etc. Numerous academics have presented a number of fresh use cases 
and implementation strategies for chicken swarm optimization algorithms through constant 
innovation. Therefore, the review research in this paper will concentrate on the use of the 
most recent chicken swarm optimization algorithms in particular domains and look ahead 
to the direction in which optimization algorithms will develop in the future.

The organizational structure of this paper is as follows: Section 2 introduces the bio-
logical characteristics of the CSO algorithm, the CSO algorithm and its advantages and 
disadvantages. Section 3 introduces an improved algorithm for the CSO algorithm. Sec-
tion 4 introduces the application of CSO algorithm in different fields. Section 5 discusses 
the above and looks forward to the future research of CSO algorithm. Section 6 Conclu-
sions the paper.

2  Chicken swarm optimization

2.1  Chicken characteristics

The gregarious nature of chickens makes them a particular breed of poultry animal, and 
they frequently coordinate their food-finding efforts in groups (Yan et al. 2021). In chicken 
flocks, there are three different categories of people: hens, chicks, and roosters. There is 
a clear foraging hierarchy in the group, according to varied foraging capacities (Carvalho 
et al. 2022). Due to their inferior foraging abilities compared to roosters, hens in this hier-
archy forage after them, while chicks will do the same because they have worse foraging 
abilities (Basha et al. 2023). Figure 1 depicts the population structure of chickens, show-
ing that the rooster occupies the population’s center, the hens are arranged around the 
rooster, and the chicks are positioned around the hen. As a result, there is a natural pattern 
of mutual learning and rivalry between individuals of the same species, such as roosters 
and roosters, hens and hens, or between members of different species, such as hens and 
chicks, throughout the process of foraging (Jonsson and Vahlne 2023). For example, hen 
groups H1, H2 will forage around rooster R2 and learn the foraging patterns of rooster R2, 

Fig. 1  Schematic diagram of chicken population structure
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which will determine the foraging trajectory of hens H1, H2. At the same time, as hen H2 
is close to rooster R1, the foraging pattern of rooster R1 will also influence hen H2 to some 
extent. Chicks C4, C5 and C6 will forage around hen H2, learning her foraging pattern, and 
hen H2 will determine the foraging trajectory of chicks C4, C5 and C6. The developers of 
the method were motivated by the fact that this coexistence of learning and competition is 
consistent with the self-organizing growth of group intelligence and so proposed chicken 
swarm optimization (CSO).

2.2  Algorithm model

The objective function that demands an optimal solution is the optimization object of the 
intelligent optimization algorithm, and its independent variable parameters can be made up 
of n j-dimensional space vectors X, where n denotes the number and j denotes the dimen-
sionality, and n is any positive integer. By the quantity of vectors X, the Chicken Optimi-
zation Algorithm is classified into three categories. The fitness value f of each individual 
is what distinguishes the rooster, hen, and chick flocks. In Eq.  (1), the rooster group Ri 
is assigned to the first RN individuals with the lowest fitness value; in Eq. (2), the chick 
group Ci is assigned to the CN individuals with the highest fitness value; and in Eq. (3), 
the remaining HN individuals are assigned to the hen group Hi. Consequently, RN, HN, and 
CN represent the corresponding numbers of individuals in each group within the colony: 
RN represents the rooster group, HN represents the hen group, and CN represents the chick 
group.

Every hen in a flock has a matching individual dominant male, and every chick has a 
corresponding individual mother hen. The following formulas are used to update the forag-
ing location of roosters, hens, and individual chicks (Wang et al. 2023b):

1) Calculation formula for Location Succession of rooster groups

wherein, in Eq. (4), Rt
i,j

 is the position of the i-th rooster in the j-th dimension after t itera-
tions, 0, �2 is a Gaussian distributed random number obeying a mean of 0 and a variance of 
�2.Wherein, in Eq. (5), The individual’s fitness value is represented by f, and the random 
rooster index, or S, is a little but important integer that keeps the denominator from being 
zero.

(1)Ri =
{
R1,R2,⋯ ,RRN

}

(2)Ci =
{
C1,C2,⋯ ,CCN

}

(3)Hi =
{
H1,H2,⋯ ,HHN

}

(4)Rt+1
i,j

= Rt
i,j
[1 + randn(0, �2)]

(5)𝛿2 =

⎧⎪⎨⎪⎩

1, fi ≤ fs

e
fs−fi�fi�+𝜀 , fi > fs

s ∈ [1, n], s ≠ i
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2) Calculation formula for Location Succession of the hen groups

wherein, in Eq. (6), Ht
i,j

 is the position of the i-th hen in the j-th dimension after t iterations. 
rand is a random number between [0,1]. Rt

Hi
 is the position of the leader rooster of the i-th 

hen after t iterations; RHt is the position after t iterations of individuals randomly selected 
among the other roosters and hens except the leader cock and hen itself; The rooster’s 
influence factor is represented by k1, and the random individual effect factor is shown by 
k2. where the fitness value of the i-th hen is represented by fHi in Eq. (7). The fitness value 
of the rooster that leads the hen is frHi. where fRH, the fitness value of a random person, 
appears in Eq. (8).

3) Calculation formula for Location Succession of the hen groups

wherein, in Eq. (9), Ct
i,j

 is the position of the i-th chick in the j-th dimension after t itera-
tions; Hit

j
 is the position of the corresponding hen followed by the i-th chick after t itera-

tions; F is a random number of (0,2).

2.3  Algorithm steps

Assume that the objective function of the optimization problem isF
(
�⃗X
)
 , where �⃗X is com-

posed of n m-dimensional space vectors, n represents the number, m represents the dimen-
sion. The particular implementation phases of the chicken swarm optimization algorithm 
are detailed below (Ayvaz 2022) based on the composition of the algorithm operators 
already defined:

1) Set the chicken flock to contain N individuals, corresponding to �⃗X in the objective func-
tion. Assign the numbers CN, HN, RN, MN to the hens, roosters, chicks, and mother 
chicks, accordingly. Establish the number of position dimensions (j), the number of 
rearrangement indicators (G), the maximum number of iterations (Max_G), and the 
initial number of iterations (t = 0) for the method. Go to step 2).

2) Check to determine if t < Max_G is true; if so, proceed to step 3; if not, break out of the 
loop and report the best answer.

3) Calculate the fitness value fi of each individual in the chicken population, go to step 4).
4) Determine whether Eq. (10) is true, if true, go to step 5), if not, go to step 6).

5) Establish the corresponding connection and define individuals in accordance with the 
order of fitness values, where the rooster has the lowest fitness value, the chick has the 
highest, and the hen is in the middle. Go to step 6).

(6)Ht+1
i,j

= Ht
i,j
+ k1 ∗ rand ∗ (Rt

Hi
−Mt

i,j
) + k2 ∗ rand ∗ (RHt − Ht

i,j
)

(7)k1 = e
fHi−frHi|fHi|+�

(8)k2 = efRH−fHi

(9)Ct+1
i,j

= Ct
i,j
+ F ∗ (Hit

j
− Ct

i,j
)

(10)t mod G == 0
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6) All chicken groups start foraging, update the position coordinates, and calculate the 
objective function value F, and record the latest optimal solution once a better function 
value Fbest appears. Execute t = t + 1 after updating, go to step 2).

The flow chart of chicken flock optimization algorithm is shown in Fig. 2.

2.4  Algorithm parameter setting

The Chicken Swarm optimization technique uses the following parameters: N, RN, HN, 
CN, MN, Max_G, t, j, and G. Max_G, N, and j are the optimization problem’s general 
settings, while N, j and Max_G stand for the parameters’ number and dimension, respec-
tively. These three parameters are often chosen by the optimization problem’s function to 
be solved. Problems demanding high solution accuracy typically specify a bigger Max_G, 
while complicated solution functions typically have larger N and j. The letters RN, HN, 
CN, and MN, respectively, stand for the number of roosters, hens, chicks, and mother hens 
(Kumar and Pandey 2022). Among them, it has been demonstrated that HN represents 
more hens than RN, and the algorithm’s performance is good since HN will produce more 
chicks. The explanation is that hens are better at stabilizing the parameters of chicks. The 
chicken group optimization algorithm’s parameter G is the population reorganization refer-
ence index. The population will increase when the requirements of algorithm step 4 are 

Fig. 2  Flowchart of flock optimization algorithm
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satisfied, and a special performance is that certain chicks’ fitness value will decline as they 
mature into roosters or hens. Some roosters and hens get more fit, which causes them to 
pass away and be classified as a new chick. The frequency of the changing process depends 
on the magnitude of the parameter G. The frequency of modifications will be high and the 
algorithm’s effectiveness will decline if the parameter G is set to a value that is too great. 
The changes won’t occur frequently enough if the parameter G is set too low, and the algo-
rithm will quickly settle into a local optimum solution (Gu et al. 2022). After experimental 
validation, it is advisable to restrict the range of parameter G to Singh and Kumar (2023); 
Tawhid and Ibrahim 2023).

The parameter setting of CSO algorithm can also reflect that the algorithm has a certain 
degree of portability (Deng et  al. 2022). Set the CSO parameters RN and CN to 0, and 
the CSO algorithm can be transformed into the DE algorithm. Set the RN and CN of the 
CSO algorithm parameters to 0, set the k1 and k2 parameters to the C1 and C2 parameters 
in the PSO, and the chicken group optimization algorithm can be converted into the PSO 
algorithm.

2.5  Analysis of CSO Advantages

The accuracy and computing efficiency of the swarm intelligence optimization method 
determine its benefits and drawbacks (Nadikattu 2021). The computational effectiveness 
of the method depends on its complexity, and the accuracy of the algorithm depends on its 
traversal range, provided that the number of iteration cycles Max_G is fixed (Sabale and 
Mini 2021). The CSO method has a straightforward procedure and excellent computing 
efficiency, and because it splits the parameters into three different population types, the 
traversal range of the algorithm will also expand as a result of the various search ranges of 
various populations (Ding et al. 2020). As a result, the CSO method offers a lot of advan-
tages in terms of computing speed and accuracy (Mansouri et al. 2021). Many academics 
analyze the benefits and drawbacks of the CSO algorithm and other varieties of swarm 
intelligence optimization algorithms using simulated exercises.

Meng (Meng et al. 2014) conducted performance comparison analyses of the CSO, Par-
ticle Swarm Optimization (PSO), Bat Algorithm (BA), and Differential Evolution (DE) 
algorithms using 12 typical benchmark functions for algorithm testing. The comparison of 
simulation experiment results reveals that CSO offers greater benefits in terms of accuracy, 
algorithm efficiency, and resilience. Griewank et al. conducted a performance comparison 
analysis of the CSO, BA, and Bat Algorithm based on Differential Evolution (DEBA) in 
the literature (Fu et al. 2019), where the author employed three test functions. The simula-
tion findings demonstrate that CSO performs significantly better. The author conducted a 
comparative performance analysis of CSO, PSO, and BA using the literature (Kadhuim 
and Al-Janabi 2023). According to the simulation findings, CSO greatly outperforms PSO 
and BA in terms of optimizing results. There is a premature occurrence in optimization 
issues that is simple to fit into a local optimum solution. Table 2 displays the comparative 
outcomes of several methods. It is clear from the comparative analysis findings in the table 
that the CSO algorithm performs better and is more stable during the process of finding the 
best solution than other swarm intelligence algorithms. and increased flexibility (Deb et al. 
2020). The CSO algorithm also has the issue that the calculation accuracy is insufficient 
and that it is simple to slip into a local optimum solution in the latter stage of convergence 
(Chen et al. 2023).
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2.6  Analysis of CSO Disadvantages

The CSO algorithm’s drawback is that it is simple to settle on a local optimum solu-
tion. The operator entering a local optimum and the incorrect parameter setting are to 
blame (Qi et  al. 2022). When parameters are specified incorrectly, the algorithm can-
not forecast the ideal setting in advance, leading to the selection of subpar parameters, 
which ultimately produces subpar output results. The operator is a local optimum solu-
tion candidate for the following reasons. The individual hen of CSO will always follow 
the rooster to perform parameter replacement because the rooster plays a crucial role 
in updating the position of the hen. As a result, once the rooster operator falls into the 
local optimal solution, the hen operator will also quickly fall into a local optimal solu-
tion, resulting in rapid convergence of the algorithm (Ren and Long 2021). The hen 
operator will fall into the local optimal solution because the parameter replacement of 
the chicken operator only depends on the hen operator, and the chicken operator will 
quickly fall into the local optimal solution as a result, accelerating the convergence of 
the algorithm based on the previous, creating a vicious circle.

3  Improvement of chicken swarm optimization algorithms

When compared to conventional swarm intelligence algorithms, the CSO has shown 
improved efficiency and resilience. This is explained by its streamlined algorithmic 
architecture, built-in stability, and exceptional portability (Singh et al. 2023). However, 
crucial factors like the mother hen population and recombination coefficient substan-
tially influence the convergence of CSO (Wu 2021). A poor design of these parameters 
can slow convergence and diminish the algorithm’s search accuracy by reducing popula-
tion diversity, premature convergence, and a tendency to become stuck in local optima. 
The CSO and other swarm intelligence algorithms are prone to premature convergence, 
which cannot totally be avoided (Yang et al. 2023).

Various enhancement solutions have been presented by numerous scholars to solve 
the aforementioned inherent restriction. These methods may be generally divided into 
three groups: conventional CSO upgrades, hybrid CSO enhancements that combine 
the algorithm with other methods, and additional cutting-edge improvement methods. 
Notably, compared to the original CSO method, these modified algorithms have consist-
ently shown greater convergence efficiency and global search optimization capabilities 
(Goldanloo and Gharehchopogh 2022).

3.1  Improved chicken swarm optimization algorithms

The modified CSO method is often designed to accomplish optimization by changing 
the algorithm’s operators, making implementation relatively simple (Gharehchopogh 
et al. 2020). The m-CSO algorithm will be used as an illustration of this kind of algo-
rithm in this section. Additionally, we will pay particular attention to introducing the 
SA-CSO algorithm and the Integrated CSO (ICSO) algorithm collection. In the fourth 
section, we’ll talk about how these algorithms are used in practice.



A comprehensive survey on the chicken swarm optimization…

1 3

Page 13 of 63 170

3.1.1  Modified chicken swarm optimization (m‑CSO)

The author put forward m-CSO in the literature (Fu et al. 2019). The literature examined 
the composition and organization of a chicken swarm and made the case that the mother 
hen model has a direct impact on how well the chicken swarm algorithm performs. The 
accuracy and stability of the m-CSO algorithm are found to be better than the CSO algo-
rithm, as confirmed by experiments using the Rosenbrock test function, when the equation 
for updating the position of the mother hen is changed from formula (3) to formula (11).

3.1.2  Improved chicken swarm optimization (ICSO)

By refining the CSO method and renaming it the improved CSO (ICSO) algorithm, 
researchers have successfully solved the issue of local optima. ICSO, which stands for 
improved CSO, is a comprehensive collection of algorithms developed by academics.

In the literature (Wu et al. 2015), the author proposed ICSO-I. The location of the chick 
operator in the CSO algorithm is exclusively reliant on the position of the hen and is unaf-
fected by the position of the rooster, according to research into the positional dynamics of 
chicks. As a result, the chick operator is unable to acquire crucial data produced from the 
rooster’s whereabouts. This restriction indicates that the chick operator is as vulnerable to 
becoming trapped in a local optima that is difficult to leave when the hen operator does.

The current study advises changing Eq. (9) to Eq. (12) in the chick’s location equation 
to allay this worry. Using a set of eight benchmark issue test functions, a comparison is 
made between ICSO-I and other well-known algorithms, including PSO, BA, CSO, and 
ICSO-I. The experimental results support the significant accuracy improvements made by 
ICSO-I, which are especially noticeable in high-dimensional problem settings and outper-
form the three alternative methods under study.

wherein, in Eq. (12), C is a learning parameter representing the extent to which the chicks 
are influenced by the rooster. Rit

j
 represents the dominant rooster associated with the i-th 

chick after t iterations. The self-learning coefficient for the chick is denoted by ω, with its 
value ranging from 0.4 to 0.9. The calculation formula for ω is outlined in Eq. (13).

wherein, in Eq. (13), ωfin is the final value of the iteration, ωini the initial value of the itera-
tion, t is the current iteration count, and ωmax is the maximum value of the iteration. Ω is 
calculated based on the given initial value and iteration count.

The ICSO-II approach, which addresses the issue that the hen operator in CSO is prone to 
falling into the local optimum solution, is suggested by the author in the literature (Wu et al. 
2018a) and offers a measure to increase the crossover probability. Figure 3 depicts the precise 
use of the crossover probability enhancement. A default crossover probability (dcp) parameter 
is set while the algorithm is running. Equation (3) is used to update the hen operator, and after 
that, a random number is produced from a uniform distribution in the [0, 1] range. If α < dcp, 

(11)Mt+1
i,j

= Mt
i,j
+ k1 ∗ rand ∗ (Rt

mi
−Mt

i,j
) + k2 ∗ rand ∗ (Mt

i,j
− RMt)

(12)Ct+1
i,j

= � ∗ Ct
i,j
+ F ∗ (Hit

j
− Ct

i,j
) + C ∗

(
Rit

j
− Ct

i,j

)

(13)� = �fin ∗ (�ini∕�fin)
[1∕(1+10∗t∕�max)]
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the two hens with the best fitness values among all hen operators are selected for the crossover 
calculation using Eqs. (14) and (15). This produces offspring operators ofs1 and ofs2. Finally, 
ofs1 and ofs2 replace the two hen operators with the poorest fitness values. By replacing hen 
operators with subpar fitness values, the crossover probability enhancement has the advantage 
of lowering the likelihood that the algorithm would enter a local optimum. Furthermore, there 
is a chance that in the same iteration, the fitness values of the progeny hen operators will be 
higher than those of the rooster operators. The progeny hen operators will be identified as 
rooster operators in accordance with the hierarchy concept of CSO, increasing the algorithm’s 
accuracy. By comparing the performance of ICSO-II with CSO, ABC, PSO, and ACO using 
the cost function of minimal aerodynamic heating rate, the improved algorithm is assessed. 
According to experimental simulations, ICSO-II outperforms other intelligent algorithms in 
terms of convergence efficiency and algorithm correctness.

wherein, in Eqs. (14) and (15), hen1
t and hen2

t represent the two hen operators with the best 
fitness values after t iterations. p is a percentage coefficient that represents the proportion 
of inheritance from hen1

t and hen2
t to the offspring ofs1 and ofs2.

(14)ofs1 = p ∗ hent
1
+ (1 − p) ∗ hent

2

(15)ofs2 = (1 − p) ∗ hent
1
+ p ∗ hent

2

Fig. 3  The flow chart crossover 
probability improvement
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In the literature (Liang et al. 2020a), the author proposed ICSO-III. The hen and chick 
operators in CSO benefit from the advances brought about by this algorithm. A modified 
search technique based on "Levy flight" is suggested to overcome the issue of the hen 
operator in CSO slipping into local optima. The comparatively high number of hen param-
eters among all the factors is taken into consideration by this technique. It modifies the 
hen’s search behavior such that it combines less long-range searches with close-range, in-
depth searches. Equation (16) illustrates the enhanced "Levy flight" search technique. The 
method also advises switching the search pattern of the chick operator to the chick search 
Eq.  (12) from ICSO-I in order to avoid the problem of the chick operator in CSO being 
affected by the hen and falling into local optima. Finally, it is determined from studies 
employing eight test functions that the ICSO-III algorithm greatly outperforms the CSO 
and PSO algorithms in terms of accuracy and efficiency.

wherein, in Eq. (16), Levy(λ) represents a random search jump function that follows a Levy 
distribution. λ is a random number distributed between 1 and 3. ⊗ is the dot product opera-
tor, which represents the inner product of vectors.

A solution to the problem of the chick operator in CSO being vulnerable to local optima 
controlled by the hen operator was provided in the literature (Wang et  al. 2020) by the 
author as ICSO-IV. Equation (6) should be changed to Eq. (17), according to the algorithm. 
The crucial change keeps the hen operator’s hold over the chick operator while adding the 
rooster operator. In addition, as shown in Eq. (18), a dynamic cosine inertia weight coef-
ficient is included to control the effect of the rooster. Equation (18) indicates that the coef-
ficient range lies within [wmin—wmax, wmax + wmin]. The degree of the rooster’s effect over 
the chick is determined by the coefficient’s absolute value. The number of iterations has an 
impact on the coefficient’s size. This improvement creates a more even distribution by add-
ing a rooster impact component to the chick calculation. This should lessen the chance that 
the chick operator may enter a local optimum. In reference (Ishikawa et al. 2020), func-
tion simulations are used to compare ICSO-IV with GA and PSO algorithms. The results 
show that ICSO-IV greatly increases algorithm accuracy when compared to GA and PSO 
algorithms.

wherein, in Eq.  (17), w is the dynamic cosine inertia weight coefficient, and Rit
j
 is the 

corresponding dominance of the rooster over the i-h chick after t iterations. Wherein, in 
Eq. (18), wmax is the maximum inertia coefficient set. wmin is the minimum inertia coeffi-
cient set. tmax is the maximum number of iterations. t represents the current iteration count.

ICSO-V was suggested by the author in the literature (Liu et  al. 2020a). Both the 
hen and the chick are susceptible to falling into a local optimum when the rooster 
operator achieves a local optimum solution since the rooster operator is crucial to the 
CSO algorithm. The approach incorporates the cosine inertia weight Cip to improve 
the rooster’s capacity to perform local searches in order to resolve this issue. The iner-
tia factor, Cip, is represented in Eq.  (19), which is the modified version of Eq.  (4). 
Equation (20) provides the definition of Cip. The rooster operator may switch between 

(16)Ht+1
i,j

= Ht
i,j
+ k1 ∗ rand ∗ (Rt

Hi
−Mt

i,j
) + k2 ∗ rand ∗ Levy(𝜆)⊗ (RHt − Ht

i,j
)

(17)Ct+1
i,j

= Ct
i,j
+ F ∗ (Hit

j
− Ct

i,j
) + w ∗ (Rit

j
− Ct

i,j
)

(18)w =
wmax − wmin

2
cos

�

tmax

t +
wmax − wmin

2
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global and local searches because to this inertia component, which lessens the chance 
of entering a local optimum. Additionally, ICSO-V addresses the issue of the hen oper-
ator controlling the chick operator solely. The learning part technique, which changes 
Eq. (9) to Eq. (20), is the improvement it suggests. Equation (20) introduces the global 
best operator into the chick operator equation and sets a learning coefficient to con-
trol its impact. The purpose of this technique is to lessen the likelihood that the chick 
operator may become stuck in local optima. In comparison to CSO, PSO, and WOA 
algorithms, simulations in the literature (Liu et al. 2020a) employing six distinct test 
functions show that ICSO-V produces more accurate computational results, especially 
for high-dimensional issues.

wherein, in Eq. (19), Cip is the cosine inertia factor, which is used to enhance the search 
capability of the rooster. Wherein, in Eq. (20), Cipmax is the maximum value of the inertia 
factor, set to 0.8, Cipmin is the minimum value of the inertia factor, set to 0.3, T is the maxi-
mum number of iterations, and t represents the current iteration count.

By altering the equations in the CSO algorithm, the aforementioned group of ICSO 
algorithms seeks to solve the unique flaws of roosters, hens, and chicks. This technique 
to improvement has the advantage of being straightforward and simple to apply, which 
has certain algorithmic optimization implications. An extensive range of enhanced 
algorithms is also included in the ICSO algorithm library. In the literature (Bharanid-
haran and Rajaguru 2020), the author presented ICSO-VI, which improves the CSO 
algorithm through four enhancement measures: controlled randomness optimization 
(CRO), cross-over operator (CO), rooster selection (RSEL), and. Figure  4 shows the 
flowchart for this thorough upgrade.

CPT involves optimizing the control parameters during initialization. In this meas-
ure, the algorithm seeks values for the parameters k1, k2, and F that yield high-preci-
sion results for the optimization function. Experimental testing determined that using 
k1 = 0.7, k2 = 0.5, and F = 0.9 leads to highly accurate results for most optimization 
functions. Recombination strategy for roosters is called RSEL. The placements of the 
rooster individuals are changed using the roulette wheel selection technique after the 
algorithm calculates the fitness values and obtains groups of hens, roosters, and chicks. 
People in the rooster species that score lower on the fitness scale are more likely to 
switch roles. Position considering rate (PCR) and position adjusting rate (PAR), two 
fixed parameters that must be established in order to use CRO as an improvement met-
ric. Following the computation of Eqs.  (4), (7), and (9), this measurement is made. 
Following CRO, CO is an improvement metric. According to Eqs.  (14) and (15), the 
crossover procedures on the hen individuals are the main focus of this measurement. 
The two patients with the lowest fitness scores are changed after the procedure. The 
CSO algorithm’s parameters, rooster equations, hen equations, and overall fitness are 
all the focus of ICSO-VI’s four improvement measures. It has been discovered through 
simulation testing that the ICSO-VI algorithm greatly increases accuracy when com-
pared to the CSO algorithms.

(19)Rt+1
i,j

= Cip ∗ Rt
i,j
+ Rt

i,j
∗ randn

(
0, �2

)

(20)Cip = Cipmin + (Cipmax − Cipmin) ∗ cos
(
� ∗

t

T

)
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3.1.3  Self‑adaptive chicken swarm optimization (SA‑CSO)

In the literature (Kumari et al. 2022a), the author proposed SA-CSO algorithm. The prob-
lem of the CSO method becoming stuck in local optima when handling high-dimensional 
problems was addressed in the literature. After updating Eqs. (1), (3), and (6) in the CSO 
method, it includes a self-adaptive improvement strategy that modifies the placements of 
the flock by introducing an adaptive parameter (Gheibi et al. 2021). The flock is aided in 
escaping local optima by this change. Equation  (21) defines the adaptively parameter as 
follows, while Eq. (22), which focuses on the global random flock operator, describes how 
the flock is adjusted. SA-CSO is straightforward to use and makes progress in avoiding 
local optimum. It has been discovered through experimental simulations that SA-CSO sur-
passes other algorithms in terms of precision and accuracy, including CSO, PSO, WOA, 
and multi-verse optimizer algorithm (MVO) (Abualigah 2020).

(21)�(i) =
Fi(ts − 1) − Fi(ts)

Fi(ts − 1)

(22)Cts
l,j
(i, po) = Cts

l,j
(i, po) × �(i)

Fig. 4  ICSO-VI algorithm flow chart
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wherein, in Eq. (21), (i) is the adjustment parameter for the selected individual i. Fi(ts) is 
the fitness value of individual i in the ts iteration. Wherein, in Eq.  (22), Cts

l,j
(i, po) is the 

adjusted position of the selected individual i after the fitness parameter adjustment in the 
ts iteration. Here, l is the ranking position of the individual among all individuals, j repre-
sents the dimension, and po is a random number indicating the likelihood of being selected 
for fitness adjustment.

3.2  Hybrid improved chicken swarm optimization

Standalone methods fall short of properly resolving high-dimensional uncertain optimization 
issues in the actual world (Radaideh and Shirvan 2021). In order to enhance, hybrid improved 
chicken swarm algorithms combine the chicken swarm algorithm with additional clever opti-
mization techniques (Chen et  al. 2022). The Bat-Chicken Swarm Optimization (CSO-BA), 
Chicken Swarm plus Deer Hunting Optimization Algorithm (CSO-DH), and Hybrid Ant Lion 
Chicken Swarm Optimization Algorithm (CSO-ALO) are the three hybrid enhanced algo-
rithms that will be covered in this part. In the fourth section, we’ll talk about how these algo-
rithms are used in practice.

3.2.1  Bat‑Chicken swarm optimization (CSO‑BA)

In the literature (Kong et al. 2020), the author proposed CSO-BA algorithm. The Bat Algo-
rithm is a search algorithm that excels at short-range and high-precision search. It controls the 
direction of algorithm advancement through two factors: the loudness of sound waves Ai and 
the frequency ri (Bangyal et al. 2022). With the help of this technique, the algorithm is guaran-
teed to advance toward greater precision while simultaneously having a chance of successfully 
escaping from local optima. Based on the Bat Algorithm’s recommendations for improve-
ment, CSO-BA incorporates the Bat Algorithm’s control parameters into the Rooster operator 
of CSO. The Rooster Eq. (4) in CSO is modified to Eq. (23), where Ai and ri are defined as 
Eq. (24) shows. This improvement effectively avoids the Rooster operator from getting stuck 
in local optima and enhances the computational precision.

wherein, in Eq. (23), xbest is the global best solution among the N individuals in the chicken 
swarm, and � is a random number distributed in the range [-1,1]. Wherein, in Eq. (24), � 
and � are limiting parameters, which are often set to a value of 0.9 in most cases.

The mother chicken and chick operators are also improved by CSO-BA. To improve 
the unpredictability of the mother chicken’s location and lessen the likelihood that it would 
become caught in local optima, the parameter F of the chicks is included into the mother 
chicken Eq. (6), resulting in Eq. (25). Equation (9) is changed to Eq. (26) to include the roost-
er’s position, which increases the unpredictability of the chick’s position and lessens the pos-
sibility that it will become stuck in local optima.

(23)Rt+1
i,j

=

{
xbest + 0.01 ∗ randn(1,N) Rand ≥ rt

i

Rt
i,j
∗ randn

(
0, 𝜎2

)
+ 𝜀 ∗ At

i
Rand < rt

i

(24)At+1
i

= �At
i
, rt+1

i
= rt

i
(1 − exp(−�t))

(25)Ht+1
i,j

= F ∗ Ht
i,j
+ k1 ∗ rand ∗ (Rt

Hi
−Mt

i,j
) + k2 ∗ rand ∗ (RHt − Ht

i,j
)
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Based on the improved operators, the flowchart of the CSO-BA algorithm is shown in 
Fig. 5, and the specific steps are as follows:

Step 1: Initialize all chicken swarm individuals. The initial positions of the chicken 
swarm are defined by Eq. (27).
Step 2: Apply the CSO algorithm to classify people into roosters, mother hens, and 
chicks according to their fitness scores. Equations (23), (25), and (26) should be used to 
update people’s locations.
Step 3: Calculate the updated fitness values and compare them with the previous values. 
Keep the individuals with better fitness values.
Step 4: Update the parameters of sound loudness and frequency.
Step 5: Check if the maximum number of iterations is reached. If so, end the loop and 
output the maximum value.

(26)Ct+1
i,j

= Ct
i,j
+ F ∗ (Hit

j
− Ct

i,j
) + rand ∗ (Rit

j
− Ct

i,j
)

(27)xi,j = Lb + (Ub − Lb) ∗ rand

Fig. 5  CSO-BA algorithm flow chart
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wherein, in Eq. (27), xi,j is a random individual. Ub is the maximum value of the entire search 
space. Lb is the minimum value of the entire search space, and rand is a random number dis-
tributed between 0 and 1.

3.2.2  Chicken swarm‑plus deer hunting optimization algorithm (CSO‑DH)

The CSO-DH method was suggested by the author in the literature (Gawali and Gawali 2021). 
It is an intelligent optimization system that was motivated by how hunters hunt deer. To arrive 
at optimal position solutions, this algorithm modifies the hunter’s location depending on 
several hunting strategies (Kanna et al. 2021). The data may be represented as illustrated in 
Eq. (28), supposing a collection of hunter positions designated as P. The wind angle and the 
deer angle are two identified hunting effect elements. Equations (29) and (30) yield the defini-
tions of a and b, respectively.

wherein, in Eq. (28), j is the currently selected position, and n is the total number of hunt-
ers. Wherein, in Eqs. (29) and (30), r is a random number between 0 and 1, and k repre-
sents the current iteration number.

According to Deer Hunting Optimization, there are three determining elements that affect 
the hunting position:the optimal hunting position Plead, the wind angle θ and the deer angle a 
that affect the hunting, and the successful hunting position Psuccess. Based on these factors, the 
strategy updates in the deer hunting algorithm are defined as Eqs. (31), (32), and (33). Equa-
tion (31) represents the strategy for the optimal position, Eq. (32) represents the angle strategy, 
and Eq. (33) represents the strategy for successful hunting (Prabhakar and Veena 2023).

wherein, in Eq.  (31), M and L are coefficient vectors, defined as shown in Eqs.  (30) and 
(31) respectively. c is a parameter influenced by the angle factor, and its range is between 
0 and 2. Wherein, in Eq.  (32), v is an influencing parameter defined as v = Φi+1, where 
Φi+1 = Φi + di, Φi = θi + π, and di = θi—a.

(28)P =
{
P1,P2,⋯ ,Pj,⋯ ,Pn

}
;1 ≤ j ≤ n

(29)�k = 2�r

(30)ak =
�

8
× r

(31)Pk+1 = Plead −M ∗ c ∗
|||L × Plead − Pk

|||

(32)Pk+1 = Plead − c ∗
|||cos(v) × Plead − Pk

|||

(33)Pk+1 = Psuccess −M ∗ c ∗ ||L × Psuccess − Pk
||

(34)M =
1

4
log

(
k +

1

kmax

)
∗ b

(35)L = 2 ∗ r
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wherein, in Eq. (34), kmax represents the maximum number of iterations, and b is a random 
number defined in the range [-1, 1]. Wherein, in Eq. (35), r is a random number defined in 
the range [0, 1].

The strategy selection method of Deer Hunting Optimization is as follows: when 
c > 1, Eq. (32) is used to update the hunting position; when c < 1 && L < 1, Eq. (33) is 
used to update the hunting position; when c < 1 && L > 1, Eq. (31) is used to update the 
hunting position.

The CSO-DH method suggests substituting the iterative calculation process of the 
rooster Eq. (4) with the hunting position calculation process of Deer Hunting Optimiza-
tion in order to address the problem of the rooster operator in the CSO algorithm being 
prone to local optima (Batra et al. 2021). The replacement is specifically carried out by 
determining if b < 0 is true. If so, the deer hunting technique is utilized to update the 
rooster operator; otherwise, the old rooster calculation equation is applied. In Fig. 6, the 
CSO-DH flowchart is displayed.

According to comparisons of test function results, the CSO-DH algorithm solves 
high-dimensional engineering problems more accurately and with less error loss than 
the RL algorithm, DHOA-RL algorithm, and CSO-RL algorithm.

Fig. 6  CSO-DH algorithm flow chart
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3.2.3  Hybrid ant lion chicken swarm optimization algorithm (CSO‑ALO)

In the literature (Deb and Gao 2021), the author proposed CSO-ALO algorithm. The 
Ant Lion Optimization (ALO) algorithm’s main principle is to replicate the way that 
ant lions pursue their prey in order to accomplish global optimization (Abualigah et al. 
2021). The ant lion digs a funnel-shaped trap in sandy ground before hunting, hiding at 
the bottom of the trap and watching for prey to come. A wandering ant that accidentally 
enters the trap is quickly caught and eaten by the ant lion, who then fixes the trap in 
preparation for the next hunt (Niu et  al. 2022). The ALO algorithm is a population-
diverse, highly optimized, parameter-adjustment-friendly, and readily implementable 
search technique (Mani et  al. 2018). It integrates random walks, roulette wheel selec-
tion, and elite tactics.

Equation  (36) depicts how the ALO algorithm initially specifies the ant s random 
walk procedure. Since the ant’s range of movement is limited, utilizing Eq.  (32) to 
directly simulate the ant’s journey might result in an out-of-bounds result. Therefore, 
depending on the established limits, Eq. (37) is used to normalize the ant’s movement.

wherein, in Eq. (36), A(t) represents the set of steps taken by the ant during random walks. 
sum is the summation operation. t is the number of steps or iteration count of the ant’s 
movement. r(t) is a random integer taken from the interval [0, 1].

wherein, in Eq. (37), ai is the minimum value of the i-th dimension variable. bi is the maxi-
mum value of the i-th dimension variable. ct

i
 is the minimum value of the i-th dimension 

variable during the t-th random walk. dt
i
 is the maximum value of the i -th dimension vari-

able during the t-th random walk.
The movement of ants is influenced by the traps created by antlions. Therefore, a 

mathematical model is assumed for the antlion traps, as shown in Eq. (38).

wherein, in Eq. (38), Ct is the minimum value of all variables at the t-th iteration. dt is the 
maximum value of all variables at the t-th iteration. ALt

j
 is the position of the selected j-th 

antlion at the t-th iteration.
Only one antlion at a time may affect an ant colony’s movement. To identify which 

ant gets preyed upon by which antlion, the computer employs a roulette wheel selection 
technique (Rani and Garg 2021). According to this method, an antlion’s fitness directly 
relates to the likelihood that it will catch an ant. Equation (39) is used by the program to 
replicate this adaptive process.

wherein, in Eq. (35), I represent the scaling factor, which is defined as shown in Eq. (40).

(36)A(t) =
[
0, sum(2r(t1) − 1),⋯ , sum(2r(tn) − 1)

]

(37)At
i
=

(At
i
− ai) ∗ (dt

i
− ct

i
)

(bi − ai)
+ ct

i

(38)
{

ct
i
= ALt

i
+ Ct

dt
i
= ALt

j
− dt

(39)ct =
ct

I
, dt =

dt

I
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wherein, in Eq.  (40), T is the maximum number of iterations, and v is a variable that 
changes as the number of iterations increases.

During the iteration process, if an ant’s fitness value is lower than that of its correspond-
ing antlion, the antlion is said to have captured the ant (Li et al. 2022a). Equation (41) is 
used to update the antlion’s location. The elite antlion is chosen based on its fitness rating, 
and it uses Eq. (42) to decide where the ants will go to in the future.

wherein, in Eq. (41), f is the fitness function. Wherein, in Eq. (42), Rt
A
(l) is the value gener-

ated by the ant during the l-th step of walking with the corresponding antlion after t itera-
tions. Rt

E
(l) is the value generated by the ant during the lth step of random walking around 

the elite antlion after t iterations. L represents any arbitrary value during the random walk-
ing of the ant.

Based on the defined ALO operators, the algorithm follows the specific steps below:

Step 1: Data initialization. Determine the number and dimensions of antlions and ants, 
and initialize their positions within the feasible domain. Proceed to Step 2.
Step 2: Calculate the fitness values for all individuals and determine the elite antlion. 
Proceed to Step 3.
Step 3: Update the Eq. (34’s) parameters after choosing your antlions using the roulette 
wheel selection technique. Based on Eqs. (36) and (37), the ants change their locations 
randomly around the elite antlion. Apply Eq. (42) to the ant locations to update them. 
Proceed to Step 4.
Step 4: Increase the iteration count by 1. Check if the maximum iteration count has been 
reached. If yes, end the iteration; if no, go back to Step 2. The ALO algorithm flowchart 
is shown in Fig. 7.

A mixture of the CSO and ALO algorithms is known as the CSO-ALO algorithm. A 
hybrid optimization solution is produced by first using the ALO algorithm to locate the 
position of the elite antlion and then using the CSO algorithm to further optimize the elite 
antlion (Asna et al. 2022). Figure 8 depicts the precise flowchart of the hybrid optimization 
technique. The hybrid optimization technique adds more layers of optimization than typical 
optimization algorithms, which has benefits for accuracy. In literature (Deb and Gao 2021), 
it was effectively proved that the CSO-ALO hybrid algorithm considerably enhances the 
accuracy of the method when compared to the ALO and CSO algorithms in optimizing dif-
ferent load scheduling issues.

3.3  Other improved chicken swarm optimization algorithms

Other categories of enhanced CSO algorithms will be covered in this section. Score-based 
improvements, genetic evolution-based improvements, chaos theory-based improvements, 

(40)I =

{
1, t ≤ 0.1T

10v ∗
t

T
, t > 0.1T

(41)ALt
j
= At

i
, if f

(
At
i

)
≤ f

(
ALt

j

)

(42)At+1
i

=
Rt
A
(l) + Rt

E
(l)

2
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Fig. 7  The flow chart of ALO algorithm

Fig. 8  The flow chart of CSO-ALO algorithm
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neural network-based improvements, and improvements for multi-objective optimization 
are some of the several types of improvements.

3.3.1  Fractional‑chicken swarm optimization (Fractional‑CSO)

In the literature (Cristin et al. 2021), the author proposed the Fractional-CSO algorithm. 
With this method, the fractional calculus is combined with the ideas of hierarchy and flock 
behavior. The Rooster operator in Eq. (4) is changed to Eq. (43) in order to solve the prob-
lem of the Rooster operator easily becoming caught in local optima. The modified Rooster 
calculation process is influenced by different stages of iteration, thereby enhancing the 
global randomness of the chicken flock.

wherein, in Eq.  (43), � is the fractional order, which represents the intermediary differ-
ence between the current Rooster term and the calculated term. �2 is defined as shown in 
Eq. (44).

wherein, in Eq. (44), f represents the fitness value of the Rooster individual, m is a random 
individual index, and y is a very small number.

3.3.2  CSO based clustering algorithm with genetic algorithm (CSOCA‑GA)

In the literature (Osamy et al. 2020), the author proposed the CSOCA-GA algorithm.The 
goal of this approach is to solve the discrete data clustering issue. The algorithm achieves 
parameter clustering by first introducing Eq. (45) to the binary of the chicken flock’s indi-
viduals and employing discrete individuals as the output for the program’s optimal solu-
tion. The algorithm incorporates the crossover operator of the genetic algorithm into the 
computation of each iteration, providing a certain probability to escape from local optima 
and increase the accuracy of the algorithm. This prevents the algorithm from getting 
stuck in subpar local optima and producing inferior clustering results. Figure 9 depicts the 
genetic algorithm’s flowchart.

wherein, in Eq. (45), x is the fitness value of the corresponding parameter.

3.3.3  Chaotic chicken swarm optimization (CCSO)

The initialization of parameters and operator iterations in the CSO algorithm both require 
procedures that produce random numbers. To deal with unpredictable processes, the 
CCSO algorithm applies chaos theory. According to experimental findings, adopting cha-
otic sequences instead of pseudo-random numbers for population initialization, selection, 

(43)Rt+1
x,y

= Rt
x,y

(
� + �

(
0, �2

))
+

1

2
�Rt−1

x,y
+

1

6
(1 − �)Rt−2

x,y
+

1

24
�(1 − �)(2 − �)Rt−3

x,y

(44)k2 =

{
1, if fx ≤ fm; m ∈ [1, A], m ≠ x

exp
(
(fm−f�)
|f�|+y

)
, otherwise

(45)bx =

{
1, if

1

1+e−x
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crossover, and mutation operations might significantly alter the entire algorithmic process 
and produce superior outcomes.

According to the literature (Li et al. 2019), the rooster, hen, and chick operators in the 
CSO algorithm are processed at random using the chaos theory’s tend map and logistics 
map. This raises the likelihood that the algorithm will elude local optima. To demonstrate 
that CCSO outperforms CSO and PSO algorithms in a variety of data processing areas, 
five test datasets were employed.

The tend map is shown in Eq. (46), and the logistics map is shown in Eq. (47).

wherein, in Eq. (46), Pi+1 is the new position of the individual, and Pi is the current posi-
tion. Const1 is set to 0.7, Const2 is set to 3.33. Wherein, in Eq. (47), Const3 is set to 4.

The SCCSO method, which updates the location of the individual with the worst fitness 
value in each iteration using chaos theory, was put out by the author in the literature. Equa-
tion (48) illustrates the new position’s computation.

wherein, in Eq. (48), Xw is the updated position after the worst position is updated. XLr is 
the position of the individual with the worst fitness value. Rand1 and Rand2 are random 
numbers distributed between [0,1]. t is the current iteration count. tmax is the maximum 
number of iterations, and Ck is a parameter for the chaotic sequence defined in Eq. (49).

(46)
Pi+1 =

Pi

Const1

Pi+1 = Const2 ∗
(
1 − Pi

)

(47)Pi+1 = Const3 ∗ (1 − Pi)

(48)Xw =

⎧⎪⎨⎪⎩

XLr, if Rand2 ≥ 1 −
t

tmax

XLr + Rand1 ∗
�
2Ck − 1

�
, otherwise

Fig. 9  The flowchart of genetic algorithm
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3.3.4  Adaptive chicken swarm optimization (ACSO)

Adaptive Chicken Swarm Optimization(ACSO) is suggested as a viable solution, target-
ing the issues of low convergence accuracy and easy fall into local optimal solutions for 
the complicated high-dimensional problems treated by flocking. By enhancing the iterative 
process, the ACSO may determine the parameter selection adaptively during the algorithm, 
thereby guaranteeing the flocking algorithm’s ability to do global depth searches (Wang 
et al. 2021a).

The author suggested the ACSO algorithm in the literature. The choice of constants in 
the tend map and logistics map was a topic of discussion in the literature since it affected 
algorithm speed and accuracy. Equation  (50) illustrates how the tend map is updated by 
ACSO, and initialization values for the parameter in Eq. (51) are established in accordance 
with the modified tend map.

wherein, in Eq. (51), Xini is the parameter initialization in the ACSO algorithm. Xmax is the 
upper bound of the parameter, and Xmin is the lower bound of the parameter.

To prevent being stuck in local optima, the ACSO algorithm combines the ideas of 
search rate and search range. In order to do this, the ACSO algorithm incorporates the 
hen’s influence component w, which is made up of the search rate influence factor h and 
the search range influence factor s. Equation (52), instead of Eq. (3), modifies the hen oper-
ator. The ACSO method has been found to have superior accuracy, stability, and computing 
efficiency when compared to the CSO algorithm through simulation studies utilizing seven 
distinct test functions.

wherein, in Eq. (52), w is the hen’s influence factor, which is defined in Eq. (53).

wherein, in Eq. (53), a0, a1, a2 are random numbers distributed in the range (0,1]. h is the 
search rate influence factor ranging between (0,1], where a larger h corresponds to a slower 
search rate, and the algorithm converges when h equals 1. s is the search range influence 
factor ranging between (0,1], where a smaller s corresponds to a larger search range, and 
all individuals in the algorithm have the same fitness value when s equals 1.

3.3.5  Algorithm complexity analysis

Assuming that the number of populations of the algorithm is N, the dimension of the search 
space is D, and the maximum number of searches is Tmax, the complexity of PSO-CSO 

(49)Ck+1 = 4 ∗ Ck ∗
(
1 − Ck

)

(50)Pi+1 =

{
10

7
Pi, Pi < 0.7

10

3
Pi

(
1 − Pi

)
, otherwise
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)
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includes: the initialization complexity of the population O(ND), the fitness value calcula-
tion complexity O(ND), the position update complexity of the global and local search is 
O(N2logD), the fitness value sorting complexity of the algorithm is O(N2) and the control 
parameter update complexity of the algorithm is O(ND). Then the complexity of the PSO-
CSO algorithm is shown in Eq. (54):

The algorithm time complexity of CSO is shown in Eq. (55):

3.4  Analysis of different improved algorithms

The primary directions for CSO algorithm improvement may be split into two categories. 
First, the field of optimization (FOO) needs to be improved to make it appropriate for cer-
tain optimization goal functions. Examples that come to mind include CSOCA-GA. The 
second step is to accelerate convergence and increase precision in the optimization process 
(POO). Examples that come to mind are ICSO-VI and CSO-ALO.

Through MATLAB simulations, the performance of all the aforementioned enhanced 
algorithms has been shown, with varied degrees of improvement over the CSO algorithm. 
However, there is presently little information on how these enhanced algorithms compare, 
which can be examined in upcoming reviews and more in-depth studies. Tables 3, 4 and 5 

(54)O(PSO − CSO) = O(ND) + O(Tmax)O(ND + N2 logN + N2 + ND)

(55)O(CSO) = O(ND) + O(Tmax)O(N
2 logN + N + ND)

Table 3  General improvements of CSO

Algorithm Methods for improve-
ment

Targets for improved Author

m-CSO POO Hen’s formula Chen (Fu et al. 2019)
ICSO-I POO Chicken’s formula Wu D (Wu et al. 2015)
ICSO-II POO Hen’s formula Wu Y (Wu et al. 2018a)
ICSO-III FOO Hen’s formula Liang X (Liang et al. 2020a)
ICSO-IV POO Chicken’s formula Wang J (Wang et al. 2020)
ICSO-V POO Rooster’s formula Liu (Liu et al. 2020a)
ICSO-VI POO,FOO Chicken swarm Bharanidharan (Bharanid-

haran and Rajaguru 2020)
SA-CSO FOO Chicken swarm Kumari (Kumari et al. 2022a)

Table 4  Hybrid improvements of CSO

Algorithm Methods for 
improvement

Targets for improved Author

CSO-BA POO Chicken swarm
Initial Settings

Liang S (Kong et al. 2020)

CSO-DH POO,FOO Rooster’s formula Gawali (Gawali and Gawali 2021)
CSO-ALO POO,FOO Initial Settings Deb S (Deb and Gao 2021)
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display a compilation of the general improvements’ algorithms, hybrid improvements algo-
rithms, and additional improvements algorithms discussed in this section.

4  Function testing and performance analysis

In order to study the effectiveness of the chicken swarm optimization algorithm, we stud-
ied particle swarm optimization algorithm (PSO) (Nayak et al. 2023), chicken swarm opti-
mization algorithm (CSO) (Li et  al. 2021b), sine–cosine optimization algorithm (SCA) 
(Rizk-Allah and Hassanien 2023), multiverse optimization algorithm (MVO) (Mishra et al. 
2022), tree species optimization algorithm (TSA) (Carreon-Ortiz and Valdez 2022), wind 
driven algorithm (WDO) (Ibrahim et  al. 2020) and other 6 algorithms were tested. This 
paper conducts comparative experiments using 9 standard benchmark functions, which 
simulate the different difficulties of actual search spaces. See Table 6 for function details. 
To be more convincing, 30 independent experiments were performed for each test function 
in all cases, with a maximum number of iterations of 500 and a population size set to 50.

The integrated development environment for all experiments is Matlab_R2020b. The 
operating system is a 64-bit Windows 11 system. In order to verify the stability and conver-
gence of the seven algorithms, the convergence comparison chart of each algorithm on the 
test function is listed, as shown in Fig. 10.

The horizontal axis in Fig. 10 represents the number of iterations of the algorithm, and the 
vertical axis represents the optimal fitness function value. From the convergence curve and the 
final data table, it can be seen that for the F1 function, CSO has the fastest convergence speed, and 
the convergence curves of CSO are all below the convergence curves of other algorithms. From 
the final results, the WDO algorithm has the best result. Judging from the final results, the average 
responsiveness value obtained using CSO optimization is 18.35, which is closer to the theoretical 
optimal value. Among them, PSO stops converging prematurely and has the worst performance. It 
shows that CSO’s optimization ability for the F1 function is very stable, and its repetition accuracy 
is higher than other algorithms. For function F2, SCA has the best performance and the fastest 
convergence speed. For the F3 function, WDO results in better performance and better conver-
gence speed than other algorithms. For function F4, WDO results are the best, followed by CSO. 
For function F5, the performance of WDO algorithm and CSO algorithm is better. For function 
F6, the CSO algorithm has the fastest convergence speed and the best results. For function F7, the 
six algorithms are still in the process of calculating the optimal value and have not reached conver-
gence. For function F8, the CSO algorithm has the fastest convergence speed and the best results. 
For function F9, the CSO algorithm has the fastest convergence speed and the best results.

Table 5  Other improvements of CSO

Algorithm Methods for 
improvement

Targets for improved Author

Fractional-CSO POO Rooster’s formula Cristin (Cristin et al. 2021)
CSOCA-GA POO,FOO Chicken swarm Osamy (Osamy et al. 2020)
CCSO POO Random setting Ahmed (Li et al. 2021b)
SCCSO POO Chicken swarm Li M (Mishra et al. 2022)
ACSO POO Initial Settings

Hen’s formula
Xing Y (Wang et al. 2021a)
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Judging from different test results, for different optimization applications, the perfor-
mance of the algorithm needs to be analyzed in detail to determine which algorithm is bet-
ter for a certain application. Generally speaking, the chicken flock algorithm is the fastest 
and has the best results in solving the minimum value of most functions.

Under the same standard test function, the mean value represents the convergence accu-
racy of the algorithm, and the standard deviation represents the stability of the algorithm. 
Obviously, the smaller the mean value and standard deviation, the stronger the ability of 
the algorithm to avoid local solutions and determine the global optimal solution. It can be 
seen from Table 7 that the CSO algorithm and the WDO algorithm can successfully find an 
excellent solution on 9 test functions, among which the global optimal values   are obtained 
on 5 functions, while the PSO algorithm and the SCA algorithm, MVO algorithm and TSA 
algorithm successfully find an excellent solution (global optimal value).

5  Application of chicken swarm optimization

The CSO algorithm and its improved algorithm continue to be used by academics in the 
fields of data mining, wireless sensor networks of the Internet of Things, robot engineer-
ing, electric power, feature extraction, and image processing to solve the optimal problem 

Fig. 10  Comparison of six algorithms to find the optimal solution
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(Mirbabaie et al. 2021). This chapter will concentrate on the application, which is grouped 
in Tables 8, 9, 10, 11 and 12.

5.1  Data mining

Data mining is the process of using clever algorithms to extract hidden, undiscovered, and 
valuable information from a particular set of data (Liang et al. 2020b). Many academics are 

Fig. 10  (continued)
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Table 7  Comparison results of 9 
function data

Function Algorithm Mean Std Best Worst

F1 PSO 246.9311 17.5945 210.992 278.9645
CSO 208.0782 18.3451 152.6312 248.3145
SCA 304.9406 214.2728 58.6584 985.4387
MVO 339.1023 48.2526 264.9664 453.3886
TSA 183.6598 20.5057 125.5998 212.3145
WDO 67.5927 35.3709 25.1827 164.2908

F2 PSO 21.1105 0.0504 21.0233 21.247
CSO 20.3419 0.1149 20.329 20.2572
SCA 20.2572 0.0674 20.1555 20.4232
MVO 20.3941 0.0731 20.2760 20.5961
TSA 20.2299 0.041 20.1129 20.3014
WDO 20.3562 3.845 0.0003 21.1192

F3 PSO 0.5763 0.0553 0.496 0.6727
CSO 0.2525 0.0497 0.2684 0.5473
SCA 0.793 0.2235 0.2985 1.1984
MVO 0.648 0.0831 0.4769 0.7757
TSA 0.0067 0.0237 0 0.1253
WDO 0.0051 0.0167 0 0.0785

F4 PSO 10.3703 5.6965 0.5267 25.8821
CSO 11.0547 9.1334 0.1172 32.142
SCA 0.935 2.93 0 10.633
MVO 7.4444 2.8099 1.1123 14.3218
TSA 0.3421 0.404 0.0043 1.5017
WDO 0.0386 0.1093 0.0008 0.452

F5 PSO 2.3663 0.2674 1.901 3.1219
CSO 11.0743 35.7516 0.5267 198.5413
SCA 1.89 4.398 0 16.403
MVO 15.1328 14.2393 2.482 62.1819
TSA 0.0458 0.0782 0.0006 0.3453
WDO 0.4779 0.8667 0.019 3.1323

F6 PSO 0.0012 0.0002 0.001 0.0018
CSO 0.001 0 0.001 0.001
SCA 0.0011 0.0002 0.001 0.0018
MVO 0.0047 0.0091 0.001 0.0305
TSA 0.001 0 0.001 0.001
WDO 0.0013 0.0005 0.001 0.0027

F7 PSO -1.0312 0.0004 -1.0316 -1.0302
CSO -1.0316 0 -1.0316 -1.0315
SCA -1.0316 0 -1.0316 -1.0316
MVO -1.0302 0.0015 -1.0316 -1.0259
TSA -1.0316 0 -1.0316 -1.0316
WDO -1.0316 0.0001 -1.0316 -1.0314
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investigating the use of chicken swarm optimization (CSO) in the field of data mining since 
the quick and high-precision search requirements match the traits of CSO algorithms.

5.1.1  Data of classification

For the categorization of violent films, the author of a paper (Abdullahi et al. 2020) sug-
gested combining the CSO method and a deep neural network (DNN). A DNN is a neural 
network made up of input, hidden, and output layers. It has numerous hidden layers (Gor-
dan et al. 2022). Figure 11 depicts the neural network’s structure. The input layer, which in 
this application instance corresponds to the input data of digital movies, is represented by 
the layer on the left. The model’s characteristics have more expressive potential thanks to 
the multi-layer structure, which is buried between the intermediate levels. The categoriza-
tion outcomes for violent videos are shown in this application’s output layer. The expres-
sive capability of the hidden layers determines how well classification results using DNN 
are produced. However, in real-world circumstances, depending simply on conventional 
techniques, such as different activation functions, frequently yields low accuracy and slug-
gish computing performance. As a result, in accordance with the literature (Abdullahi et al. 
2020), the input data is optimized using the CSO algorithm at the input layer with mean 
squared error (MSE) serving as the fitness function. Prior to collecting features from the 
hidden layers, this method permits getting video data with improved precision.

In the literature (Kumari et al. 2022a), the author proposed the combination of SA-CSO 
with K-nearest neighbors (KNN) and Fuzzy-Convolutional neural networks (FCNN) for 
post-harvest grading of mangoes (Liu et  al. 2022). Extracting fundamental information 
from fruit photos, such as the Gray-level co-occurrence matrix (GLCM), local binary pat-
tern (LBP), discrete fourier transform (DFT), and shape characteristics, is the key to intel-
ligent fruit grading. The data that was collected from the fruit comprises normal and aber-
rant segmentation characteristics. In the study, the feature vectors were optimized using 
the SA-CSO method, and KNN and CNN were used to model the categorization of mango 

Nine benchmark functions including F1 to F9 were selected for test-
ing. Their average, standard deviation, optimal value and worst value 
test results are shown in Table 6

Table 7  (continued) Function Algorithm Mean Std Best Worst

F8 PSO 0.3984 0.0008 0.3979 0.4017

CSO 0.3915 0 0.3987 0.398

SCA 0.4099 0.025 0.398 0.5211

MVO 0.3999 0.002 0.3979 0.4038

TSA 0.3979 0 0.3979 0.3979

WDO 0.406 0.0161 0.3979 0.4622
F9 PSO 3.025 0.0238 3.0018 3.0936

CSO 3.0013 0.0028 3 3.0119
SCA 3.0001 0.0001 3 3.0007
MVO 3.1084 0.0852 3.0025 3.3420
TSA 3 0 3 3
WDO 3.0043 0.0082 3.0003 3.0464
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defects and levels of ripeness. Testing was done using the Kesar Mango dataset from the 
Mendeley repository. The findings demonstrated that, in comparison to the employment 
of PSO, WOA, CSO, and other algorithms, the combination of SA-CSO with KNN and 
FCNN increased the accuracy of optimal feature extraction.

5.1.2  Data clustering

In the literature (Harshavardhan et  al. 2023), the author proposed the utilization of the 
CSO algorithm in data clustering. The classification of comparable items into homoge-
nous groups is the aim of data clustering (Khorshid and Abdulazeez 2021). The Euclidean 
distance, which is defined as stated in Eq.  (56), determines how similar two things are. 
The similarity metric was used in the study as the CSO algorithm’s optimization objective 
function. The Iris Dataset, Ecoli Dataset, Ionosphere Dataset, and Cancer Dataset were the 
four datasets used to assess the algorithm’s performance. The findings demonstrated that 
the CSO algorithm exhibited enhanced accuracy in data clustering compared to the GA, 
CS, and PSO algorithms.

wherein, in Eq. (56), m is the number of target attributes, and Oip is the target value cor-
responding to the p-th attribute.

(56)ist
(
oi, oj

)
=

(
m∑
p=1

|||oip − ojp
|||
1

2

)2

Table 9  Application of CSO in wireless sensor network

Author Real Model Algorithm Application

Shayokh (Tripathi et al. 2020) Node precision and computation 
time

CSO Positioning

Yu (Al Shayokh and Shin 2017) Deep mine monitoring CSO Positioning
Sandeli (Yu et al. 2019) Radio Signal Strength ICSO-I Positioning
Gambhir (Sandeli et al. 2021) Clustering routing protocol CSO Energy Management
Osamy (Osamy et al. 2020) Problem of cluster head selection CSOCA-GA Energy Management
Ajmi (Gambhir et al. 2020) Process of communication in the 

network
MWCSGA Energy Management

Liang (Kong et al. 2020) Collaborative beamforming CSO-BA Energy Management

Table 10  Application of CSO in wireless sensor network

Author Real Model Algorithm Application

Mu (Ajmi et al. 2021) Robotic manipulators CSO Trajectory
Li (Mu et al. 2016) Ascent trajectory optimization 

problem
CSO Trajectory

Wu (Wu et al. 2018a) Reentry Trajectory Optimization ICSO-II Trajectory
Liang (Liang et al. 2020a) Robot path planning ICSO-III Trajectory
Gawali (Gawali and Gawali 2021) Movement of the robotic arm CSO-DH Machine Learning
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The author used the enhanced ACSO algorithm to tackle the challenge of commu-
nity discovery in intricate social networks in the literature (Yanto et  al. 2020). The 
main goal of community discovery is to redefine the topological structure of com-
plex networks by grouping groups with similar characteristics (Guo et al. 2022). The 
ACSO method was modified in the literature (Yanto et al. 2020) to become a discrete 
swarm intelligence algorithm appropriate for clustering issues. As objective functions, 
we employ the Modularity, NMI, and Group truth of each category. Testing on data 
sets like the Zachary Karate Club data set and the American college football data set 
demonstrates that ACSO considerably increases clustering accuracy. The research also 
emphasizes that the CCSO method can be further enhanced in the future to accommo-
date application scenarios with a wider scope.

A multi-objective chicken swarm optimization method (MOCSO), which addresses 
the multi-objective issues faced by various neural network algorithms (Su et al. 2024), 
was suggested by the author in the literature (Rabani and Soleimanian 2019). It is used 
with four different kinds of tri-objective functions and five different kinds of bi-objec-
tive functions. When compared to multi-objective tasks using algorithms like PSO, 
GA, and EA, MOCSO enhances convergence and optimum bounds according to the 
performance indicators of Generational distance (GD), Spacing, and Maximum Spread 
(MS).

In the literature (Wei et al. 2021), the author focused on the problem of the dataset 
in unsupervised clustering of Alzheimer’s disease tending to fall into local optima in 
deep learning models (Garud et al. 2021). To fine-tune the parameters in deep learn-
ing clustering, it is suggested to employ the search concept of the CCSO method. It is 
determined by contrasting the FCM and IFCM clustering algorithms that initializing 
the parameters with CCSO may greatly increase the accuracy of the outcomes.

Fig. 11  Schematic diagram of DNN network
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5.1.3  Prediction

The CSO method is used to initialize the weight values of a neural network algorithm 
in the prediction model of crude oil prices, according to the literature (Dhanusha et al. 
2022). The neural network model is then given the optimum weights. It is tested to see 
if it is less than the halting condition using the mean square error (MSE) as a criterion 
(Alashwal et  al. 2019). If so, the anticipated outcomes are outputted. Otherwise, the 
weights are continuing to be optimized using the CSO method. It is determined that 
CSO algorithm optimization delivers greater accuracy and lower MSE by contrasting 
it with ABCNN (Artificial Bee Colony Neural Network) and ABCBP (Artificial Bee 
Colony Back-Propagation).

The CSO algorithm is used in the feature extraction stage of predicting cervical can-
cer (Hodson 2022) in the literature (Khan et al. 2019) and (AbuKhalil et al. 2022). The 
CSO algorithm’s chickens include the feature values, which are then calculated itera-
tively to produce the chicken values. Following that, these values are compared to ran-
dom integers between 0 and 1. The related characteristic is recorded as 1 if a value 
exceeds the random number; otherwise, it is marked as 0. CSO is discovered through 
simulation trials to increase the findings’ accuracy when compared to prediction algo-
rithms like KNN, MLP, SVM, CART, and CNN.

In the literature (Rizk-Allah and Hassanien 2023), the author addressed the issue 
of traditional point-based prediction algorithm, which is inability to accurately obtain 
landslide displacement (Akter et  al. 2021). Two support vector machines (SVM) are 
used in a proposed approach to produce upper and lower bounds for the displace-
ment. By establishing a projected interval of landslide displacement, this optimization 
increases the point prediction algorithm’s accuracy of prediction. Given a dataset, SVM 
is examined using the PICP and PINAW parameters (Eqs. 58 and 60), which result in 
the comprehensive index CWC (Eq. 61), which is used to calculate the prediction inter-
val (Eq.  57). Reference 82 also suggests using Eq.  61 as the ACSO algorithm’s goal 
function to enhance the prediction parameters. Using the ACSO method, as opposed to 
the CSO, SMO, and GWO algorithms, increases forecast accuracy, according to simula-
tion trials.

wherein, in Eq. (57), L̂(�)
(
xi
)
 is the lower limit of the prediction, and Û(�)

(
xi
)
 is the upper 

limit of the prediction.

wherein, in Eq. (58), � is defined as shown in Eq. (59).

wherein, in Eq. (60), R represents the normalized average width of PICK.

(57)Î(𝛼)
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)
=
[
L̂(𝛼)

(
xi
)
, Û(𝛼)

(
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N
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wherein, in Eq. (61), � is the control parameter of the Coverage Width Criterion (CWC).� 
is defined as shown in Eq. (62).

5.2  Wireless sensor network (WSN)

In the spatial domain, sensors are distributed and form a network to perceive the sur-
rounding environmental data in a unified and autonomous manner. Wireless Sensor 
Networks (WSN) (Liu et  al. 2020b) are the name given to this technology. WSN has 
been widely used in various fields such as national defense (Majid et al. 2022), military 
(Wang and Zhu 2021), industrial monitoring (Pragadeswaran et al. 2021), environmen-
tal detection (Aponte-Luis et al. 2018), and smart living (Safaldin et al. 2021), due to its 
low cost, high scalability, and stability (Li et al. 2022b). However, due to the wide cov-
erage of WSN and the limited energy of nodes, it is difficult to provide precise position-
ing devices similar to GPS for each node or replace the batteries of each node regularly 
(Elsmany et  al. 2019). Numerous academics have used intelligent optimization algo-
rithms on WSN to solve these problems, with positive outcomes.

5.2.1  Positioning

A small number of GPS sensors (anchor nodes) are used in real-world situations to get 
over GPS’s limitations, while other sensors rely on localization algorithms that take use 
of the precise location supplied by GPS nodes (Han et al. 2022). According to the lit-
erature (Tripathi et  al. 2020), the major focus for developing this technology should 
be on natural-inspired algorithms, with the decrease of computing time and localiza-
tion mistakes as the primary goals. Equation (63), which accounts for the influence of 
the environment on wireless sensor networks, determines the separation between other 
nodes and anchor nodes:

wherein, in Eq. (63), d represents the distance between a node and the i-th anchor node. 
nnoise is the Gaussian noise affected by the environment.

The CSO optimization procedure, whose objective function is represented by Eq. (58), 
is first described in the literature (Tripathi et al. 2020) to determine the ideal distance.

wherein, in Eq. (64), M represents the number of anchor nodes within the specified area.
EL is set as the optimized error metric to evaluate the results of CSO optimization, and 

its definition is given in Eq. (65).

(61)CWC = PINAW(1 + �(PICP)e−�(PICP−�))

(62)𝛾(PICP) =

{
1, if PICP < 𝜅

0, otherwise

(63)d̂ = di + nnoise

(64)f =
1

M

M∑
i=1

(di − d̂i)
2
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wherein, in Eq. (65), NL is the number of unknown nodes. N is the total number of nodes. 
(xi, yi) is the final optimized positions of the target nodes, and (x, y) is the optimal position 
obtained by the optimization algorithm after each iteration.

The optimization results achieved using the CSO method enhanced the accuracy by 
55% compared to the PSO and BPSO optimization algorithms, according to experiments 
and simulations reported in the literature (Tripathi et al. 2020). In terms of speed, the 
CSO algorithm decreased the computing time by 50%. The CSO optimization algorithm 
outperformed the BPSOA optimization algorithm by 10% in terms of accuracy while 
speeding up calculation by 30%.

The author of the literature (Al Shayokh and Shin 2017) largely concentrated on 
the usage of WSN in the field of deep mining. An extensive wireless sensor network 
is set up in deep mine shafts to monitor the environment (Gupta and Mahaur 2021). 
The received signal strength indication (RSSI) parameter (Muduli et  al. 2018) deter-
mines the theoretical computed distance for the placement of each node in the network. 
The real placement distance is less than the estimated distance because of the compli-
cated mining environment and the low connection distance between nodes. Within each 
node’s communication radius, there must be a minimum of three other nodes. Cluster-
ing the nodes in a WSN is a frequent practice to increase accuracy and reduce energy 
usage during transmission. After clustering, an optimization technique must be created 
to improve overall communication by setting anchor nodes inside each cluster (Nagah 
Amr et al. 2021).

The literature (Al Shayokh and Shin 2017) made use of the chicken swarm optimiza-
tion’s unique properties, treating anchor nodes like individual birds and the rest m nodes 
like food in a 2D space. Equation (66) is used to determine the ideal food that the anchor 
nodes should seek. The Eqs. (67) and (68) define the objective function.

wherein, in Eq. (67), D is a two-dimensional matrix containing distance data for all nodes.
The CSO algorithm is used to compute the objective function in order to produce the 

optimum parameters. The final optimal node locations are then produced using the Wheel 
graph technique utilizing these adjusted settings. The CSO-W localization optimization 
algorithm is the name given to this coupled method in the literature (Al Shayokh and Shin 
2017). By comparing the accuracy performance of the CSO-W algorithm to that of the 
D3D-MAP and CSO algorithms, it is found that the CSO-W algorithm produces greater 
localization accuracy.
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∑
N
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+
�
y − yi
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x1, y1

)
,⋯ ,

(
xm, ym

)]
=
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The objective function (64) is changed to Eq. (69) in the literature (Yu et al. 2019), and 
the error target EL is changed to Eq.  (70). Additionally, ICSO-I, a more advanced CSO 
algorithm, is shown. Through simulation tests, it was discovered that the ICSO-I method 
outperforms the original CSO localization optimization and PSO algorithms in terms of 
localization accuracy.

wherein, in Eqs. (69) and (70), (x,y) is the coordinates of anchor nodes, (xi,yi) is the coor-
dinates of unknown nodes being optimized. L denotes the number of optimized nodes, and 
x̂i, ŷi is the optimal position obtained after each iteration of the node.

5.2.2  Energy management

The lifespan of a wireless sensor network (WSN) depends on the energy consumption of 
nodes in the system (Karim et al. 2021). In terms of application scenarios, the node with 
the longest lifespan that results in system failure determines the overall lifespan. This node 
could be a long-lifespan node that is infrequently used or a short-lifespan node that is often 
used (Abdulzahra and Al-Qurabat 2022). Optimization methods should be developed to 
reduce the usage frequency of short-lifespan nodes in order to prolong the lifespan of the 
WSN (Dalal et  al. 2022). With a view to minimizing energy consumption and extend-
ing the lifespan of sensor nodes, LEACH is a wireless sensor network routing protocol 
that tackles the crucial problem of equally spreading network load across sensor nodes. 
A round of data, which consists of cluster formation and steady data transmission phases, 
is how LEACH divides the entire sensor network into periodic clusters (Angurala et  al. 
2022). A threshold random number determines how LEACH clusters develop, and this ran-
dom formation has downsides because it causes node clustering and higher energy usage.

The CSO method is described in the literature (Sandeli et al. 2021) as a replacement for 
the LEACH routing protocol’s random cluster generation procedure. The fitness function 
is the energy state of the nodes, and after a predetermined amount of iterations, the CSO 
solution is used to decide the cluster node composition. Through simulation studies, it is 
shown that the CSO algorithm outperforms the LEACH routing protocol in terms of fewer 
nodes experiencing energy exhaustion every round, extending the lifespan of the WSN sys-
tem as a whole.

In the literature (Osamy et al. 2020), a WSN system with n nodes is constructed based 
on LEACH. Each node has the same initial energy and remains stationary. The energy con-
sumption of nodes is defined as the transmission energy ETx and reception energy ERx, as 
specified in Eqs. (71) and (72):

(69)f (x, y) =
1

M

M∑
i=1

(√
(x − xi)2 + (y − yi)2 − di

)2

(70)EL =
1

NL

l∑
i=1

(
(xi − x̂i)2 + (yi − ŷi)2

)

(71)ETx(b, d) = Eelec × b + v × b × dp

(72)ERx(b, d) = Eelec × b
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wherein, in Eqs. (71) and (72), Eelec is the electronic energy. b is the packet size. d is the 
transmission distance. v is the energy amplification factor due to distance, and p is a loss 
parameter ranging from 2.0 to 4.0.

Based on the transmission and reception energy, within a cluster, assuming there 
are m nodes, the energy loss functions for the cluster head node (CH) and other nodes 
(CM) can be defined as in Eqs. (73) and (74). The overall energy loss of the cluster, E, 
is given by Eq. (75). The optimization objective of the chicken swarm algorithm is to 
minimize energy loss, which is defined as the fitness function in Eq. (76):

wherein, in Eqs.  (73), (74), and (75), dtoBS and dtoCH are the distances from nodes to the 
base station and to the CH node, respectively. k is the total number of CH nodes, β is the 
total number of selected CH nodes, and a is a positive constant.

The CSOCA-GA algorithm is suggested for usage for optimization based on the fit-
ness function in the literature (Osamy et al. 2020), and simulation tests are carried out 
to compare it with CSO, EDOC, GCDC, and LEACHPSO (LEACH optimized using 
PSO).The results show that CSOCA-GA reduces energy loss per round compared to 
the other algorithms.

In the literature (Gambhir et  al. 2020), a multi-objective optimization algorithm 
called MWCSGA (Multi-Weight Chicken Swarm-based Genetic Algorithm) is pro-
posed, building upon the CSOCA-GA algorithm, to account for the surrounding envi-
ronment of the sensor network. The weight parameter ω is introduced in the objective 
function F, as defined in Eq.  (77). Through experimental simulations, MWCSGA is 
shown to improve energy efficiency and reduce loss compared to CSOCA-GA and the 
optimized LEACH algorithm.

wherein, in Eq. (77), fi is the objective function based on energy loss, and ωi is the weight 
parameter of each node, which is related to the distance of the node.

In the literature (Kong et al. 2020), CSO-BA algorithm is introduced to reduce the 
lower peak side lobe level (PSL) in antenna arrays of sensor networks. The study also 
comprehensively compares the optimization results of the CSO-BA algorithm with 
CSO, BA, PSO, and BBO algorithms. It concludes that CSO-BA improves the conver-
gence speed and accuracy of the algorithm compared to other optimization algorithms, 
showing promising prospects for practical applications.

(73)eCH = (m − 1)ERx(b) + mbEDA + ETx

(
b, dtoBS

)

(74)eCM = ETx

(
b, dtoCH

)

(75)E = eCH + eCM

(76)F =

∑k

i=1
E(i)

a +
∑k

i=1
E(i)

+
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�
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�

(77)F =
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5.3  Robotics engineering (RE)

Robotics engineering is a multidisciplinary field that focuses on intelligent manufac-
turing and intelligent robots (Daanoune et al. 2021). It integrates various cutting-edge 
disciplines such as computer science, optoelectronics (Wang et al. 2021b), automatic 
control (Pham et al. 2022), sensors, and bionics (Berberich et al. 2022). With the in-
depth research on optimization algorithms, corresponding research achievements 
have been made in the areas of robot path planning and artificial intelligence machine 
learning.

5.3.1  Trajectory

In the literature (Ajmi et al. 2021), the author applied the chicken swarm optimization 
algorithm to the optimization of robot motion trajectories. The objective function of 
the method is chosen to be the least trip time, and a third-order B-spline curve is used 
to build the motion trajectory. The trials demonstrated that the chicken swarm optimi-
zation algorithm successfully decreased the trip time when utilizing a six-degree-of-
freedom robotic arm to polish metal workpieces.

In the literature (Mu et  al. 2016), the author studied the optimization problem of 
the ascent trajectory of a generic hypersonic vehicle (GHV). This analysis included 
limitations including dynamic pressure, load factor, and aerodynamic heating to guar-
antee the flight safety and structural integrity of the GHV. The GHV’s fuel consump-
tion was selected as the goal function, and the optimization process used the chicken 
swarm technique. The optimization impacts of the CSO algorithm and the PSO algo-
rithm were compared through experimental simulations. The outcomes demonstrated 
that CSO considerably increased the algorithm’s convergence speed and accuracy.

In the literature (Wei et al. 2021), the author addressed the shortcomings of the CSO 
algorithm in handling high-dimensional problems and proposed the ICSO-II algorithm 
based on the crossover operator. It was applied to the reentry trajectory problem of the 
GHV, which has high-dimensional optimization requirements. The least aerodynamic 
heating rate and the shortest flight time were chosen as the optimization process’s 
objective functions. Through simulation studies, the optimization performance of five 
algorithms—ICSO-II, CSO, PSO, ABC, and ACO—was examined and compared. The 
outcomes showed that ICSO-II outperformed the other algorithms by a wide margin.

In the literature (Liang et al. 2018), the author addressed the issue of the CSO algo-
rithm easily converging to local optima and proposed the ICSO-III algorithm for robot 
path planning. The goal function used by the optimization process, as given in Eq. (78) 
is the length of the robot’s journey. Finally, it was determined through a comparison of 
the ICSO-III, CSO, and PSO results that, in comparison to the other two algorithms, 
the ICSO-III method improved algorithm convergence accuracy and stability.

wherein, in Eq. (78), n is the number of nodes in the path, and (xi,yi) is the horizontal and 
vertical coordinates of the robot.

(78)f =
∑n−1

i=1

√(
xi+1 − xi

)2
+
(
yi+1 − yi

)2



A comprehensive survey on the chicken swarm optimization…

1 3

Page 47 of 63 170

5.3.2  Machine learning

In the literature (Gawali and Gawali 2021), the author focused on the popular machine 
learning problem in recent years, within the context of reinforcement learning, the CSO-
DH optimization algorithm is proposed to optimize the robot’s arm motion trajectory as 
the objective function. The results of simulation experiments show that the CSO-DH 
optimization-based reinforcement learning algorithm is more accurate than traditional 
reinforcement learning algorithms, WOA-based reinforcement learning algorithms, 
and DHOA-based reinforcement learning algorithms, further bridging the gap between 
humans and robots.

5.4  Electrical engineering (EE)

Electrical engineering plays a crucial role in the energy field today. In recent years, with 
the introduction of intelligent optimization algorithms, significant progress has been 
made in smart grids (Tan et al. 2022), new energy technologies (Lamnatou et al. 2022), 
and new energy vehicles (Pan and Dong 2023).

5.4.1  Smart grids

In the literature (Li et al. 2017), the author aimed to reduce electricity costs. CSO algo-
rithm is utilized for optimization based on the peak-shaving and valley-filling technol-
ogy in smart grids. The electrical load and Critical Peak Pricing (CPP) are selected as 
the objective functions. Experimental models lead to the conclusion that CSO success-
fully lowers its electricity costs.

In the literature (Sivanantham et al. 2022), to achieve balanced electricity consump-
tion during peak periods, a method for regulating interruptible loads to reduce peak 
loads is proposed. A load shedding scheduling model is designed considering the users’ 
subsidy rate. The model aims to minimize the overall power consumption, defined as 
the objective function in Eq.  (79). Finally, an improved algorithm called ICSO-IV is 
designed to optimize the mixed nonlinear problem. Through simulation experiments, 
it is observed that ICSO-IV outperforms the GA and PSO optimization algorithms in 
terms of convergence speed and accuracy of the optimization model.

wherein, in Eq.  (79), P is the overall power consumption. P1 is the power consumption 
of interruptible loads. P2 is the power consumption of compensating loads. and P3 is the 
power consumption of smart grid operation and maintenance.

In the literature (Awais et  al. 2017), parallel capacitor banks are introduced into 
radial distribution systems. The system’s bus voltage and power factor are both 
improved by the capacitor banks’ optimized arrangement. The CSO algorithm is cre-
ated to optimize the power factor on the 85th and 118th bus systems with the goal 
of reaching the ideal arrangement and size of the parallel capacitor banks, hoping 
to lower the system’s power consumption. The experimental findings show that the 

(79)minP = P1 + P2 + P3
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CSO-achieved optimized capacitor bank arrangement successfully lowers costs while 
providing dependable power factor performance.

5.4.2  New energy technology

In the literature (Liu et al. 2020a), the author proposed that photovoltaic (PV) power 
generation is influenced by weather conditions, and its impact on the power grid 
depends on the short-term power prediction accuracy under different weather condi-
tions. The paper enhances the CSO algorithm first, then suggests the ICSO-V method 
to increase prediction accuracy. The ICSO-V technique is then used in conjunction 
with an extreme learning machine model to forecast PV power under various weather 
scenarios. The test results show that the ICSO-V algorithm and the extreme learning 
machine model together minimize mean square error and percentage error.

In the literature (Biswal and Shankar 2021), the author aimed to enhance the fre-
quency stability of interconnected renewable energy power systems. It proposes an 
optimization control scheme that combines CSO with Adaptive Virtual Inertia Control 
(AVIC). The scheme utilizes CSO to find the optimal values of the gain of the adaptive 
PID controller and the parameters required by AVICs. Experimental simulations are 
conducted to compare the superiority of the CSO algorithm with differential evolution 
and PSO algorithms. The results show that the control scheme based on CSO-AVIC 
significantly improves the dynamic performance of the system.

In the literature (Mishra et al. 2022), the author addressed the efficiency of convert-
ing solar energy to electrical energy in PV systems, which is influenced by the param-
eters of the PV model. The PV model’s parameter identification problem is seen as an 
optimization problem. To minimize the difference between experimental data and sim-
ulated data, error functions Ferror for single diode and double diode are defined. The 
objective function RMSE, as shown in Eq.  (80), is then defined based on the errors. 
Finally, function optimization using the Spiral-based Chaotic Chicken Swarm Opti-
mization (SCCSO) technique is used to determine the PV model’s ideal parameters. 
Experimental simulations indicate that the SCCSO algorithm improves the conver-
gence accuracy and stability compared to the CSO and PSO algorithms.

wherein, in Eq. (80), X represents the PV parameter solution vector to be solved, Nm is the 
number of I-V data obtained from measurements, VL is the output voltage at the port, and 
IL is the output current at the port.

In the literature (Othman and El-Fergany 2021), the author addressed the issue of 
long optimization time in solving high-dimensional optimization problems using the 
CSO algorithm. It proposes a modified version of the CSO algorithm called ICSO-IV, 
which incorporates initial sorting based on chaotic sequences and introduces adaptive 
weight optimization. The algorithm is then applied to the maximum power point opti-
mization tracking problem in photovoltaic systems. Through simulation experiments, it 
is demonstrated that this optimization algorithm improves the convergence speed and 
accuracy compared to the CSO, PSO, and BA algorithms.

(80)RMSE(X) =

√√√√ 1
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N∑
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error
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5.4.3  New‑energy vehicle

In the literature (Deb and Gao 2021), the author focused on the optimal placement prob-
lem of electric vehicles (EVs) and considers it as a complex high-dimensional optimiza-
tion problem. The study confirms the CSO algorithm’s limits in tackling high-dimen-
sional optimization issues and suggests CSO-ALO, a hybrid enhanced optimization 
method that combines the CSO algorithm and the ALO algorithm. Through benchmark 
functions and tests on EV charger placement problems, it is demonstrated that CSO-
ALO outperforms CSO, ALO, TLBO, and other optimization algorithms, exhibiting 
higher convergence accuracy in solving placement problems.

In the literature (Wu et al. 2018b), the maximum power point tracking (MPPT) prob-
lem for fuel cells in electric vehicles is addressed. Through simulation studies, it is 
demonstrated that a CSO-based MPPT algorithm may more accurately reach the ideal 
fuel cell power.

In the literature (Priyadarshi et  al. 2021), the author addressed the need for intel-
ligent energy management algorithms to meet the new requirements for the number of 
charging stations in parking lots and the capacity of the power grid with the large-scale 
production of new energy vehicles. The study proposes a charging station planning and 
operation solution based on the CSO algorithm. The objective functions include reli-
ability, voltage stability characteristics, and power consumption. According to experi-
mental simulations, the CSO-based approach is superior than coordinated charging, 
non-coordinated charging, and vehicle-to-grid (V2G) solutions in the aforementioned 
metrics. Future issues with new energy car charging are well addressed by this.

5.5  Feature extraction

With the development of artificial intelligence technology, feature extraction from given 
datasets and analysis and processing of given graphics are now common research topics.

5.5.1  Feature extraction

In the literature (Sachan et al. 2021), a CSO-based data packet pattern feature extraction 
method is proposed. This method aims to find the optimal point of the feature fitness 
function in a multidimensional feature space. It minimizes the selected number of fea-
tures while ensuring optimal classification performance. Finally, practical simulations 
show that the CSO-based feature extraction method enhances the accuracy of fitness 
function optimization compared to methods based on PSO and GA utilizing 18 datasets 
from the UCI repository as test data. It achieves superior fitness function values.

In the literature (Li et al. 2021b), the author addressed the problem of the CSO algo-
rithm easily getting trapped in local optima when performing dimensionality reduc-
tion in feature extraction. It proposes an improved clustering algorithm based on chaos 
called CCSO. The effectiveness of CCSO is compared to CSO, PSO, DOA, and BAT in 
feature dimensionality reduction using five datasets (spambase, wbdc, ionosphere, lung, 
sonar). Through experimental simulations, it is concluded that the CCSO algorithm sig-
nificantly improves the accuracy of feature extraction.
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5.5.2  Image processing

In the literature (Verma et  al. 2023), a fast segmentation method for Synthetic Aper-
ture Radar (SAR) images is proposed to address the issues of poor segmentation per-
formance and slow segmentation speed in traditional SAR image processing (Cai et al. 
2021b). The method first narrows down the search space of the swarm based on the 
characteristics of SAR images. Then, it swiftly locates the ideal solution by using the 
gray entropy model as the algorithm’s fitness function. The improved search space 
chicken swarm optimization technique, as compared to genetic algorithms and artifi-
cial fish swarm algorithms, enhances the accuracy and speed of picture segmentation, 
according to experimental simulations.

In the literature (Bharanidharan and Rajaguru 2020), the author focused on the prob-
lem of low convergence accuracy and slow convergence speed when applying the CSO 
algorithm to medical image processing (Mondini et al. 2021). It proposes a controlled 
CSO algorithm called ICSO-VI, which improves the algorithm by setting control param-
eters. The classification of MRI images into DEM type and ND type is the focus of the 
research, and both statistical features and no statistical features are used in all trials. 
Finally, it is discovered that the ICSO-VI algorithm greatly increases the accuracy of 
image classification compared to the CSO method based on the examination of 65 ND 
and 52 DEM-type real brain MRI images.

In the literature (Cristin et  al. 2021), the author combined the behavior patterns of 
the chicken swarm with derivative factors to enhance the accuracy of the swarm’s hier-
archical classification. The fitness function’s ideal solution is discovered by repeatedly 
comparing the positions of roosters; this enhanced method is known as fractional-CSO. 
Finally, it is determined that Fractional-CSO greatly enhances accuracy, specificity, and 
sensitivity in image processing compared to the CSO algorithm by preprocessing brain 
pictures and utilizing the accuracy, specificity, and sensitivity of diagnosing cancer as 
experimental indicators.

In the literature (Wu et  al. 2018a), the author proposed that predicting models for 
Alzheimer’s disease often require preprocessing and important feature extraction. How-
ever, using preprocessed models for training often performs poorly in clinical scenarios. 
Therefore, in reference (Radaideh and Shirvan 2021), an unsupervised deep learning 
model is introduced, and a chaos theory-based improved chicken swarm optimization 
algorithm (CCSO) is employed to optimize the parameters of deep clustering in unsu-
pervised learning (Li et al. 2023). This overcomes the problem of unsupervised cluster-
ing parameters easily getting trapped in local optima. Finally, it is determined through 
experimental simulations that the CCSO enhanced clustering model, when compared 
to two other clustering models, FCM and IFCM, enhances the accuracy of the method.

In the literature (Liang et al. 2020a), the author applied the CSO algorithm to brain 
tumor image classification and proposes a hybrid classification algorithm combining 
neural networks and CSO, which is also used in feature selection and dimensionality 
reduction. The introduction of the CSO algorithm helps obtain more realistic classifica-
tion results. The hybrid classification method of neural networks and CSO is found to 
increase the accuracy of classification results when compared to classic neural network 
algorithms, decision tree algorithms, and SVM algorithms through validation testing 
with current brain tumor picture data.

In the literature (Wang et  al. 2020), the author addressed the problem of reduced 
image processing quality in image enhancement techniques due to data loss. It proposes 
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a CSO-based large-scale optimization algorithm for image enhancement, where the 
algorithm optimizes the entropy and peak signal-to-noise ratio of the enhanced image. 
Finally, through comparative experimental simulations, it is concluded that the CSO-
based image enhancement algorithm improves the entropy value and peak signal-to-
noise ratio of the enhanced image compared to the traditional histogram equalization 
(HE) method.

In the literature (Vamsidhar et  al. 2022), the author addressed the problem of slow 
computation and large computational complexity in two-dimensional maximum entropy 
segmentation of images (Schmarje et al. 2021). It proposes an improved two-dimensional 
maximum entropy segmentation algorithm based on CSO optimization. In this algorithm, 
the maximum entropy of the two-dimensional image is used as the fitness function of the 
optimization algorithm. The chicken swarm algorithm quickly determines the ideal thresh-
old of the objective function to get the ideal segmentation solution through the optimiza-
tion process. The segmentation method based on CSO optimization, as opposed to particle 
swarm optimization (PSO) and artificial fish swarm algorithm, enhances the convergence 
performance and computing speed of image segmentation, according to experimental 
simulations.

In the literature (Kumari et al. 2022b), the author focused on the parameter setting prob-
lem of pulse-coupled neural networks (PCNN) in the field of image segmentation (Wun-
nava et  al. 2022). It proposes an improved image segmentation algorithm called ICSO-
ISPCNN, which combines an improved chicken swarm optimization algorithm with an 
improved PCNN model. In this algorithm, the threshold function in the PCNN model is 

Fig. 12  Core application of CSO algorithm

Fig. 13  Specific application of CSO algorithm
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modified, and the CSO algorithm is enhanced with a tournament selection mechanism. 
The pulse-coupled neural network approach for automated image segmentation iteratively 
optimizes the parameter values using the integrated cross-entropy as the fitness func-
tion. Through experimental simulations, it is discovered that ICSO-ISPCNN outperforms 
genetic algorithms and ant colony optimization algorithms in terms of convergence perfor-
mance and segmentation accuracy.

6  Discussion and the key problems

This study systematically explores the CSO algorithm’s past research findings in light of 
the history of optimization algorithms and its guiding principles. Figures 12 and 13 indi-
cate the number of magazines in the five core subjects and the number of publications in 
the twelve distinct study topics. The CSO algorithm has been incorporated into a number 
of sectors and has proven effective in realizing the best answer to the relevant engineering 
challenges. Its convergence accuracy and speed have significantly improved as compared 
to conventional approaches. The number of scholarly journals in various disciplines from 
2016 to 2022 is depicted in Fig. 14. It can be concluded that since 2020, the application of 
CSO algorithm has increased significantly, and its main research content is concentrated 
in the fields of new energy and medical image processing. The CSO algorithm has dem-
onstrated beneficial universal applicability when taken into account with the application 
situation since the algorithm was introduced, and it may be used in new application sectors 
that are offered in the future when taken into account with societal demands. Research-
ers in robotics don’t have any clear ideas for combining the CSO algorithm with this field 
based on the statistical data. Technological progress has led to the emergence of industrial 
robots, medical robots, and autonomous driving robots, which will soon dominate research 
in their respective domains. The application of this study subject has not incorporated the 
CSO algorithm.

Compared with most intelligent optimization algorithms, CSO algorithm has been 
proved to have the advantages of high convergence accuracy and fast convergence speed 
in dealing with engineering optimization problems. Many enhanced CSO algorithms 
have been developed to increase the accuracy of the algorithm since, in the later stages 
of processing the issue, the algorithm has a tendency to settle on a local optimum solu-
tion. These include enhancing the hen, chick, and rooster operators’ trajectories as well 

Fig. 14  CSO algorithm research progress
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as the hybrid algorithm. There is no universal improvement method, and the improved 
CSO algorithm cannot be applied to all application scenarios from the perspective of 
optimization effect, and the applicable conditions and scope after the improvement still 
need to be further explored by simulation experiments.

Since the CSO algorithm was proposed, it has achieved results for different expected 
goals. The combination of different improved algorithm results will make the improved 
algorithm more targeted and the applicable objects more accurate. The combination of 
algorithm results in different application fields makes the algorithm collide with sparks 
in multiple cross fields, obtain better engineering optimization results, and at the same 
time promote the birth and development of new fields after cross fusion. The relevant 
work of the future CSO is as follows:

• More theoretical calculation comparison: The CSO algorithm has good perfor-
mance results in solving theoretical optimization problems with the benchmark 
function as the objective function. However, the birth of the new bionic algorithm is 
bound to be in contrast with the CSO algorithm. For example, Agushaka proposed 
the Gazelle Optimization Algorithm (GOA) in 2023 (Minaee et  al. 2021). This 
algorithm simulates the survivability of antelopes under the rule of predators, and 
divides the algorithm into two stages: development and exploration. The problem-
solving ability and superior competitiveness of the GOA algorithm are proved by 
the benchmark function and a number of engineering design problems. CSO and its 
improved algorithm can be compared with GOA and other algorithms in theoretical 
calculation under the same objective function and target task conditions (Agushaka 
et al. 2023). So as to obtain their respective application advantages and applicable 
problem ranges.

• More cross-blending improved contrast: The optimization algorithm after cross-
blending tends to get higher convergence accuracy. A large number of improved algo-
rithms can be obtained by cross-mixing the CSO algorithm and the new optimization 
algorithm (Zhang et al. 2021). This section of the study material can be completed as 
a research review or with the creation of a brand-new hybrid algorithm. The circum-
stances under which the hybrid algorithm and the newly developed hybrid algorithm 
are applicable are determined by contrasting the benefits and drawbacks of the algo-
rithms in various application scenarios.

• Explore more application fields: This article describes the application of the CSO 
algorithm in the five major fields of Data Mining, WSN, Robotics Engineering, Electri-
cal Engineering, and Feature Extraction. The future research fields of CSO may include 
brain-computer interface (Tang et  al. 2023), integrated circuit low-power design (Ye 
et al. 2022), artificial intelligence chip (Choi et al. 2022), driverless. The research con-
tent can be aimed at the breakthrough of a single problem, such as power consumption, 
signal acquisition integrity, path tracking strategy, or comprehensive research on multi-
ple engineering problems in the corresponding field.

Chicken swarm optimization algorithm is developing rapidly, and most of its research 
is on the improvement of the application level, mainly focusing on improving the popula-
tion coding method, combining with other strategies and ideas to form a hybrid algorithm, 
and applying it to specific problems. But up to now, the theoretical basis of chicken swarm 
optimization algorithm is still not perfect. Theoretical analysis plays an important role in 
our in-depth understanding of the mechanism of the algorithm, and the convergence and 
stability analysis of the algorithm is helpful for its further development. Moreover, it is 
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more convincing and academically valuable to evaluate the performance of the algorithm 
from the perspective of theoretical analysis.

7  Conclusions and future work

While the chicken swarm optimization method has several benefits over other bionic intel-
ligence algorithms in terms of addressing difficult optimization issues, it also reveals 
numerous drawbacks when it comes to actually solving problems. Therefore, the follow-
ing characteristics can be used to conduct further study on the chicken flock optimization 
method.

(1) The performance of the chicken swarm optimization technique is easily influenced by 
the choice of parameter values. How to reduce the unsatisfactory parameter value set-
ting and how to impact the performance of the wolf pack algorithm by setting the size 
of each parameter value appropriately or adaptively according to different challenges.

(2) The late convergence speed decreased significantly, which was attributed to the low-
efficiency search behavior of the flock. The search intensity reflects the local search 
ability of the flock. How to balance or strengthen the global search ability and local 
search ability of the flock algorithm to further improve the flock The search efficiency 
of the group optimization algorithm will be one of the focuses of future research.

(3) As a bionic intelligent algorithm, the chicken swarm optimization algorithm has clear 
biological and social traits and only a flimsy mathematical foundation, necessitating a 
thorough theoretical investigation and mathematical justification.

(4) Chicken swarm optimization algorithm is an algorithm produced by multidisciplinary 
fusion and crossover. In future research, new improved algorithms can be designed in 
combination with theories in other disciplines.

(5) It is essential to improve search speed while reducing time complexity while building 
the chicken swarm optimization method in the future to ensure that it is applicable to 
all problems.

As a relatively new nature-inspired swarm intelligence optimization algorithm, chicken 
group optimization algorithm has the advantages of strong global and local search ability, 
high population diversity and strong robustness, so it is widely used in engineering Practice 
and solve real life problems. First, a thorough explanation of the flock optimization algo-
rithm’s fundamental principles is provided. Next, a summary of the algorithm’s benefits 
and drawbacks, as well as its improvement strategies, is provided. Finally, a prediction is 
made regarding the flock optimization algorithm’s future research. The flock optimization 
approach has only been suggested for a little over eight years. The algorithm itself has been 
continuously improved and developed. Its theoretical research and engineering application 
have made great progress, and the theoretical research is gradually becoming mature.

Practical applications: (1) At present, the performance verification of most improved 
algorithms is based on the benchmark function proof. This verification method is too sim-
ple, and the performance of the algorithm can be verified in specific engineering problems 
in the future. (2) The flock optimization algorithm is widely used in combinatorial optimi-
zation problems, and its application in other fields needs to be expanded urgently, such as 
nonlinear, discrete and large-scale integration problems.



A comprehensive survey on the chicken swarm optimization…

1 3

Page 55 of 63 170

Acknowledgements Binhe Chen and Li Cao contributed equally to this work and should be considered as 
co-first authors.

Authors contribution Binhe Chen and Li Cao analyzed the data and wrote the paper. Changzu Chen and 
Yaodan Chen revised the manuscript. Yinggao Yue designed the study.

Funding This work was supported in part by the Natural Science Foundation of Zhejiang Province 
under Grant LY23F010002, the Industrial Science and Technology Project of Yueqing City under Grant 
2022G007, and Wenzhou Association for Science and Technology under Grant kjfw36, the school-level 
scientific research projects of Wenzhou University of Technology under Grants ky202201 and ky202209, 
the general scientific research projects of the Provincial Department of Education under Grant Y202250103, 
and the Wenzhou intelligent image processing and analysis key laboratory construction project under Grant 
2021HZSY007105.

Declarations 

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References  

Abdullahi M, Ngadi MA, Dishing SI et al (2020) A survey of symbiotic organisms search algorithms and 
applications. Neural Comput Appl 32:547–566

Abdulzahra AMK, Al-Qurabat AKM (2022) A clustering approach based on fuzzy C-means in wireless sen-
sor networks for IoT applications. Karbala Int J Mod Sci 8(4):579–595

Abualigah L (2020) Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and 
applications. Neural Comput Appl 32(16):12381–12401

Abualigah L (2021) Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with 
its results, variants, and applications. Neural Comput Appl 33(7):2949–2972

Abualigah L, Shehab M, Alshinwan M et al (2020) Salp swarm algorithm: a comprehensive survey. Neural 
Comput Appl 32:11195–11215

Abualigah L, Shehab M, Alshinwan M et al (2021) Ant lion optimizer: a comprehensive survey of its vari-
ants and applications. Arch Comput Methods Eng 28:1397–1416

AbuKhalil T, Alqaralleh BAY, Al-Omari AH (2022) Optimal Deep Learning Based Inception Model for 
Cervical Cancer Diagnosis. Comput Mater Contin 72:57–71

Aghelpour P, Mohammadi B, Mehdizadeh S et al (2021) A novel hybrid dragonfly optimization algorithm 
for agricultural drought prediction. Stoch Env Res Risk Assess 35(12):2459–2477

Aguila-Leon J, Vargas-Salgado C, Chiñas-Palacios C et al (2023) Solar photovoltaic Maximum Power Point 
Tracking controller optimization using Grey Wolf Optimizer: A performance comparison between 
bio-inspired and traditional algorithms. Expert Syst Appl 211:118700

Agushaka JO, Ezugwu AE, Abualigah L (2023) Gazelle Optimization Algorithm: A novel nature-inspired 
metaheuristic optimizer. Neural Comput Appl 35(5):4099–4131

Ahamad D, Hameed SA, Akhtar M (2022) A multi-objective privacy preservation model for cloud security 
using hybrid Jaya-based shark smell optimization. J King Saud Univ-Comput Inf Sci 34(6):2343–2358

Ajmi N, Helali A, Lorenz P et al (2021) MWCSGA—multi weight chicken swarm based genetic algorithm 
for energy efficient clustered wireless sensor network. Sensors 21(3):791

Akter L, Islam MM, Al-Rakhami MS et al (2021) Prediction of cervical cancer from behavior risk using 
machine learning techniques. SN Comput Sci 2:1–10

http://creativecommons.org/licenses/by/4.0/


 B. Chen et al.

1 3

170 Page 56 of 63

Al Shayokh M, Shin SY (2017) Bio inspired distributed WSN localization based on chicken swarm optimi-
zation. Wireless Pers Commun 97(4):5691–5706

Alashwal H, El Halaby M, Crouse JJ et al (2019) The application of unsupervised clustering methods to 
Alzheimer’s disease. Front Comput Neurosci 13:31

Angurala M, Singh H, Anupriya, Grover A, Singh M (2022) Testing Solar-MAODV energy efficient model 
on various modulation techniques in wireless sensor and optical networks. Wirel Netw 28(1):413–425

Aponte-Luis J, Gómez-Galán JA, Gómez-Bravo F et  al (2018) An efficient wireless sensor network for 
industrial monitoring and control. Sensors 18(1):182

Asna M, Shareef H, Muhammad MA et al (2022) Multi-objective quantum atom search optimization algo-
rithm for electric vehicle charging station planning. Int J Energy Res 46(12):17308–17331

Awais M, Abadeen ZU, Bilal T, Faiz Z, Junaid M, Javaid N (2018) Home energy management using 
enhanced differential evolution and chicken swarm optimization techniques. In Advances in Intel-
ligent Networking and Collaborative Systems: The 9th International Conference on Intelligent Net-
working and Collaborative Systems (INCoS-2017). Springer International Publishing, pp 468–478

Ayvaz A (2022) An improved chicken swarm optimization algorithm for extracting the optimal parameters 
of proton exchange membrane fuel cells. Int J Energy Res 46(11):15081–15098

Babazadeh M, Rezayfar O, Jahani E (2023) Interval reliability sensitivity analysis using Monte Carlo simu-
lation and mouth brooding fish algorithm (MBF). Appl Soft Comput 142:110316

Bai Y, Cao L, Chen B, Chen Y, Yue Y (2023) A Novel Topology Optimization Protocol Based on an 
Improved Crow Search Algorithm for the Perception Layer of the Internet of Things. Biomimetics 
8(2):165

Bai Y, Cao L, Wang S, Ding H, Yue Y (2022) Data collection strategy based on OSELM and gray wolf opti-
mization algorithm for wireless sensor networks. Computational Intelligence and Neuroscience 2022

Bangyal WH, Hameed A, Ahmad J et al (2022) New modified controlled bat algorithm for numerical opti-
mization problem. Comput Mater Contin 70(2):2241–2259

Basha AJ, Aswini S, Aarthini S, Nam Y, Abouhawwash M (2023) Genetic-chicken swarm algorithm for 
minimizing energy in wireless sensor network. Computer Systems Science & Engineering 44(2)

Batra J, Jain R, Tikkiwal VA et al (2021) A comprehensive study of spam detection in e-mails using bio-
inspired optimization techniques. Int J Inf Manag Data Insights 1(1):100006

Berberich J, Scherer CW, Allgöwer F (2022) Combining prior knowledge and data for robust controller 
design. IEEE Transactions on Automatic Control

Bharanidharan N, Rajaguru H (2020) Improved chicken swarm optimization to classify dementia MRI 
images using a novel controlled randomness optimization algorithm. Int J Imaging Syst Technol 
30(3):605–620

Biswal SR, Shankar G (2021) Optimal capacitor placement in radial distribution system using chicken 
swarm optimization algorithm. In Advances in Smart Grid Automation and Industry 4.0: Select Pro-
ceedings of ICETSGAI4. 0. Springer Singapore, pp 113–120

Braik M, Sheta A, Al-Hiary H (2021) A novel meta-heuristic search algorithm for solving optimization 
problems: capuchin search algorithm. Neural Comput Appl 33:2515–2547

Braik M, Hammouri A, Atwan J et al (2022) White Shark Optimizer: A novel bio-inspired meta-heuristic 
algorithm for global optimization problems. Knowl-Based Syst 243:108457

Cai X, Zhao H, Shang S et al (2021a) An improved quantum-inspired cooperative co-evolution algorithm 
with muli-strategy and its application. Expert Syst Appl 171:114629

Cai W, Wu X, Zhou M et al (2021b) Review and development of electric motor systems and electric power-
trains for new energy vehicles. Automot Innov 4:3–22

Cao L, Chen H, Chen Y, Yue Y, Zhang X (2023) Bio-Inspired Swarm Intelligence Optimization Algorithm-
Aided Hybrid TDOA/AOA-Based Localization. Biomimetics 8(2):186

Cao L, Wang Z, Yue Y (2022) Analysis and prospect of the application of wireless sensor networks in ubiq-
uitous power internet of things. Computational Intelligence and Neuroscience 2022:9004942

Carreon-Ortiz H, Valdez F (2022) A new mycorrhized tree optimization nature-inspired algorithm. Soft 
Comput 26(10):4797–4817

Carvalho C, de Oliveira C, Miotto Galli G, de Oliveira Telesca Camargo N, Pereira M, Stefanello T, Mel-
chior R, Andretta I (2022) Behavior of domestic chickens –insights from a narrative review. Journal 
of Agroveterinary Sciences 21:360–369

Chakraborty S, Saha AK, Chakraborty R et al (2021) An enhanced whale optimization algorithm for large 
scale optimization problems. Knowl-Based Syst 233:107543

Chen X, Liu L, Du J et al (2022) Intelligent optimization based on a virtual marine diesel engine using GA-
ICSO hybrid algorithm. Machines 10(4):227

Chen Y, Xi J, Wang H, Liu X (2023) Grey wolf optimization algorithm based on dynamically adjusting 
inertial weight and levy flight strategy. Evol Intel 16(3):917–927



A comprehensive survey on the chicken swarm optimization…

1 3

Page 57 of 63 170

Choi C, Kim H, Kang JH et al (2022) Reconfigurable heterogeneous integration using stackable chips with 
embedded artificial intelligence. Nat Electron 5(6):386–393

Cristin DR, Kumar DKS, Anbhazhagan DP (2021) Severity Level Classification of Brain Tumor based on 
MRI Images using Fractional-Chicken Swarm Optimization Algorithm. Comput J 64(10):1514–1530

Cuong-Le T, Minh HL, Khatir S et al (2021) A novel version of Cuckoo search algorithm for solving opti-
mization problems. Expert Syst Appl 186:115669

Daanoune I, Abdennaceur B, Ballouk A (2021) A comprehensive survey on LEACH-based clustering rout-
ing protocols in Wireless Sensor Networks. Ad Hoc Netw 114:102409

Dalal S, Seth B, Jaglan V et al (2022) An adaptive traffic routing approach toward load balancing and con-
gestion control in Cloud–MANET ad hoc networks. Soft Comput 26(11):5377–5388

Deb S, Tammi K, Gao XZ et al (2020) A hybrid multi-objective chicken swarm optimization and teaching 
learning based algorithm for charging station placement problem. IEEE Access 8:92573–92590

Deb S, Gao XZ (2021) A hybrid ant lion optimization chicken swarm optimization algorithm for charger 
placement problem. Complex & Intelligent Systems 1–18

Demidova LA, Gorchakov AV (2021) Application of chaotic Fish School Search optimization algorithm 
with exponential step decay in neural network loss function optimization. Procedia Comput Sci 
186:352–359

Deng W, Shang S, Cai X et al (2021) An improved differential evolution algorithm and its application in 
optimization problem. Soft Comput 25:5277–5298

Deng J, Jiang H, Chen Q (2022) Characteristic wavelengths optimization improved the predictive perfor-
mance of near-infrared spectroscopy models for determination of Aflatoxin B1 in maize. J Cereal Sci 
105:103474

Devika G, Ramesh D, Karegowda AG (2021) Energy optimized hybrid PSO and wolf search based LEACH. 
Int J Inf Technol 13:721–732

Dhanusha C, Kumar AS, Musirin IB, Abdullah HMA (2022) Chaotic chicken swarm optimization-based 
deep adaptive clustering for alzheimer disease detection. In Pervasive Computing and Social Net-
working: Proceedings of ICPCSN 2021. Springer Singapore,  pp 709–719

Dhiman G, Garg M, Nagar A et al (2021) A novel algorithm for global optimization: rat swarm optimizer. J 
Ambient Intell Humaniz Comput 12:8457–8482

Di Silvestre ML, Ippolito MG, Sanseverino ER et  al (2021) Energy self-consumers and renewable 
energy communities in Italy: New actors of the electric power systems. Renew Sustain Energy Rev 
151:111565

Ding Y, Zhou K, Bi W (2020) Feature selection based on hybridization of genetic algorithm and competi-
tive swarm optimizer. Soft Comput 24:11663–11672

Chen C, Cao L, Chen Y, Chen B, Yue Y (2024) A comprehensive survey of convergence analysis of beetle 
antennae search algorithm and its applications. Artif Intell Rev 57(6):141

Duan F, Chen C, Song F et al (2023) An optimal parameters estimation for the proton exchange membrane 
fuel cells based on amended deer hunting optimization algorithm. Sustain Energy Technol Assess 
58:103364

El-dosuky MA, Shams M (2022) A deep learning based cockroach swarm optimization approach for seg-
menting brain MRI images. Medical informatics and Bioimaging using artificial intelligence: Chal-
lenges, Issues, Innovations and Recent Developments, pp 3–13

Elsmany EFA, Omar MA, Wan TC et  al (2019) EESRA: Energy efficient scalable routing algorithm for 
wireless sensor networks. IEEE Access 7:96974–96983

Falcón-Cardona JG, Gómez RH, Coello CAC et al (2021) Parallel multi-objective evolutionary algorithms: 
A comprehensive survey. Swarm Evol Comput 67:100960

Fu W, Wang B, Li X et al (2019) Ascent trajectory optimization for hypersonic vehicle based on improved 
chicken swarm optimization. IEEE Access 7:151836–151850

Gafar M, El-Sehiemy RA, Hasanien HM, Abaza A (2024) Optimal parameter estimation of three solar cell 
models using modified spotted hyena optimization. J Ambient Intell Humaniz Comput 15(1):361–372

Gambhir A, Payal A, Arya R (2020) Chicken Swarm Optimization Algorithm Perspective on Energy Con-
straints in WSN. In 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, 
Electronics and Computer Engineering (UPCON). IEEE, pp 1–5

Garlapati VK, Parashar SK, Klykov S et al (2022) Invasive weed optimization coupled biomass and product 
dynamics of tuning soybean husk towards lipolytic enzyme. Biores Technol 344:126254

Garud KS, Jayaraj S, Lee MY (2021) A review on modeling of solar photovoltaic systems using artificial 
neural networks, fuzzy logic, genetic algorithm and hybrid models. Int J Energy Res 45(1):6–35

Gawali MB, Gawali SS (2021) Optimized skill knowledge transfer model using hybrid Chicken Swarm plus 
Deer Hunting Optimization for human to robot interaction. Knowl-Based Syst 220:106945



 B. Chen et al.

1 3

170 Page 58 of 63

Gharehchopogh FS (2023) An improved Harris Hawks optimization algorithm with multi-strategy for com-
munity detection in social network. J Bionic Eng 20(3):1175–1197

Gharehchopogh FS, Shayanfar H, Gholizadeh H (2020) A comprehensive survey on symbiotic organisms 
search algorithms. Artif Intell Rev 53:2265–2312

Gheibi O, Weyns D, Quin F (2021) Applying machine learning in self-adaptive systems: A systematic litera-
ture review. ACM Trans Auton Adapt Syst (TAAS) 15(3):1–37

Goldanloo MJ, Gharehchopogh FS (2022) A hybrid OBL-based firefly algorithm with symbiotic organisms 
search algorithm for solving continuous optimization problems. J Supercomput 78(3):3998–4031

Gordan M, Sabbagh-Yazdi SR, Ismail Z, Ghaedi K, Carroll P, McCrum D, Samali B (2022) State-of-the-art 
review on advancements of data mining in structural health monitoring. Measurement 193:110939

Gu Y, Lu H, Xiang L et  al (2022) Adaptive Simplified Chicken Swarm Optimization Based on Inverted 
S-Shaped Inertia Weight. Chin J Electron 31(2):367–386

Guo C, Tang H, Niu B et  al (2021) A survey of bacterial foraging optimization. Neurocomputing 
452:728–746

Guo T, Yu K, Aloqaily M et al (2022) Constructing a prior-dependent graph for data clustering and dimen-
sion reduction in the edge of AIoT. Futur Gener Comput Syst 128:381–394

Gupta A, Mahaur B (2021) An improved DV-maxHop localization algorithm for wireless sensor networks. 
Wireless Pers Commun 117:2341–2357

Han B, Ran F, Li J et al (2022) A novel adaptive cluster based routing protocol for energy-harvesting wire-
less sensor networks. Sensors 22(4):1564

Jiang S, Yue Y, Chen C, Chen Y, Cao L (2024) A multi-objective optimization problem solving method 
based on improved golden jackal optimization algorithm and its application. Biomimetics 9(5):270

Harshavardhan A, Cheerla S, Parkavi A et al (2023) Deep learning modified neural networks with chicken 
swarm optimization-based lungs disease detection and severity classification. J Electron Imaging 
32(6):062603–062603

Hashim FA, Houssein EH, Hussain K et al (2022) Honey Badger Algorithm: New metaheuristic algorithm 
for solving optimization problems. Math Comput Simul 192:84–110

Hayyolalam V, Kazem AAP (2020) Black widow optimization algorithm: a novel meta-heuristic approach 
for solving engineering optimization problems. Eng Appl Artif Intell 87:103249

Hodson TO (2022) Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or 
not. Geosci Model Dev 15(14):5481–5487

Hussien AG, Amin M, Wang M et al (2020) Crow search algorithm: theory, recent advances, and applica-
tions. IEEE Access 8:173548–173565

Ibrahim IA, Hossain MJ, Duck BC et al (2020) An improved wind driven optimization algorithm for param-
eters identification of a triple-diode photovoltaic cell model. Energy Convers Manage 213:112872

Ishikawa A, Sakaguchi M, Nagano AJ et al (2020) Genetic architecture of innate fear behavior in chickens. 
Behav Genet 50:411–422

Jaafari A, Panahi M, Mafi-Gholami D et al (2022) Swarm intelligence optimization of the group method of 
data handling using the cuckoo search and whale optimization algorithms to model and predict land-
slides. Appl Soft Comput 116:108254

Jonsson A, Vahlne JE (2023) Complexity offering opportunity: Mutual learning between Zhejiang 
Geely Holding Group and Volvo Cars in the post-acquisition process. Global Strategy Journal 
13(3):700–731

Joseph AJ, Asaletha R (2023) Pareto multi-objective termite colony optimization based EDT clustering for 
wireless chemical sensor network. Wirel Pers Commun 130(4):2329–2343

Kadhuim ZA, Al-Janabi S (2023) Codon-mRNA prediction using deep optimal neurocomputing technique 
(DLSTM-DSN-WOA) and multivariate analysis. Results Eng 17:100847

Kanna SKR, Sivakumar K, Lingaraj N (2021) Development of deer hunting linked earthworm optimization 
algorithm for solving large scale traveling salesman problem. Knowl-Based Syst 227:107199

Karim S, Shaikh FK, Aurangzeb K et al (2021) Anchor nodes assisted cluster-based routing protocol for 
reliable data transfer in underwater wireless sensor networks. IEEE Access 9:36730–36747

Kaya E, Gorkemli B, Akay B et al (2022) A review on the studies employing artificial bee colony algorithm 
to solve combinatorial optimization problems. Eng Appl Artif Intell 115:105311

Khan AT, Li S, Zhang Y et al (2023) Eagle perching optimizer for the online solution of constrained optimi-
zation. Mem-Mater Devices Circ Syst 4:100021

Khan A, Shah R, Bukhari J, Akhter N, Attaullah Idrees M, Ahmad H (2019) A novel chicken swarm neural 
network model for crude oil price prediction. Advances on Computational Intelligence in Energy: The 
Applications of Nature-Inspired Metaheuristic Algorithms in Energy, pp 39–58

Khorshid SF, Abdulazeez AM (2021) Breast cancer diagnosis based on k-nearest neighbors: a review. 
PalArch’s J Archaeol Egypt/egyptol 18(4):1927–1951



A comprehensive survey on the chicken swarm optimization…

1 3

Page 59 of 63 170

Kong J, Dagefu FT, Sadler BM (2020) Distributed beamforming in the presence of adversaries. IEEE Trans 
Veh Technol 69(9):9682–9696

Kumar V, Kumar D (2021) A systematic review on firefly algorithm: past, present, and future. Arch Comput 
Meth Eng 28:3269–3291

Kumar M, Dubey K, Singh S et al (2023) Experimental performance analysis of cloud resource alloca-
tion framework using spider monkey optimization algorithm. Concurr Comput: Pract Experience 
35(2):e7469

Kumar D, Pandey M (2022) An optimal load balancing strategy for P2P network using chicken swarm 
optimization. Peer-to-Peer Networking and Applications, pp 1–23

Kumari N, Dwivedi RK, Bhatt AK, Belwal R (2022a) Automated fruit grading using optimal feature 
selection and hybrid classification by self-adaptive chicken swarm optimization: grading of 
mango. Neural Comput & Applic 34(2):1285–1306

Kumari N, Dwivedi R K, Bhatt A K, et al. (2022b) Automated fruit grading using optimal feature selec-
tion and hybrid classification by self-adaptive chicken swarm optimization: grading of mango. 
Neural Comput Appl 1–22

Lamnatou C, Chemisana D, Cristofari C (2022) Smart grids and smart technologies in relation to photo-
voltaics, storage systems, buildings and the environment. Renew Energy 185:1376–1391

Li W, Wang GG (2022) Elephant herding optimization using dynamic topology and biogeography-based 
optimization based on learning for numerical optimization. Eng Comput 38(Suppl 2):1585–1613

Li J, Zhou T (2023) Evolutionary Multi Agent Deep Meta Reinforcement Learning Method for Swarm 
Intelligence Energy Management of Isolated Multi Area Microgrid with Internet of Things. IEEE 
Internet Things J 10(14):12923–12937

Li Y, Wu Y, Qu X (2017) Chicken swarm–based method for ascent trajectory optimization of hypersonic 
vehicles. J Aerosp Eng 30(5):04017043

Li Y, Wang S, Han M (2019) Truss structure optimization based on improved chicken swarm optimiza-
tion algorithm. Adv Civil Eng 2019:1–16

Li L, Lin Q, Li K et al (2021a) Vertical distance-based clonal selection mechanism for the multiobjec-
tive immune algorithm. Swarm Evol Comput 63:100886

Li M, Li C, Huang Z et  al (2021b) Spiral-based chaotic chicken swarm optimization algorithm for 
parameters identification of photovoltaic models. Soft Comput 25(20):12875–12898

Li Q, Li D, Zhao K et al (2022a) State of health estimation of lithium-ion battery based on improved ant 
lion optimization and support vector regression. J Energy Storage 50:104215

Li X, Dong H, Yu X (2022b) A parameter optimization method in predicting algorithms for smart living. 
Comput Commun 191:315–326

Li Y, Lu Y, Li D et al (2023) Trajectory optimization of high-speed robotic positioning with suppressed 
motion jerk via improved chicken swarm algorithm. Appl Sci 13(7):4439

Liang J, Wang L, Ma M et al (2018) A fast SAR image segmentation method based on improved chicken 
swarm optimization algorithm. Multimedia Tools Appl 77(24):31787–31805

Liang X, Kou D, Wen L (2020a) An improved chicken swarm optimization algorithm and its application 
in robot path planning. IEEE Access 8:49543–49550

Liang J, Wang L, Ma M (2020b) A new image segmentation method based on the ICSO-ISPCNN model. 
Multimedia Tools Appl 79(37):28131–28154

Liu ZF, Li LL, Tseng ML et al (2020a) Prediction short-term photovoltaic power using improved chicken 
swarm optimizer-extreme learning machine model. J Clean Prod 248:119272

Liu XF, Zhou YR, Yu X (2020b) Cooperative particle swarm optimization with reference-point-based 
prediction strategy for dynamic multiobjective optimization. Appl Soft Comput 87:105988

Liu YZ, Ren SF, Zhao PF (2022) Application of the deep neural network to predict dynamic responses 
of stiffened plates subjected to near-field underwater explosion. Ocean Eng 247:110537

Maaroof BB, Rashid TA, Abdulla JM et al (2022) Current studies and applications of shuffled frog leap-
ing algorithm: a review. Arch Comput Methods Eng 29(5):3459–3474

Macenski S, Foote T, Gerkey B et al (2022) Robot Operating System 2: Design, architecture, and uses in 
the wild. Sci Robot 7(66):eabm6074

Maden D, Çelik E, Houssein EH et al (2023) Squirrel search algorithm applied to effective estimation 
of solar PV model parameters: a real-world practice. Neural Comput Appl 35(18):13529–13546

Maheshwari P, Sharma AK, Verma K (2021) Energy efficient cluster based routing protocol for WSN 
using butterfly optimization algorithm and ant colony optimization. Ad Hoc Netw 110:102317

Majid M, Habib S, Javed AR et al (2022) Applications of wireless sensor networks and internet of things 
frameworks in the industry revolution 4.0: A systematic literature review. Sensors 22(6):2087

Mani M, Bozorg-Haddad O, Chu X (2018) Ant lion optimizer (ALO) algorithm. Advanced optimization 
by nature-inspired algorithms, pp 105–116



 B. Chen et al.

1 3

170 Page 60 of 63

Mansouri N, Javidi MM, Mohammad HasaniZade B (2021) A CSO-based approach for secure data repli-
cation in cloud computing environment. J Supercomput 77:5882–5933

Meng X, Liu Y, Gao X, Zhang H (2014) A new bio-inspired algorithm: chicken swarm optimization. In 
Advances in Swarm Intelligence: 5th International Conference, ICSI 2014, Hefei, China, October 
17-20, 2014, Proceedings, Part I 5. Springer International Publishing,  pp 86–94

Meraihi Y, Gabis AB, Mirjalili S et  al (2021) Grasshopper optimization algorithm: theory, variants, and 
applications. IEEE Access 9:50001–50024

Minaee S, Boykov Y, Porikli F et al (2021) Image segmentation using deep learning: A survey. IEEE Trans 
Pattern Anal Mach Intell 44(7):3523–3542

Mirbabaie M, Stieglitz S, Frick NRJ (2021) Artificial intelligence in disease diagnostics: A critical 
review and classification on the current state of research guiding future direction. Heal Technol 
11(4):693–731

Mishra S, Nayak PC, Prusty RC et al (2022) Modified multiverse optimizer technique-based two degree of 
freedom fuzzy PID controller for frequency control of microgrid systems with hydrogen aqua electro-
lyzer fuel cell unit. Neural Comput Appl 34(21):18805–18821

Mondini AC, Guzzetti F, Chang KT et al (2021) Landslide failures detection and mapping using Synthetic 
Aperture Radar: Past, present and future. Earth Sci Rev 216:103574

Mu Y, Zhang L, Chen X, Gao X (2016) Optimal trajectory planning for robotic manipulators using chicken 
swarm optimization. In 2016 8th International conference on intelligent human-machine systems and 
cybernetics (IHMSC), vol 3. IEEE, pp 369–373

Muduli L, Mishra DP, Jana PK (2018) Application of wireless sensor network for environmental monitoring 
in underground coal mines: A systematic review. J Netw Comput Appl 106:48–67

Nabavi S, Wen L, Gill SS et al (2023) Seagull optimization algorithm based multi-objective VM placement 
in edge-cloud data centers. Int Things Cyber-Phys Syst 3:28–36

Nadikattu AKR (2021) Influence of artificial intelligence on robotics industry. International Journal of Crea-
tive Research Thoughts (IJCRT). ISSN, pp 2320–2882

Nagah Amr M, ELAttar HM, Abd El Azeem MH et al (2021) An enhanced indoor positioning technique 
based on a novel received signal strength indicator distance prediction and correction model. Sensors 
21(3):719

Nagarajan B, SVN SK (2023) A poisson hidden markov model and fuzzy based chicken swarm optimization 
algorithm for efficient fault node detection in wireless sensor network. 1:1–12

Naruei I, Keynia F (2022) Wild horse optimizer: A new meta-heuristic algorithm for solving engineering 
optimization problems. Eng Comput 38(Suppl 4):3025–3056

Nayak J, Swapnarekha H, Naik B et al (2023) 25 years of particle swarm optimization: Flourishing voyage 
of two decades. Arch Comput Methods Eng 30(3):1663–1725

Tang W, Cao L, Chen Y, Chen B, Yue Y (2024) Solving Engineering Optimization Problems Based on 
Multi-Strategy Particle Swarm Optimization Hybrid Dandelion Optimization Algorithm. Biomimet-
ics 9(5):298

Niu G, Li X, Wan X et al (2022) Dynamic optimization of wastewater treatment process based on novel 
multi-objective ant lion optimization and deep learning algorithm. J Clean Prod 345:131140

Nuvvula RSS, Devaraj E, Elavarasan RM et  al (2022) Multi-objective mutation-enabled adaptive local 
attractor quantum behaved particle swarm optimisation based optimal sizing of hybrid renewable 
energy system for smart cities in India. Sustain Energy Technol Assess 49:101689

Osamy W, El-Sawy AA, Salim A (2020) CSOCA: Chicken swarm optimization based clustering algorithm 
for wireless sensor networks. IEEE Access 8:60676–60688

Othman AM, El-Fergany AA (2021) Adaptive virtual-inertia control and chicken swarm optimizer for 
frequency stability in power-grids penetrated by renewable energy sources. Neural Comput Appl 
33(7):2905–2918

Pan Y, Dong F (2023) Factor substitution and development path of the new energy market in the BRICS 
countries under carbon neutrality: Inspirations from developed European countries. Appl Energy 
331:120442

Pham PV, Bodepudi SC, Shehzad K et al (2022) 2D heterostructures for ubiquitous electronics and opto-
electronics: principles, opportunities, and challenges. Chem Rev 122(6):6514–6613

Pourpanah F, Wang R, Lim CP et al (2023) A review of artificial fish swarm algorithms: Recent advances 
and applications. Artif Intell Rev 56(3):1867–1903

Prabhakar TS, Veena MN (2023) Efficient anomaly detection using deer hunting optimization algorithm 
via adaptive deep belief neural network in mobile network. J Ambient Intell Humaniz Comput 
14(12):16409–16425

Pragadeswaran S, Madhumitha S, Gopinath S (2021) Certain investigation on military applications of wire-
less sensor network. Int J Adv Res Sci Commun Technol 3(1):14–19



A comprehensive survey on the chicken swarm optimization…

1 3

Page 61 of 63 170

Priyadarshi N, Azam F, Solanki SS et al (2021) A bio-inspired chicken swarm optimization-based fuel cell 
system for electric vehicle applications[M]//Bio-inspired neurocomputing. Springer, Singapore, pp 
297–308

Qi S, Zou J, Yang S et al (2022) A self-exploratory competitive swarm optimization algorithm for large-
scale multiobjective optimization. Inf Sci 609:1601–1620

Rabani H, Soleimanian GF (2019) An optimized firefly algorithm based on cellular learning automata 
for community detection in social networks. J Adv Comput Res 10(3):13–30

Radaideh MI, Shirvan K (2021) Rule-based reinforcement learning methodology to inform evolu-
tionary algorithms for constrained optimization of engineering applications. Knowl-Based Syst 
217:106836

Rani R, Garg R (2021) Pareto based ant lion optimizer for energy efficient scheduling in cloud environ-
ment. Appl Soft Comput 113:107943

Ren F, Long D (2021) Carbon emission forecasting and scenario analysis in Guangdong Province based 
on optimized Fast Learning Network. J Clean Prod 317:128408

Rizk-Allah RM, Hassanien AE (2023) A comprehensive survey on the sine–cosine optimization algo-
rithm. Artif Intell Rev 56(6):4801–4858

Rosado-Olivieri EA, Brivanlou AH (2021) Synthetic by design: exploiting tissue self-organization to 
explore early human embryology. Dev Biol 474:16–21

Rostami M, Berahmand K, Nasiri E et al (2021) Review of swarm intelligence-based feature selection 
methods. Eng Appl Artif Intell 100:104210

Sabale K, Mini S (2021) Localization in wireless sensor networks with mobile anchor node path plan-
ning mechanism. Inf Sci 579:648–666

Sachan S, Deb S, Singh SN et  al (2021) Planning and operation of EV charging stations by chicken 
swarm optimization driven heuristics. Energy Convers Econ 2(2):91–99

Safaldin M, Otair M, Abualigah L (2021) Improved binary gray wolf optimizer and SVM for intrusion 
detection system in wireless sensor networks. J Ambient Intell Humaniz Comput 12:1559–1576

Saif MAN, Niranjan SK, Murshed BAH et  al (2023) CSO-ILB: chicken swarm optimized inter-cloud 
load balancer for elastic containerized multi-cloud environment. J Supercomput 79(1):1111–1155

Sandeli M, Bouanaka MA, Kitouni I (2021) An efficient localization approach in wireless sensor net-
works using chicken swarm optimization. In 2021 International Conference on Information Sys-
tems and Advanced Technologies (ICISAT). IEEE, pp 1–6

Schmarje L, Santarossa M, Schröder SM et al (2021) A survey on semi-, self-and unsupervised learning 
for image classification. IEEE Access 9:82146–82168

Seyyedabbasi A, Kiani F (2023) Sand cat swarm optimization: a nature-inspired algorithm to solve 
global optimization problems. Engineering with Computers 39(4):2627–2651

Shehab M, Abualigah L, Al Hamad H et  al (2020) Moth–flame optimization algorithm: variants and 
applications. Neural Comput Appl 32:9859–9884

Singh A, Sharma A, Rajput S, Mondal AK, Bose A, Ram M (2022) Parameter extraction of solar module 
using the sooty tern optimization algorithm. Electronics 11(4):564

Singh H, Rai V, Kumar N et al (2023) An enhanced whale optimization algorithm for clustering. Multi-
media Tools Appl 82(3):4599–4618

Singh JP, Kumar M (2023) Conditional autoregressive-tunicate swarm algorithm based generative adver-
sarial network for violent crowd behavior recognition. Artif Intell Rev 56(Suppl 2):2099–2123

Sivanantham K, Kalaiarasi I, Leena B (2022) Brain Tumor Classification Using Hybrid Artificial 
Neural Network with Chicken Swarm Optimization Algorithm in Digital Image Processing 
Application[M]//Advance Concepts of Image Processing and Pattern Recognition. Springer, Sin-
gapore, pp 91–108

Slezkin AO, Hodashinsky IA, Shelupanov AA (2021) Binarization of the Swallow swarm optimization 
for feature selection. Program Comput Softw 47:374–388

Su X, Xue S, Liu F, Wu J, Yang J, Zhou C, Hu W, Paris C, Nepal S, Jin D, Sheng QZ, Yu PS (2024) A 
comprehensive survey on community detection with deep learning. IEEE transactions on neural 
networks and learning systems 35:4682–4702

Sutradhar S, Karforma S, Bose R et al (2023) A Dynamic Step-wise Tiny Encryption Algorithm with 
Fruit Fly Optimization for Quality of Service improvement in healthcare. Healthc Anal 3:100177

Tan Y, Liu X, Tang W et  al (2022) Flexible pressure sensors based on bionic microstructures: from 
plants to animals. Adv Mater Interfaces 9(5):2101312

Tang X, Shen H, Zhao S et al (2023) Flexible brain–computer interfaces. Nat Electron 6(2):109–118
Tawhid MA, Ibrahim AM (2023) An efficient hybrid swarm intelligence optimization algorithm for solv-

ing nonlinear systems and clustering problems. Soft Comput 27(13):8867–8895



 B. Chen et al.

1 3

170 Page 62 of 63

Tian Y, Liu X, Zhang L et al (2022) Prediction of thermophysical properties of chlorine eutectic salts 
via artificial neural network combined with polar bear optimization. J Energy Storage 55:105658

Tripathi AK, Garg P, Tripathy A, Vats N, Gupta D, Khanna A (2020) Application of chicken swarm 
optimization in detection of cancer and virtual reality. Advanced Computational Intelligence tech-
niques for virtual reality in Healthcare, pp 165–192

Trojovský P, Dehghani M (2022) Pelican optimization algorithm: a novel nature-inspired algorithm for 
engineering applications. Sensors 22(3):855

Vamsidhar A, Surya Kavitha T, Ramesh Babu G (2022) Image enhancement using chicken swarm opti-
mization. In Proceedings of the international conference on computational intelligence and sus-
tainable technologies: ICoCIST 2021. Singapore: Springer Nature Singapore,  pp 555–565

Verma S, Sahu SP, Sahu TP (2023) Two-stage hybrid feature selection approach using levy’s flight based 
chicken swarm optimization for stock market forecasting. Computational Economics 1–32

Wang Z, Zhu D (2021) Sports monitoring method of national sports events based on wireless sensor net-
work. Wirel Commun Mob Comput 2021:1–13

Wang J, Zhang F, Liu H et al (2020) Interruptible load scheduling model based on an improved chicken 
swarm optimization algorithm. CSEE J Power Energy Syst 7(2):232–240

Wang S, Cao L, Chen Y, Chen C, Yue Y, Zhu W (2024) Gorilla optimization algorithm combining sine 
cosine and cauchy variations and its engineering applications. Scientific Reports 14(1):1–20

Wang Z, Qin C, Wan B, Song WW, Yang G (2021a) An Adaptive Fuzzy Chicken Swarm Optimization 
Algorithm. Math Probl Eng 2021:1–7

Wang B, Tao F, Fang X et al (2021b) Smart manufacturing and intelligent manufacturing: A compara-
tive review. Engineering 7(6):738–757

Wang Z, Yue Y, Cao L (2022a) Mobile Sink-Based Path Optimization Strategy in Heterogeneous WSNs 
for IoT Using Pigeon-Inspired Optimization Algorithm. Wirel Commun Mob Comput 2022:1–18

Wang Z, Zhang W, Guo Y et al (2023) A multi-objective chicken swarm optimization algorithm based 
on dual external archive with various elites. Appl Soft Comput 133:109920

Wang T, Huang H, Li X, Guo X, Liu M, Lei H (2023b) Optimal estimation of proton exchange mem-
brane fuel cell model parameters based on an improved chicken swarm optimization algorithm. 
International Journal of Green Energy 20(9):946–965

Wei Q, Huang D, Zhang Y (2021) Artificial chicken swarm algorithm for multi-objective optimization 
with deep learning. J Supercomput 77(11):13069–13089

Wu Y (2021) A survey on population-based meta-heuristic algorithms for motion planning of aircraft. 
Swarm Evol Comput 62:100844

Wu Y, Yan B, Qu X (2018a) Improved chicken swarm optimization method for reentry trajectory optimi-
zation. Math Probl Eng 2018:1–13

Wu Z, Yu D, Kang X (2018b) Application of improved chicken swarm optimization for MPPT in photo-
voltaic system. Optim Control Appl Methods 39(2):1029–1042

Wu D, Kong F, Gao W, Shen Y, Ji Z (2015) Improved chicken swarm optimization. In 2015 IEEE inter-
national conference on cyber technology in automation, control, and intelligent systems (CYBER). 
IEEE, pp 681–686

Wunnava A, Naik MK, Panda R et al (2022) A differential evolutionary adaptive Harris hawks optimiza-
tion for two dimensional practical Masi entropy-based multilevel image thresholding. J King Saud 
Univ-Comput Inf Sci 34(6):3011–3024

Xie L, Han T, Zhou H et al (2021) Tuna swarm optimization: a novel swarm-based metaheuristic algo-
rithm for global optimization. Comput Intell Neurosci 2021:1–22

Yan C, Xiao J, Chen D et  al (2021) Feed restriction induced changes in behavior, corticosterone, and 
microbial programming in slow-and fast-growing chicken breeds. Animals 11(1):141

Yang Q, Song GW, Gao XD, Lu ZY, Jeon SW, Zhang J (2023) A random elite ensemble learning swarm 
optimizer for high-dimensional optimization. Complex & Intelligent Systems 9(5):5467–5500

Yanto ITR, Setiyowati R, Irsalinda N et al (2020) Laying Chicken Algorithm (LCA) Based For Cluster-
ing. JOIV: Int J Inform Vis 4(4):208–212

Ye C, Wang A, Breakwell C et al (2022) Development of efficient aqueous organic redox flow batteries 
using ion-sieving sulfonated polymer membranes. Nat Commun 13(1):3184

Yu X, Zhou L, Li X (2019) A novel hybrid localization scheme for deep mine based on wheel graph and 
chicken swarm optimization. Comput Netw 154:73–78

Yu Y, Rashidi M, Samali B et  al (2022) Crack detection of concrete structures using deep convolu-
tional neural networks optimized by enhanced chicken swarm algorithm. Struct Health Monit 
21(5):2244–2263

Yue Y, You H, Wang S et al (2021) Improved whale optimization algorithm and its application in het-
erogeneous wireless sensor networks. Int J Distrib Sensor Networks 17(5):15501477211018140



A comprehensive survey on the chicken swarm optimization…

1 3

Page 63 of 63 170

Yue Y, Cao L, Lu D et al (2023) Review and empirical analysis of sparrow search algorithm. Artif Intell 
Rev 3:1–53

Yue Y, Lu D, Zhang Y, Xu M, Hu Z, Li B, ..., Ding H (2022) A data collection method for mobile 
wireless sensor networks based on improved dragonfly algorithm. Computational Intelligence and 
Neuroscience 2022

Yue Y, Cao L, Zhang Y (2024) Novel WSN Coverage Optimization Strategy Via Monarch Butterfly 
Algorithm and Particle Swarm Optimization. Wirel Pers Commun 135:2255–2280

Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng 145:106559
Zhang Y, Zhao J, Wang L et al (2021) An improved OIF Elman neural network based on CSO algorithm 

and its applications. Comput Commun 171:148–156
Zhang C, Mousavi AA, Masri SF et  al (2022) Vibration feature extraction using signal processing tech-

niques for structural health monitoring: A review. Mech Syst Signal Process 177:109175

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	A comprehensive survey on the chicken swarm optimization algorithm and its applications: state-of-the-art and research challenges
	Abstract  
	1 Introduction
	2 Chicken swarm optimization
	2.1 Chicken characteristics
	2.2 Algorithm model
	2.3 Algorithm steps
	2.4 Algorithm parameter setting
	2.5 Analysis of CSO Advantages
	2.6 Analysis of CSO Disadvantages

	3 Improvement of chicken swarm optimization algorithms
	3.1 Improved chicken swarm optimization algorithms
	3.1.1 Modified chicken swarm optimization (m-CSO)
	3.1.2 Improved chicken swarm optimization (ICSO)
	3.1.3 Self-adaptive chicken swarm optimization (SA-CSO)

	3.2 Hybrid improved chicken swarm optimization
	3.2.1 Bat-Chicken swarm optimization (CSO-BA)
	3.2.2 Chicken swarm-plus deer hunting optimization algorithm (CSO-DH)
	3.2.3 Hybrid ant lion chicken swarm optimization algorithm (CSO-ALO)

	3.3 Other improved chicken swarm optimization algorithms
	3.3.1 Fractional-chicken swarm optimization (Fractional-CSO)
	3.3.2 CSO based clustering algorithm with genetic algorithm (CSOCA-GA)
	3.3.3 Chaotic chicken swarm optimization (CCSO)
	3.3.4 Adaptive chicken swarm optimization (ACSO)
	3.3.5 Algorithm complexity analysis

	3.4 Analysis of different improved algorithms

	4 Function testing and performance analysis
	5 Application of chicken swarm optimization
	5.1 Data mining
	5.1.1 Data of classification
	5.1.2 Data clustering
	5.1.3 Prediction

	5.2 Wireless sensor network (WSN)
	5.2.1 Positioning
	5.2.2 Energy management

	5.3 Robotics engineering (RE)
	5.3.1 Trajectory
	5.3.2 Machine learning

	5.4 Electrical engineering (EE)
	5.4.1 Smart grids
	5.4.2 New energy technology
	5.4.3 New-energy vehicle

	5.5 Feature extraction
	5.5.1 Feature extraction
	5.5.2 Image processing


	6 Discussion and the key problems
	7 Conclusions and future work
	Acknowledgements 
	References


