
1

Lower Bounds for
Randomized Exclusive Write PRAMS

. - . .

Philip D . MacKenzie*
Sandia National Laboratories
Albuquerque, NM 87185-1110

philmac@cs . sandia.gov

May 2, 1995

Abstract

In this paper we study the question: How useful is randomization in speeding up Exclusive
Write PRAM computations? Our results give further evidence that randomization is of limited
use in these types of computations. First we examine a compaction problem on both the
CREW and EREW PRAM models, and we present randomized lower bounds which match the
best deterministic lower bounds known. (For the CREW PRAM model, the lower bound is
asymptotically optimal.) These are the first non-trivial randomized lower bounds known for the
compaction problem on these models. We show that our lower bounds also apply to the problem
of approximate compaction. Next we examine the problem of computing boolean functions on
the CREW PRAM model, and we present a randomized lower bound,which improves on the
previous best randomized lower bound for many boolean functions, including the OR function.
(The previous lower bounds for these functions were asymptotically optimal, but we improve
the constant multiplicative factor.) We also give an alternate pioof for the randomized lower
bound on PARITY, which was already optimal to w i t h a constant additive factor. Lastly, we
give a randomized lower bound for integer merging on an EREW PRAM which matches the
best deterministic lower bound known. In all our proofs, we use the Random Adversary method,
which has previously only been used for proving lower bounds on models with Concurrent Write
capabilities. Thus this paper also serves to illustrate the power and generality of this method
for proving parallel randomized lower bounds.

Introduction
Randomization has been a useful tool in developing fast parallel algorithms for a vast spectrum of
problems, from computational geometry and graph theory, to routing and load balancing. Often
these randomized parallel algorithms are significantly faster than the best possible deterministic
parallel algorithms. This prompts the question, “To what extent can randomization improve the
speed of parallel algorithms?” We will examine this question in regards t o an important class of
parallel algorithms, namely Exclusive Write PRAM algorithms. We will show that randomization
does not seem to be very effective when Concurrent Writing is not allowed. To do this, we will prove
lower bounds for randomized Exclusive Write PRAM algorithms. These lower bounds are (1) within

*Part of this work was performed at Sandia National Laboratories and was supported by the U.S. Department of
Energy under contract DEAC0476DP00789. Part of this work was performed while the author was at the University
of Texas and was supported by TARP Grant 003658480.

1

http://sandia.gov

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from ‘the best available original
document.

a constant factor from the the best deterministic lower bounds known, and (2) for all problems but
that of compaction on the EREW PRAM, within a constant factor from the deterministic upper
bound.

The tool that will allow us to prove these randomized lower bounds is the Random Adversary
technique. This technique is an extension and generalization of the Random Restriction technique
first used in f i r s t , Saxe, and Sipser [7]. The Random Adversary technique was used to prove lower
bounds on randomized CRCW PRAM algorithms in MacKenzie [17] and on randomized OCPC
algorithms in Goldberg, Jerrum and MacKenzie [lo]. However, this is the first application of the
technique to Exclusive Write PRAM algorithms.

The Random Adversary technique requires a specific proof structure. Assuming there exists a
deterministic lower bound for a problem with this structure, a randomized lower bound sometimes
can be obtained in a relatively straightforward manner using the Random Adversary technique.
This was in fact the case for our lower bounds on boolean functions. However, if the deterministic
lower bound proof does not have this structure, a completely new lower bound proof has to be
developed. This was the case for the compaction lower bound, as will be discussed below.

1.1 Compaction
Compaction algorithms on PRAMs have been studied in [5,9,14,21] and are useful for performing
load balancing operations, space allocation, and a variety of other tasks. In this paper, we look at
the problem of k-compaction, that is, given an array of n items with at most k of them marked,
moving the marked items to the front of the array. On the Common CRCW PRAM model, it is
known how to solve this problem deterministically in O(1og I C / log log n) steps using n processors,
and there is a matching lower bound, even for randomized algorithms [21]. On Exclusive Write
PRAMs, much less is known. For the case IC = 2, on the CREW PRAM model, it is known
how to solve this problem deterministically in O(log1ogn) steps using n processors, and there is a
lower bound of R(log1ogn) steps when using n processors [5]. For the case IC = 2, on the EREW
PRAM model, it is known how to solve this problem deterministically in O(1ogn) steps using n
processors, and there is a lower bound of R (m when using any number of processors [5].
However, until now, there was no non-trivial lower bound known for randomized Exclusive Write
PRAM algorithms for the case k = 2. (Note that a lower bound on this case would apply to any
k 2 2.)

We prove randomized lower bounds on 2-compaction which match the deterministic lower
bounds for the CREW and EREW PRAM. In fact, we prove these lower bounds hold for approxi-
mate 2-compaction also, where for some constant -y (0 < y < l), the 2 marked items simply have to
be placed in an array of size nI-7. (Approximate compaction has been studied in [2, 8, 11,12,17],
among others. Note that on the CRCW PRAM, the complexity of compaction problems and
approximate compaction problems can be vastly different.)

As mentioned above, the deterministic lower bound proofs in Fich et al. [5] for compaction
on Exclusive Write PRAM models do not have the structure required by the Random Adversary
technique to admit a randomized lower bound proof. In essence, they are able to perform the lower
bound analysis by having a deterministic adversary set many inputs on each step, until only a very
few inputs are left. However, for the Random Adversary technique to work, the Random Adversary
must not set too many inputs, or else the probability of fixing the result becomes too large. When
not as many inputs are set, though, the unset inputs can affect processors and cells in much more
complicated ways, and the analysis of Fich et al. breaks down. Thus it was necessary to build a
completely new proof, based in part on concepts in Cook, Dwork, and Reischuk [3] (bounding the
number of inputs affecting processors and cells for given input maps), in part on concepts found in

2

many other PRAM lower bound proofs (bounding the number of inputs decting processors and
cells for many or all input maps, and having an adversary set some of the inputs), and in part on
the concept of “discarded input maps”, which to our knowledge has not been previously used.

1.2 Boolean Functions on Exclusive Write PRAMS
There has been a considerable amount of research in the area of computing boolean functions
on the CREW PRAM, mostly with respect to deterministic algorithms. To describe the re-
sults, we need the following definitions. Let a l , . . ., a, denote elements of {0,1} and let a =
(al, . . .,a,) denote an element of (0, 11,. Let B, denote the set of all Boolean functions on
n variables {flf : {O,l}, --f {O,l}}. For f E B, define the critical complezity c(f) of f as
max{#{ilf(a{‘)) # f (a) } la E (0, l},}, where a{;) = (a l , . . .,a;, . . .,a,). For f E B, define
the block sensitivity bs (f) as the maximum of the numbers max(ZJ3S1,. . . , SI disjoint such that
f(&) # f (a) , 1 5 j 5 I } taken over all input vectors a, where as is obtained from a by ilipping
all bits in positions i E S.

First, Cook, Dwork, and Reischuk [3] obtain a lower bound of about .45logc(f) for computing
a function f with critical complexity c(f). (For instance, the OR function on n inputs has critical
complexity n.) Parberry and Yan [20] improve this to .5logc(f). Nisan [18] then shows that
computing a function f on a CREW PRAM takes O(logbs(f)) time (actually the upper bound
applies to an “ideal CREW PRAM”). In particular, it takes at least .5logbs(f) time. Thus, the
question of CREW PRAM complexity of functions was known up to a constant multiplicative
factor. Kutylowski [16] was the first to show a lower bound for OR of $(n) 2 .72logn which
was tight up to a constant additive factor for the ideal CREW PRAM. Dietzfelbinger, Kutylowski
and Reischuk [4] generalize this result and show a lower bound of 4(deg(f)) where deg(f) is the
degree of the polynomial (over the integers) representing f. In particular, this implies a tight
lower bound for both OR and PARITY of g5(n). They also were the first to obtain randomized
lower bounds for computing boolean functions on the CREW PRAM model. They show that
computing PARITY with a randomized CREW PRAM algorithm requires exactly as long as with
a deterministic CREW PRAM algorithm, and computing any other boolean functions using a
randomized CREW PRAM algorithm requires at least 1/8th as long as using a deterministic CREW
PRAM algorithm (specifically, for a boolean function f, the lower bound they show is +(,/m) -
O(1)). For symmetric functions, they are able to tighten this bound. For symmetric f , and for
0 5 k 5 n, let fk = 1 if f(a) = 1 for all input vectors a with exactly IC l’s, and let fk = 0 otherwise.
Let ~ (f) = max{k : 1 2 k 5 ?jn and fk # fk+l or f,-k+l # fn-k} . They obtain a lower bound of
$ (d m) - O(1) for computing f on a randomized CREW PRAM. Many important functions,
such as MAJORITY and MOD, satisfy ~ (f) = Q(n), so for these functions they obtain a lower
bound of 4(n) - 0(1), which is optimal to within a constant additive factor.

We prove a randomized lower bound of .5logbs(f) - O(1) for all boolean functions f . Note
that this improves the lower bound of .36logbs(f) - O(1) for general boolean functions which
was proven in [4]. It also improves on the lower bound of $log(deg(f)) - O(1) given in [4] since
deg(f) 5 (b ~ (f)) ~ (see Fact 7.3). Our lower bound is obtained by combining the lower bound of
Parberry and Yan [20] with the Random Adversary technique.

To display the generality of the Random Adversary technique, we also show how it can be
combined with the deterministic results of [4] to obtain an optimal lower bound for computing
PARITY on a randomized CREW PRAM. They were also able to prove this randomized lower
bound, but their proof is fundamentally different.

-

3

1.3 Integer merging on the EREW PRAM

Our last application of the Random Adversary technique is to obtain a lower bound for integer
merging on the EREW PRAM. This problem was studied in the deterministic case by Hagerup
and Kutylowski [13], who show the surprising result that merging two sorted arrays of bits can be
accomplished in O(log1ogn) time. They also show that merging two sorted arrays of integers in
the range (0,. . . , m - 1) requires R(logmin{m, n}) steps. We prove that this lower bound holds
for randomized algorithms also.

2 Definitions

In the PRAM model, processors communicate by reading and writing to a global shared memory.
The PRAM model is further subdivided depending on whether concurrent accesses are allowed to
memory on reads and/or writes. An Exclusive Read (ER) model does not d o w concurrent reads to
a memory cell, whereas a concurrent read (CR) model does allow concurrent reads. An Exclusive
Write (EW) model does not allow concurrent writes to a memory cell, whereas a concurrent write
(CW) model does allow concurrent writes. We will only deal with EW models in this paper. For
further information on CW models see, for example, [15].

We define a randomized algorithm as one in which each processor can generate some number
of random bits. In our lower bounds, we make no assumption on the number of random bits a
processor can generate. Most of our lower bounds will take the form “After t steps, any algorithm
allegedly computing f succeeds with probability at most ;(l+h(n))”, for some h. (This probability
is taken over the random bits.) Note that this implies a lower bound on the number of steps required
for an algorithm to do significantly better than guessing.

Given a randomized algorithm, or assuming a random input distribution to an algorithm, in
the ER (EW) model of the PRAM, we assume that concurrent reads (writes) can only occur with
probability 0.

3 Random Adversary Technique
The Random Adversary Technique allows one to prove a lower bound on the time required for
a parallel randomized algorithm to solve a given problem. The first step of the technique is to
decide on an input distribution for the problem. By Yao’s Theorem (see below), a lower bound
on deterministic algorithms over this distribution provides the same lower bound for randomized
algorithms .

The next step is to create a Random Adversary that proceeds through the given deterministic
algorithm step by step, fixing some of the inputs in order to ensure some desired properties. (As
shown below, this entails filling in the details of a procedure called REFINE.) Note that the Random
Adversary is similar to a standard deterministic adversary in most parallel lower bound proofs.
However, unlike deterministic adversaries that can fix inputs arbitrarily, the Random Adversary
must fix inputs according to the chosen input distribution, i.e., using the procedure RANDOMSET,
as described below. Also, depending on how RANDOMSET fixes the inputs, the desired properties
might not hold. Therefore, it is possible that the Random Adversary might have to make repeated
calls to RANDOMSET to ensure the desired properties.

The final step is to show that these desired properties (such as knowledge about the inputs still
being widely dispersed among the processors, and that the number of inputs left unset is still large)
hold with some given probability.

4

In the rest of this section we formalize this method.

3.1 Definitions

Let P be a problem and I the set of inputs to P. Let Q be the set of possible values to which each
input could be set. Define a partial input map to be a function f from I to {{*} U &}. Here '*' will
denote a "blank" or "unset" input. A partial input map is an input map if no inputs are mapped
to '*'. Let f* denote the partial input map which maps every input to '*'. A partial input map f'
is called a refinement of a partial input map f if for all i E I, and q E Q, f (i) = q implies f'(i) = q.
(We denote this by f' 5 f.) If we wish to restrict our attention to a subset of the possible input
maps, we would call that subset the relevant input maps. Likewise, we would say that a partial
input map is a partial relevant input map if it has a refinement that is a relevant input map. We
will often omit the word relevant, when it is clear from the context.

3.2 Yao's Theorem
The following theorem shows that an upper bound on the success probability of a deterministic
algorithm over random inputs implies the same upper bound for the success probability of any
randomized algorithm over a worst case input. The theorem is similar to one given in Yao [24].

Theorem 3.1 Let 5'1 be the success probability of a T step randomized algorithm solving problem
P, where the success probability is taken over the random choices made by the algorithm, and
minimized over all possible inputs. Let $2 be the success probability over a distribution 2) of inputs,
maximized over all possible T step deterministic algorithms to solve P. Then SI 5 S2.

Proof: (This proof is modeled after the proof of Yao's theorem in [6].) We can consider a ran-
domized algorithm as randomly choosing a deterministic algorithm to run. Let A be a set of
deterministic algorithms, and assume each Aj E A is chosen with some probability pi. Let D be
the input distribution where each input Dj is chosen with probability qj. Let s(Aj ,Dj) be 1 if Ai
successfully solves P on input Dj, and otherwise 0. Then

= s2.

This theorem greatly simplifies the problem of proving randomized lower bounds, as it converts
the original problem into one where the only randomness comes from the input distribution. Fur-
thermore, this input distribution can be set as one wishes. It is of course necessary to choose a
distribution that will be difficult for any deterministic algorithm. Note that the input distribution
cannot place all the probability on one input map (i.e. a "worst case" input map), since then a
simple deterministic algorithm which outputs a precomputed answer to this input map will succeed
with probability 1.

5

3.3 RandomSet Procedure
We will assume the distribution chosen is D. Function RANDOMSET can be used to randomly
generate an input map one input at a time. It is called with a partial input map f obtained through
calls to RANDOMSET, and a set S of elements which are mapped to ‘*’. The elements in S are
then randomly set one by one according to the D, conditional on f .

Function RANDOMSET(f, S)
For each i E S

Set f(i) according to the conditional distribution of i given that
the input is drawn from D and is a refinement of f

Return f
End RANDOMSET

Claim 3.1 Assuming f generated solely by calls to RANDOMSET, then f will be generated ac-
cording to the distribution 2).

Proof: Straightforward. 0

3.4 REFINE and GENERATE
Say f is t-good if it satisfies certain properties, which will be defined with respect to the problem
P and the input distribution D. Say T 5 n is the number of steps that we are trying to show is
a lower bound for solving the problem P. Let A be an algorithm which allegely solves problem P
over the input distribution D in T steps.

Given this algorithm A, we create a procedure REFINE which tells the Random Adversary
how to fix the inputs at each step. Formally, REFINE(t,f) takes a time t and a partial input
map f and returns a new partial input map f‘ that is a refinement off . We need to prove that the
procedure REFINE has two important properties, the first of which is concerned with preservation
of “t-goodness”. Consider the function GENERATE defined below that starts with the partial
input map fo = f*, and applies REFINE T times to generate a sequence of partial input maps
fo = f* 2 fi 2 - - 2 fT 2 f in which each f t = REFINE(t, f t - 1) is a refinement of f t - l , Then for
some target probability 2, we need to prove the following.

Lemma 3.1 With probability 2, for every t (0 5 t 5 T), f t is t-good.

The second property is that REFINE is unbiased. Using the same specification as before, and
assuming f is an input map generated according.to the conditional distribution over ID from the
set of refinements of fT, we need to prove the following lemma.

Lemma 3.2 The input map f returned by GENERATE is generated according to the distribution
2).

In all REFINE procedures we construct in this paper, all inputs are set by calls to RANDOMSET.
Consequently, by Claim 3.1, Lemma 3.2 will always hold.

Function GENERATE
Let fo = f*
Let f = fo
Let t = 1

6

While t I. T Do
If for some p , f (p) = '*' Then

Let ft = REFINE($, f)
Else

Let ft = f
f = ft
t = t + l

Let P = {plf(p) = W }
Return RANDOMSET(f, P)

End GENERATE

In summary, to fill in the Random Adversary framework for a specific problem P, we must
specify

1. an input distribution D,
2. a definition for t-good,
3. a function REFINE,
4. a time T ,
5. a target probability 2, and
6. a proof for Lemma 3.1.

4 Definitions for the Compaction problem
We would like to prove a lower bound on the time required to solve the problem of 2-Compaction on
the CREW PRAM and EREW PRAM models. To this end, Fich et al. [5] show that it is sufficient
to prove a lower bound on the 2-OR problem, that is, the problem of computing the OR of n bits,
restricted to the case when at most 2 of the n bits are allowed to take the value 1. We will use
this approach to prove the lower bound on 2-Compaction. Thus we will have binary inputs (i.e.
Q = (0, l}), and we will say an input map f is relevant if at most 2 inputs are mapped to '1'. Let
fo be the input map which maps all inputs to 0. Let f; (1 < i < n) be the input map which maps
all inputs to 0 except i, which is mapped to 1. Let fi,j (1 < i < j _< n) be the input map which
maps all inputs to 0 except i and j, which are mapped to 1. Let F<1 = (fj : 0 5 i 5 n}.

The input distribution we use can be described as follows. Assume f is the random variable
denoting the input map chosen. Then

1 Pr(f"= fo) = - 2
1 E

Pr(J = f;> = - - -, for 15 i 5 n 2n 4n

(Notice that the random input map must have a distribution for which the output of the problem
(in this case OR) is zero or one with roughly equal probability. Otherwise, a trivial program could
output the correct answer with probability significantly greater than 4.)

7

For an input map f and an i E [l ,n] , define the input map f(i1 to be the input map f with the
ith bit flipped, i.e.,

We say an input map f is pertinent to i if both f and f(i) are relevant.
We assume a deterministic algorithm A to compute 2-OR is run on the PRAM. We assume the

inputs are stored in the first n memory locations (i.e., for an input map f , and 1 5 i 5 n, cell i
contains f (i)) and the output is contained in the first cell.

Say the state of a processor p at time t with f is the t + l-tuple (p , VI, 02,. . . , w t) , where wi is
the value read by p in step i, or “nil” if p does not read any cell in step i.

Say input i uflects a processor p (respectively, a cell c) at time t with f iff f and f(i) are relevant
and the state of p (contents of c) at t with f(i) differs from the state of p (contents of c) at t with
f. Note that by the definition of state, if an input i affects p at t with f , then it affects p at t’ with
f for all t‘ 2 t.

Say input i causes processor p to write into c at time t with f iff f and f(i) are relevant, p does
not write into c at t with f , but p does write into c at t with f(q.

In the following, the letter f will always denote an input map, and the letter g will denote a
partial input map. Let Go = {g : for all inputs i, g(i) # 1). Let Unset(g) be the set of inputs
mapped to ‘*’ by g.

5 Compaction on the CREW PRAM
For the CREW PRAM lower bound proof, we must assume there are n processors. (Note that
when the number of processors is n2, the problem can be solved trivially in constant time.) We
have already defined the input distribution. In this section we will define the notion of t-good, the
procedure REFINE, and the values of T and 2. Then we will prove that REFINE preserves the
t-goodness property, and that the desired lower bound holds. To define t-good, we first need to
define the following sets.

0 Let P(p,t , f,g) where f 5 g, be the set of inputs in Unset(g) which affect processor p at t

0 Let C (p , t , f, g) where f 5 g, be the set of inputs in Unset(g) which affect cell c at t with f .
0 Let MV(i,O,g) be the empty set, and let MV(i,t + 1,s) be defined inductively as the set

of processors in MV(i,t,g) plus the set of processors that read a cell in MW(i,t,g) at t -t 1

with f.

with some f 5 g in F<1. -
0 Let M W (i , 0, g) = {i} if 1 5 i 5 n and g (i) = ‘*’, else let M W (i , 0, g) be the empty set. Let

M W (i , t + 1,s) be defined inductively as the set of cells in MW(i,t,g) plus the set of cells
that are written to by a processor p E MV(i,t + 1,s) with some f 5 g pertinent to i but not
in D(i , t + 1,s).

0 Let D(i , t , g) be a set of “discarded” input maps for an input i. Let

Si ,p , t ,g = (P(P, t + 1, fo, s) u P(P, t + 1, fi,S)) \ GI.
Let D(i,O,g)betheemptyset,andlet D(i,t+l,g)bedefined tobe,forallp E MV(i,t+l,g),
the inputs maps f j (j E Si,p,t,g) and fi,j (j E Si ,p,t,g).

MP(p , t ,g) = {i : p E M V (i , t,g)}

8

0 MC(c, t ,g) = {i : c E M W (i , t , g) }

The sets P(p, t , f, g) and C(c , t , f, g) correspond to sets with the same names in Cook, Dwork, and
Reischuk [3]. If all input maps were relevant, these would be the only sets necessary to prove the
desired lower bound. However, the method used in [3] to bound IC(c,t, f , g) l breaks down when not
all input maps are relevant. By defining the remaining sets (and bounding their sizes), we provide
a new way to bound IC(c,t, f , g) l , and thus achieve our lower bound.

Here we give some intuition behind the definitions of the other sets. M V (i , t , g) should be
thought of as the processors that are affected by input i for most input maps, and M W (i , t , g)
should be thought of as the cells that are affected by input i for most input maps. MP(p, t ,g)
should be thought of as the inputs that affect processor p for most input maps, and MC(c, t ,g)
should be thought of as the inputs that affect cell c for most input maps.

The difficulty in this proof comes in dealing with the fact that we can only bound the sizes
of the sets M V (i , t , g) , M W (i , t , g) , MP(p, t , g) and MC(c, t , g) for most input maps, but not all
inputs maps, For instance, if processor p reads inputs 1 and 2, and finds they are both equal to
1, then p would know the full input map (Le. MP(p, t ,g) = n). Thus we must not consider this
input map when bounding MP(p, t ,g) . These "discarded" input maps are put into D(i , t , g) , for
appropriate inputs i. In this example, we would add f2 and f1 ,~ to D(l,t,g), and we would add f1

and f1 ,2 to D(2, t , g) .
Now define the following constants (with K 2 0 to be chosen later) used to bound the sizes of

the corresponding sets above:

0 Po = K , Pt+l = Pt + ct

DO = 0, &+I= 4MVt+lPt+l
0 MK) = 0 , M&+l = M K + 2MWt(Pt + 1)2MCt

MWO = 0 , MWt+l = MWt + 2M&+1(Pt+1+ 1)
0 MPo = 0 , MPt+l = MPt + MCt(Pt + 1)

co = .K -I- 1, ct+i = ct 4- 2.&+1 4- 2Pt+iM&+l-l- 5Pt+l.

0 M c o = 1, MCt+l = MCt + 3Pt+l + M&+l

The following claim gives a bound on the rate of growth of these constants.

Claim 5.1 Fort 2 1 and some constant CY 2 0 , Ct 5 K f f t .

Proof: First note that for all t 2 0, Pt I Ct, M& I MWt, MPt I MCt, and Pt+l I 2Ct.
From these we can see that Ct+l 5 O(CtMWt), MWt+l 5 O(MW~CfMCt) , MCt+l 5 O(MCtCt),
and Ct+2 2 Ct. Using these inequalities, we can show that for some given constants I C , IC', k",
MCt+l 5 ICtCt, MWt.+l 5 (I C) I t 2 Ct 28 , and Ct+1 (k")t3C116, The last inequality implies that
Ct 5 K a t , for some Q 2 0. (Note: no attempt has been made to optimize the value of Q.) 0

Say g is t-good if

1. 9 E Go,
2. for all processors p , cells c, inputs i, and input maps f 5 g , IP(p, t , f, g)l 5 Pt, IC(c, t , f , g) l 5

ct, IMV(i,t,g)l I MVt, IMW(i,t,g)l 5 MWt, lW,t,s>l I a, IMP(p,t,g)l I MPt,
IMC(c, t , s)l I MCt, and

3. Unset(g) 2 n - E P,

9

Now assume g is the partial input map produced after the first t steps. Then in step t + 1
let Cp be the set of cells read by a processor p for input maps f E F.1 - where f 5 g . Then
IcpI I IP(p , t , f o ,g) l+ 1’1 Pt + 1. Let Kt = Pt + I .

Consider the nKt possible reads by all processors on inputs in F<1. Let L contain each cell that
has over 2KfMCt possible reads to it. We then define the functionXEFINE as follows. (Basically,
REFINE will set inputs such that the value of each cell in L becomes k e d . Thus large concurrent
reads do not transfer too much information about unset inputs.)

Function REFINE(t, g)
(1) Let g” = g
(2) For each c E L

Let g“ = RANDOMSET(g“,MC(c,t,g”))
Next c

(3)
(4)
(5) Let g‘ = g“
(6) Return g’
End REFINE

The following is a useful technical fact that we will use throughout this section.

Claim 5.2 If g‘ 5 9 and f I g‘, (1) P(p , t , f , g ‘) c P(p, t , f ,g) , (2) C(c,t,f,g’) c C(c,t,f,g).
(8) MV(i,t,g’) G MV(i , t ,g) . (4) MW(i,t,g’) c MW(i , t ,g) . (5) D(i,t,g’) G D(i , t ,g) . (6)
MP(P, t, s‘) c MP(P, t , SI . (7) MC(c, t , s? c MC(c, t , SI .

Proof: The proof for (1) and (2) is immediate.
The proofs for (3), (4), and (5) can be handled together by induction. Note that the case t = 0

is true.. Now assume (3), (4), and (5) are true for some t. We can prove that they hold for t + 1 as
follows. (3) follows directly by induction. (5) follows directly from (1) and (3). To prove (4) holds,
consider a cell c E MW(i,t -t 1,g‘). If c E MW(i,t,g‘), then c E MW(i,t,g) MW(i,t t 1,s).
Otherwise, c is written to by some p E M V (i , t + 1,g‘) for some f 5 g’ pertinent to i but not in
D(i , t + 1,s’). Consider the case when f # fo and f # f i e Then for some j # i, f = fj or f = fi,j*
Since f is not in D(i,t + l,y’), j is not in P(p,t , fo,g‘) or P(p,t,fi,g‘), and thus p also writes to
c with fo or fi. From (3), p E MV(i,t + 1,s). Also, neither fo nor f; is in D(i , t 4- 1,s). Thus
c E M W (i , t + 1, g), and (4) holds.

(6) and (7) follow from (4) and (5) , respectively. 0
The following claim shows the important relationship between the sets defined above, namely

if a processor p (cell c) is affected by input i with f, then either f is “discarded” or i affects p (c)
for most input maps. (This is the link we need in our new method of bounding IC(c,t,f,g)l in
Claim 5.7.)

Claim 5.3 For all p , c , f , g , t , i with f 5 g , if i E P(p,t , f , g) , then either f E D(i , t ,g) or p E
MV(i , t ,g) ; also, if i E C(c,t, f , g) , then either f E D(i , t ,g) or c E M W (i , t , g) .

Proof: By induction. The case for t = 0 is straightforward.
For the first part of the claim, assume i E P (p , t + l , f , g) . Then either i E P (p , t , f , g) , or i

is not in P (p , t , f , g) but i E C(c, t, f , g) for c read by p at t -I- 1 with f. In the first case, either
f E D(i , t ,g) c D(i,t + 1 , s) or p E M V (i , t , g) MV(i , t + 1,s) . In the second case, either
f E D (i , t , g) G D(i,t 4- 1,s) or c E M W (i , t , g) . Since i is not in P (p , t , f , g) , then p reads c at
t + 1 for both f and f(i), one of which is in F<1, since f must be pertinent to i by the assumption.
So by the definition of MV(i,t+ l , g) , p E G V (i , t t 1,s).

10

For the second part of the claim, assume i E C(c,t + 1, f,g). Then either i E C(c,t, f,g),
or i is not in C(c,t, f,g) but either (1) i E P(p,t + 1, f,g) for some processor p which writes
to c at t + 1 with f , or (2) i causes some p to write at t + 1 with f . In the first case, either
f E D(i,t,g) D(i , t + 1,s) or c E MW(i,t,g) C M W (i , t + 1,s). In the second case (l) , either
f E D(i , t + 1,s) or p E MV(i,t + 1,s) and since f is pertinent to i, c E M W (i , t + 1,s) by
definition. In the second case (2) , note that i E P(p,t + 1, f,g), so either f E D(i , t + 1,s) or
p E MV(i, t+l ,g) . I f p E MV(i , t+l ,g) , then since f is pertinent to i and not in D(i , t+ l ,g) and
hence f(i1 is pertinent to i and not in D(i , t + 1,s) (by definition of D(i , t + 1, g)), p writes to c on
an input which is pertinent to i and not in D(i , t+ 1,s). Thus c E MW(i , t+ 1,s) by definition. 0

The next seven claims prove the desired bounds on the sizes of the sets defined above. These
will be used to prove that REFINE preserves the t-goodness property in Lemma 5.1. For these
claims, assume g is t-good, and REFINE(g,t) returns 9‘.

Claim 5.4 For all p and all f 5 g‘, IP(p,t + l,f,g‘)l I Pt + Ct
Proof: At t + 1, a processor could be affected by all inputs which affect it at t plus those inputs
which affect the contents of the cell it reads with f . Thus

The following claim was essentially proven as part of Lemma 2 in [3].

P(P, t + 1, f, s‘) G P(P, t , f , s’) u C(C, t , f, 9’).
The claim follows from Claim 5.2, and the fact that g is t-good 0

Claim 5.5 For all inputs i, IMV(i,t + 1,g‘)l I M K + 2MWtK;MCt.
Proof: For i not in Unset(g’), MV(i, t + 1,s’) = 0, so the claim is trivial. For i E Unset(g’), by
the definition of REFINE(g, t) , MW(i , t , g) contains no cell c that is read by more than 2KzMCt
processors with f E F<1. Thus for each cell in MW(i,t,g’) 2 MW(i,t,g), at most 2K?MCt
processors are added to MV(i, t + 1,s’). Also the processors in MV(i,t,g‘) E MV(i,t,g) are
added. The claim follows from Claim 5.2 and the fact that g is t-good 0

Claim 5.6 For all p, IMP(p, t + 1, g’)] I MPt + MCtKt.

Proof: An index i E MP(p, t + 1,g’) if p E MV(i,t + 1,g’). If p E MV(i,t + 1,s’) then either
p E MV(i,t,g‘) and thus i E MP(p,t,g’) C MP(p,t,g), or p is not in MV(i,t,g’) but p reads a
cell c E MW(i,t,g’) at t + 1 with some f E F<1 and thus i E MC(c,t,g’) G MC(c,t,g). The
bound follows by noting that p reads at most Kt-different cells at t + 1 with some f E F<1. CI

The following claim is similar to Lemma 2 in [3], but it is much more complex due to the fact
that not all input maps are relevant.

Claim 5.7 For all c and all f 5 g‘, IC(c, t + 1, f,g’)l i Ct + 2Dt+1+ 2Pt+lMK+1+ 5Pt+1.

Proof: For a given cell c there are two cases.

Case 1 Some processor p writes into c with f at step t + 1.
Case 2 No processors write into c with f at step t + 1.

InCase1,aninput icanonlyaffectcat t+l with f i f ia f fec tspa t t+ l with f ,soC(c,t+l,f ,g’) =

In Case 2, an input i can only affect c at t + 1 with f if i affects c at t with f or if i causes
someptowri te in toca t t + l with f . Then IC(c,t+l,f ,g’)15 IC(c,t , f ,g’)l+IY(c,t+l, f ,g’)l ,
where Y = Y (c , t + 1, f,g’) is the set of inputs i E Unset(g‘) which cause some p to write into c at
t + 1 with f . Let Y = (~ 1 , . . . , uT}, and suppose input u; causes processor z; to write into c with
f, for i E {1,2,. . .,r}.

P(P,t+ l ,f,g’), and IC(c,tt Lf,g’)I I & + l a

11

Subclaim 5.1 For all u;, uj E Y , with z; # zj, either ui affects zj at t + 1 with f (u j) , or uj affects
zi at t t 1 with f(Ui), O f f(Ui)(Uj) is not relevant. In the last case, let uo be the index that f maps to
1. Then uo afjects zi at t + 1 with f(ui), or uo age& zj at t + 1 with f(uj), or ui afjects zj at t + 1
with f(uj)(uo), or uj affects xi at t + 1 with f(ui)(uo).

Proof: First assume f(ui)(uj) is relevant. Then if neither of the first conditions held, processors zi
and zj would both write to c at t + 1 with f(ui)(uj). Now assume f(ui)(uj) is not relevant. Then f
must map at least one other index, say UO, to 1. If none of the latter conditions held, processors zi
and zj would both write to c at t + 1 with f(ui)(uj)(uo). 0

Now consider a bipartite graph G with two sets of vertices labeled (u1,. . . , UT} and {zl . . . zr},
For i 2 1, say there is an edge between ui and zj iff u; affects zj at t + 1 with f (u j) or with f(uJ)(uo).
Let E be the number of edges in G. The degree of each vertex zj is at most IP(Zj, t t 1, f(uj), g‘)lt

By Claim 5.3 and the fact that at most Pt+l of the zi’s can be equal, uo affects processor zi
at t t 1 with f(ui) for at most ID(uo,t + 1,g’)l t Pt+ilMV(uo,t t 1,g‘)l 5 Dt+i t Pt+iM&ti
values of i. Then there are at least r - Dt+l - Pt+lM&+l choices for u; such that uo does not
affect z; at t + 1 with f(ui). Given ui, there are at least r - Dt+l - Pt+lM&+l - Pt+l choices for
uj such that uo does not affect zj at t + 1 with f(uj) and uj does not cause z; to write into c at
t + 1 with f (i.e., zj # zi). For a ui and uj such as this, one of the edges (ui,zj) or (u j , z;) must
exist. Hence $(T - Dt+l- Pt+lM&+l)(T - Dt+l- Pt+lM&+l- Pt+l) 5 E 5 2rPt+l. This implies
T 5 2Oti-i 4- 2Pt+iM&+i 4- 5Ptti. Then IC(c,t+ l,f,g‘)l 5 Ic(c,t,f,g‘)l 4- ly(c,t-k 1,f,d)l 5
ct 4- 2ot+i 4- 2Pt+iM&+i 4- 5Pt+i- 0

Claim 5.8 For all i, IMW(i,t + 1,g‘)l 5 MWt + 2M&+1.

Proof: Consider a processor p in MV(i , t + 1,s‘). This processor p writes to a cell c with fo
and a cell c‘ with fi. Any possible writes to other cells with inputs pertinent to i only occur with

IP(zj,t t 1,f(uj)(uo),g’)l, and thus E 5 2rPt+l.

f E D (i , t t 1,s’). 0
Claim 5.9 For all i, lD(i,t + 1,g‘)l 5 4MK+lPt+l.

Proof: Straightforward, from the definition. 0

Claim 5.10 For d l c, IMC(c,t+ 1,g’)l 5 MCt + 3Pt+l -I- MPt+l
Proof: An input i E MC(c, t + 1,s‘) if c E MW(i , t + 1,s’). If c E M W (i , t + l,g’), then either
c E MW(i,t,g‘), and thus i E MC(c,t,g’), or c is not in MW(i,t,g’) but is written to by a
processor p E M V (i , t + 1,s’) with some f pertinent to i but not in D(i , t + 1,g’). In the second
case, it is enough to consider only the case of p writing to c with fo or f;, since for any other f
pertinent to i, either p writes to the same cell as with fo or fi, or f E D(i , t + 1,s’). Note that only
one processor can write to c at t + 1 with fo, and this adds at most MPt+l inputs to MC(c, t + 1, g‘).

Let W = W (c , t + 1, g’) be the set of inputs i such that p E M V (i , t + 1, g’) and p writes to c
at t + 1 with fi but p does not write to c at t + 1 with fo. (Note that for each i, there is at most
one p , else there would be a write conilict.) Then W(c , t + 1,s‘) = Y (c , t + 1, f0 ,g ’) from above,
so [W(c , t t 1,g’)l 5 20t t 2Pt+lM&+l + 6Pt+l. (Actually, since fo(j , j t) is always relevant, we can
use the simpler analysis in [3] to show that IY(c,t + 1, f0,g‘)I 5 3Pt+l. We will use this better
bound, though asymptotically, it does not affect our lower bound.) This adds at most 3Pt+l inputs
to MC(c,t t 1,g’) 0

Let 6 be a constant, 0 5 6 < 1. Let E = 2-lof fn . Let K = 5 / ~ . Let T = (1-6) 10g,(2-~/(~-~)log n),
for a given in Claim 5.1. (Note that T = O(logloga).) Let 2 = 1 - 1C-l. For the following we
will assume n is large enough so that the analysis holds.

12

Lemma 5.1 With probability 2, for every t (0 5 t 5 T), ft is t-good.

Proof: The bounds on the sizes of sets follows from Claim 5.4, Claim 5.5, Claim 5.6, Claim 5.7,
Claim 5.9, Claim 5.8, and Claim 5.10. Using the fact that Pt+l 2 2Pt, we can see that the number
of inputs set by Randomset at step t is at most n/2Kt 5 n21-t/2K. Thus, the total number of
inputs set in all steps is at most n /K . Then over the chosen input distribution, the probability
that any of these inputs is set to 1 is at most

1 E 1 -+-5- .
2K K I<

Thus the probability of success in every round is at least 1 - Ii-1 = 2. CI

Theorem 5.1 For any constant S, 0 I S < 1, solving 2-OR with probability greater than a(l + E)
on an n processor Randomized CREW PRAM requires T steps

Proof: By Theorem 3.1, we simply need to show that any deterministic algorithm solving 2-OR
with the desired probability over the given distribution requires 2' steps. From Lemma 5.1, the
probability that any of the inputs will be set to 1 is at most 1i-l = 45. Given that no input is set
to 1,

Thus the probability that some input that affects the output cell is 1 is at most

I O(@. < (5 .210g6 ");logl-6 n C(C, T, fo, g T) I -

Assuming that no inputs were set to 1 by RANDOMSET, and no inputs affecting the output cell
are 1, the output cell is constant over aU the remaining possible input maps. Then whatever value
is output by the algorithm, it is correct with probability at most

- 1 t E / 5 t O(n-1'2) t E / 4 < $1 1 t E) .

2

Corollary 5.1 For any constant 6, 0 5 S < 1, solving 2-compaction with probability greater than
4(1+ E) on an n processor Randomized CREW PRAM requires R(log1og n) steps

Proof: There is a constant time reduction from 2-OR to 2-Compaction [5]. 0

Corollary 5.2 For any constant 6, 0 I S < 1, and any constant 7 , 0 < 7 < 1, solving approximate
2-compaction with a destination array of size nl-7 with probability greater than $(1+ E) on an n
processor Randomized CREW PRAM requires R(1og log n) steps

Proof: Let C = r-log-'(l - r)] . After performing approximate 2-compaction C times, the
marked items would reside in an array of size at most &. Then 2-compaction could be performed
in constant time using n processors. Thus approximate 2-compaction can be solved at most C
times faster than 2-compaction. 0

13

6 Compaction on the EREW PRAM
The proof of the lower bound for compaction on the EREW PRAM is similar to that on the CREW
PRAM. One major difference is that the lower bound for the EREW PRAM applies regardless of
the number of processors used.

We will use many of the same set names, since they intuitively denote the same kinds of sets.
However, we must change their definitions slightly to obtain the better EREW PRAM lower bound.

For the EREW PRAM, REFINE(t,g) will simply return g. Therefore, we will leave off the
parameter g from the set definitions.

0 Let P(p, t , f) be the set of inputs which affect processor p at t with f .
0 Let C(c, t , f) be the set of inputs which affect cell c at t with f.
0 Let M V (i , 0) be the empty set, and let M V (i , t + 1) be defined inductively as the set of

processors in M V (i , t) plus the set of processors that read a cell in MW(i, t) at t -t 1 with
some f pertinent to i not in DV(i,t -t 1).
Let MW(i,O,g) = {i} if 1 5 i 5 n, else let MW(i,O,g) be the empty set. Let MW(i,t + 1)
be defined inductively as the set of cells in M W (i , t) plus the set of cells that are written to
by a processor p E MV(i , t + 1) with some f pertinent to i not in DW(i,t + 1).

0 Let DV(i , t) be a set of “discarded” input maps for an input i. Let D V (i , 0) be the empty
set, and let DV(i , t + 1) be all inputs in DW(i , t), plus for all c E MW(i, t)? if some p not in
M V (i , t) reads c with fo, the inputs f j and fi,j, for all j E P(p, t , fo). else for one p not in
MV(i , t) which reads c with an fh pertinent to i not in DW(i , t) , the inputs fj and fi,j for
all

j E P(P,t, fh) U {j‘ : fjl E DW(h,t) and j‘ # i} U
{j’ : j‘ E P(p’, t , fo) for some p’ E MV(h, t) , and j’ # i}.

0 Let DW(i , t) be another set of “discarded” input maps for an input i. Let

Si,p,t = (P(P, t + 1, fo) u P(P, t + 1, f i)) \ {i}.
Let DW(i , 0) be the empty set, and let DW(i , t + 1) be all inputs in DV(i , t + l), plus for all
p E MV(i,t t l), the inputs f j and fi,j for all j E Silp,t.

The sets P(p, t , f) , C(c, t , f), MV(i, t) , and MW(i, t) are intuitively the same sets as in the previous
section. However, in this proof we have two sets of discarded input maps. Intuitively, DV(i , t)
denotes the set of input maps discarded before an exclusive read step, and D W (i , t) denotes the set
of input maps discarded before an exclusive write step. (D W (i , t) is basically the same as D(i , t , g)
of the previous section.) The complex definition of DV(i , t) is needed in order to obtain a very
tight bound on IMV(i,t)l.

Define the following constants (with K to be chosen later): . Po = K, Pt+l = Pt + ct

. DVO = 0, D&+l = 2DW- + 2(M& + 1)MWtPt
co = -k 1, ct+i = ct -k 2D&+i + 4Pt+iM&+i + 6Pt+i.

DWo = 0, DWt+i = D&+i -t 4M&+iPt+i
MVo = 0, M&+i= M& + MWt

14

MWo = 1, MWt+l = MWt + 2MV,+l

The following claim gives a bound on the rate of growth of these constants.

Claim 6.1 For t 2 1 and some constant p 2 0 , Ct 5 pt2.
Proof: First note that for all t 2 0 , Pt 5 Ct, MV, 5 MWt , DV, 5 DWt 5 Ct, and Pt+l 5 2Ct.
From these we can see that MWt+l 5 5MWt, and thus MWt+l 5 5? Also, DWt+l 5 0(25tt1Ct),
and Ct+l 0(25tt1Ct), The last inequality implies that Ct 5 pt2, for some ,O 2 0. (Note: no
attempt has been made to optimize the value of p.) 0

Say g is t-good if

As in the previous section, we now prove the following claim showing the important relationship
between the sets defined above.

Claim 6.2 For all p , c, f , t , i , if i E P (p , t , f) , then either f E D V (i , t) or p E M V (i , t) ; also, if
i E C(c, t , f), then either f E D W (i , t) or c E M W (i , t) .

Proof: By induction. The case for t = 0 is straightforward.
For the first part of the claim, assume i E P(p, t+ 1, f). Then either i E P(p, t , f), or i is not in

P(p, t , f) but i E C(c, t , f) for c read by p at t + 1 with f. In the first case, either f E D V (i , t) 5
D V (i , t+l) or p E M V (i , t) 2 M V (i , t+l). In the second case, either f E DW(i , t) 5 D V (i , t+l) or
c E M W (i , t) . Assuming f is not in D V (i , t + l) , by the definition of M V (i , t + l) , p E M V (i , t + l) .

For the second part of the claim, assume i E C(c,t t 1, f). Then either i E C(c, t , f), or i is not
in C(c, t , f) but either (1) i E P(p, t+ 1, f) for some processor p which writes to c at t + 1 with f, or
(2) i causes some p to write to c at t+ 1 with f. In the first case, either f E D W (i , t) C_ DW(i , t+ 1)
or c E M W (i , t) E M W (i , t + 1). In the second case (l), either f E DV(i , t + 1) D W (i , t + 1) or
p E M V (i , t + 1) and since f is pertinent to i, c E M W (i , t + 1) by definition. In the second case
(2), note that i E P(p,t + L f) , so either f E D V (i , t + 1) DW(i , t + 1) or p E M V (i , t + I) . If
p E MV(i,t t l), then since f is pertinent to i and not in DW(i,t t 1) and hence f(i1 is pertinent
to i and not in D W (i , t t 1) (by definition of D W (i , t + l)) , p writes to c on an input which is
pertinent to i and not in D W (i , t + 1). Thus c E M W (i , t + 1) by definition. 0

For the remaining claims, we assume g(= g*) is t-good.

Claim 6.3 For all p and all relevant f, IP(p, t + 1, f) l I Pt + Ct

Proof: At t + 1, a processor could be affected by all inputs which affect it at t plus those inputs
which affect the contents of the cell it reads with f. Thus

The claim follows from the fact that g is t-good 0

15

Proof: I f p E M V (i , t + l) , then either p E M V (i , t) or p is not in M V (i , t) but p reads a cell c in
M W (i , t) at t + 1 with some f pertinent to i not in DV(i , t + 1). In the second case, we argue that
p is the only processor not in M V (i , t) that reads c with some f pertinent to i not in DV(i , t + 1).
(In fact, p reads c with all f pertinent to i not in DV(i , t t l).)

First, if p reads c with fo, then to avoid a read conflict, p is the only processor to read c with fo.
Then by the construction of DV(i , t + l) , p reads c for all f E F.1 not in DV(i , t + 1). Note that
since p # M V (i , t) , Claim 6.2 implies that p reads c for all f(;) for all f E F<1 not in DV(i , t + l) ,
Le., for all f pertinent to i not in DV(i , t t 1). Thus to avoid a read con&t, p must be the sole
processor that reads c for some f pertinent to i not in D V (i , t + 1).

Now assume p does not read c with fo. We obtain a contradiction as follows. First, if another
processor p' $! MV(i,t) reads c with fo, then from the above argument, there would be a read
conflict. Thus we can assume no processor not in MV(i,t) reads c with fo. Now notice that p
reads the same cell for fo and f; (since by Claim 6.2, p # M V (i , t) and fo # DV(i , t + 1) implies
i # P(p, t , fo)). So without loss of generality, assume p reads c with either f = fj or f = f;,j
(j # i), and that f # DV(i , t + 1). Note that f # DV(i , t + 1) implies f(;) # DV(i , t + 1). Then
note that since p $! M V (i , t + l) , by Claim 6.2, i # P(p, t , f), so p reads cell c for both f and f(j)
(Le. for both f j and fi,j). Consequently, there is at least one processor p' that reads c with an fh
pertinent to i not in DW(i , t) . Let p' and fh be the actual processor and input map chosen in the
construction of DV(i, t t 1).

First consider the case h = j . Note that j E P(p, t , fo), and thus by Claim 6.2 p E M V (j , t) =
M V (h , t) . Consequently, fj would be placed in DV(i , t + l), a contradiction. Second consider
the case p = p' and h # j . Then P(p, t , fo) would contain both j and h, and thus by Claim 6.2
p E MV(h , t) . Consequently, fj would be placed in DV(i , t + l), a contradiction. Lastly, consider
the case p # p' and h # j . Again note that j E P(p, t , fo). I f p E M V (h , t) then fj would be placed
in DV(i , t + l) , SO p # MV(h , t) . I f fj E D W (h , t) , then fj would be placed in DV(i , t + l) , so
f j # DW(h , t) . Then by Claim 6.2, h # P(p , t , f j) , SO p reads c on fh,j. NOW if j E P(p',t,fh),
then f j would be placed in DV(i , t + l) , so j $2 P(p',t, fh). Therefore, p' also reads c on fh,j. This
would cause a read conflict and thus implies a contradiction. 0

Claim 6.5 For all i, lDV(i , t + 1)1 5 2DWt + 2(M& + l)MWtPt.

Proof: Straightforward, from the definition. 0

Claim 6.6 For all c and all relevant f , IC(c,t t 1, f) l 5 Ct t 2DT4+1 t 2Pt+lMT4+1+ 5Pt+l.

Proof: For a given cell c there are two cases.
Case 1 Some processor p writes into c with f at step t + 1.
Case 2 No processors write into c with f at step t + 1.
In Case 1, an input i can only affect c at t t 1 with f if i affects p at t+ 1 with f, so C(c, t+ 1, f) =

In Case 2, an input i can only affect c at t+l with f if i affects c at t with f or if i causes some p to
writeintocat t+l with f. Then IC(c,t+l, f) l 5 [C(c,t,f)l+lY(c,t+l,f)l,whereY = Y (c , t + l , f)
is the set of inputs i which cause some p to write into c at t + 1 with f. Let Y = (~1,. . . , uT}, and
suppose input ui causes processor zi to write into c with f, for i E {1,2,. . . , r}.

Subclaim 6.1 For all ui, uj E Y , with Z; # Zj, either ui aflects Zj at t + 1 with f(,), or U j aflects
Z; at t + 1 with f(ui), or f(ui)(uj) is not relevant. I n the last case, let uo be the index that f maps to
1. Then uo affects zi at t + 1 with f(ui), or uo affects Z j at t + 1 with f(uj), or Ui affects Zj at t + 1
with f(uj)(uo)r or Uj affects z; at t + 1 with f(ui)(uo).

P(P, t + 1, f), and IC(C, t t 1, f)l i Pt-I-1.

16

Proof: As in Subclaim 5.1. O
Now consider a bipartite graph G with two sets of vertices labeled {u l , . . . , u,} and {zl . . . zT},

For i 2 1, say there is an edge between ui and zj iff u; affects zj at t+ 1 with f (u j) or with f(uj)(uo).
Let E be the number of edges in G. The degree of each vertex zj is at most IP(zj, t + 1, f (u j) ,g ') l +

By Claim 6.2 and the fact that at most Pt+l of the 2;'s can be equal, uo affects processor z;
at t t 1 with f(ui) for at most IDV(u0,t t 1)1 t Pt+llMV(uo,t t 1) 5 D&+l t Pt+lM&+l values
of i. Then there are at least r - DVt+l - Pt+lMV,+l choices for u; such that uo does not affect
z; at t + 1 with f(ui). Given ui, there are at least T - DVt+l - Pt+lMVt+l - &+I choices for U j

such that uo does not affect zj at t + 1 with f(uj). and uj does not cause z; to write into c at t + 1
with f (i.e., zj # 2;). For a ui and uj such as th s , one of the edges (u; ,z j) or (u j , ~ ;) must exist.
Hence $(r - DV,+l - Pt+lMV,+l)(r - DV,+l - Pt+lMV,+l - P-+l) 5 E L. 2rPt+l. This implies
r 5 2Dfi-t-i 4- 2Pt+iMfi+i 4- 5Pt+i. 'Then IC(c,t-k b.f,g')l 5 IC(C,t,.f,g?l d- ly(c,t+ l,.f,g')I 5

IP(zj,t t 1, f(uj)(ua),g')I, and thus E I 2rpt+l.

Ct t 2Dvt+l t 2Pt+lMvt+l t Wtl. 0
Claim 6.7 For all i, IMW(i,t + 1)1 5 MWt + 2M&+1.

Proof: Consider a processor p in MV(i,t + 1). This processor p writes to a cell c with fo and
a cell c' with fi. Any possible writes to other cells with inputs pertinent to i only occur with

Claim 6.8 For aEl i, IDW(i,t 4- 1)1 I DV, + 4MV,+lPt+l.

Proof: Straightforward, from the definition. 0

that the analysis holds.

Lemma 6.1 With probability 2, for every t (0 5 t 5 T), ft is t-good.

Proof: The bounds on the sizes of sets follows from Claim 6.3, Claim 6.4, Claim 6.6, Claim 6.5,
Claim 6.7, and Claim 6.8. Also, REFINE never sets any inputs. 0

Let S be a constant, 0 5 S < 1. Let E = n-6. Let T = d(1- S)logp n - logp 4, for given in
Claim 6.1. (Note that T = @(e).)
Theorem 6.1 For any constant 6, 0 5 S < 1, solving 2-OR with probability greater than $(l+ E)

on a Randomized EREW PRAM requires fl(l/logn) steps

Proof: By Theorem 3.1, we simply need to show that any deterministic algorithm solving 2-OR
with the desired probability over the given distribution requires C2(- steps. From Lemma 6.1

f E DW(i , t + 1). 0

Let 2 = 1, I< = 1, and assume T > 0. For the following we will assume n is large enough so

and Claim 6.1,

The probability that some input that affects the output cell is 1 is at most

n-6 E - + -. 4 4
Assuming no inputs affecting the output cell are 1, the output cell is constant over all the remaining
possible input maps. Then whatever value is output by the algorithm, it is correct with probability
at most

1 n-' E 1
2 4 4 - 2 - + - + - < -(1 + E) .

17

Corollary 6.1 For any constant 6 , 0 5 6 < 1, solving 2-compaction with probability greater than
3(1+ E) on a Randomized EREW PRAM requires Q(m) steps

Proof: There is a constant time reduction from 2-OR to 2-Compaction [5]. 0
Let E = n-6-7. Let T = J61.ps.-'.pp4, for P given in Claim 6.1. (Note that T =

@ma*)
Corollary 6.2 For any constant 7, 0 < y < 1, and any constant 6 , 0 5 6 < y, solving approximate
2-compaction with a destination array of size nl-7 with probability greater than i(1 + E) on a
Randomized EREW PRAM requires a(- steps.

Proof: Similar to reducing 2-OR to 2-Compaction, we can reduce the problem of approximate
2-OR (that is, if d inputs are 0, then the array of size d - 7 contains all zeros, else it contains
at least one 1) to approximate 2-Compaction. By Theorem 3.1, we simply need to show that
any deterministic algorithm solving approximate 2-OR with the desired probability over the given
distribution requires a(-) steps. From Lemma 6.1 and Claim 6.1,

The probability that some input is 1 that affects any of the nl-7 output cells is at most

n6-7 E
- + -. 4 4

Assuming no inputs affecting these output cells are 1, the output cells are constant over all the
remaining possible input maps. Then whatever values are output by the algorithm, they could be
correct with probability at most

1 n6-7 E 1 - + - + - < -(1+ E).
2 4 4 - 2

7 Boolean Functions
In this section we will prove randomized lower bounds for computing boolean functions on the
CREW PRAM model. Our main result is a lower bound for general boolean functions, and it
improves a result of Dietzfelbinger, Kutylowski, and Reischuk [4]. We also present a randomized
lower bound for computing PARITY which matches the optimal randomized lower bound of Diet-
zfelbinger, Kutylowski, and Reischuk [4]. Although we will provide all the relevant definitions here,
the reader is encouraged to examine [3,4, 201 for further details.

7.1 Definitions
Let Q be the set {O,l}. The input distribution for each problem will give some non-zero proba-
bility to every possible input map. The function REFINE(t,g) always returns g @e., the Random
Adversary does not set any inputs)

0 Let P(p , t , f) be the set of inputs which affect processor p at t with f .
0 Let C(c, t , f) be the set of inputs which affect cell c at t with f .

18

Now define the following recursive functions.
0 Let PO = 0, and Pt+l = Pt + Ct for t 2 0.
0 Let CO = 1, and Ct+l = 3(Pt + Ct) for t 2 0.

Parberry and Yan [20] show that Pt 5 4t, and Ct 5 3(4t).
Let fib(Ic) be the Icth Fibonacci number, that is, fib(0) = 0, fib(1) = 1, and fib(Ic) = fib(Ic - 2) +

fib(Ic - 1) for Ic 2 2. Let $(z) = min(tlfib(2t + 1) 2 x}.
Let 2 1 , . . . ,x, denote boolean variables, al , . . .,a, denote elements of (0,1} and a denote an

element of {O,l}n. Let B, denote the set { f l f : {O,l)n + {O,l}}. To avoid ambiguity, we use
the term input vector to denote an element from the domain of f (input vectors have a l-to-1
correspondence with input maps), and input to denote the boolean variable corresponding to one
of the n locations in the input vector. For f E B, define bs(f) as the maximum of the numbers
max(ll3S1,. . . , Si disjoint such that f (&) # f (a) , 1 5 j 5 I} taken over all input vectors a, where
as is obtained from a by flipping all bits in positions i E S. Say a is a base input vector if there are
b s (f) disjoint sets SI,. . . , Sbs(f) such that f(&) # f (a) , 1 5 j 5 bs (f) .

Fact 7.1 ([22]) Every f E B, can be written f = Csas(f)ms for unique integer coeficients

Dietzfelbinger, Kutylowski, and Reischuk obtain the following explicit formula for the coefficient

For S C_ (1,. . . , n} let m S be the positive monomial n i E S z; and ms(a) = a;

as(f 1,

crs(f) = (-1)'s' c
aef-l(1)

{i[ai=l)ES

For f E B,, let deg(f) = m=(lSI bs(f) # 0).
Fact 7.2 ([23]) deg(f) 2 d m .
From [4], Facts 2, 4, and 5, we obtain
Fact 7.3 deg(f) 5 (b ~ (f)) ~ .

Let P; denote processor i and Cj denote cell j. Let S be the possible states of any processor,
and let C be the possible contents of a cell. Now we define the partitions of {0,1}" induced by the
states of the processors and cells at step t. For i , j E N , s E S , and c E C, let

G(s, i ,t) = { a E (0, l}nlP; is in state s after step t on input vector a} ,
H(c , j , t) = (a E (O,I}"lCj contains c after step t on input vector a}.

Let

G(t) = {G(s, i, t)li E N , s E S}, and
Z(t) = {H(c, j , t) l j E N,c E C}.

For W E (0, l},, let cw be the characteristic function of W . For W a class of subsets of (0, l},,
let deg(W) = max{deg(cw)lW E W}.
Lemma 7.1 ([4])
(a) deg(G(0)) = 0 and deg(X(0)) = 1,
(b) deg(G(t)) I deg(l-l(t - 1)) + deg(G(t - 1)),
(c) deg(X(t)) I deg(X(t - 1)) + deg(G(t)), and
(d) deg(G(t)) I f ib@) and deg(X(0)) I fib(2t + 1).
Fact 7.4 ([4]) Let f E B,, and let A be a deterministic CREW PRAM algorithm that computes
f . Then A requires at least $(deg(f)) steps.

19

8 Improved Lower Bounds for General Boolean Functions
Here we would like to prove a lower bound on the time for a randomized CREW PRAM algorithm
to compute any boolean function f on n inputs with probability greater than f (1 4- E) , for some
E , Consider a base input vector a for f , and the bs(f) sets SI,. . . Sbs(j), such that / (a) # /(asJ)
(1 I j I W)).

The input distribution we use is the following:
0 With probability 4, use input vector a.
0 For each j , (1 I j 5 bs(f)), with probability &(l - ~ / 2) use input vector asJ .
0 Each of the IC = 2n - (bs(f) + 1) other possible input vectors occurs with probability Q.

Say g is t-good if

1. for all processors p, cells c, inputs i, and input maps f 5 g, IP(p,t, f) l 5 Pt, IC(c,t, f) l 5 Ct,

2. Unset(g) = n.

and

Let f be a boolean function. Let S be a constant, 0 I S < 1. Let E be a constant, 0 < E < 1, and
let T = log4 bs(f) + l o g , (~ / 1 2) .

Lemma 8.1 With probability 1, for every t (0 5 t 5 T) , ft is t-good.

Proof: The algorithm A is simply a deterministic CREW PRAM algorithm which must not perform
a concurrent write for any input vector, since each input vector occurs with non-zero probability.
For any algorithm A of this type, Parberry and Yan [20] shows that the properties required hold
for all t. 0

Theorem 8.1 Let A be a randomized CREW PRAM algorithm that allegedly computes f with
probability greater than i(1 t E) . Then A runs in at least T steps.

Proof: By Theorem 3.1, it suffices to show that for any deterministic algorithm A' running in
less than T steps over the input distribution, A' computes f correctly with probability less than
$(l+ E) . From Lemma 8.1, CT 5 3(4T) 5 ~ (b s (f)) / 4 . Then the probability that some input that
affects the output cell indicates that f(a) is the wrong answer is ~ / 2 . Thus, as argued in previous
Theorems, the algorithm will then be correct with probability at most

1 € 1
2 2 - t - I 2(1+ E).

0
Notice that for constant E , we achieve the bound .5logbs(f) - O(1), whereas the previous best

bound was q5(dm) m .36logbs(f) - O(1) [4].
Also note that using the Random Adversary combined with the deterministic lower bound of [4]

would also yield a q5(d-)) lower bound for the randomized computation of f on a CREW
PRAM, and thus the multiplicative constant would remain approximately .36.

20

9 Matching lower bound for PARITY

0 = b l , ..., n (h) l =

Here we prove a lower bound for the time of a randomized CREW PRAM to compute the PARITY
of n bits with probability greater than i.

We say g is t-good if

1. Lemma 7.1 holds for all t' 5 t , and
2. Unset(g) = n.

For our input distribution we assume each input is assigned a value in Q with equal probability.
Let T = [q5(n)1.

Lemma 9.1 With probability 1, for every t (0 5 t 5 T), ft is t-good.

PAR.ITYn(a) (-1)
uEhrl (1)

Proof: The algorithm A is simply a deterministic CREW PRAM algorithm which must not perform
a concurrent write for any input vector, since each input vector occurs with non-zero probability.
For any algorithm A of this type, [4] shows that Lemma 7.1 holds for all t. 0

Theorem 9.1 Let A be a randomized CREW PRAM algorithm that allegedly finds the parity of n
inputs with probability greater than $. Then A runs in at least T steps.

Proof: By Theorem 3.1, it suffices to show that for any deterministic algorithm A' running in less
than T steps over the input distribution, A' computes the correct parity with probability at most 3.
From Lemma 9.1, after t 5 T steps, if hl (ho) be the characteristic function H (l , l , T) (H (0 , l,T)),
Le., the input vectors for which A' outputs 1 (0), then deg(h1) < n (deg(h0) < n). Then from the
formula for the coefficients as(f) , we see that

Thus hrl(l) and hO'(1) both contain the same number of input vectors with even and odd parity,
and thus both must err on exactly half of the input vectors that set them to 1. Thus A' errs on
exactly half of the input vectors. Since all input vectors are equally likely, A' errs with probability
f. 0

10 Merging on the EREW PRAM
In this section we prove randomized lower bounds for Integer Merging on the EREW PRAM model.
For an integer m 2 1, We show that merging two sorted lists of size n containing elements from
0,2,. . . , m - 1 requires R(logmin{n, m}) time. This matches the deterministic lower bound of
Hagerup and Kutylowski [13], and it is optimal for m = R(1ogn).

Let Q = {O,l,. ..,m-1). Let T = min{n,m}. As in [13] let X = (1,2,. . . , r - l , r - l , . . .,r-1),
Yl = (0,r - l , r - 1,. . .,r - l) , and Y2 = (T - 1,r - 1,. . .,r - 1) be sorted lists of length n. The
input distribution we will use will place equal probability on inputs of (X , E), and (X, Y2). The
function REFINE(t, g) simply returns 9. Say g is t-good if

21

1. the first input in the second list affects the values of at most 4t cells, and
2. Unset(g) = n.

Let T = log4(r - 2)) and let 2 = 1.

Lemma 10.1 With probability 1, for every t (0 5 t 5 T), ft is t-good.

Proof: The algorithm A is simply a deterministic EREW PRAM algorithm, and Beame, Kik, and
Kutylowski [l] show that one input can affect at most 4t cells after t steps. 0

Theorem 10.1 Let A be a randomized EREW PRAM algorithm that allegedly merges two lists of
size n with probability greater than 4. Then A runs in at least T steps.

Proof: By Theorem 3.1, it suffices to show that for any deterministic algorithm A’ running in less
than T steps over the input distribution, A‘ computes f correctly with probability at most +. From
Lemma 10.1, only 4T 5 r - 2 = cells are affected by the first input (which is the only input that
changes in the distribution). However, this input affects r - 1 output cells. Thus at least one of
the output cells that should be affected is not. Since each input map occurs with probability 4,
the output is correct with probability at most E . 0

11 Conclusion
We have shown lower bounds on the time required to solve many problems on randomized Exclusive
Write PRAMS. In all cases, these were asymptotically equivalent to the corresponding deterministic
lower bounds. In fact we do not know of any function which can be computed asymptotically faster
using a randomized Exclusive Write PRAM rather than a deterministic Exclusive Write PRAM,
and we leave this as an open problem.

Another open problem is to close the constant factor gap between the randomized upper and
lower bounds for computing the OR function. We conjecture that the lower bound must be im-
proved. Unfortunately, the method of Dietzfelbinger et al. [4] for obtaining a tight lower bound for
computing OR deterministically does not seem to help for proving a tight randomized lower bound
for the distribution we chose. Specifically, there is a function of degree about which outputs
0 for the vector of 0 inputs, and 1 for each vector of inputs with at most one 1. Then using the
lower bound of [4], we could obtain a deterministic lower bound of about .46 log n for this function,
which would translate into the same lower bound for the OR function. (This function is given in
Example 1 in Nisan and Szegedy [19].)

Noting Parberry and Yan [20] give a log,+d n M .57 log n step algorithm which computes zero
on inputs of weight 0 and 1 on inputs of weight 1, we can see that using our input distribution we
could at best achieve a lower bound of about .571ogn.

However, one could choose a distribution giving weight to more than just vectors of weight 0
and 1, in order to come closer to the deterministic lower bound. However, any improvements in
our the randomized lower bound would depend on either (1) proving lower bounds on the degree
of certain types of functions which output 0 on vectors of weight 0, and 1 for all (or at least many)
vectors with weights up to a given constant, or (2) improving the techniques of [3,20] to take into
account “critical groups of bits”.

Acknowledgements

I would like to thank Vijaya Ramachandran for many helpful comments and discussions.

22

References

[l] P. Beame, M. Kik, and M. Kutylowski. Information broadcasting by exclusive-read prams.
Para. Process. Lett., 4:159-169,1994.

[2] S. Chaudhuri. Sensitive functions and approximate problems. In Proc. 34th Symp. on Found.
of Comp. Sci., pages 186-193,1993.

[3] S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random access

[4] M. Dietzfelbinger, M. Kutylowski, and R. Reischuk. Exact lower time bounds for computing

machines without simultaneous writes. SIAM J. Comput., 15(1):87-97, February 1986.

boolean functions on CREW PRAMs. J. Comput. System Sci., 48:231-254,1994.

[5] F. Fich, M. Kowaluk, M. Kutylowski, K. LoryS, and P. Ragde. Retrieval of scattered informa-
tion by EREW, CREW, and CRCW PRAMs. In Proc. 3rd Scand. Workshop on Alg. Theory,
pages 30-41. Lec. Notes in Comp. Sci., Vol. 621, 1992.

[6] F. E. Fich, F. Meyer auf der Heide, P. Ragde, and A. Wigderson. One, two, three . . .infinity:
Lower bounds for parallel computation. In Proc. 17th Symp. on Theory of Computing, pages
48-58,1985.

[7] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial time hierarchy. Math.
Syst. Theory, 17(1):13-28,1984.

[8] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms.
In Proc. 32nd Symp. on Found. of Comp. Sci., pages 698-710,1991.

[9] J. Gil and L. Rudolph. Counting and packing in parallel. In Proc. 15th Intl. Conf. on Parallel

[lo] L. A. Goldberg, M. Jerrum, and P. D. MacKenzie. An Cl(dw) lower bound for routing
in optical networks. In Proc. ACM Symp. on Para. Alg. and Arch., pages 147-156, 1994.

Processing, pages 1000-1002,1986.

[ll] T. Hagerup. Fast parallel space docation, estimation and integer sorting. Technical Report
MPI-1-91-106, Max-Planck-Institut fiir Informatik, Saarbriicken, 1991.

[12] T. Hagerup. Fast deterministic processor allocation. In 4th ACM-SIAM Symp. on Disc. Alg.,
pages 1-10, 1993.

[13] T. Hagerup and M. Kutylowski. Fast integer merging on the EREW PRAM. In Proc. 19th

[14] T. Hagerup and M. Nowak. Parallel retrieval of scattered information. In Proc. 16th Intl. Coll.

Intl. Coll. on Automata, Languages, and Programming, pages 318-329,1992.

on Automata, Languages, and Programming, pages 439-450,1989.

[15] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithms
and Complexity, chapter 17, pages 869-941. MIT Press/Elsevier, 1990.

[16] M. Kutylowski. Time complexity of boolean functions on CREW PRAMs. SIAM J . Comput.,
20:824-833,1991.

23

[17] P. MacKenzie. The random adversary: A lower bound technique for randomized parallel
algorithms and its application to load balancing. Manuscript.

[18] N. Nisan. CREW PRAMS and decision trees. SIdM J. Comput., 20:999-1007,1991.

[19] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials. In Proc.
24th ACM Symp. on Theory of Computing, pages 462-474,1992.

[20] I. Parberry and P. Y. Yan. Improved upper and lower time bounds for parallel random access
machines without simultaneous writes. SIAM J. Comput., 20(1):88-99,1991.

[21] P. Ragde. The parallel simplicity of compaction and chaining. In Proc. 17th Intl. Coll. on
Automata, Languages, and Programming, pages 744-751,1990.

[22] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.

[23] M. Szegedy. Algebraic methods in lower bounds for computational models with limited commu-

In Proc. 19th ACMSymp. on Theory of Computing, pages 77-82, 1987.

nication. PhD thesis, University of Chicago, 1989.

[24] A. C.4. Yao. Probabilistic computations: Toward a unified measure of complexity. In Proc.
18th Sgmp. on Found. of Comp. Sci., pages 222-227,1977.

DISCLAIMLCR

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product. or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

24

