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Abstract

Recently, in the paper [4] we suggested the two conjectures about the di-
ameter of io-decomposable Riordan graphs of the Bell type. In this paper, we
give a counterexample for the first conjecture. Then we prove that the first
conjecture is true for the graphs of some particular size and propose a new
conjecture. Finally, we show that the second conjecture is true for some special
io-decomposable Riordan graphs.
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1 Introduction

Let x[[z]] be the ring of formal power series in the variable z over an integral domain
. A Riordan matrix [13] L = [¢,, 1], k>0 is defined by a pair of formal power series
(9, f) € K[[2] x K[[2]] with £(0) = 0 such that [2"|gf* = £, for k > 0 where [2"]
is the coefficient extraction operator. Usually, the Riordan matrix is denoted by
L = (g, f) and its leading principal submatrix of order n is denoted by (g, f),. Since
f(0) = 0, every Riordan matrix (g, f) is an infinite lower triangular matrix. Most
studies on the Riordan matrices were related to combinatorics [6, 9, 11, 14, etc.] or
algebraic structures [1, 2, 3, 7, etc.].

Throughout this paper, we write a = b for a = b (mod 2).

Recently, we in [4, 5] introduced a Riordan graph by using the notion of the
Riordan matrix modulo 2 as follows.

*This work was supported by the Postdoctoral Research Program of Sungkyunkwan University
(2016).
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Figure 1: The Catalan graph of order 6 and its adjacency matrix

Definition 1.1. A simple labelled graph G with n vertices is a Riordan graph of order
n if the adjacency matrix A(G) = [r; j]1<i j<n Of G is an n xn symmetric (0, 1)-matrix
given by

. 27 ifi> g
A(G) = (g P+ (on D) ey =g = {5100 =

for some Riordan matrix (g, f) over Z. We denote such G by G (g, f). In particular,
the Riordan graph G,,(g, f) is called proper if [:°]g = [2!]f = 1.

For example, consider the Catalan graph CG,, = G,,(C(z),2C(z)) where C(z) is
the generating function for the Catalan numbers, i.e.

1-V1—14
72’:2

1
Clz) = 2% nt1

2
(n)z":1—|—z—|—222—|—5z3—|—14z4—|—---. (1)
n

When n = 6 we have Figure 1.

In [4], we studied the structural properties of families of Riordan graphs ob-
tained from infinite Riordan graphs, which include a fundamental decomposition
theorem and certain conditions on Riordan graphs to have an Eulerian trail/cycle
or a Hamiltonian cycle. A Riordan graph G),(g, f) is called Bell type if f = zg.
Moreover, we studied the following Riordan graphs of special Bell type.

Definition 1.2. [4] Let G,, = G, (g, f) be a proper Riordan graph with the odd
and even vertex sets V, = {i € V(G,) | i = 1} and V, = {i € V(G,) | i = 0},
respectively. The graph G, is said to be io-decomposable if (V,) = G',,/91(g, f) and
(Ve) is anull graph.

A vertex in a graph G is universal if it is adjacent to all other vertices in G. The
distance between two vertices v, v in a graph G is the number of edges in a shortest
path between u and v. The diameter of G is the maximum distance between all pairs
of vertices, and it is denoted by diam(G).

We found several properties of an io-decomposable Riordan graph of the Bell
type as follows.



Lemma 1.3. [4] Let G, = G, (g, 2g) be an io-decomposable Riordan graph of the Bell type.
Then we have the following.

(i) Ifn= 2k 41 for k >0, then G,, and G,1 have at least one universal vertex, namely
2k 1 1.

(i)) Gy, is a ([logyn| + 1)-partite graph.
(iii) The chromatic number and the clique number of G, are [logyn| + 1.

(iv) The diameter of Gy, is bounded by diam(G,,) < |logyn|. In particular, ifn = 2F +2
or 2841 1, for k > 1, then diam(G,,) = 2.

(v) If2 +1 < n < 281 then diam(G,,) < |logy(n — 28)| + 1.

A graph is called weakly perfect if its chromatic number equals its clique number.
By (iii) of Lemma 1.3, every io-decomposable Riordan graph of the Bell type is
weakly perfect. It is known [10] that almost all K-free graphs are (k — 1)-partite
for £ > 3. By (ii) and (iii) of Lemma 1.3, every io-decomposable Riordan graph
Gn(g,2g) of the Bell type is K[, n+2-free and ([logy n] + 1)-partite for n > 2.
Thus the io-decomposable Riordan graph of the Bell type is very interesting object
in Riordan graph theory.

It is known [4] that the Pascal graph PG,, = G,(1/(1 — z),2z/(1 — z)) and the
Catalan graph CG,, = G,,(C(z), 2C(2)) are the io-decomposable Riordan graphs of
the Bell type. The following two conjectures introduced in [4] show significance of
the Pascal graph PG, and the Catalan graph CG,,.

Conjecture 1. [4] Let G,, be an io-decomposable Riordan graph of the Bell type.
Then

2 = diam(PG,) < diam(G,,) < diam(CG,,)

for n > 4. Moreover, PG, is the only graph in the class of io-decomposable graphs
of the Bell type whose diameter is 2 for all n > 4.

Conjecture 2. [4] We have that diam(CG,r) = k and there are no io-decomposable
Riordan graphs Gyx 2 C'Gar of the Bell type satisfying diam(Gor ) = k forall & > 1.

We note that diam(PG,,) = 1if n = 2,3 and diam(PG,,) = 2 if n > 4 since the
vertex 1 is adjacent to all other vertices, PG,, = K, if n = 2,3 and PG, ¥ K, if
n > 4.

In this paper, we first give a counterexample of the upper bound in Conjec-
ture 1. Then we prove that the upper bound in Conjecture 1 is true for the graph of
some particular size and we propose a new conjecture for an upper bound of the
diameter of an io-decomposable Riordan graph of the Bell type. Finally, we show
that Conjecture 2 is true for some special io-decomposable Riordan graphs.
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2 Upper bound of Conjecture 1

It is known [12] that an infinite lower triangular matrix L = [{; ;]; j>0 with £go # 0
is a proper Riordan matrix if and only if there is a unique sequence (ag, a1, . . .) with
ag # 0 such that, fori > j > 0,

liv1,j41 = aolij + arlijpr + -+ + ai—jli;.

The sequence (a;);> is called the A-sequence of the Riordan array. Also, if L = (g, f)
then

f =2zA(f), orequivalently A=z/f 2)

where A = >~ a;2" is the generating function for the A-sequence of (g, f). In par-
ticular, if L is a binary Riordan matrix L = (g, f) with f/(0) = 1 then the sequence
is called the binary A-sequence (1, a1, ag,...) where a; € {0,1}.

We in [4] characterized the io-decomposable Riordan graph G, (g, zg) of the Bell
type, see the following lemma.

Lemma 2.1. [4] Let G,, = G,(g,2g9) be a Riordan graph of the Bell type. Then G, is
io-decomposable if and only if the binary A-sequence of (g, zg) is (1,1, a2, a2, a4,a4,...)
where ag; € {0,1} forall j > 1.

Let G, be the io-decomposable Riordan graph of the Bell type with its binary
A-sequence generating function A(z) = Zgio 2. By Lemma 2.1, the Riordan graph
G, is io-decomposable. By using the sage, we compare the diameters between CG,,
and G, up to degree n = 100. Then we obtain the following 13 counterexamples
for the upper bound of Conjecture 1.

n 44 145 |46 | 47 |48 |78 |79 | 80 | 87 | 88 | 89 | 90 | 91
diam(CG,) | 3 |3 |3 |3 |3 |3 |3 |33 |3|3|3]3
diam(G,) | 4 | 4 |4 | 4 | 4| 4|4 |4 |4 |4|4|4]|4

If for a Riordan graph G,,(g, f) with [z!]f = 1, the relabelling is done by revers-
ing the vertices in [n], that is, by replacing a label i by n + 1 — i for each i € [n], then
the resulting graph will always be a Riordan graph given by the following lemma.
We denote the reverse relabelling of G, by G7,.

Lemma 2.2. [4] The reverse relabelling of a Riordan graph Gy (g, f) with f'(0) = 1 is the
Riordan graph

where f is the compositional inverse of f.



Now, we prove that the upper bound in Conjecture 1 is true if n = 28, n = 28 —1
orn=1+2"+ 2% wherek >2and 1 < m < k.

Lemma 2.3. Let G,, = Gy(g, zg) be a proper Riordan graph and A(z) be the generating
function for its binary A-sequence. Then the reverse relabelling of G, is the Riordan graph
given by

G}, = Gul((2A(2)) - A"2(2), 2/A(2)).

In particular, if Gy, is an io-decomposable Riordan graph of the Bell type then the reverse
relabelling of Gy, is the Riordan graph given by

G = Gn(A'(2) - A"2(2), 2/ A(2)).

n

Proof. Let f = zg and f be the compositional inverse of f. Since (2) leads to

o)==/ =aG) and (1) = (75 ) = T = cawrae)

we obtain

g(f)- () - (z/ /)" = (2A(2)) - A"2(2) and  f = z/A(2).

Thus, by Lemma 2.2, we obtain the desired result. In particular, if G,, is an io-
decomposable Riordan graph of the Bell type then it follows from Lemma 2.1 that
(zA(2)) = A'(z). Hence the proof follows. O

If the base p (a prime) expansion of n and m is n = ng + n1p + ngp® + - and
m=mgy+ mip+ map? + - - respectively then

() = T0() ot

2

This is called the Lucas’s theorem.

Let G, be an io-decomposable Riordan graph of the Bell type. Since diam(G,,) <
k if n = 2¥ with k > 0 by (iv) of Lemma 1.3, the following theorem shows that the
upper bound of Conjecture 1 is true if n = 2* for £ > 1. We denote the distance
between two vertices u, v in a graph G by dg(u, v).

Theorem 2.4. For an integer k > 1, we obtain

diam(CGqr) = k.



Proof. First we show that CG}, = Gou(1, 2z + 2?) for k > 1. It follows from (1) and

(2) that the generating function for A-sequence of (C, zC) is 1-. By Lemma 2.3, we

obtain
o= () () )

so that by Lemma 2.2 the reverse relabelling of the Catalan graph is

CGy = Gyel(1 = 2% 2 4 22). 3)
Since (1 — 2)~2" = >j>0 (21;:111)Zj, by Lucas’s theorem we obtain
28 +j—1 28 +j—1
< 2721 >51 forj=0 and < 2721 )zo forl<j<2k—1

which imply Gor ((1—2)"2", 24-22) = Goi (1, 2+22). Thus, by (3), CGly = Gor(1, 2+
z%). Let m; = max{j € V(CGY,) | ij € E(CGY,)}. Foreachi € {1,2,...,2871}, we
obtain

m; =max{j € V(CGY) | [/ %] (z + 2% =1} = 2i. 4)

Since m; < mg < --- < mgk-1, a unique shortest path from 1 to 2k in CGY, is
20 ol ... 5 ok=1 _, 9k g5 that dcggk (1,2%) = k. Hence, by (iv) of Lemma 1.3,
we obtain the desired result. O

By Lemma 2.1, the following lemma is obtained from [4, Theorem 3.7] when
{=0.

Lemma 2.5. Let G, be an io-decomposable Riordan graph of the Bell type and G =
limy, o0 G Foreach s > 0, G has the following fractal properties:

(i) Gast1=({1,2,...,2°+1}) =2 ({a2° +1,02° + 2,...,(a + 1)2° + 1});
() Gas = ({1,2,...,2°}) = {a2° 4+ 1,02° + 2,..., (e + 1)2°})
where o > 1.

We can ask that how many vertex pairs (u,v) can have the maximal distance &
in CGqr. By using Lemma 2.5, the answer is given by the following theorem.

Theorem 2.6. Let k > 1 be an integer. There exist exactly 251 vertex pairs (i,2%) with
i€ {1,...,28"1} such that dea,, (4 2k = k is the maximal distance in CGo.

Proof. Since CGY, is the reverse relabelling of CGy, this theorem is equivalent to
the following:



o docr, (i.j) = kifi=land j € {267 4 1,...,2F);

. dCng (1,7) < k — 1 otherwise.
Since by (i) of Lemma 1.3 the vertex 281 + 1 is adjacent to all vertices 1,...,2%" 1 in
CGopr, the vertex 28~1 is adjacent to all vertices 2! 4 1,...,2F in CGY,.. So by (4)

the shortest path from 1 to j in CGJ, is
20 59l .. 5 2P 5 where je {281 41, 2F)
and thus dcer, (i,j) = kifi=1land j € {2k 4 1,...,2F)
Let Vi = {i € V(CGy,) |1 <i<2"}and Vo = {j € V(CGY,) | 267 < j <

281, Since (V1) = (Vp) = CGY.—, by Lemma 2.5 and Ggr-1 &2 CGak-1, it follows
from Theorem 2.4 that

dogr, (i,§) < k=1 ifi,j € Vi ori, j € Va.

Now it is enough to show that dCng (1,j) < kifi e Vi\{1} and j € V5 for k > 2.
We prove this by induction on k£ > 2. Let £ = 2. Since the adjacency matrix of CGY
is given by

1
0
1

—= = O

A(CGY)) =

O O = O
— O = O

1 0

we see that dogr(2,3) = dogr(2,4) = 1 < 2. Thus it holds for k = 2. Let k& > 3.
Since (V1) = CGY,_, and the vertex 2k—1 g adjacent to all vertices j € V2 in CG7,,
we obtain

;g . ok—1 k—1 - . ak—1
degr, (i,7) < degr, (6,2°77) +dogr, (27, 4) <docr, ,(1,2°77) +1
<k -1 (byinduction)
where i € V1\{1} and j € V5. Hence the proof follows. 0

Example 2.7. Let us consider the Catalan graph CGg = Gs(C(z),2C(z)) of order
8. Since its reverse relabeling is CG% = Gs(1, z + z2), we obtain Figure 2 from the
adjacency matrix

01000000
10110000
01010100

, 01101111

ACGI=1 60010100
00111011
00010101
00010110




Figure 2: The graph of CG% = G, (1,2 + 2?)

Thus we can see that the four vertex pairs (1,5), (1,6), (1,7) and (1, 8) in CG§ have
maximal distance 3 i.e., the four vertex pairs (8,4),(8,3),(8,2) and (8,1) in CGy
have the maximal distance 3.

Let G, be an io-decomposable Riordan graph of the Bell type. Since it follows
from (iv) of Lemma 1.3 that diam(G,,) < k—1ifn = 2k _ 1, the following corollary
shows that the upper bound of Conjecture 1 is true if n = 28 — 1 for k > 1.

Corollary 2.8. For an integer k > 1, we obtain
diam(Csz_l) =k—1.

Proof. By Theorem 2.6, we obtain diam(CGqyr_;) < k — 1. It follows from Lemma
2.3 that one can show CG%, | = Gy(1 + z,z + 2*). By using the similar proof in
Theorem 2.4, we can show that 2! — 1 — 22 — 1 — ... — 2¥ — 1 is the shortest path
from 1to 2 — 1 in CGY._y, ie. dCGQk,l(l’ 2k — 1) = k — 1. Since it follows from
Theorem 2.6 that diam(CGy:_;) < k — 1, we obtain diam(CGy._;) = k — 1. Hence

the proof follows. O

The following lemma is useful to obtain Theorem 2.10 and Conjecture 3.
Lemma 2.9. Let n = 1+ 2™ + 375_ 28 be an integer with k > m > 1. If G, be the
io-decomposable Riordan graph of the Bell type, then we obtain
s+2 ifm=1;
s+ 3 otherwise.

dim(G) < {

Proof. We prove this by induction on s > 0. Let s = 0,i.e. n = 1 +2™ + 2% If m = 1
then it follows from (v) of Lemma 1.3 that diam(Gqx3) = 2. For k > m > 2, let
Vi={ieV(Gy|1<i<2+1}and Vo ={j € V(G,) | 2F +1 < j < n}. Since
(V1) =2 Goryy and (V2) = Gamyq by Lemma 2.5, it follows from (iv) of Lemma 1.3
that diam((V;)) = diam((V)) = 2. Leti € Vi\{2¥ + 1} and j € V5\{2* + 1}. Now it
is enough to show that d(i, j) < 3. Since the vertices 2¥ + 1 and 2% + 2™ + 1 are the
universal vertices in (V;) and (V2) respectively, we obtain

dg, (i,§) < dg, (i,2" + 1) + dg, (2" + 1,2F + 2™ + 1) + dg, (2 + 27 + 1, )
< vy (6,25 4+ 1) + dpygy (28 + 1,28 4+ 2™ 4 1) + digyy (28 + 2™ + 1, 5)
<3.



Thus the theorem holds for s = 0.

Lets > 1,ie n=142"+Y7 (2" Fork >m > 1,let W, = {i €
V(Gn) |1 <i< 24 1}and Wy = {j € V(G,) | 287° +1 < j < n}. Since by
Lemma 2.5 we obtain (W1) = Gak+sq and (Wa) = G,,_gi+s , by (iv) of Lemma 1.3
we obtain diam((W7)) = 2 and by induction we obtain diam((W2)) < s+ 1if m =1
or diam((Ws)) < s+ 2if k > m > 1. Leti € Wi\{2F* + 1} and j € Wo\{2FT* +1}.
Now it is enough to show that dg,, (i,j) < s+ 2if m = 1 or dg,(i,5) < s+ 3if
k > m > 1. Since the vertices 2! 4 1 are the universal vertices in (1), we obtain

da, (i, §) < dg, (1,27 + 1) + dg, (2" + 1,5) < 1+dg, .. (27 +1,5).
Hence, by induction, we obtain the desired result. O

From Lemma 2.9, the following theorem shows that the upper bound of Con-
jecture 1is trueif n =1+ 2™ +2F fork > m > 1.

Theorem 2.10. Let k and m be integers with k > m > 1. Then

2 ifm=1;

diam(CGygm yor) = { 3 otherwise.

Proof. Since by Lemma 2.9 we obtain diam(C'Gyr 3) = 2, it is enough to show that
diam(CG1 gm_9r) = 3 for k > m > 1. Now let k and m be integers with k > m > 1.
By Lemma 2.2, the reverse relabelling of the Catalan graph CGyr om is

CG;+2m+2k - G1+2WL+2/€((1 - Z)_1_2m_2k, z + 22). (5)
Let A(CG gmy9r) = [cij] and A(CGT ., k) = [rij]- By (5), we obtain
1 if j =2Fy2m 4 1;
Com yok j = Tomygkig jo =14 0 if j = 2F 4 2m; (6)

22427 I]2(1 - 2)7' 2" otherwise.

Since
(222 ] p(1 — 2) 22" = A
2k 4 9m — 1 ’
by Lucas’s theorem we obtain for j = 1,...,2F +2m — 1
2k+1 4 2m+1 _] -9
02k+2m7]~ = ( 2k I om _ 1 >

)

1 ifjef{omtl p2m —1|t=0,...,28m - 1};
0 otherwise.



By (6) and (7), the set N (2* 4 2™) of neighbors of the vertex 2% + 2™ in CGoryomyq
is

N(@2F42m)y = {2mFl f2m — 1|t =0,...,28"™ —1}u{2F 4 2™ +1}.
It is known [8] that [2"]C(z) = 1 if and only if n = 2% — 1 for k > 1. It implies

1 e {2 +1]s=0,1,... k)
€179 0 otherwise.

Thus the set N (1) of neighbors of the vertex 1in CGakom  is
N1)={2°+1|s=0,...,k}.
Since
ok fom g N(1), 1¢ N(©2F+2™) and N(1) N N(2F +2™) =0,

the distance between vertices 1 and 2¥ + 2™ in CG_om_ o« is at least 3 so that by
Lemma 2.9 we obtain diam(CG 9m or) = 3. Hence the proof follows. O

We end this section with the following conjecture.

Conjecture 3. Letn = 1+ 2™ + Z;:o 2k+7 e an integer with k > m > 1and s > 1.
Then
s+2 ifm=1;

dlam(C Gn) = { s+ 3 otherwise.

Remark 2.11. If Conjecture 3 is true, then by Lemma 2.9 the upper bound of Conjecture 1
is true if n = 1+ 2™ + 35254 for k > m > 1and s > 1. By using the sage, we have
checked that Conjecture 3 is true for n < 28.

3 Conjecture 2

In this section, we show that Conjecture 2 is true for some special io-decomposable
Riordan graphs of the Bell type.

Lemma 3.1. Let G,, = G,(g, zg) be an io-decomposable Riordan graph. If there exists
k > 2 such that diam(Gyx) = s then diam(Gor+m) < s+ m forall m > 1.

Proof. Let Vi = {i € V(Gy) |1 <7 <2771 4 T and V3 = {j € V(Gy) | 2471 +
1 < j < 2K+™} be the vertex subsets of V(Gokim). Since (Vi) 2 Gorim-1,4 has
a universal vertex 2¥*™~! 4 1 and by Lemma 2.5 we obtain (V5) = Garim-1, We
obtain

diam(nger) S dlam(<‘/2>) + 1= diam(G2k+mfl) + 1. (8)
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Let diam(Gqx) = s. Applying for m = 1 in (8), we obtain diam(Gyr+1) < s + 1.
Applying again for m = 2 in (8), we obtain diam(Gk+2) < s + 2. By repeating this
process, we obtain the desired result. O

Let B(g, f) denote a binary Riordan matrix, i.e. B(g, f) = (g, f). We note that a
Riordan matrix [b; ;]; j>0 is of the Bell type given by B(g, zg) with g(0) = 1 if and
only if, fori > j > 0,

bit10 = arbio + agbi1 + -+ ait1bii, ©)
biv1,j41 = bij +arb;jp1 + -+ a;i—jbi;
where (1,a1,...) is the binary A-sequence of B(g,zg). Let G, = Gy(g,z9) and

A(Gy) = [rijli<ij<n where g(0) = 1. Since r; ; = bj—2j—1 fori > j > 1, by (9) we
need the finite term (1, ay, ..., a,—2) of the binary A-sequence to determine A(G),).

Theorem 3.2. Let Gor = Gor (g, 2g) be an io-decomposable Riordan graph. If the binary
A-sequence of (g, zg) is of the following form
(17 17 tey 1707 07 Agm , Agm, A2m 42, A2M 4.2, . . ')7 a; € {07 1}7 m > 4 (10)
N—_——

2™ — 2 copies
then for k > 4 we obtain
diam(Gqr) < diam(CGqr) = k.

Proof. First we show that diam(Gam) = m — 1. Since the induced subgraph H of
{1,2...,2™ — 1} in Gom is H = CGom_1 and CGhm_; = Gom_1(1 + 2,2 + 2?), the
(2™ — 1)th row of A(Gom) = [r; ;] is given by

m

(0,...,0,1,1,0,1) = (rgm_1,)775. (11)
By (9), (10) and (11), the 2™th row in A(Gam) = [r; ;] is given by

(17 07 s 707 17 0) = (T2m,i)22=1

which means the only two vertices 1 and 2" —1 are adjacent to the vertex 2" in Giom.
LetV; = {1,...,2" ' +1}and Vo = {2™~! +1,...,2™ — 1} be the vertex subsets
of V(Gan). Since (V1) has the universal vertex 2™~! + 1 and (V5) = CGgym-1_, if
v1 € Vi and vy € V5 then we respectively obtain dg,,, (v1,2™) < 3 and

dG,m (v2,2™) < diam(CGym-1_1) +1 < 2™ —1 (by Corollary 2.8)
which implies diam(Gam) = m — 1. Hence, by Lemma 3.1, we obtain the desired

result. O
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A-seq. of Gy | diam(Gs) | A-seq. of Gs | diam(Gy)
(1,1,0,0,0,0,0) 2 (1,1,1,1,0,0,1) 2
(1,1,1,1,0,0,0) 2 (1,1,0,0,1,1,1) 2
(1,1,0,0,1,1,0) 2 (1,1,1,1,1,1,0) 3
(1,1,0,0,0,0,1) 2 (1,1,1,1,1,1,1) 3
(1,1,1,1,1,1,0) 2

Table1 Diameters of io-decomposable Riordan graphs of the Bell type with degree 8
A-seq. of G1g | diam(G16) || A-seq. of G | diam(G16)

(1,1,1,1,1,1,0,0,0,0,0,0,0,0,0) 3 (1,1,1,1,1,1,1,1,0,0,0,0,0,0,0) 3
(1,1,1,1,1,1,0,0,1,1,0,0,0,0,0) 3 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,0) 3
(1,1,1,1,1,1,0,0,0,0,1,1,0,0,0) 3 (1,1,1,1,1,1,1,1,0,0,1,1,0,0,0) 3
(1,1,1,1,1,1,0,0,0,0,0,0,1, 1,0) 3 (171,1111,110,000,1,170) 3
(1,1,1,1,1,1,0,0,0,0,0,0,0,0,1) 3 (1,1,1,1,1,1,1,1,0,0,0,0,0,0, 1) 3
(1,1,1,1,1,1,0,0,1,1,1,1,0,0,0) 3 (1,1,1,1,1,1,1,1,1,1,1,1,0,0,0) 3
(1,1,1,1,1,1,0,0,1,1,0,0, 1, 1,0) 3 (1,1,1,1,1,1,1,1,1,1,0,0,1,1,0) 3
(1,1,1,1,1,1,0,0,1,1,0,0,0,0,1) 3 (1,1,1,1,1,1,1,1,1,1,0,0,0,0,1) 3
(1,1,1,1,1,1,0,0,0,0,1,1,1,1,0) 3 (1,1,1,1,1,1,1,1,0,0,1,1,1,1,0) 3
(1,1,1,1,1,1,0,0,0,0,1,1,0,0,1) 3 (1,1,1,1,1,1,1,1,0,0,1,1,0,0,1) 3
(1,1,1,1,1,1,0,0,1,1,1,1,1,1,0) 3 (1,1,1,1,1,1,1,1,0,0,0,0,1,1,1) 3
(1,1,1,1,1,1,0,0,1,1,0,0,1,1,1) 3 (1,1,1,1,1,1,1,1,1,1,1,1,1,1,0) 3
(1,1,1,1,1,1,0,0,1,1,1,1,0,0,1) 3 (1,1,1,1,1,1,1,1,1,1,1,1,0,0,1) 3
(1,1,1,1,1,1,0,0,1,1,1,1,1,1,0) 3 (1,1,1,1,1,1,1,1,1,1,0,0,1,1,1) 3
(1,1,1,1,1,1,0,0,1,1,1,1,1,1,1) 3 (1,1,1,1,1,1,1,1,0,0,1,1,1,1,1) 3
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 1

Table 2  Diameters of io-decomposable Riordan graphs of the Bell type with
degree 16 such that the first 6 entries of its A-sequence are all 1s

By Lemma 3.1, using the results in Table 1 and 2 we obtain the following theo-

rem.

Theorem 3.3. For k > 4, let Gor = Gk (g, 2g) be an io-decomposable Riordan graph and
Gor % CGoyr. If the first 16 entries in the binary A-sequence of (g, zg) are not all 1s then

diam(Gqr) < diam(CGqr) = k.
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