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Abstract

Designing a public transport timetable that maximizes passenger service,
measured in weighted travel time, is an intricate problem. The weighted
travel time depends on the free route choice of passengers. Passenger route
choice depends on the timetable. In turn, the timetable that minimizes weighted
travel time depends on the route choice of passengers – and therefore requires
passenger route choice information. Consequently, a sequential approach
where timetables are designed provided pre-fixed passenger assignment to
routes, may not find the optimal timetable.

This paper aims to integrate passenger route choice and timetabling. It
addresses the problem of designing maximal passenger service public trans-
port timetables in systems with free route choice within a budget for operat-
ing costs. Operating costs are defined by the minimal cost vehicle schedule
required to operate the timetable.

The proposed methodology integrates a matheuristic for timetabling and
vehicle scheduling with a passenger assignment model in an iterative frame-
work, where different forms of integration are evaluated. Focus is on long to
medium term timetabling, provided an initial timetable. Results for a realistic
case study in the Greater Copenhagen area indicate that our approach con-
sistently leads, at no additional cost, to timetables that represent a reduction
in passenger weighted travel time in comparison to both an initial timetable
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and a non-integrated timetabling method that receives a single passenger as-
signment as input.

Keywords: Public Transport, Bus Timetabling, Passenger Route Choice, Mixed
Integer Linear Programming, Matheuristic

1 Introduction

Timetabling consists of assigning specific points in time to a set of events. In the
bus timetabling problem considered in this paper, this set of events follows from the
service network designing, determining a set of lines, each with a given ordered list
of stops and a target headway. Thus, in the context of our paper, headways between
vehicles should be within some small bandwidth. The output of the timetabling
phase serves as input to the vehicle scheduling problem, that assigns vehicles to
specific services in the timetable. Timetabling generally represents a balance be-
tween high quality passenger service, and low operating costs. Passenger service
depends on the timetable, while the operating costs depend on the vehicle assign-
ment. Passenger service can be expressed in terms of weighted travel time (WTT):
a weighted sum of the components of initial waiting time (IWT), in-vehicle time
(IVT), and transfer time (TrT) [7]. Operating costs are expressed as a function of
the number of required vehicle schedules and dead-heading distance.

Integrating passenger route choice and timetabling is an intricate problem, as
there is a co-dependency between passenger route choice and timetable design. In-
deed, minor changes in the timetable can have large effects on the WTT of routes
with a transfer, especially in networks where several alternative geographical paths
exist for a large number of origin-destination pairs. Small changes in the timetable
could lead to far larger changes in transfer times, and consequently may cause pas-
sengers preferring alternative geographical routes. As a result, providing a fixed
passenger assignment as input to the timetabling phase could lead to finding sub-
optimal timetables. Furthermore, also the vehicle schedules can be strongly af-
fected by small changes in the timetable. To ensure reasonable operating costs of
the resulting timetable, it is vital to consider vehicle scheduling as well.

This paper studies the Integrated Passenger Assignment, Timetabling and Vehi-
cle Scheduling Problem (IPAT-VSP) at a tactical level. The objective of the IPAT-
VSP is to maximize passenger service in terms of WTT within a budget for oper-
ating costs and a set of headway constraints. Input consists of a non-cyclical ini-
tial timetable with time-dependent service times, and an Origin-Destination-Time
(ODt) passenger demand matrix. Timetable decisions consist of shifting departure
times of trips, or extending dwell time at transfer stops, with respect to the provided
initial timetable. In this paper, and similarly to what is done in [10], we define op-
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erating costs in terms of number of schedules created and not in terms of number
of vehicles, since the number of schedules is a good upper bound on the number of
vehicles needed and provides computational benefits in comparison to considering
individual vehicles.

Key characteristics of passenger route choice as considered in this study are
that (i) passengers have free route choice, and (ii) passengers may have different
route preferences. Thus passengers with the same origin, destination, and departure
time, may still choose different routes.The first is in contrast to the common setting
of a central controller assigning passengers to maximize a social optimum, which
would be a natural result of integrating a passenger assignment with the objective
to minimize weighted travel time in a mixed-integer linear program often used for
solving the combinatorial problems around scheduling and timetabling. The sec-
ond is in contrast to assuming all passengers choose the minimum weight path, and
reflects that passengers may have different preferences. Specifically, it will ensure
that when two almost equivalent paths exist connecting an origin and destination,
passengers will be assigned to both. This assumption fits with commonly accepted
route choice theory [1].

A matheuristic approach for the IPAT-VSP is proposed that consists of an
iterative framework between a passenger route choice model, and an integrated
timetabling and vehicle scheduling model. Different forms of integration are eval-
uated. The implementation of this modular framework combines the integrated
timetabling and vehicle scheduling model of Fonseca et al. [10] with the passenger
route choice model of Briem et al. [4], that satisfies the above two key charac-
teristics of free passenger route choice, and different preferences for passengers.
The latter also serves as a ground-truth for evaluating the passenger service of any
timetable.

A realistic case study representing a large part of the multi-modal public trans-
port network of the Greater Copenhagen Area, Denmark, serves to investigate the
value of the IPAT-VSP timetabling approach: (i) in comparison with the status-quo
reflected by an initial timetable; (ii) in case of a change in the line network; and
(iii) in case of a change in the OD matrix. Results indicate that including free pas-
senger route choice results in timetables with higher passenger service in all three
situations compared to a fixed passenger route choice approach (represented by a
comparison to the state-of-the-art fixed route choice model in Fonseca et al.[10]).
Moreover, our computational studies, supported by a simple clarifying example,
illustrate that in order to find timetables with high passenger service indicating po-
tentially interesting transfers is more important than estimating accurate usage of
transfers in a current timetable.

To summarize the contributions of this work: (i) we investigate the maximal
passenger service timetabling problem in the context of a free passenger route
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choice; (ii) we propose a modular matheuristic approach for the IPAT-VSP that,
in an iterative framework, combines two state of the art models: (1) the IT-VSP
matheuristic of Fonseca et al. [10], which maximizes passenger service through
minimizing excess transfer time under the assumption of fixed passenger route
choice, with (2) the stochastic passenger route choice model of Briem et al. [4],
which represents free route choice of passengers; and (iii) we find that the inclusion
of free passenger route choice results in timetables with higher passenger service
for a realistic case study of the Greater Copenhagen area. Thereby the current
study is different from [10] by (a) indicating the value of integrating passenger
route choice and timetabling, where [10] assumed the passenger route choice as
fixed input; (b) demonstrating the value of this approach for a larger, more com-
plex network case study, and contrasting this against the approach on [10], and
(c) the evaluation of the value of the timetabling approach not only in comparison
to the status-quo, but also in case of a small network re-design, and a change in
passenger demand. Both (b) and (c) would lead to a change in (expected) passen-
ger flows, which this model demonstratively is better capable of handling than the
model of [10].

2 Literature Review

Recent years saw an increase in research output that integrates passenger deci-
sions into the optimization models, especially in line planning, timetabling, and
delay management models. In general, there are two ways of formulating these
models. One way is incorporating the decision making problem with passenger
behaviour description into one integrated model, which generates simultaneously
the optimized decisions and the corresponding passenger flows. Another way is
establishing two separate models with one for decision making and another one for
passenger assignment. The decision making model optimizes the decisions based
on the passenger flows from the passenger assignment model in an iterative way
until specific termination criteria are reached. In the following, we give a review
on the integrated methods and the iterative methods, respectively.

2.1 Integrated methods of incorporating decision making with pas-
senger behaviour

The literature of incorporating decision making problems with passenger behaviour
into one integrated model is usually based on simplified descriptions of passenger
behaviour. Schmidt [20] integrates delay management with passenger routing as-
suming that passengers with the same origins, destinations, and planned departure
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times always choose the same routes. The same assumption is used by Schmidt
and Schöbel [21] and Schiewe [19], who both integrate timetabling with passenger
routing. To reduce computational complexities, the model of [21] is simplified in
a way that the information about the specific vehicle which a passenger plans to
board/alight at the origin/destination is given as known input, which significantly
reduces the choice sets of passengers. Schiewe [19] also simplifies the problem
by proposing a pre-processing algorithm to reduce passengers’ choice sets. Two
heuristic approaches are developed to provide lower and upper bounds on the ob-
jective. Gattermann et al. [11] present a boolean satisfiability problem (SAT)
model that integrates periodic timetabling with passenger routing, distributing OD
pairs temporally using time slices to make the problem tractable. To reduce the
required constraints, passengers’ path choice sets are reduced by imposing a de-
tour factor of 1.2. Only the paths that do not deviate from the fastest paths by
the given detour factor are considered in their model. Wang et al. [25] propose
a mixed integer nonlinear program to deal with the integration of train scheduling
and rolling stock circulation planning under time-varying passenger demand. The
target case is a single metro line, where passengers are assumed to always take the
first coming train. Borndörfer et al. [3] integrate periodic timetabling with pas-
senger routing allowing a variety of passenger choice models to be integrated. All
OD pairs for which a lower bound route is a direct connection are removed in their
model as they optimize the timetable with fixed dwell and driving times and thus
the timetable affects only passengers who transfer. Robenek et al. [18] also assume
fixed dwell and driving times, who integrate train timetabling design with a proba-
bilistic demand forecasting model. The integrated model is applied to a network of
Israeli Railways considering the network layout of 2008 and real-life passenger de-
mand of 2008 and 2014, respectively. The results show that pricing strategies and
passenger-centric timetabling can together result in up to 15% revenue increase, al-
though a part of this increase might also be explained by other operational changes
between 2008 and 2014. Chu [6] presents a mixed integer program (MIP) to inte-
grate network design and timetabling. All feasible paths for OD pairs are generated
beforehand by a procedure based on the breadth-first search and path enumeration
algorithms. The passenger generalized cost of each path is then calculated and
given as a known parameter to the MIP, which aims to minimize the weighted sum
of bus operating cost, passenger generalized cost, and penalty for unsatisfied de-
mand. Canca et al. [5] present a mixed integer non linear program to optimize line
frequencies (minimizing operating costs and fleet acquisition costs) and simultane-
ously compute passenger assignments (minimizing average trip time and number
of transfers). To reduce the size of the variable sets, they use a pre-processing step
to sort out the k-shortest paths for each OD pair. Binder et al. [2] propose an integer
linear program to integrate timetable rescheduling with passenger routing consid-
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ering limited vehicle capacity. Passengers are assigned to different vehicles in an
operator-controlled way without free path choices. Wagenaar et al. [24] propose an
mixed integer linear program for rolling stock rescheduling considering adjusted
passenger demand. Passengers are not allowed to detour but only wait for the next
train with the same origin and destination if their planned trains are cancelled.

Different from the reviewed integrated models, our paper deals with timetabling
with passenger routing in an iterative way. We consider more realistic passenger
behaviours that (i) passengers are free to choose any available routes, (ii) passen-
gers may have different route preferences meaning that passengers with the same
origin, destination, and departure time can choose different routes, and (iii) the
behaviours of all types of passengers (with or without transfers) are explicitly de-
scribed in our model. A recent paper of integrated timetabling with passenger
distribution by Hartleb and Schmidt [13] also considers free route choices and dif-
ferent passenger preferences. Their target case (8 lines and 9 stops) is smaller than
the case (8 lines and 54 stops) considered in our paper, in which vehicle scheduling
is also handled besides timetabling.

2.2 Iterative methods of incorporating decision making with passen-
ger behaviour

The literature of handling decision making and passenger assignment in an iterative
way usually formulates the problem as a bi-level model. Dollevoet and Huisman
[8] develop an iterative heuristic to handle delay management with passenger rout-
ing. In each iteration, the classical delay management model is first solved, and
then passengers are re-routed. A case study in a part of the Dutch railways shows
that on average, the solutions by the iterative algorithm are only 0.4% worse than
the exact solutions. However, one should note delay management is different for
two key reasons: a) it is generally not possible to shift backward in time, and b)
minimal cost of the fleet is not an objective. Zhu et al. [27] present a bi-level
model for single line timetabling with passenger routing. The first level model
determines the headways to minimize total passenger costs (perceived travel time
and travel penalties), and the second level model determines the passenger arrival
times given the headways. The authors use a two stage genetic algorithm to solve
hypothetical examples of the problem. As their target case is a single line, passen-
gers’ transfer behaviour between different lines are not formulated in the model.
Focusing on a network with several lines, transfer behaviour is considered by Wu
et al. [26]. They present a bi-level program to coordinate timetabling and consider
passengers’ behavior to the timetable modifications. The first level uses a mixed
integer non-linear program to design the timetable, minimizing system cost com-
posed by operating and user costs. The second level is a passenger route choice
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model to describe passenger behaviour in reactions to the timetable designed by
the first level. Only passengers with missed transfers are re-routed. The authors
use a heuristic algorithm to solve the problem and show results for two small exam-
ples: one with 3 lines and 3 transfer stops, and another with 4 lines and 4 transfer
stops. Liu and Ceder [15] propose a bi-objective, bi-level IP formulation to deal
with timetabling and vehicle scheduling considering passenger demand. The au-
thors allow timetable modifications by shifting departure times and initial vehicle
schedules are given as input. Deadheading is not allowed, meaning that vehicles
are assigned to a single line and can only service trips belonging to that line, which
significantly reduces the complexity of the problem. They propose a deficit func-
tion based sequential search to solve small examples with up to 4 unidirectional
lines, 4 transfer stops, and one hour of operations. Polinder et al. [17] deal with
passenger-centric timetabling by an iterative approach. They first obtain an ideal
timetable of minimized average perceived travel times assuming passengers al-
ways choose the shortest routes. Operational constraints are not considered in the
ideal timetable, which thus may not be operational feasible. Therefore, they pro-
pose a Lagrangian heuristic to modify the ideal timetable to make it feasible. The
modified timetable is assessed by an evaluation function from the perspective of
passengers, based on which feedback is given to the Lagrangian heuristic for gen-
erating better feasible timetables in the next iteration. The process continues until
no improvements are obtained, and manual inspections are required to find a good
feedback option. Veelenturf et al. [23] embed a timetable rescheduling model and
a passenger assignment model into an iterative framework. At each iteration an
extra stop will be added to the timetable if it reduces the total passenger inconve-
nience as evaluated by the passenger assignment model. Kroon et al. [14] study
the integration of free passenger flows in a real-time rolling stock rescheduling
model for disruption management. The authors present a heuristic approach that
iterates between a simulation model for passenger flows and an optimization model
for the rolling stock, updating the objective function of the optimization model at
each iteration according to the current passenger flows. Van der Hurk et al. [22]
propose an advice optimization module and a rolling stock rescheduling module.
Both optimization modules are supported by a passenger assignment model to iter-
atively feed back the passenger responses to the above modules to generate better
solutions for passengers.

Our paper uses a bi-level model to handle integrated timetabling and vehicle
scheduling considering dynamic passenger reactions in an iterative way. Different
from the reviewed iterative papers, our model focuses on a larger network with 8
bi-directional lines and 54 stops. We allow a wider set of timetable modification
including changes in the starting time of trips (shifts), and addition of dwell time
(stretches) at transfer stops. Trips from different lines can be included in the same

7



vehicle schedule and thus allowing deadheading between consecutive trips in a
schedule. It should also be clear that we are dealing with aperiodic timetabling,
which is less complex to solve than periodic timetabling.

3 Formal definition of the IPAT-VSP

The objective of the IPAT-VSP is to find the maximum passenger service timetable
T ∗ of all feasible timetables T ∈ T, which we define as the timetable with mini-
mum total weighted travel time. A feasible timetable is defined as a timetable that
respects the budget constraint, constraints regarding headways, shifts, stretches,
and depot capacities. The budget is calculated as the costs of the vehicle schedules,
where the number of vehicle schedules provides an upperbound to the number of
required vehicles.

The IPAT-VSP is a bi-level optimization problem in which: (i) the operator
aims to find the maximum passenger service timetable within an operating budget,
and (ii) the passengers aim to find their individual best paths in this timetable. Here
we assume that (ii) represents free route choice of passengers, where passengers
may have different preferences. The latter implies that when two paths exist of
(almost) equal in-vehicle time (IVT), initial waiting time (IWT) and transfer time
(TR), some passengers will prefer the one path, others the other path. Thus the
resulting assignment will be different from an assignment to minimum WTT paths
for passengers according to a single WTT function.

Let L be the set of directed lines, where each line l ∈ L is defined by a se-
quence of stops s ∈ S, with S the set of all stops. Let a trip i represent a vehi-
cle servicing all stops of a line l once. Each line l is associated with a set Tl
of trips in the timetable for this line. The timetable is defined by the set of all
trips T =

⋃
l∈L Tl and Tl′ ∩Tl′′ = /0 for all l′, l′′ ∈ L, l′ 6= l′′. Moreover, let ODt be

the origin-destination-departure time matrix where odt ∈ ODt represents the num-
ber of passengers desiring to travel from origin station o to destination station d,
o,d ∈ S, departing at or after time t. The timetabling problem is to assign arrival
and departure times to all stops s ∈ Si, for all trips i ∈ T . We refer to the resulting
timetable with assigned times as T .

3.1 The objective

Let fPAM(odt,T ) be a function of the odt and the timetable T that returns the
weighted travel time (WTT) of an odt ∈ ODt multiplied by the weight (number of
passnegers) of this odt. The WTT results from a stochastic passenger assignment
model PAM, that may distribute the passengers of an odt over multiple paths. Let
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Podt be the set of all paths of the odt’s passenger assignment. A path p ∈ Podt
represents an ordered list of trips i ∈ T that connect the origin to the destination of
the passengers of the odt in time and space, where the departure time of the first
trip, from the origin stop of the passenger, is not before the departure time of the
passenger. Paths are selected such that when a passenger disembarks a trip i, they
have either arrived at their destination, or will transfer to a trip of another line l ∈ L.
Then the resulting WTT of the assignment of the ODt is defined as:

fPAM(odt,T ) = WTTodt = ∑
p∈Podt

wp · (β1 · IWTp + IVTp +β2 ·TrTp) (1)

where WTTodt is the total weighted travel time of the passenger assignment,
wp the number of passengers of the odt that will select path p, IWTp the initial
waiting time of path p, IVTp the in-vehicle time of path p, and TrTp the transfer
penalty of path p. We assume β1,β2 ≥ 1.

3.2 Formulation of the IPAT-VSP

The input to the IPAT-VSP consists of the set of all to be timetabled trips i ∈ T , the
ODt matrix, a budget for the operating costs, and costs and parameters related to
the case study, such as allowed headways, minimum and maximum dwell times, or
minimum and maximum turnaround times, and the passenger assignment function
representing the passenger’s individually optimal route choice, function fPAM.

Decision variables consist of:

a) binary assignment variables xi jk ∈ {0,1} storing which vehicles are assigned
to which trips, with the triplet (i, j,k) representing a trip j serviced immedi-
ately after a trip i with the same vehicle from depot k

b) departure and arrival time variables τd
is and τa

is ∈ Z+
0 for each trip i ∈ T and

each stop s ∈ Si

c) dwell time variables δis ∈ Z+
0 , which store the number of minutes of dwell

time added to trip i ∈ T at stop s ∈ Ji

The turnaround time should generally be in the interval [q−,q+]. Buffer time
added to the trip in the form of dwell time is subtracted from the minimum turnaround
time q−. Each vehicle used in a feasible solution covers a sequence of compatible
trips and must return to the depot from which it departed. Two trips i, j ∈ T are
compatible if the following three conditions hold: (a) Dist(eti,st j) is smaller than
u; (b) The sum of a−i,eti , q−, and bi j is smaller or equal to d+

j,st j
; and (c) the sum of
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a+i,eti , q+, and bi j is greater or equal to d−j,st j
. For reference, a complete list of all

sets, parameters and decision variables is presented in Appendix 1.
The MINLP formulation for the IPAT-VSP is:

min ∑
odt∈ODt

fPAM(odt,T ) (2)

s.t. ∑
(i, j,k)∈Q

ci jkxi jk + ∑
i∈T

∑
s∈Ji

cDW
δis ≤ B (3)

∑
(i, j,k)∈Q

xi jk = 1 i ∈ T (4)

∑
(i, j,k)∈Q

xi jk− ∑
( j,i,k)∈Q

x jik = 0 k ∈ K j ∈Vk (5)

∑
(i, j,k)∈QO

xi jk ≤ vk k ∈ K (6)

d−i,sti ≤ τ
d
i,sti ≤ d+

i,sti i ∈ T (7)

0≤ τ
d
is− τ

a
is−w−is ≤ w+

is i ∈ T s ∈ Ji (8)

∑
s∈Ji

δis ≤ w i ∈ T (9)

δis = τ
d
i,s− τ

a
i,s−w−is i ∈ T s ∈ Ji (10)

h−is ≤ τ
d
is− τ

d
i−1,s ≤ h+is l ∈ L i ∈ Tl : i 6∈ T 1 s ∈ Ji∪{sti} (11)

τ
a
i,eti +bi j +q−−∑

s∈Ji

δis−M(1− ∑
(i, j,k)∈Q

xi jk)≤ τ
d
j,st j

(i, j) ∈ T (Q) (12)

xi jk ∈ {0,1} (i, j,k) ∈ Q (13)

τ
d
is ∈ Z+ i ∈ T s ∈ Ji∪{sti} (14)

τ
a
is ∈ Z+ i ∈ T s ∈ Ji∪{eti} (15)

δis ∈ Z+ i ∈ T s ∈ Ji (16)
αi js ∈ {0,1} (i, j,s) ∈W (17)

The above MINLP relates to [10], and follows largely the same notation, in that it
considers the same integrated timetabling and vehicle scheduling problem. How-
ever, the IPAT-VSP has a different objective: the objective function (2) minimizes a
weighted sum of passengers’ WTT in the timetable, as defined in equation 1, under
stochastic route choice; while [10] considered the route choice of passengers to be
fixed and minimized the excess transfer time and additional dwell time of the new
timetable compared to an initial timetable. The advantages of the new objective
function are illustrated in Section 3.3. Note that the representation of passengers
in [10] was already a step forward in comparison to other papers on integrated
timetabling and vehicle scheduling, such as [16].
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Constraints (3) are budget constraints imposing an upper bound on the operat-
ing costs. The first term considers driving operating costs for deadhead, pull out,
and pull in trips, and the second term considers operating costs associated with
additional dwell times. Constraints (4) - (6) model classical MDVSP constraints:
assignment constraints (4) guarantee coverage of each trip i ∈ T by including it in
exactly one vehicle schedule; flow conservation constraints (5) on trip and depot
nodes guarantee the continuity of the vehicle schedules created; and capacity con-
straints (6) limit the number of pull-out trips to the maximum number of schedules
that can depart from each depot k ∈ K.

Constraints (7) - (11) model timetable modifications: constraints (7) force
lower and upper shift bounds on the departure time from the first stop of each
trip; constraints (8) impose a maximum added dwell time at each stop of a trip;
constraints (9) bound the total added dwell time to all intermediate stops of a trip;
constraints (10) define the δis variables to the added dwell time in the correspond-
ing intermediate stop s ∈ Ji of trip i ∈ T ; and constraints (11) model the minimum
and maximum headways between each trip i ∈ T and its precedent trip in the same
directed line at each stop s∈ Ji∪{sti} (at all stops of each line). Linking constraints
(12) relate the vehicle scheduling and the timetable modification parts of the prob-
lem. These guarantee that if trips i and j are serviced consecutively by the same
vehicle, then the vehicle has time to deadhead from eti to st j without violating the
minimum turnaround time q−.

Constraints (13)-(17) define the range of all sets of decision variables.
We are not aware of a tractable approach to solve the above nonlinear problem.

Therefore we will propose a heuristic approach that will iteratively solve a pas-
senger assignment heuristic and a integrated timetabling and vehicle scheduling
problem. The following example will illustrate that such a split is not straightfor-
ward.

3.3 Example of the IPAT-VSP

Consider the example in Figure 1, with three bus lines (1, 2, 3) and four stops (A,
B, C, D), that may be considered to be part of a larger network. Notice that this
example does not include the vehicle scheduling component of the problem. Con-
sider that all bus lines have a headway of 20 minutes. Information on travel times is
indicated along the edges, and a minimum transfer time of 4 minutes is required to
guarantee a successful transfer, as indicated by the curved arrows. Three transfer
opportunities exist in this network: at B where lines 1 and 3 meet, at C where lines
1 and 2 meet, and at D where lines 2 and 3 meet.

We propose an iterative approach for solving the IPAT-VSP, where the general
concept of a split between passenger assignment and operational planning has been
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Figure 1: Example of a public transport network with three lines and four stops

followed in several previous other papers (Section 2.2). This example illustrates (1)
that when the timetabling model receives a PA input that is different from the PA of
the optimal timetable, the timetabling model need not find the optimal timetable;
and (2) that although given a fixed PA, minimizing the weighted sum of (excess)
transfer time, as in [10], will lead to minimizing total WTT, this is not true when
the final PA is different from the input PA. Even more, timetables with a higher
weighted sum of (excess) transfer time could be associated to timetables with a
lower total WTT, and thus higher passenger service. It is fair to assume that an
initial PA for a previous timetable is likely to exist (i) when estimating demand
per transfer from automated fare collection systems, (ii) in large networks that
typically are not designed from scratch, but may be only gradually extended or
changed, (iii) an initial timetable can always be generated from the information
of the target headway per line, which we assume to be input, and therefore the
sequential method can also work for new networks for which no initial timetable
exists yet.

Passengers traveling from A to D have two routing options: (i) traveling with
line 1 from A to C, then transfer to line 2 to travel towards D; and (ii) traveling
with line 1 from A to B, then transferring to line 3 to travel towards D. The passen-
ger service is reflected in the weighted travel time, which is calculated as WTT =
β1·IWT + IVT + β2·TrT, where β1,β2 ≥ 1. We may focus on IVT and TrT alone,
as for both (i) and (ii) the IWT (dependent on the target headway of the first line) is
equal. The IVT of (i) is 5+10+10=25, which is longer than the IVT of (ii) 5+10=15.
Passengers will however prefer the longer IVT of route (i) when 25+β2·TrT(i) <
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15 + β2·TrT(ii).
Consider a timetable where the transfer from line 1 to 2 is perfectly synchro-

nized at C, with no excess transfer time. Moreover, line 3 departs from B three
minutes after the arrival of line 1 at B, resulting in 23 minutes of transfer time at
this location. For a value of β2 = 3 even under free route choice all passengers will
prefer route (i) with a WTT=25+3·4=37 over route (ii) with a WTT=15+3·23=84.
However, passenger service could be increased in this example if timetabling deci-
sions would reduce the transfer time from line 1 to line 3 at B in route (ii) such that
15+β2·TrT(ii) < 25+β2 ·4. This alternative has much lower IVT in exchange for
a transfer penalty and some additional waiting time, as required for the transfer.

(1): Indeed, in our example reducing the transfer time at stop B could improve
passenger service by attracting passengers to route (ii). However, as in the current
PA no passengers are using this transfer location. Therefore a timetabling model
aimed at reducing excess transfer time based on the current estimate of transferring
passengers, like [10], has no incentive to improve the synchronization of the two
lines at this location. This shows that a PA different from the optimal PA could
prevent finding the optimal timetable.

(2): The reduction in transfer time at B could improve total WTT already at
a positive excess transfer time (when 15+ β2·TrT(ii) < 25+ β2 · 4, with β2 ≥ 1).
However, this would lead to an increase in total weighted excess transfer time of
the model in comparison to passengers only using the perfect synchronized transfer
at C. In fact, passengers only transferring at the perfect synchronized transfer in
C leads to a minimal objective of 0 minutes excess transfer time, which could
suggest in the formulation of [10] that the optimal timetable is found. This is true
if route choice was fixed. However, as it is not fixed, the total WTT would be
lower when there is a low transfer time at B, even if the transfer is not perfectly
synchronized. We are not aware of a tractable model for integrated timetabling,
vehicle scheduling, and stochastic passenger route choice that would circumvent
this problem.

4 Solution method

We propose to compute good quality solutions to the IPAT-VSP heuristically as a
bi-level optimization problem through the MHeuPA matheuristic. The objective is to
maximize passenger service in terms of minimizing WTT by modifying an initial
timetable under the assumption of free passenger route choice and respecting a
budget on operating costs. At the one level, a stochastic passenger assignment
model will provide input on expected passenger behaviour, specifically in terms of
the number of expected passengers planning to transfer from a specific trip i ∈ T
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at a specific stop s to the first arriving trip of a different line l′ ∈ L, i 6∈ Tl , under a
minimum transfer time. The second level represents a matheuristic for timetabling.

Trips T,Timetable T0
ODt
CostF

Input

PTTA (φ ) MDVSP

PTTA (φ ) IT-VSP MHeu PTTA (CostF)
Timetable T ∗

Vehicle Schedules X∗

Passenger Assignment A ∗

Output

R

ODt, T

T ′
R’
Λ

Initial
Solution

ODt, T
T ′

CORE

Figure 2: Flow diagram of the MHeuPA proposed for solving the IPAT-VSP. The
arcs (A,B) indicate what output from A is used as input in B.

Figure 2 depicts the bi-level matheuristic approach MHeuPA proposed for the
IPAT-VSP. Input consists of the set of all trips T , an initial timetable T0, an ODt
matrix ODt, and a passenger waiting-time cost function CostF. An initialization
computes a reference WTT for the initial timetable under the ground-truth WTT
cost function φ , and computes a budget for the vehicle operating costs in the Multi
Depot Vehicle Scheduling Problem (MDVSP). The core of the algorithm iteratively
computes a passenger assignment (PA) for cost function CostF in the PTTA; and
next provides the PA as input to the timetabling and vehicle scheduling matheuristic
IT-VSP. The PA consists of a set of passenger transfer demands R’ and a vector Λ

of passengers on board at each stop, the IT-VSP returns a timetable T ′. Only
timetable modifications are preserved that represent a non-worsening of the WTT
under the PTTA with ground-truth WTT cost function φ . The ODt and set of trips
T remain fixed throughout the algorithm. The approach stops after a computation
time limit is reached. Output is a new timetable T ∗, the set of vehicle schedules
X∗, and a passenger assignment A ∗.

The consequences of free and stochastic route choice when solving the IPAT-
VSP are:

1. passenger volumes per transfer location in the current timetable need not rep-
resent the passenger volumes per transfer location in the maximal passenger
service timetable

2. higher objective values of the model of Fonseca et al. [10] could actually be
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associated with lower overall WTT, and thus higher passenger service.

To address these two points:

• different passenger routings, by changing the waiting cost parameter in the
PTTA model of Briem et al. [4], are tested in the integration;

• timetable quality in terms of WTT is always calculated by the passenger
route choice model.

Any passenger assignment and timetabling model could be used in the above
framework. The ones selected in the implementation are discussed in the following
sections.

From a computational point of view, the possible sources of sub-optimality in
our approach stem from three main factors: i) the fact that we solve the IT-VSP
heuristically with randomized selection of 350 trips to change at each iteration,
ii) the fact that we impose a computational time limit on the solution approach
and iii) that the proposed heuristic integration between passenger assignment and
timetabling need not converge to the optimal passenger timetable. Furthermore,
the quality of the initial timetable may entail the risk of missing a global optimum.
Our modeling assumptions in terms of minimum and maximum turnaround times,
and maximum driving distances are other sources of potential sub-optimality. Un-
fortunately we are unable to compute the exact solution for the problems in our
case study. However, we will compare results obtained by the IPAT-VSP to several
other benchmarks.

4.1 Passenger route choice model – the PTTA model

We measure passenger service using the PTTA of Briem et al. [4] to evaluate the
WTT of a timetable. Furthermore, the PTTA provides input to the MHeu in terms of
the set of transfer opportunities R and the number of passengers on board Λ.

The input to the passenger route choice model PTTA is a timetable T , a set of
possible transfer locations, the minimum required transfer time for a transfer to be
feasible, an ODt matrix, and a cost function that specifies the relative weights of
the travel time components. Output of the PTTA are the set of transfer opportunities
R, the number of passengers on board for each trip i ∈ T and each stop s ∈ Si, Λis,
and the WTT of the resulting passenger assignment.

To evaluate the quality of a journey, the representative utility is set to use per-
ceived arrival times (PAT), which are a linear combination of: the actual arrival
time, the waiting time, and the number of transfers. Building upon this, the ran-
dom utility of a journey is the sum of its PAT and a random variable, which cap-
tures the uncertainty in the passengers route choice. When the PTTA model serves
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as input to the timetabling heuristic IT-VSP, different weights for the waiting time
component are evaluated. While in theory every possible journey has to be con-
sidered when computing the assignment, this is not feasible in practice. Even if all
journeys were to be considered, most of them would only be used by a negligible
portion of passengers. Thus, we do not consider all possible journeys for the route
choice. In particular, the choice set used by the PTTA consists of the journey that
minimizes the PAT and all journeys with a PAT that does not differ from the opti-
mal PAT by more than ∆max, which is a tuning parameter of the PTTA. Depending
on the probability distribution of the random variable within the random utility, a
different decision model arises. In this work we evaluate our results for the Logit
model [9] as well as the linear model proposed in [4].

The PTTA model is used to estimate which routes are likely to be chosen by
passengers in a system with free route choice, as well as the expected number of
passengers per route. The underlying model and algorithm to compute these routes
were first presented in [4]. Conceptually, the PTTA model is a sequential route
choice model, as proposed in [12]. This means, that decisions are not made based
on complete routes, but one journey leg at a time. Given a passenger, a current loca-
tion, and a destination, the model specifies which step is probably taken next by the
passenger in order to reach the destination. The probability for every possible next
step is determined using a random utility model, with the utility being influenced
by several cost functions, such as travel time, waiting time, and number of trans-
fers. The PTTA model iteratively repeats this process until every passenger reached
its destination, thereby compiling the complete routes used by the passengers.

For a given destination and journey leg, the random utility model in the PTTA

characterizes the likelihood of the journey leg being used as next leg of a route
leading to the destination. Thus, the first step of computing the overall passenger
assignment in the PTTA model consists of computing the utilities for all pairs of
possible journey legs and destinations. The PAT at the destination when using the
specific leg in turn determines the utility of a leg (for a given destination). The
PAT is a linear combination, which besides the actual arrival time, factors in all
criteria that effect the route choice. For this work, the PAT is the weighted sum
of the actual arrival time, the number of transfers, and the time spent waiting for
the next trip. An important aspect of the PTTA model is the algorithm that allows
for an efficient computation of PATs for all pairs of journey legs and destinations.
To this end, PAT values are computed for one destination at a time. For a given
destination, the PATs of all possible journey legs are computed iteratively, sorted
by time in decreasing order. A detailed description of the process can be found in
[4]. The benefit of processing the journey legs in decreasing order of time is that
for a given leg the PATs of all possible journey continuations are already known.
Thus, the PAT of every leg can be computed quite efficiently. If the leg itself ends
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at the destination then the PAT of this leg is given by its actual arrival time (since
a single leg does not comprise transfers by definition). If the leg does not end at
the destination, then the route has to be continued with another leg. In this case the
PAT is given as the PAT of the following leg (which is already known), plus the
additional cost (transfer time, waiting time) to connect the legs.

After all PATs have been computed, the actual passenger route choice is deter-
mined using a simulation approach. For every passenger, a sequence of decisions
is made based on a random utility model. Each of these decisions determines the
next journey leg the passenger takes towards the destination. The choice set for this
decision is determined on basis of the PAT values. It consists of the leg with the
lowest PAT as well as all other legs, such that the difference of PATs in the choice
set does not surpass a certain, user-defined limit (∆max). The utility of each leg `
in the choice set is then defined as max(0,min`′ 6=`(PAT`′)−PAT`+∆max). Finally,
the probability of each leg in the choice set can be obtained using a random utility
model. Proportional to these probabilities one leg is chosen, e.g. the passenger is
assigned to this leg as part of his route. This process is repeated until all passengers
have been assigned to full routes, reaching their destinations. In order to obtain a
distribution of several routes that could be used by a passenger (alongside with
their respective probabilities), several virtual passenger can be simulated for every
actual passenger.

4.2 Integrated timetabling and vehicle scheduling – the IT-VSP for-
mulation

The IPAT-VSP model (Section 3.2, (2) - (17)) can be formulated as a mixed-integer
linear programming problem thanks to the split into a PAT and a timetabling model.
The mathematical formulation for the IT-VSP is an extended version of the model
in Fonseca et al. [10]. This extended version allows to explicitly include the effect
of extended dwell time for on-board passengers, and uses passenger route choice
information computed with the Public Transport Traffic Assignment (PTTA) model
(Section 4.1). The model calculates operating costs in terms of vehicle schedules
rather than the total number of vehicles, for the sake of tractability. The number
of vehicle schedules forms an upper bound to the required number of vehicles.
Secondly, our timetabling model’s objective includes transfer time and extended
in-vehicle time only, and not initial waiting time. All solutions are, however, eval-
uated under the (PTTA), that includes IWT. Under the (light) assumption that a pre-
processing step can assign the two trips defining the initial waiting time for each
origin-destination-time passenger triple, the extension of the model to include IWT
in the objective, when estimated as half the headway between the two most recent
trips, is trivial. Still, it would not reflect the exact same objective as the (PTTA) ob-
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jective, as the latter could also have passengers select an alternative route. Finally,
our timetabling model investigates the benefit of small changes in the timetable in
the form of shifts and stretches, that could with zero costs to the operator improve
passenger service, and may result in uneven headways. The discussions we have
had with the public transport service provider Movia indicate that such a timetable
can be interesting to them in practice, as they come at zero cost and also do not
require new negotiations with all stakeholders on change of frequencies.

The input to the IT-VSP consists of an initial timetable for the set of all trips i∈
T , passenger route choice information, a budget for the operating costs, and costs
and parameters related with the case study, such as allowed headways, minimum
and maximum dwell times, or minimum and maximum turnaround times. The
passenger route choice information consists of a set of transfer opportunities R,
where each r ∈ R defines a transfer stop, a transfer-from trip i ∈ T , a desired line l
to transfer to, and a number of passengers that are expected to make this transfer.
Furthermore, Λis contains the expected on-board passengers per trip i ∈ T at stop
s ∈ Si.

The objective of the IT-VSP is to minimize a weighted sum of passenger costs
incurred by extending dwell times at stops for passengers on board, and passenger
costs incurred when transferring. Passengers incur transfer time costs when trans-
fers are above the minimum transfer time. Transfers below the minimum transfer
time are infeasible, meaning that we predetermine which transfers at the end of the
day should be feasible and cut off timetable modifications that would make them
infeasible.

Decision variables consist of (changes in comparison to (2) - (17) marked in
bold):

a) binary assignment variables xi jk ∈ {0,1} storing which vehicles are assigned
to which trips, with the triplet (i,j,k) representing a trip j serviced immedi-
ately after a trip i with the same vehicle from depot k

b) departure and arrival time variables τd
is and τa

is ∈ Z+
0 for each trip i ∈ T and

each stop s ∈ Si

c) excess transfer time variables γr ∈ R+
0 , which store the amount of excess

transfer time for passengers using each transfer location r ∈ R

d) binary transfer variables αi js ∈ {0,1}, which indicate which trip j ∈ T
passengers of transfer location r = (i, l j,s) ∈ R embark

e) dwell time variables δis ∈ Z+
0 , which store the number of minutes of dwell

time added to trip i ∈ T at stop s ∈ Ji
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Passengers are assumed to transfer to the earliest feasible trip j ∈ Tl . A transfer
r from trip i to line l at stop s, r = (i, l,s) ∈ R, is feasible when the minimum
transfer time for transfer r ∈ R, er, is not greater than the difference between the
departure time of trip j ∈ Tl from stop s and the arrival time of trip i at stop s.
The αi js variables indicating transfer opportunities are defined only for a set W =
{(i, j,s)|i, j ∈ T,s∈ S : r = (i, l,s)∈ R, j ∈ Tl, i 6= j,a−is +er ≤ d+

js,a
+
is +er +1.5hl ≥

d−js}, where hl is the largest target headway observed for line l ∈ L throughout the
day. The value 1.5 is used such that we consider enough trips j ∈ Tl for the transfer
to be feasible, but not more than needed. This improves the tractability of the model
by reducing the number of αi js variables created, without imposing any practical
constraints, since at least one transfer to a trip in l ∈ L will be available given the
timetable modifications. For reference, a complete list of all sets, parameters and
decision variables is presented in Appendix 1.

The MILP formulation for the IT-VSP is:

min ∑
i∈T

∑
s∈Ji

cOB
Λisδis + ∑

r∈R
cT R frγr (18)

s.t. (3)− (12)

M ∑
k∈Tl :(i,k,s)∈W,

k≤ j

αiks ≥ τ
d
js− τ

a
is− er r ∈ R (i, j,s) ∈W (19)

τ
d
js− τ

a
is− er ≥M(αi js−1) r ∈ R (i, j,s) ∈W (20)

∑
j∈Tl :(i, j,s)∈W

αi js = 1 r = (i, l,s) ∈ R (21)

τ
d
js− τ

a
is− er−M(1−αi js)≤ γr r ∈ R (i, j,s) ∈W (22)

γr ∈ R+ r ∈ R (23)

(13)− (17)

The objective function (18) minimizes a weighted sum of passengers’ costs.
The first term refers to on-board passenger costs incurred when adding dwell time
to trips. The second term refers to costs associated with excess transfer times.
Constraints (3) - (12) are the same as in the IPAT-VSP (Section 3.2). Linking
constraints (19) and (20) relate the transfer variables αi js and the departure and
arrival times of trips: constraints (19) ensure that passengers arriving from trip i
at stop s transfer to one of the trips j, such that (i, l j,s) ∈ R, if the arrival and
departure times allow the transfer to take place; constraints (20) prevent variable
αi js from taking value 1 whenever passengers do not have enough time to transfer
from trip i to trip j at stop s, where (i, l j,s) ∈ R. Constraints (21) impose that each
transfer location is performed by transferring to exactly one trip j ∈ Tl . Constraints
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(22) define the values of γr variables to the excess transfer times, determining this
value for each transfer location based on the selected transfers. Constraints (23),
(13)-(17) define the range of all sets of decision variables.

The resulting IT-VSP is solved by a matheuristic approach MHeu based on the
MILP formulation described above. A heuristic is necessary since solving real-life
instances of the IT-VSP directly with a general solver is not feasible, due to the
size of the instances making the problem intractable. The proposed matheuristic is
also based on Fonseca et al. [10] and will next be described in detail in the context
of the algorithm description.

4.3 Algorithm description

Algorithm 1 presents the pseudo code for the MHeuPA matheuristic proposed to find
good quality solutions for the IPAT-VSP.

Steps 1-5 are the initialization procedure. The algorithm starts by calculating
an assignment for the initial timetable T0 in step 1, using the PTTA with φ . The
set of transfer opportunities R0 and the vehicle occupancy Λ0 computed by the
PTTA are used as input to solve the MDVSP in step 2 without allowing timetable
modifications, thus the departure and arrival times of all trips i∈ T from/to stop s∈
Si, τd

is, τa
is, are fixed to T0 (meaning that these trips will have arrival and departure

times at all stops visited equal to the ones in the initial timetable T0). This is done
both for creating initial vehicle schedules and for enabling a comparison between
the initial solution in an unchanged timetable and the timetables we find later on.
An initial solution S0 is defined in step 3, composed by vehicle schedules X0,
the initial timetable T0, and the initial assignment A0, and since this is the only
solution so far, in step 4 it is also saved as the current best solution in terms of
WTT. The iterative procedure is described in steps 6 - 16, which runs until the stop
criterion stopCriterion is met.

Each iteration η starts by selecting in step 8 the subset of trips T ′ ⊂ T to mod-
ify, being κ the number of trips selected. In this paper, T ′ is a set of 350 randomly
selected trips at each iteration, which extensive tests in [10] found to be the pre-
ferred selection strategy. We direct the reader to [10] for more details on the pa-
rameter tuning experiments and comparison of different algorithm settings. Trips
in T ′ are allowed modifications in arrival and departure times (shifts and stretches),
while all other trips i ∈ T \T ′ remain fixed to the timetable in solution Sη−1. In
step 9, an assignment of passengers is calculated for the current timetable Tη−1 ac-
cording to CostF, generating transfer opportunities R′ and vehicle occupancy Λ′.
A new timetable Tη and the vehicle schedules Xη are calculated in step 10, solving
the restricted IT-VSP(T ′), with τd

is, τa
is fixed to Tη−1 for all i ∈ T \T ′, optimizing

the transfer opportunities R′ considering the vector Λ′ of passengers on board. The
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Algorithm 1 : MHeuPA
Input: set of all trips T , initial timetable T0, origin-destination-time matrix
ODt, stop criterion stopCriterion, realistic waiting cost value φ , a waiting cost
function CostF

Initialization procedure:
1: (A0,R0,Λ0)← PTTA(T0,ODt,φ)
2: (X0, T0)← solve IT-VSP(18)-(23) + (3)-(17) using R0 and Λ0 and with

departure and arrival times (τd
is, τa

is) fixed to T0 for all i ∈ T
3: S0 =(X0, T0,A0)
4: S ∗ = S0
5: η = 0

Iterative procedure:
6: while stopCriterion not reached do
7: η = η +1
8: T ′← selectTrips(Sη−1)
9: (A ′,R′,Λ′)← PTTA(Tη−1,ODt,CostF)

10: (Xη , Tη)← solve IT-VSP(18)-(23) + (3)-(17) using R′ and Λ′ and
with departure and arrival times τd

is, τa
is fixed to Tη−1 for all i ∈ T \T ′

11: (Aη ,Rη ,Λη)← PTTA(Tη ,ODt,φ)
12: Sη =(Xη , Tη ,Aη )
13: if WTT(Sη)<WTT(S ∗) then
14: S ∗←Sη

15: end if
16: end while
17: return S ∗

Output: Best solution found S ∗, composed by vehicle schedules X∗,
timetable T ∗, and passenger assignment A ∗
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realistic assignment (obtained using φ ) of passengers Aη to the new timetable is
calculated in step 11 by running the realistic PTTA. The iteration solution Sη is set
in step 12. Steps 13-15 save Sη as the best solution S ∗ if the weighted travel time
associated with it is lower than the weighted travel time associated with the current
best solution. The IPAT-VSP concludes in step 17 by returning the best solution
S ∗ found once the stop criterion stopCriterion is met.

Waiting cost functions As demonstrated in the example in Section 3.3, the ob-
jective is to find all potentially beneficial transfer locations, that is, transfer loca-
tions that, with a good synchronization of the transfer, could be used by passengers.
Whether the transfer location will be used by passengers, depends on the quality of
the set of alternative paths available, and therefore cannot be determined per trans-
fer location independently. Different waiting cost functions are used in a desire to
find all potentially beneficial transfer locations.

Each run of the MHeuPA uses exactly one of five different waiting cost functions
CostF. These functions change the weight attributed to the waiting costs when
computing a new passenger assignment to serve as input to the IT-VSP MHeu.

• Realistic (Realistic): this waiting cost function runs the PTTA model with
the realistic value φ for the waiting costs at every iteration. It reflects a
base-case where the PA of a current timetable is provided as input to the
timetabling module.

• No waiting costs (NoCosts): this waiting cost function runs the PTTA model
without waiting costs at every iteration. This will lead to passengers select-
ing the path with the minimal IVT.

• Linear ascending costs (LinAsc): this waiting cost function increases the
waiting costs in iteration i, WC(i), in the PTTA model. Assuming a total
running time of maxT seconds, the PTTA iterations in the first maxT/10
seconds use a waiting costs parameter of 0. In the remainder of the iterations,
the waiting costs increase linearly until the realistic value is achieved by the
end of the experiment. The waiting costs at each iteration can be calculated
using

WC(i) =
φ · t(i)
maxT

where t(i) is the cumulative current total running time up to iteration i.

• Random waiting costs (Random): this waiting cost function runs the PTTA

model with random waiting costs at every iteration of the MHeuPA, with a
value between 0 and the realistic waiting costs φ = 2, with a uniform distri-
bution.
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• Random and linear ascending costs (RandLinAsc): this waiting cost func-
tion combines the Random and LinAsc waiting cost functions. In the initial
two thirds of the computational time, the PTTA model iterations use a ran-
dom value between 0 and the realistic value for the waiting costs. In the last
third, it uses linear ascending costs, calculated using

WC(i) =
φ(t(i)−2maxT/3)
maxT −2maxT/3

where t(i) is the current total running time at iteration i.

The advantage of a lower waiting time costs is that transfer locations that currently
have high waiting time, but would provide low in-vehicle time paths, will attract
passengers – and thus provide an incentive to the timetabling model to improve the
synchronization of trips at these transfer locations. The downside is that in dense
networks that contain many connections between lines it is unlikely that all transfer
locations will be able to provide perfect transfers. Thus, the real passenger assign-
ment is likely to be different from the zero or small waiting cost assignment; and
therefore the trade-offs made in the timetable may be non-optimal due to erroneous
numbers of expected passengers per transfer location, and expected passengers on
board.

Additionally, we define Route Fixed as running the MHeuPA with a single,
fixed passenger assignment based on an initial timetable. Thus in Route Fixed

the number of transferring passengers per transfer location is fixed during the
timetabling phase, and no in-between calls are made to the passenger assignment
model. First the PTTA is run on the initial timetable, next IT-VSP is run without
any updates on passenger flows. Finally, the resulting timetable is evaluated based
on the PTTA. This represents the approach of [10] and has the same assumptions
about passenger behaviour as e.g. [16]. It thus provides a baseline to compare the
importance of acknowledging the dynamics between passenger route choice and
the provided timetable. To allow a fair comparison between the approach proposed
in this paper and these previous approaches, we do evaluate the final timetable
again under the passenger route choice model PTTA, our best representation of re-
alistic route choice, and compare results based on total WTT.

5 Case study

5.1 Case study specific information

For the experimental section, we focus on a subset of the public transport network
in the Greater Copenhagen area. We consider 8 bi-directional express-bus lines,
referred to as S-Bus lines. In comparison to regular bus lines, these are faster
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Figure 3: Geographic representation of the case study network. The thick lines
represent the S-Bus network, while the dashed lines represent the S-Train, train,
Metro and fixed bus lines

and with fewer stops, acting mainly as a complement to the local urban trains
(S-Train) across and radially. Figure 3 depicts a geographical representation of
the network, which includes not only the S-Bus and S-Train lines but also two
bi-directional Metro lines, one bi-directional train line, and one high-frequency
bus line that connects the city center to the airport. The public transport service
provider Movia, which is responsible for the planning of buses in the eastern part
of Denmark, provided timetable data for a generic weekday in November 2016.
We allow timetable modifications by shifts and stretches to the trips in the S-Bus
lines, while all other lines in the case study operate according to a fixed timetable.
The vehicle scheduling component of the IPAT-VSP is solved solely for the S-Bus
trips.

The data input for the IPAT-VSP is composed by: (i) a initial timetable for all
S-Bus lines; (ii) a fixed timetable for all other lines in the network; (iii) a distance
matrix with all distances between stops and depots; (iv) an ODt matrix describ-
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ing passenger demand for the full network; (v) costs and parameters specific to
the case study: minimum and maximum turnaround times, minimum transfer time
at stops, vehicle operating costs, fixed costs per vehicle schedule created, travel
time and waiting time costs for passengers, driving speed for vehicles while dead-
heading, maximum deadhead distance, possible changes in headways, maximum
shifts, maximum added dwell time per trip and per stop, and depot capacities. We
did not obtain data for the minimum dwell times per stop, so we assume that the
dwell times in the base timetable are the minimum dwell times, as most of them
are equal to 0 minutes. Existing dwell times can reflect the need to switch driver,
for example, or locations where it is known that the boarding and unboarding of
passengers takes longer. Thus, including these ensured feasibility. However, this is
a pure input decision as the model could easily also re-adjust these dwell times.

5.2 Timetabling and Vehicle Scheduling related parameters

The timetables used in input components (i) and (ii) are publicly available and the
distance matrix (iii) was obtained using geographical data. The ODt matrix (iv)
was provided by Rapidis1, and it describes hourly demands for each OD pair. To
generate the required minute-by-minute ODt information, we distributed the hourly
OD demand evenly over each hour. The ODt contains 164,333 entries representing
170,117 passengers. As for costs and parameters (v), these were estimated together
with Movia. We use estimates of operating waiting time, distance, and schedule
costs expressed in Danish kroner (DKK, 1 Euro is equivalent to approximately 7.5
DKK), which together define the operating costs of a solution. Travel times are
weighted by an hourly value of time (VOT) factor of 100 DKK, while initial wait-
ing times and transfer times are weighted by an hourly VOT factor of 300 DKK.
The fixed cost for creating a new vehicle schedule is 1,100 DKK, and was calcu-
lated based on the yearly fixed cost of using a vehicle, provided by Movia. (The
minimum transfer time is considered to be 4 minutes in all stops of the network.)
We used value of time studies developed at the Center for Transport Analytics at
the Technical University of Denmark as inspiration for these values2.

Table 1 shows information about all lines included in the case study network.
The first column indicates the name of the line, followed by the mode of transport,
the number of stops with transfer opportunities, the number of trips, an indica-
tion of whether the trips in the line are part of the timetabling design or not, the
minimum headway in the initial timetable, and the maximum headway in the ini-
tial timetable. The same line may have different target headways during the day,

1Rapidis is a Danish company that develops tools for planning in Transportation and Logistics.
website: http://www.rapidis.com/

2Center for Transport Analytics website: http://www.cta.man.dtu.dk/
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Table 1: Lines in the case study network
Line name Mode Stops Trips Timetabling Min scheduled headway Max scheduled headway

150S S-Bus 5 256 yes 4 21
200S S-Bus 7 186 yes 6 23
250S S-Bus 7 161 yes 8 24
300S S-Bus 8 230 yes 5 23
350S S-Bus 12 304 yes 4 22
400S S-Bus 7 140 yes 7 21
500S S-Bus 8 167 yes 7 31
600S S-Bus 7 141 yes 4 34
A S-Train 10 202 no 10 20
B S-Train 8 202 no 10 20
Bx S-Train 4 8 no 20 20
C S-Train 8 205 no 10 20
E S-Train 7 200 no 9 21
F S-Train 3 374 no 5 10
H S-Train 12 115 no 20 20
KB Train 6 246 no 3 32
M1 Metro 7 487 no 2 12
M2 Metro 6 450 no 2 12
5C Bus 8 542 no 4 4

Table 2: Allowed headway variations based on scheduled headways

Scheduled headway (m) Minimum and maximum headway variation (m)

= 4 +/- 1
≤ 12 +/- 2
≤ 20 +/- 3
≥ 21 +/- 4

and the stopping pattern of some lines also changes during the day (for example,
only servicing a part of the line during peak-hour and short turn the buses off-peak
hour).

For each trip i ∈ Tl at each stop s ∈ Ji∪ sti, minimum and maximum headways,
h−is and h+is , are calculated based on the scheduled headways between trip i and its
immediate precedent trip in the line, trip i−1, as indicated in Table 2. Notice that
in our case study the minimum scheduled headway is 4 minutes. In this case, the
minimum and maximum headways allowed will be 3 and 5 minutes respectively.

The maximum dwell time added at each stop is 3 minutes (i.e., w+
is = 3, i ∈

T,s ∈ Ji), and a maximum of 10 minutes of dwell time can be added in total to
a trip (i.e., w = 10). The added dwell time is deducted from the buffer in the
turnaround time at the end of the trip, i.e the turnaround time in excess to the
minimum turnaround time. For example, assume that a vehicle is supposed to
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service two trips and has 15 minutes of turnaround time between them. If we add 2
minutes of extra dwell time in the first trip, then instead of 15 minutes of turnaround
time it will have 13 minutes. However, if instead of 2 minutes of added dwell time
we added 4 minutes, the turnaround time will be 12 minutes and not 11 minutes,
since the minimum turnaround time is 12 minutes.

The shifts allowed in each trip departure time were created based on the ini-
tial timetable for each bus line. Considering consecutively timetabled trips (i−
1), i,(i + 1) ∈ Tl and with departure time from the first stop di−1,sti ,di,sti ,di+1,sti
respectively, the lower and upper shift limits for trip i are calculated with the ex-
pressions

d−i,sti = di,sti −
⌊di,sti −di−1,sti −1

2

⌋
, d+

i,sti = di,sti +
⌊di+1,sti −di,sti

2

⌋
ensuring that trips can never overtake each other in the timetable.

As they are not part of the input, vehicle schedules that cover the initial timetable
for the S-Bus trips are calculated using an MDVSP model. The solution consists
of 205 vehicle schedules that cover the 1585 S-Bus trips. It uses constraints (4)-(6)
of the mathematical model in Section 4.2. The initial timetable considers time de-
pendent service times, but the mathematical model uses constant deadhead speeds
along the day. Trips from different lines can be included in the same vehicle sched-
ule, which is known as interlining, thus allowing deadheading between consecutive
trips in a schedule. The maximum deadhead distance is 15 kilometers (i.e., u= 15),
the minimum turnaround time is 12 minutes (i.e., q− = 12), and the maximum
turnaround time is 30 minutes (i.e., q+ = 30).

5.3 Passenger Assignment related parameters

Several parameters affect the route choice of the passengers in the PTTA model. In
particular, these are the coefficients of the linear combination that define the PAT
and the parameter for the composition of the choice set. All of these parameters
have to be estimated on empirical data in order to reflect passenger behaviour.
However, since our approach works for arbitrary choices of these parameters, we
simple use the values proposed in [4]. To this end, the PAT is a linear combination
where the arrival time is weighted with a factor of 1, the waiting time is weighted
with a factor of 2 (which is the waiting cost WC we refer to in the Waiting Cost
Functions described in 4.3), and the number of transfers is weighted with a factor
of 5 min. Finally, for pruning the choice set, we use the cutoff value ∆max = 15 min.
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6 Computational experiments

This section evaluates the performance of the MHeuPA through a set of computa-
tional experiments for the case study of the Greater Copenhagen Area described in
Section 5. Our paper considers a much larger real life network, compared to the re-
lated literature of [26] and [15], in which the largest cases reported are only 4 lines
and 4 transfer stops. Results of the MHeuPA for different waiting cost functions
(Section 4.3) are compared to the fixed passenger route choice model of Fonseca
et al. [10], the IT-VSP MHeu. Note that results between this paper and [10] cannot
be directly compared as the current case study represents a larger network, with
new detailed passenger demand information that was not available yet during the
Fonseca et al. [10] study; and secondly due to a different measure of passenger ser-
vice, which in this paper is represented as WTT calculated by the passenger route
choice model of Briem et al. [4]. Route Fixed is an exact representation of the
model of Fonseca et al. [10] in this new setting. Thus, the comparison between the
MHeuPA and the Route Fixed demonstrates the value of including free passenger
route choice.

We evaluate our approach in the following three situations:

• In comparison to an initial timetable representing the current timetable for
our case study area (Section 6.1). This case study is similar to the setting
of [10], and therefore allows the most direct comparison between fixed and
free passenger route choice. This section presents a detailed analysis of the
results for the different components of weighted travel time, benefits specif-
ically for transferring passengers, and the resulting vehicle schedules.

• In case of a change in the public transport network (Section 6.2). A change
in the public transport network results in a timetabling situation where one
would expect a change in passenger route choice. This situation is simulated
by offsetting the timetables of one, or a set, of public transport lines in the
network, such that headway constraints and time-dependent vehicle travel
times are still respected, but transfers are likely offset.

• In case of a change in passenger demand (Section 6.3). A change in the pas-
senger demand matrix could lead to a change the relevance of transfer op-
portunities: making some transfer opportunities more important than others;
for instance in case of a special event. This could also make it important to
consider free passenger route choice. We assume that, whatever the change
in demand, sufficient capacity is available, as measures to increase capacity
on routes (e.g. longer vehicles, or higher frequencies) are not part of the
timetabling decisions considered in this paper.
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The algorithm is implemented in C++ and uses CPLEX version 12.6 to solve
the mathematical program at each iteration. All experiments were conducted on
HPC servers, using Intel Xeon E5-2660 v3 2.60GHz processors, and 8 compu-
tation cores. Each iteration uses CPLEX warm-start to start from the previous
solution. Presented are average results over five runs with each setting, with a 3
hour computation time limit. All computational times reported in this section are
wall-clock times. Fixed parameters are the number of trips selected per iteration
κ = 350, the maximum running time per iteration ψ = 30, and the realistic value
for waiting costs φ = 2. The values for the parameters κ and ψ are based on the
computational results of [10] and taking into account that the current case study is
larger both in terms of network and OD matrix, while the value for φ is based on
the findings of [4].

The solution quality is expressed in terms of weighted travel time (WTT) and
its components: in-vehicle time (IVT), initial waiting time (IWT), and transfer time
(TrT). We also compare the operating costs (OpC) across experiments. To compare
the solutions obtained with the MHeuPA with the initial timetable and with the solu-
tions obtained with the Route Fixed, we use percentage improvements to initial
and percentage improvements to Route Fixed. For x = {WTT,IVT,IWT,TrT,OpC}
and f x(S) being the x-type average cost of a solution S over n runs, we calculate
the percentage improvement to the initial timetable as

f x(SMHeuPA)− fx(SInitial)

fx(SInitial)
×100%

and the percentage improvement to the solutions obtained with the Route Fixed
as

f x(SMHeuPA)− f x(SRoute Fixed)

f x(SRoute Fixed)
×100%

since there is only one solution for the initial timetable but n solutions for
the Route Fixed (one for each run). A negative percentage for x corresponds to a
reduction of costs in the MHeuPA solution in comparison to the initial timetable or to
the Route Fixed solutions. Since we use the budget version of the IT-VSP MHeu in
all experiments, we keep the operating costs under a budget. We consider as budget
the operating costs obtained by solving the MDVSP for the initial timetable.

6.1 Results for the base scenario

In this section, we present the results for the base scenario: initial timetable and
base ODt matrix. We present results in terms of WTT and different WTT compo-
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Table 3: WTT results for the base scenario for 1) the full ODt matrix and 2) for the
transferring passengers only

Full ODt Matrix Zoom on transferring passengers

Solution
WTT
(DKK)

Improv. to
Base (%)

Improv. to
Route Fixed (%)

WTT
(DKK)

Improv. to
Base (%)

Improv. to
Route Fixed (%)

initial timetable 14,952,021 - - 11,281,416 - -
Route Fixed 14,844,516 -0.72 - 11,153,787 -1.13 -
Realistic 14,832,916 -0.80 -0.08 11,138,733 -1.26 -0.13
NoCosts 14,805,563 -0.98 -0.26 11,110,820 -1.51 -0.39
LinAsc 14,810,788 -0.94 -0.23 11,114,746 -1.48 -0.35
Random 14,811,079 -0.94 -0.23 11,113,400 -1.49 -0.36
RandomLinAsc 14,811,457 -0.94 -0.22 11,112,630 -1.50 -0.37

nents, operating costs, timetable modifications and characteristics of vehicle sched-
ules. Additionally we show a convergence analysis for the different waiting cost
functions considered and histograms of WTT variations.

Table 3 shows the WTT results for the different waiting cost functions in ab-
solute WTT values, percentage improvement to initial timetable, and percentage
improvement to Route Fixed solution. We present results both for the full ODt
matrix and for a version of the ODt matrix that considers only passengers that,
given the public transport network lines, will have to transfer at least one time.

The results in Table 3 support the hypothesis that inclusion of free route choice
leads to timetables with higher passenger service, and that using alternative cost
models, to find potentially beneficial transfer locations, also enable finding timeta-
bles with higher passenger service. Indeed, all MHeuPA solutions improve passen-
ger service in comparison to Route Fixed solutions by 0.08% to 0.26% in the full
ODt matrix and by 0.13% to 0.39% in the zoom on transferring passengers. The
NoCosts is the best performing waiting cost function, both for the full ODt matrix
and for transferring passengers only, while all alternative cost functions improve on
input from the Realistic assignment model. All approaches improve passenger
service in terms of WTT in relation to the initial timetable. The improvement in
passenger service stems mainly from improved WTT for passengers with a transfer
in their path, which is observed when comparing the results for the full ODt matrix
with the results for transferring passengers only.

Figure 4 shows the convergence of WTT for the three best CostF functions
LinAsc, NoCosts, and RandomLinAsc. The horizontal axis shows the algorithm
total computational time in minutes and the vertical axis shows the percentage
reduction in WTT in comparison to the initial timetable. The figure shows that the
LinAsc waiting cost function has a steeper initial decline in WTT, while NoCosts
finds the overall minimum WTT from around 120 minutes of computational time.
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Figure 4: WTT convergence of the LinAsc, NoCosts, and RandomLinAsc solu-
tions over time

Table 4: Passenger WTT improvements for the base scenario

Solution
Avg. improvement
(DKK)

Pax better off
(%)

Pax worse off
(%)

Perc of pax with
WTT reduction
>10 DKK (%)

Perc of pax with
WTT increase
>10 DKK (%)

Route Fixed -1.12 34.37 28.52 10.23 6.84
Realistic -1.21 35.41 29.64 12.43 8.17
NoCosts -1.45 35.20 31.19 13.22 9.64
LinAsc -1.40 35.72 30.79 13.40 9.28
Random -1.39 35.86 30.94 13.54 9.40
RandomLinAsc -1.39 36.03 30.94 13.74 9.59

This indicates that the LinAsc waiting cost function allows to find good timetables
fast, but in the long run it is better to use the NoCosts waiting cost function. For all
waiting cost functions, the improvements in WTT decline after the first 1.5 hours
of computational time.

Table 4 shows for all waiting cost functions the average improvement in WTT
expressed in DKK, the percentages of passengers better and worse off, the percent-
age of passengers better off by more than 10 DKK of WTT, and the percentage
of passengers worse off by more than 10 DKK of WTT. The value of 10 DKK of
WTT is equivalent to 6 minutes of in-vehicle time or 2 minutes of excess transfer
time or initial waiting time.

Table 4 shows that the NoCosts waiting cost function achieves the best average
improvement in WTT per passenger, with a value of -1.45 DKK, which follows
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from the results in Table 3. The percentage of passengers better and worse off is
similar across waiting cost functions, with more passengers being better off than
worse off when compared with the initial timetable. Specifically for differences in
WTT larger than 10 DKK, the percentages of passengers better off are higher than
the percentages of passengers worse off, as evidenced by the last two columns in
Table 4. Although the NoCosts waiting cost function achieves the best average
improvement, it is not the one that achieves the highest percentage of passengers
better off, with the RandomLinAsc surpassing the 36% mark. If the objective is
to maximize the percentage of passengers better off by a certain threshold or to
minimize the percentage of passengers worse off it might be preferable to use other
waiting cost functions than the NoCosts waiting cost function for this instance.

For better understanding how the MHeuPA solutions improve the WTT for pas-
sengers, Figures 5 and 6 show histograms of changes in WTT in the best solutions
obtained by the Route Fixed and by the MHeuPA. The horizontal axis shows the
change in WTT experienced by passengers and the vertical axis shows the abso-
lute number of passengers that experience changes in each interval. The histogram
is divided into two figures due to the difference in magnitude of the number of
passengers.

Figures 5 and 6 show that in the MHeuPA solution more passengers experience
high decreases in WTT, especially in the interval [−70,−20[. From Figure 6, it
is clearly observed that the amount of passengers on the left hand side of the his-
togram (passengers better off) is larger than the one on the right hand side (passen-
gers worse off), which is linked to the results in Table 4. However, Figure 5 shows
that in the Route Fixed solution more passengers experience smaller changes in
WTT than in the MHeuPA solution, between -10 DKK and 10 DKK. Additionally,
Figures 5 and 6 show that the Route Fixed solution has less passengers worse off
than the MHeuPA solution, which is explained by existing in general less changes
in the timetable. The timetables of the MHeuPA represent a different trade-off be-
tween passenger groups, and although not a strict improvement for all passengers;
the disbenefits for some passengers are offset by the benefits for a larger group of
other passengers.

Table 5 shows the results in terms of each of the components of WTT, for the
same set of experiments as in Tables 3 and 4. The table contains the absolute values
in DKK of in-vehicle time (IVT), initial waiting time (IWT), and transfer time
(TrT), along with their percentage improvements in relation to the initial timetable.

The results in Table 5 show that all components of WTT are improved in re-
lation to the initial timetable, as evidenced by the negative percentages. Most of
the improvement in WTT comes from the improvement in transfer times, with
decreases ranging from -2.59% to -3.17% compared to decreases of -0.13% to -
0.34% in in-vehicle time and of -0.04% to -0.40% in initial waiting time. This is
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Figure 5: Histogram of variation in WTT for the Route Fixed solution and for
the best solution obtained with our algorithm

Table 5: WTT details for the base scenario

Solution IVT (DKK)
Improv to
Base (%) IWT (DKK)

Improv to
Base (%) TrT (DKK)

Improv to
Base (%)

initial timetable 7,399,710 - 4,043,178 - 3,509,133 -
Route Fixed 7,390,300 -0.13 4,036,102 -0.18 3,418,115 -2.59
Realistic 7,389,179 -0.14 4,041,434 -0.04 3,402,302 -3.04
NoCosts 7,374,506 -0.34 4,026,984 -0.40 3,404,074 -2.99
LinAsc 7,378,596 -0.29 4,034,440 -0.22 3,397,752 -3.17
Random 7,378,806 -0.28 4,033,539 -0.24 3,398,735 -3.15
RandomLinAsc 7,379,542 -0.27 4,033,954 -0.23 3,397,962 -3.17
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Figure 7: Comparison of excess transfer time in the initial timetable and in the best
MHeuPA solution timetable

expected, since transfer time is the WTT component that is specifically considered
in the IT-VSP objective function. Among the MHeuPA results, the NoCosts waiting
cost function obtains the smallest reduction in TrT, with a value of -3.00%, but
obtains the highest reductions in IVT and IWT, respectively -0.34% and -0.40%.
Improvements in IVT show that passenger routes actually change in comparison to
the initial timetable, because trips can only have additional dwell time and not less
dwell time than in the initial timetable. This indicates that passengers are able to
find better routes to travel from origin to destination, spending less time in-vehicle.
Improvements in IWT are incidental since the IT-VSP objective does not include
the effect of timetable modifications on IWT. Reductions in IWT can be explained
by: 1) a reduction in headway at a time where more passengers are waiting to be
served, 2) a route with a higher frequency (lower headway) has attracted more pas-
sengers: e.g. due to it now providing a better transfer, or a previous selected route
providing a worse transfer. Trips are shifted to cater for transfer synchronization,
but in the process also IWT could be reduced.

Figure 7 visualizes the excess transfer time (transfer time minus the minimum
required transfer time for a feasible transfer) experienced by passengers in the ini-
tial timetable and in the best MHeuPA solution. The horizontal axis shows the excess
transfer time in minutes and the vertical axis shows the percentage of transferring
passengers that experiences that value of excess transfer time.
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Table 6: Operating costs, timetable and vehicle schedules for the 8 line case and
for the base OD matrix

Solution
OpC
(DKK)

OpC
improv to
Base (%)

Trips with
shifts only
(%)

Trips with
stretches
only (%)

Trips with
shifts and
stretches (%)

Avg
added
dwell (m)

Avg
added
shift (m)

Number
Schedules

Avg
schedule
duration (m)

initial timetable 323,744 - - - - - - 205 784
Route Fixed 317,417 -1.95 48.3 3.8 15.4 2.3 1.7 200 802
Realistic 317,608 -1.90 52.8 3.3 14.2 2.4 2.0 201 800
NoCosts 318,124 -1.74 55.1 3.8 14.0 2.2 1.9 201 798
LinAsc 318,437 -1.64 56.6 2.6 13.6 2.3 2.0 201 798
Random 316,754 -2.16 54.0 4.0 17.1 2.3 2.0 200 802
RandomLinAsc 316,649 -2.19 54.4 3.8 16.6 2.4 2.1 200 803

Figure 7 shows that in the MHeuPA timetable there are significantly more pas-
sengers experiencing perfectly synchronized transfers, with 0 minutes of excess
transfer time. A total of 22% of transferring passengers experience perfectly syn-
chronized transfers in the MHeuPA solution, while in the initial timetable this value
is 18%. For all other excess transfer time values, the initial timetable has more
passengers experiencing each value. Furthermore, the average excess transfer time
decrease from 2.29 m to 2.06 m in the MHeuPA solution, for more than 100,000
transferring passengers.

Table 6 shows results for the same set of experiments from an operating per-
spective. The table contains information on absolute value of operating costs in
DKK, percentage improvement in relation to the initial timetable, percentage of
trips modified by shifts only, stretches only, and both, average added stretches, av-
erage added shifts, number of vehicle schedules, and average schedule duration in
minutes.

The results in Table 6 show that all waiting cost functions use less operat-
ing costs than the budget of the initial timetable, but also considerably decrease
them, with percentages between 1.64% and 2.19%. The solutions obtained with
the MHeuPA shift 52.8% to 56.6% of the trips, add stretches to 2.6% to 4.0% of the
trips, and add both shifts and stretches to 13.6% to 17.1% of the trips. The values
of added dwell time and added shifts are averages over the total number of trips
with added stretches and added shifts respectively. On average, just 2 minutes of
dwell time are added to modified trips, and in Appendix 2 we show a histogram of
added dwell time in a representative solution obtained with our approach. Regard-
ing the vehicle schedules, the Route Fixed and MHeuPA solutions use 200 to 201
schedules to cover all trips, while the base solution uses 205. Furthermore, sched-
ules are on average longer in the Route Fixed and MHeuPA solutions with values
ranging between 798 and 803 minutes, compared to the 784 minutes in the initial
timetable. This means that the Route Fixed and MHeuPA solutions use resources

36



Table 7: Number of timetabled trips and number of vehicle schedules assigned to
each of the four depots in the initial timetable and in the MHeuPA timetable

Original schedules MHeuPA schedules

Depot Trips Schedules Trips Schedules

1 595 75 616 75
2 475 56 458 55
3 377 54 373 52
4 138 20 138 20

more efficiently, with schedules covering on average more trips.
Figure 8 and Tables 7 and 8 contain additional information on the obtained

vehicle schedules for the initial timetable and the best MHeuPA timetable. In Figure
8, we present a histogram of the number of timetabled trips per vehicle schedule
created in both cases. The MHeuPA solution approach is able to create vehicle
schedules with a larger number of timetabled trips, with an average number of 7.84,
while in the initial timetable the average number of timetabled trips per vehicle
schedule is 7.73.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

10

20

30

Number of timetabled trips in schedule

N
um

be
ro

fv
eh

ic
le

sc
he

du
le

s Initial MHeuPA

Figure 8: Histogram of number of of trips in schedules in the original solution and
in the MHeuPA best solution

Table 7 outlines how many timetable trips and vehicle schedules are assigned
to each of the four depots in the case study, both for the initial and for the best
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Table 8: Distribution of timetabled trips per depot in the initial and in the MHeuPA
schedules

MHeuPA timetable

Depot 1 2 3 4

1 377 (23.8%) 127 (8.0%) 71 (4.5%) 20 (1.3%)
Initial 2 146 (9.2%) 251 (15.8%) 69 (4.4%) 9 (0.6%)

Timetable 3 76 (4.8%) 69 (4.4%) 212 (13.4%) 20 (1.3%)
4 17 (1.1%) 11 (0.7%) 21 (1.3%) 89 (5.6%)

MHeuPA solution. Both cases see depot 1 being the most utilized, and in both
cases it is at its maximum capacity of 75 schedules, reinforcing that this depot
is located at a more convenient geographical location than the other three depots.
The number of timetabled trips and schedules of depot 4 remains unchanged in the
MHeuPA solution when comparing to the initial solution. Depots 2 and 3 experience
a decrease in both number of timetabled trips and number of schedules, showing
that those timetabled trips were able to be serviced by one of the schedules of depot
1 without increasing the number of schedules assigned to the first depot.

Table 8 shows additional information on how timetabled trips change between
depots in the initial and in the best MHeuPA solution, both in terms of absolute
and percentage values of the total number of timetabled trips. As an example,
timetabled trips in entry (a,b) indicate that these trips were assigned to depot a
in the initial solution and to depot b in the MHeuPA solution. A total of 58.6% of
all timetabled trips, which corresponds to 929 trips (sum of the diagonal values in
the table), do not change between depots in the initial and in the MHeuPA solution.
Nevertheless, the remaining 41.4% of timetabled trips switch their depot, which
indicates that timetabled modifications have a significant impact on the vehicle
schedules created.

The overall improvement in WTT in comparison to the initial timetable is ap-
proximately 1%, of which 0.25% is due to the inclusion of free passenger route
choice. The 0.25% is equivalent to a daily reduction of approximately 40,000 DKK
when expressed as value of time. Due to the budget constraints, these savings come
at no additional operating costs, and in fact allow a reduction of operating costs, as
demonstrated in Table 6.

6.2 Designing timetables - changes in the public transport network

In this section, we analyze if our model is able to find good timetabling solutions
when new geographical lines are introduced to the network. In case of changes
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in the physical network, we would also expect changes in the passengers route
choices. Thus the combination between passenger route choice and timetabling
is essential to find timetables with high passenger service. As we would like to
compare these results to the situation where a good integration between lines and
a high quality initial timetable already exists, we simulate the introduction of new
lines by the following procedure.
For a new line, we assume that a target headway and a set of trips for this line
is predetermined. Next, an initial timetable is generated under the assumption
of even headways. This timetable would be optimal for direct travellers when
demand is evenly distributed over time. Next we apply our modelling framework
to illustrate that indeed our model is able to integrate such lines into the already
existing network.

We test four different scenarios:

1. introduction of 1 ”new” line: 350S only, which is the line that transports the
largest volume of passengers in the network;

2. introduction of 3 ”new” lines: lines 250S, 300S, and 400S, which are the
lines with largest volumes of passenger transfers for all modes;

3. introduction of 3 ”new” lines: lines 350S, 500S, and 600S, which are the
lines with largest volumes of passenger transfers involving a bus trip;

4. introduction of a fully ”new” S-Bus network.

This section demonstrates that also provided such a ”bad” starting point, the
MHeuPA can be used for constructing a timetable. Thus in principle it is suitable for
designing new timetables. Results for the best performing waiting cost functions
from the previous section (NoCosts, LinAsc, and RandomLinAsc) are compared
to solutions obtained with the Route Fixed (fixed passenger route choice).

The creation of the initial timetables for the ”new” lines may also change the
vehicle schedules obtained when solving the MDVSP. In order to enable a fair
comparison between results in this section and in the previous section, we use as
budget for the operating costs the same budget used before, i.e. the operating costs
obtained by solving the MDVSP for the initial timetable. Table 9 shows results for
all four scenarios in terms of absolute WTT and DKK savings in comparison to
the Route Fixed solutions. Each scenario is associated with an χ value, which is
the percentage increase in WTT of the new timetable in comparison to the initial
timetable.

The results in Table 9 show that all MHeuPA solutions have a lower WTT than
the solutions obtained with the Route Fixed, similarly to what is observed in Sec-
tion 6.1. Again, the NoCosts waiting cost function is the one that shows the largest
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Table 9: WTT results for the four scenarios of designing timetables
Offset lines
(α)

350S
(0.07)

250S, 300S, 400S
(0.16)

350S, 500S, 600S
(0.13)

All S-Bus network
(0.39)

Solution
WTT
(DKK)

Savings ict
Route Fixed

(DKK)

WTT
(DKK)

Savings ict
Route Fixed

(DKK)

WTT
(DKK)

Savings ict
Route Fixed

(DKK)

WTT
(DKK)

Savings ict
Route Fixed

(DKK)

Route Fixed 14,858,155 - 14,862,350 - 14,886,838 - 14,928,154 -
NoCosts 14,813,879 -44,276 14,817,685 -44,665 14,840,451 -46,388 14,879,730 -48,424
LinAsc 14,818,344 -39,811 14,832,089 -30,261 14,843,607 -43,231 14,882,466 -45,689
RandomLinAsc 14,822,558 -35,596 14,832,355 -29,995 14,840,764 -46,074 14,894,508 -33,646

decreases in WTT. By comparing Tables 3 and 9, we see that the solutions in Table
9 also have a lower WTT than the initial timetable of Section 6.1, despite start-
ing from a worse timetable (evidenced by all χ values being positive). Solutions
obtained in the previous sections with the same waiting cost functions are better
in terms of WTT by 0.05% to 0.56% than solutions obtained in this section, since
they start from a timetable with more transfer synchronization and therefore lower
WTT.

6.3 Changes in passenger demand

In this section, we test the MHeuPA for a change in ODt matrix in comparison to the
base matrix. We test two different scenarios:

1. a random variation in the base ODt matrix (Random ±10%);

2. an event simulation ODt matrix (Event Simulation).

One ODt matrix is generated for each scenario. The random variation scenario
was generated by varying OD hourly demand in the base ODt matrix randomly by
a value between -10% and 10%. For the Special Event Simulation scenario, we
selected three stations in the city center and simulated a two hour event happening
between 6p.m. and 8p.m. Consequently, we increase by 50% all OD pairs in
the base ODt towards these three stations with departure time during the two hours
prior to the event. We also increase by 50% all OD pairs in the base ODt originating
from these three stations in the two hours after the event.

Table 10 shows the results for the two scenarios, in absolute WTT and percent-
age improvement in relation to the Route Fixed solutions. Similarly to Section
6.2, each scenario is associated with an χ value, indicating the percentage increase
of the initial solution in comparison to the initial timetable for the base ODt matrix.

From Table 3, the initial timetable has a WTT of 14,952,021 DKK. We observe
that, despite the increase in passenger demand, the MHeuPA is able to obtain solu-
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Table 10: WTT results for the two scenarios of changing the OD matrices
OD Variation
(χ)

Random ± 10%
(0.03)

Special Event Simulation
(0.35)

initial timetable (Table 3)
(14,952,021 DKK)

Solution
WTT
(DKK)

Improv. to
Route Fixed (%)

WTT
(DKK)

Improv. to
Route Fixed (%)

Improv. in
Random (%)

Improv. in
Event (%)

Route Fixed 14,857,357 - 14,906,759 - -0.63 -0.30
NoCosts 14,814,032 -0.29 14,861,172 -0.31 -0.92 -0.61
LinAsc 14,825,444 -0.21 14,867,111 -0.27 -0.85 -0.57
RandomLinAsc 14,822,207 -0.24 14,865,578 -0.28 -0.87 -0.58

tions that have lower WTT than the initial timetable. Furthermore, the integration
with a PTTA model proved to be beneficial, evidenced by the solutions with lower
WTT obtained with the MHeuPA solutions in comparison to the Route Fixed so-
lutions. The NoCosts waiting cost function once again outperforms the other cost
functions, with a reduction in WTT of -0.29% in the random ODt scenario and of
-0.31% in the event simulation scenario, in comparison to the Route Fixed solu-
tions. Furthermore, the NoCosts is also the best performing waiting cost function
when comparing with the initial timetable, with WTT reductions of -0.92% in the
random ODt scenario and of -0.61% in the special event simulation scenario.

We acknowledge that, in general, in case of a large event it is important to
evaluate if there is capacity to transport the higher volumes of passengers. Since
our approach does not take into account capacity constraints, it is out of the scope
of the current work to consider the analysis of capacity restrictions. The purpose
of the above described cases is to demonstrate new timetables can also be found in
case of a change in demand scenarios. Thus, the MHeuPA is suitable to use in a wide
range of situations: improving on the current timetable, dealing with a change in
the network, dealing with a change in passenger demand.

6.4 Experiments using the Logit passenger assignment model

The experiments presented in the previous subsections use the passenger assign-
ment model of [4], which is a linear model. To evaluate if the reported results
still hold under a different passenger assignment model the same experiments as
in Table 3 were conducted this time using a Logit model with parameter β = 0.01.
Table 11 summarizes these results.

Similarly to Table 3, the results in Table 11 indicate that timetables with higher
passenger service are obtained when including free route choice. Furthermore, the
conclusion that using alternative cost functions to calculate the passenger assign-
ment at each iteration leads to timetables with lower WTT still holds. The best
performing cost function is still the NoCosts function, with an improvement to
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Table 11: WTT results for the base scenario using the Logit model

Solution
WTT
(DKK)

Improv. to
Base (%)

Improv. to
Route Fixed (%)

initial timetable 14,931,957 - -
Route Fixed 14,824,743 -0.72 -
Realistic 14,812,647 -0.80 -0.08
NoCosts 14,782,247 -1.00 -0.29
LinAsc 14,785,044 -0.98 -0.27
Random 14,785,558 -0.98 -0.26
RandomLinAsc 14,787,633 -0.97 -0.25

the initial timetable equal to 1% and an improvement to the Route Fixed solution
of 0.26%. Overall, all solutions obtained with our approach improve the initial
timetable, and we can say that the conclusions drawn in previous experiments are
still valid when using the Logit model. Decreasing the value of the Logit β param-
eter (we tried 0.001 and 0.003) still holds the conclusions, but with improvement
values smaller than the ones reported in Table 11.

6.5 Feedback from the transport service provider

The results obtained from the case study were presented to the public transport
service provider Movia. The results were found to be encouraging and confirmed
Movia in their interest into experimenting with changing the timetable by shifting
and stretching to enable an increase in potential transfers. It has not been possible
to implement the presented method into the planning framework of Movia since
a third-party software system is used for all timetable planning activities which
would means that intensive work would be required to integrate with the front-end
and back-end of the planning software system used. However, the findings from the
case study have lead to further internal discussions within Movia and may inspire a
specific request to the third-party software provider to implement a similar method.

7 Conclusions and future research

This paper addresses the problem of maximizing passenger service through timetabling
under the assumptions of free passenger route choice within a fixed budget for op-
erating costs at a tactical level. Free route choice implies that passengers follow
their individually preferred path, rather than one that optimizes a social optimum,
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and that passengers with the same origin, destination, and departure time may have
different preferences. The latter ensures that in case two equivalent routes exist,
passengers are assumed to use both.

The proposed matheuristic for the IPAT-VSP combines two state-of-the-art
models: the integrated timetabling and vehicle scheduling model of [10] with the
passenger route choice model of [4]. Provided an initial timetable and an ODt
matrix describing passenger demand over time, the objective of the MHeuPA is to
maximize passenger service, expressed as weighted travel time, through modifica-
tions of the timetable. These modifications consist of changes in the starting time
of trips (shifts), and addition of dwell time (stretches) at transfer stops, in compar-
ison to the initial timetable within a set of headway constraints and a budget on
operating costs. Operating costs are defined by the minimum cost vehicle sched-
ules for a timetable, which problem is simultaneously solved during the timetabling
procedure.

A realistic case study focused on timetabling bus lines in the context of the
multi-modal network of the Greater Copenhagen area illustrates that (i) including
free passenger route choice leads to timetables with higher passenger service than
assuming fixed passenger route choice such as in [10], (ii) that the indication of
potentially interesting transfers for passengers results in timetables with a higher
passenger service than providing the timetabling model information on the precise
passenger route choice on the current timetable, and (iii) that benefits of including
free passenger route choice can be found in comparison to the current timetable of
our case study area, in case of a change in the network, and in case of a change
in passenger demand. The latter also suggests that the proposed MHeuPA approach
could be used to design new timetables in case of changes in the network, e.g. due
to planned maintenance, or in case of an expected change in the demand matrix,
e.g. due to special events.

Although the higher passenger service in our case study results from a trade-off
between passenger groups, the increase in service results foremost from a sizable
decrease in WTT for a large group of passengers that offsets the increase in WTT
for others. Overall improvement in WTT in comparison to the initial timetable is
approximately 1%, of which 0.25% is due to the inclusion of free passenger route
choice. The 0.25% is equivalent to a daily reduction of approximately 40,000 DKK
when expressed as value of time. Due to the budget constraints, these savings come
at no additional operating costs.

In summary, this paper contributes to the field of timetabling and public trans-
port planning by studying integrated maximal passenger service timetabling and
vehicle scheduling in the context of a realistic free passenger route choice model
representing free route choice of passengers; demonstrating that the inclusion of
free passenger route choice leads to timetables with higher passenger service and
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that the indication of potential important transfers for passengers is more impor-
tant than providing a timetabling model with accurate information on the passenger
route choice in a current, initial timetable.

Future research may focus on a further integration of passenger route choice
decisions into the timetabling and vehicle scheduling model; or on extending the
timetabling procedure to include decisions on stops per line and target headway,
which have a major influence on passenger service but are currently generally fixed
in the previous planning stage of line planning and network design. Other forms of
cost functions for waiting costs could also be considered, for example depending
on the headway of the destination line. Moreover, future research could focus on
finding exact lower bounds for the maximal passenger service timetabling problem.
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Appendix 1 - Sets, parameters, and decision variables used
in the IT-VSP mathematical model

Sets
S Set of all stops
L Set of all directed lines
T = {1, . . . ,n} Set of all timetabled trips
Tl ⊆ T Subset of all trips in the directed line l ∈ L
T 1 ⊆ T Set of all trips which are the first in their directed line
Si ⊆ S Set of all stops visited by trip i ∈ T
Ji ⊆ Si Set of all intermediate stops visited by trip i ∈ T , i.e., Ji =

Si \{sti,eti}
R Set of all transfer opportunities, each defined by a triplet

(i, l,s): passengers disembarking trip i∈ T at stop s∈ Ji∪{eti}
with the intent of embarking a trip j ∈ Tl of line l ∈ L such that
l 6= li and s ∈ J j ∪{st j}

K Set of all depots
I Set of all compatible trips, I = {(i, j)|i, j ∈ T : i 6=

j,Dist(eti,st j) ≤ u,a−i,eti + q−+ bi j ≤ d+
j,st j

,a+i,eti + q++ bi j ≥
d−j,st j
}

Vk Set of nodes, which contains a node for each trip i∈ T , as well
as for depot k∈K which is denoted n+k, thus Vk =T ∪{n+k}

Ak Set of arcs, including deadhead trips, pull-out trips, and pull-in
trips, thus Ak = I∪ ({n+ k}×T )∪ (T ×{n+ k})

Gk = (Vk,Ak) Graph associated with depot k ∈ K
QD Set of all deadhead triplets QD = {(i, j,k) : k ∈ K,(i, j) ∈ I}
QO Set of all pull-out triplets QO = {(n+ k, j,k) : k ∈ K, j ∈ T}
QH Set of all pull-in triplets QH = {(i,n+ k,k) : i ∈ T,k ∈ K}
Q Set of all compatible triplets (i, j,k), representing a vehicle

from depot k ∈ K covering the pair of trips (i, j) ∈ Ak. Q =
QD∪QO∪QH

T (Q) Set of all pairs of trips i, j ∈ T for which a triplet involving i
and j exists, T (Q) = {(i, j)|i, j ∈ T : ∃(i, j,k) ∈ Q}.

Parameters
li Directed line of trip i ∈ T
ti Total travel time of trip i ∈ T in the initial timetable
sti ∈ Si Start terminal of trip i ∈ T
eti ∈ Si End terminal of trip i ∈ T
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h−is ,h
+
is Minimum and maximum headways, respectively, in relation

to the timetabled headways, for each trip i ∈ T at each stop
s ∈ Ji∪{sti}

d−i,sti ,d
+
i,sti Minimum and maximum departure shift from the first station

for trip i ∈ T , defined in relation to its departure time in the
initial timetable

w−is Dwell time in the initial timetable of a trip i ∈ T at stop s ∈ Ji

w+
is Maximum allowed dwell time of a trip i ∈ T at stop s ∈ Ji

w Upper bound on the total added dwell time to all stops of any
trip

Λis Number of passengers that are on board (and will continue on
board) when trip i ∈ T arrives at stop s ∈ Ji

a−is ,a
+
is Earliest and latest arrival times of trip i ∈ T at stop s ∈ Ji ∪

{eti}, determined by the possible timetable modifications
d−is ,d

+
is Earliest and latest departure times of trip i ∈ T from stop s ∈

Ji∪{sti}, determined by the possible timetable modifications
fr Number of passengers requesting transfer r ∈ R
er Minimum transfer time for transfer r ∈ R
q−,q+ Minimum and maximum turnaround times
bi j Driving time between eti and st j

vk Number of schedules that can be created departing from depot
k ∈ K

Dist(i, j) Distance between the end terminal of trip i ∈ T , eti, and the
start terminal of trip j ∈ T , st j

u Maximum deadhead distance
ci jk Operating cost associated with servicing triplet (i, j,k) ∈ Q.

The cost ci jk of triplet (i, j,k) ∈ Q is equal to the deadhead
time bi j multiplied by a driving cost per time unit; if (i, j,k) ∈
QO, ci jk also includes a fixed cost for creating a new schedule,
corresponding to the fixed cost for using a vehicle.

cDW Operating cost per minute of extra dwell time
cOB Cost per minute of extra dwell time per on-board passenger
cT R Cost per minute of excess transfer time at transfers per pas-

senger
B Budget value for the operating costs
M Big M value. In this problem, it is sufficient to set a big M

value higher than the number of minutes in the planning hori-
zon

Decision vari-
ables
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xi jk ∈ {0,1} 1 if and only if a vehicle from depot k travels from node i
directly to node j, 0 otherwise

τd
is ∈ Z+

0 Departure time of trip i ∈ T from stop s ∈ Ji∪{sti}
τa

is ∈ Z+
0 Arrival time of trip i ∈ T at stop s ∈ Ji∪{eti}

γr ∈ R+
0 Excess transfer time for passengers using transfer location r ∈

R
αi js ∈ {0,1} 1 if and only if passengers of transfer location r = (i, l j,s) ∈ R

embark trip j ∈ T , 0 otherwise
δis ∈ Z+

0 Minutes of dwell time added to trip i ∈ T at stop s ∈ Ji
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Appendix 2 - Histogram of added dwell time in a represen-
tative solution
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