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Abstract

The higher-order guaranteed lower eigenvalue bounds of the Laplacian in the recent
work by Carstensen et al. (Numer Math 149(2):273-304, 2021) require a parameter
Cy.1 that is found not robust as the polynomial degree p increases. This is related to the
H' stability bound of the L? projection onto polynomials of degree at most p and its
growth C.1 o< (p 4+ 1)!/2 as p — oo. A similar estimate for the Galerkin projection
holds with a p-robust constant Cy 2> and Cg,2 < 2 for right-isosceles triangles. This
paper utilizes the new inequality with the constant Cg > to design a modified hybrid
high-order eigensolver that directly computes guaranteed lower eigenvalue bounds
under the idealized hypothesis of exact solve of the generalized algebraic eigenvalue
problem and a mild explicit condition on the maximal mesh-size in the simplicial mesh.
A key advance is a p-robust parameter selection. The analysis of the new method with
a different fine-tuned volume stabilization allows for a priori quasi-best approximation
and improved L? error estimates as well as a stabilization-free reliable and efficient
a posteriori error control. The associated adaptive mesh-refining algorithm performs
superior in computer benchmarks with striking numerical evidence for optimal higher
empirical convergence rates.

This work has been supported by the German Research Foundation (DFG) in the Priority Program 1748
Reliable simulation techniques in solid mechanics: Development of non-standard discretization methods,
mechanical and mathematical analysis CA 151/22-2 and under Germany’s Excellence Strategy - The
Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689) as well as by the
European Union’s Horizon 2020 research and innovation programme (project DAFNE grant agreement
No. 891734 and project RandomMultiScales grant agreement No. 865751).

B Carsten Carstensen
cc@math.hu-berlin.de

Benedikt Griflle
graesslb@math.hu-berlin.de

Ngoc Tien Tran
ngocl.tran@uni-a.de

Institut fiir Mathematik, Humboldt-Universitit zu Berlin, 10117 Berlin, Germany

Institut fiir Mathematik, Universitit Augsburg, 86159 Augsburg, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00211-024-01407-w&domain=pdf

814 C. Carstensen et al.

Mathematics Subject Classification 65N12 - 65N30 - 65Y20

1 Introduction

This paper proposes and analyzes a new hybrid high-order (HHO) eigensolver for the
direct computation of guaranteed lower eigenvalue bounds (GLB) for the Laplacian.

1.1 Three categories of GLB

The min-max principle enables guaranteed upper eigenvalue bounds but prevents a
direct computation of a GLB by a conforming approximation in a Rayleigh quotient.
So GLB shall be based on nonconforming finite element methods (FEM), on modified
mass and/or stiffness matrices (with reduced integration or fine-tuned stabilization
terms), or on further post-processing. The last decade has seen a few GLB we group
in three categories (i)—(iii).

(1) The a posteriori error analysis for symmetric second-order elliptic eigenvalue prob-
lems started with [35, 43, 54] under the (unverified) hypothesis of a sufficiently
small mesh-size. With additional a priori information on spectral gaps, the latest
a posteriori post-processings [13—15] provide GLB.

(i1) Classical nonconforming FEM [20, 22, 45] and mixed FEM [39] allow for the
GLB A /(1 4+ 1) < A with the discrete eigenvalue A; and a known parameter

8 o¢ h2,,, in terms of the maximal mesh-size &imax. On the positive side, the GLB
provides unconditional information on the exact eigenvalue A from the computed
discrete eigenvalue Aj,. On the negative side, the global parameter hpyax can spoil
a very accurate approximation Ay in this GLB and is of lowest-order only. A fine-
tuned stabilization of the classical nonconforming FEM in [23], however, provides
a first (but low-order) remedy of the third category.

(ii1) Higher-order hybrid discontinuous Galerkin (HDG) or HHO discretizations [19,
25] can compute direct GLB A; < A under the sufficient condition (e.g., in [19]
for the HHO method and the Laplacian)

0f B+ K2hE min{h, Ay} < (1.1)

with (universal or computed) constants o7, x and known parameters 0 < o <
1,0 < B < oo (selected in the discrete scheme). If the exact Dirichlet eigenvalue
A of number j € Ny of the Laplace operator and the corresponding discrete
eigenvalue XA;, satisfy (1.1), then A, < XA is a GLB. The two-fold use of (1.1)
is a priori or a posteriori. First, given an upper bound © > A > 0 of A (e.g.,
by some conforming approximation or post-processing), (1.1) provides an upper
bound hfnax < (ax— 012 B)/ (k%) for the maximal initial mesh-size. This condition
is sufficient for (1.1) and guarantees a priori that 1, < A. Second, (1.1) may be
checked a posteriori for any computed value Aj;. Then 012,3 + /czhﬁlax)»h <«
implies (1.1) and so, A, < A.

This paper presents a new HHO eigensolver of the third category.
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Fig.1 Approximations of C Et 1 and C gt as afunction of the polynomial degree p on the equilateral triangle
A, the right-isosceles triangle’h, . := conv{(0, 0), (1.5, 0), (0, 1)}, and ~:= {(0, 0), (1, 0), (—1/2, 1)}

1.2 Motivation and outline of Sect. 2

The constants 012 = Csztl — land ¥ := CpCy, in (1.1) depend on the Poincaré
constant Cp < 1/m and a stability constant C 1. The latter has to be contrasted with
the constant Cg 2, where Cy 1 and Cg; 2 are the best possible constants in the stability

estimates

IV =T i) fll2r) < Cotll(1 =TV fllg2epy forall f e H(T), (1.2)
IV = Gpi) fllzzry < Caall(0 =TV fll 2y forall fe H(T)  (1.3)

in a given simplex 7 C R” with the (component-wise) L? projection IT,, and the
Galerkin projection G, onto polynomials of total degree at most m € Ny. The two
constants Cg; and Cg o are independent of the diameter A7 := diam(7') of T, but
might depend on the shape of T and the polynomial degree p. Figure 1 illustrates the
behaviour of Cg 1 and Cg 2 for different triangular shapes and various polynomial
degrees p. Section2 investigates the p-robustness of C 2 and reveals that Cg o <
Cst,1 ¢ +/p + 1 tends to infinity as p — oo, while we conjecture Cy o < V2 for
triangles 7 with maximum interior angle w < /2. Notice that a large constant Cy 1
leads to a large o1 in (1.1) and so, @ < 1 enforces small 8 and restricts the GLB to
very fine meshes. The main motivation of this work arises from the convenient bound
Cso < V/2: Can we design a discretization method of the third category (iii) based
onoy :=CpCgyp < ﬁ/n in (1.1)?
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1.3 A modified HHO method and outline of Sect. 3

This paper provides an affirmative answer with a new fine-tuned stabilization in a
modified HHO scheme in Sect.3 and a new criterion

Z  min{i, Ap}) < o (1.4)

2
05 max{B, hp .«

sufficient for the GLB 1;, < A.One advantage of (1.4) over (1.1) is the straight-forward
and p-robust parameter selection 8 := oz/c722. It turns out that oo < « and so (1.4)
improves on (1.1) in the sense that afh%naxk < o holds on much coarser triangulations
for higher polynomial degrees p.

Given a bounded polyhedral Lipschitz domain @ C R”, let V := HO1 (£2) denote
the Sobolev space endowed with the energy scalar product a(u, v) := (Vu, V) 2(q)
and the L? scalar product b(u, v) := (u, v) L2(Q) forallu, v € V. This paper considers

the model problem that seeks an eigenpair (A, u) € Ry x (V\{0}) such that
a(u,v) = Ab(u,v) foranyv € V. (1.5)

The HHO methodology has been introduced in [31, 32] and is related to HDG and
nonconforming virtual element methods [27]. Given aregular triangulation 7 into sim-
plices, the ansatz space Vj, = P,1.1(7) x P, (F(£2)) consists of piecewise polynomials
of (total) degree at most p + 1 attached to the simplices and piecewise polynomials
of degree at most p attached to the interior faces. Two reconstruction operators link
the two components of v, € Vj,: The potential reconstruction Rvy, € Ppy1(7) pro-
vides a discrete approximation to v in the space of piecewise polynomials P, 1(7)
of degree at most p + 1. The gradient reconstruction Gvj, € RT[;,W (7)) approximates
the gradient Vv in the space of piecewise Raviart-Thomas functions RTE?,W (7)1, 30].
Let Svj, 1= v — Ruy € Ppy1(T) for any v, = (vr, vr) € Vj, denote the additional
cell-based stabilization. Given positive parameters 0 < « < 1 and 0 < 8 < o0, the
bilinear forms ay, : V, x V, — Rand by, : V), x V), = R read

an(un, vy) = (Gup, gvh)LZ(gz) —a((l - Hp)guhv (1— Hp)gvh)LZ(Q) (1.6)
+ B(h? Sup, Svn) 12y
bp(up, vp) = (ur, v7)2(q) forany up = (ur, ur), vi = (vr,vF) € V. (1.7)

The discrete eigenvalue problem seeks (A;, up) € RT x (V;, \ {0}) with
ap(up, vyp) = Apbp(up, vy) for all vy € Vp,. (1.8)

The definitions of R, G, and further details follow in Sect. 3 below.

1.4 GLB with p-robust parameters and outline of Sect. 4

The discrete bilinear form a;, from [19] with parameter Cy,; o /p + 1 utilizes the
different stabilization B(VpwSup, VpwSvp) L2(Q) instead of ﬂ(h}zSuh, Svp) L2(Q) in
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(1.6). The two stabilizations are locally equivalent, but the innovative difference is
that the parameter selection in the new scheme circumvents an inverse inequality, and
rather builds it into the scheme. Section4 verifies the sufficient condition (1.4) for
exact GLB under the assumption of exact solve.

1.5 A priori error analysis of the new scheme and outline of Sect. 5

A quasi-best approximation for the source problem [38] allows for quasi-best approx-
imation results in Theorem 5.1 for a simple eigenvalue A, namely

A= nl +an(u — up, Tu — up) + hps lu — “T”iz(g)

<Ci min _ [|Vpw( —vpr)l] (1.9)
Vpr1€Pp1 (T P P L@

with a positive constant C; and the minimum 0 < s < 1 of the index of elliptic
regularity and one; the HHO interpolation I : V' — V}, is recalled in Sect. 3.3 below.
Compared to earlier results in [12, 19], (1.9) provides an additional positive power s
of hmax in the L2 error. This is important as it eventually enables the absorption of
higher-order terms in the a posteriori error analysis.

1.6 Stabilization-free a posteriori error analysis and outline of Sect. 6

Let py = I,Guy € P,(7;R") denote the L? projection of the gradient recon-
struction Gu, € RT %W(T) onto the space of vector-valued piecewise polynomials
P,(T;R"). Forany T € T of volume |T'|, define

n*(T) == TP (Idiv p + Anur 727 + lleur prl3a 7)) (1.10)
+ T Yo MpavEIEI e+ Y Nlpn X vEIENT g
FeF(THNF(Q) FeF(T)

with the normal jump [p;, - vr]F and the tangential jump [p;, x vrlr of pj across
a side F of T. Theorem 6.1 asserts reliability and efficiency of the error estimator
n2 = ZTGT 172(T) for sufficiently small mesh-sizes Ay« in the sense that

Cotn < h = Al + ap(Tu — up, Tu — up) + || Vu — Ph”%z(g) < Cran.  (L.11)

1.7 Adaptive mesh-refining algorithm and outline of Sect. 7

Three 2D computer experiments in Sect.7 provide striking numerical evidence that
the criterion (1.4) indeed leads to confirmed lower eigenvalue bounds. The adaptive
mesh-refining algorithm driven by the refinement indicator n from (1.10) recovers the
optimal convergence rates of the eigenvalue error A — XA, in all numerical benchmarks
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with singular eigenfunctions. This is the first time that p-robust higher-order GLB of
the third category are displayed.

1.8 General notation

Standard notation for Lebesgue and Sobolev function spaces applies throughout this
paper. In particular, (e, ®);2,, denotes the L? scalar product and H (div, w) is the
space of Sobolev functions with weak divergence in L?(w) for a domain @ C R”.
Recall the abbreviation V := HO1 (€2) for the space of Sobolev functions, endowed
with the energy scalar product a(u, v) := (Vu, Vv) 2, and the L? scalar product
b(u,v) = (u,v)p2q) forallu,v e V.

For a subset M C R" of diameter &y, let P,(M) denote the space of polynomials
of maximal (total) degree p regarded as functions defined in M. Given a simplex
T C R", the space of Raviart-Thomas finite element functions reads

RT,(T) := P,(T; R") + xP,(T) C P,y i(T; R").

The Galerkin projection G := G4 : HYT) —> Py (T) maps f € HY(T) to the
unique solution Gf to I1gGf = Iy f and

(VGf, Vpp-‘,—l)LZ(T) = (Vf, VPP+I)L2(T) for all Pp+1 S Pp.l,_l(T) (112)

with the convention H'(T) := H'(int(T)) for the interior int(T) = T° of T. The
Poincaré constant Cp bounds |[(1 — Ilo) fll 2y < Cphr||V flip2r) for all f €
H'(T). In 2D, Cp < 1/j1.1 = 0.260980 with the first positive root of the Bessel
function Ji [44] and Cp < 1/7 in any space dimension [5, 49]. The context-sensitive
notation | e | may denote the absolute value of a scalar, the Euclidean norm of a vector,
the length of a side, or the volume of a simplex. The notation A < B abbreviates A <
C B for a generic constant C independent of the mesh-size and A ~ B abbreviates A <
B < A. Throughout this paper, Cy, ..., C14 denote positive constants independent of
the mesh-size.

2 Stability estimates
This section discusses the behaviour of the constants Cg 1, Cg 2 from (1.2)—(1.3) as

p — oo and the computation of o2 := Cp Cq 2 with the Poincaré constant Cp in (1.4)
that arises from the stability estimates in Lemma 2.2 below.

2.1 Stability constants and estimates

The following theorem asserts that Cy 2 is p-robust (and small in general, see Fig. 1)
whereas Cg,1 — 00 as p — o0.
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Theorem 2.1 For any simplex T, there exist positive constants 1 < Cg 2 < Cy.1 inde-
pendent of the diameter ht such that (1.2)—(1.3) hold. In n = 2, 3 space dimensions,
Cq1~Jp+1landCyr=~1as p— oo.

Proof The existence of the constants 1 < Cg 1 < Cg 2 follows from [25, Theorem
3.1]; cf. Appendix A for further details. The technical proof of the p-robustness of
Cy2 involves a linear bounded operator R - H=1(T: R3) — L%(T:; R3) from [28,
42, 46] and is carried out in Appendix B. The robustness holds for n = 2 with a
simpler and hence omitted proof.

The remaining parts of this proof concern the growth of Cy 1. Let X := H L(r)/R
denote the Hilbert space with inner product (Ve, Ve) L2(T) and note that ker(V(1 —
p+1)) = ker((1 —=I1,)V) = Pp1(T). Since [|(1 =T1,) Vel 2(ry < ll@lll for every
¢ € X, the definition of the operator norm of the oblique projection 1 —T1 41 € L(X)
provides

1-11 1-11
e s 0Tl llo - ensll
beX\(0) Mol pex\Pyyy (1) (L =T1p) V27

Kato’s oblique projection lemma [52] for the Hilbert space X leads to |1, =
[1—=TI,11ll < Cg,1and (1—TI1,41)G = 0in X for the Galerkin projection G shows

(=T 7| = || = )X = G f|| < Il NICL = G) £

for any f € X. Since [|[(1 = G)fll < Ca2ll(1 = Tp)V fllp2r) from (1.3), this
proves Tl < Csii < Cs2llT 1]l The growth [T ]| & /p + 1 is known
for tensor-product domains and also holds for simplices in n = 2,3 dimensions;
see [55] and [47, Sec. 5] for ||TT,4+1]| S +/p + 1 and Appendix C for the proof of

VTS Iyl o

The Poincaré inequality with the Poincaré constant Cp and (1.3) with Cg 2 ~ 1 lead
to a p-robust stability estimate with 02 := CpCy 2.

Lemma 2.2 (p-robust stability) Any f € H'(T), T a simplex, and p € Ny satisfy

17 (1 = G) fll 2y < 02ll(1 =TIV fll 27y @2.1)

]

2.2 Numerical comparison and conjecture

The following theorem considers the computation of guaranteed upper bounds of Cy 2
in n = 2, 3 space dimensions for a control of o7 in (2.1).

Given v € HYT;R") and w € HY(T;R?*73), let curlv := 8jv2 — dv; and
Curlw := (hw, =9 w)! forn = 2 and curl v := (drv3 — 32, 3V — d1v3, 01V2 —
9v1)" and Curlw := curlw for n = 3. For any g € H~'(T; R*"3) in the dual
space of HOI(T; R?"~3) endowed with the operator norm |[[le]|,, let (—A)"lg €
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Table 1 The constant

Cytp = mp on right-isosceles P CSZLZ P CSZ"Z

riangles I 159707221 6 199368122
2 1.75 7 1.99787853
3 1.91060394 8 1.99911016
4 1.95679115 9 1.99969758
5 1.98559893 10 1.99987656

HO1 (T; R¥"—3) denote the weak solution to —Av = g in T componentwise with
gl = [[[(=a)"gl[-

The gradients V P, 1(T) of polynomials P, (T") of degree at most p + 1 form a
subspace of P, (T'; R") and give rise to the L? orthogonal decomposition P,(T;R") =
Qp ® VP, (T) with Q, L VP, ((T) in L*(T;R"). Let P : P,(T;R") —
VP, 1(T) denote the L? orthogonal projection onto VP, ((T) C P,(T;R"). The
bilinear forms a : O, x O, — Rand b : O, x O, — R are defined, for any

qp.rp € Qp, by

algp, rp) == (qp, Vp)L2(T) and b(gp,rp) := ((—A)flcurlqp, curl ”p)LZ(T)-

2.2)
Theorem 2.3 (Stability constant) The maximal eigenvalue
p = i ) vy P 197~ Vopsiliaa/llewtapll, @
curl q,#0
of the eigenvalue problem
a(gp,rp) = Ab(gp,7rp) forallr, € O, 2.4

leads to the upper bound Cy, < max{l,m,C,} for C; =1and C3 = 2/\/5.

Notice that (2.4) is a finite-dimensional eigenvalue problem and (—A)_lq p in
b(gp. rp) can be approximated by, e.g., a conforming FEM. Numerical experiments
below even suggest that the bound Cg,» = m, is exact in n = 2 dimensions.

Proof If p = 0, VP (T) = Py(T; R") implies VGf = [V f for all f € HY\(T),
whence Cg» = 1. The remaining parts of the proof therefore assume p > 1. Given
f € HY(T), assume without loss of generality that V f L VP, 1(T) in L3(T; R™)
(otherwise substitute g := f — Gf and observe that ||(1 — IT,)V fll 2y = (1 —
[1,)Vgll2(r))- Throughout this proof, abbreviate g, := I,V f € P,(T;R"). A
Helmholtz decomposition leads to g, = Va + Curlb with a € H YT) and b €
H(} (T; R*"=3). For any v € H(} (T; R?"73), the L? orthogonality Curlv L Va in
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L*(T; R"), an integration by parts, and a Cauchy inequality prove

/ v-curlgpdx = / qp - Curl vdx
T T

= / Curlb - Curl vdx < [|Curl bl p2¢py[[Curl vl 2 (7). 2.5)
T

In2D, ||Curl v||Lz(Q) = |||v|ll and in 3D, ||Curl v||Lz(Q) < 2|||v|||/\/§. (The proof solely
involves elementary algebra and is therefore omitted.) Hence, (2.5) implies

[[[curl g, ||, = sup / v-curl gpdx/ vl < CullCurlbll 27y (2.6)
veHN(T;R2=3)\{0} 7 T

(Notice that |||g, ||, = ICurl b||;27y = [Ib][| in 2D). Since V P, (T) C Pp(T; R"),
the best approximation of g, in VP, 1(T) satisfies the L? orthogonality qp L
VP, 1(T). This and the Pythagoras theorem provide

: 2 2 2 2
min _|lgp = Vupiill = llgpll = llall” + 1Curl bli72 7).
Up+1€Pp+1(T) P Pl PRLA) LA(T)

On the other hand, the constant m, from (2.3) satisfies

i 2
U])+121P1pn+1(T) lgp — Vvpti ”iZ(T) < m?,”’curlqpm*.

Hence, (2.6) implies

llall* < (m,Cyt = DIICurl blI75 - 2.7
The Pythagoras identity ||| f — all> + ||Cur1b||i2(T) =||Vf — qu%Z(T)’ a triangle

inequality, the estimate 2(Va, V(f — a))Lz(T) < 8|||a|||2 +Ilf = a|||2/8, and (2.7)
show, for all positive parameters § > 0, that

lf = GFIZF = NAIZ = I f —all* +2(Va, V(f — a) 2y + llalli?
<A +If —all® + 1+ 1/8)llal
< max{l 48, (1+1/8)(m>Cy — D}(Ilf — all* + [[Curl b||*)

n

= max{1 4+, (1 + 1/8)(mCy = DA =TV fll7a ) (28)

Ifm,C, > 1,thens := m3Cy—1leads to max{1+38, (141/8)(m3Ca—1)} = m3,Cy.
If m,C, <1, then infs.o max{l+8, (14 1/8)(m%Cy — 1)} = 1. This concludes the

proof of C» < max{1,m,C,}. Notice that }chrlqpmi = |H(—A)_lcurqu|H2 =
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p=10
p=20
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0 I 5 in 1
w
Fig. 2 Dependence of C on the interior angle w of the isosceles triangle 7 =

conv{(0, 0), (1, 0), (cos(w), sm(a)))}

b(qp, qp) and the orthogonal decomposition P,(T;R") = Q, @ VP, 1(T) with
curl VP, 1(T) = 0 reveal

mp, = 0 Q o) ||61p||L2(T)/|HCur1‘1pH| néax 0dp. qp)/0p. qp)  (29)

with the bilinear forms a and b from (2.2). The min-max principle [4, Sec. 8] and (2.9)
show that mg, is the maximal eigenvalue of (2.4). This concludes the proof. O

Example 2.4 (Numerical example) Table 1 displays the computed maximal eigenvalue
m? » = C +.» of the eigenvalue problem (2.4) for the right-isosceles triangle 7. The right-
hand s1de is approximated by the Courant FEM of polynomial degree 10 on a uniform
triangulation of 7" with 50721 degrees of freedom. The lower bounds

I —G) £l |1 =T ) £

sup < Cy. and sup < Cst,1
repy I =TIV fll2er) ’ fepy() KL =TIV fll2cr) :

for Cg 2 and Cg 1 from (1.2) are computable Rayleigh quotients and displayed in
Fig. 1. Computer experiments provide numerical evidence for the convergence of the
lower bounds of Cy > to m, as N — oo and, hence, for Cg > = m . The lower bound
of Cg.1 o« +/p + 1 displays the expected growth.

Undisplayed numerical experiments suggest that a small minimal interior angle does
not affect the asymptotic bound of Cy 2, but leads to increased growth of Cy 1 as
p — oo. We observed Cy 2 = m ) and the convergence CSt 5, —> 2as p — oo for
different isosceles and various right triangles, whereas an interior angle ® > 7 /2 hasa
mild influence on the maximal value of Cy; 2 as shown for isosceles triangles in Fig. 2.

(Recall that the constants Cy 1 and Cy 2 are invariant under scaling.) This leads to
our following conjecture in accordance with Fig. 1 for any p € Np.

Conjecture 2.5 For triangles 7 with maximal interior angle v < 7 /2, Cg 2 < V2.
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Adaptive HHO for guaranteed lower eigenvalue bounds 823

3 The modified HHO method

This section introduces the HHO method and the discrete eigenvalue problem.

3.1 Triangulation

Let 7 be a regular triangulation of €2 into simplices in the sense of Ciarlet such that
UrerT = Q. Given a simplex T € 7T of positive volume |T| > 0, let F(T) denote
the set of the n 4 1 hyperfaces of T, called sides of 7. Define the set of all sides
F = Uper F(T) and the set of interior sides F(R2) = F\{F € F : F C 9} in
7. For any interior side F € F(), there exist exactly two simplices 74, T_ € T
such that 97y N dT_ = F. The orientation of the outer normal unit vp = vr, | =
—v7_|F along F is fixed and wr := int(T} U T-) denotes the side patch of F.
Let [vlF := (vIz)|F — (vlz)|r € LY(F) denote the jump of v € L!(wF) with
v e WHI(Ty) across F. For any boundary side F' € F(92) := F\F(2), there exists
aunique T € 7 with F € F(T). Then wp := int(T), vp := vr is the exterior
unit vector of ¥ € F(T), and [v]F := v|p. The triangulation 7 gives rise to the
space Hl(T) ={v € L2(Q) : v|r € HI(T)} of piecewise Sobolev functions. The
differential operators divpw, Vpw, and Apy denote the piecewise applications of div,
V, and A without explicit reference to the triangulation 7 .

3.2 Discrete spaces

Let P,(T), Pp(F), and RTEW(T ) denote the space of piecewise functions with restric-
tionsto T € T or F € F in Py(T), P,(F), and RT,(T). The local mesh-sizes give
rise to the piecewise constant function h € Py(7) with hy|p = hy = diam(T)
inT € 7 and hpmax = |lh7||L~(q) abbreviates the maximal mesh-size of 7.
The L? projections I, : L'(Q) — P,(T), T} : L'(UF) — P,(F), and
Mgr : L'(2;R") — RTY(7) onto P,(7), P,(F), and RTH"(7) are computed
cell-wise. For vector-valued functions 7 € L'(Q;R"), the L* projection IT p onto
P,(T;R") = P,(T)" applies componentwise. The Pythagoras theorem implies the
stability of L projections, for any T € L*>($2; R") and v € L*(R),

ITRITI 2 ) < 1Tl 2(g) and ITTp0ll 20y < 1Vl 2(g)- G.1)
The Galerkin projection Gf of f € H'(T) is computed cell-wise by (1.12) with

Vow(1 = G) fll 2 = min I Vpw(f — D20 (3.2)
P e € Pp+1€Pp11(T) P f PrelLz@

The inclusion Vpy Pp41(T) C Pp(T; R") C RT,"(T) leads, forany f € H'(7), to
(1 = TIRrT) Vpw [l 220y < 11 = TTp) Vpw fll 2y < IVpw(1 — G) fll2(q)- (3.3)
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3.3 HHO methodology

Let Vi := Pp41(7) x Pp(F(R2)) denote the ansatz space of the HHO method
for p € Np. The interior sides F(£2) give rise to the subspace P,(F(£2)) of all
(vrP)reF € Pp(F) with the convention v = 0 on any boundary side F € F(9€2) for
homogenous boundary conditions. In other words, the notation v, € V), means v;, =
(7, vF) = ((r)reT, (WF) peF) for some vy € Ppyi(T) and vy € Py(F(RQ)
with the identification v = v7|r € Ppy1(T) and vr = vr|r € P,(F). Given
v, = (v, vE) € Vy, the norm |Jvy ||, of vy, in V), from [32, Eq. (28)] or [31, Eq. (41)]
reads

lonlly == IVpwvT 2y + D D hi'lor —vrlfagey. (B4
TeT FeF(T)

The interpolation I : V — Vj, maps v > Iv := (I, 41v, IT%v) € V).
Potential reconstruction. The potential reconstruction Rv, € P, 1(7) of v, =

(v7, vF) € Vj satisfies, for all discrete test functions ¢ € P,41(7), that

(prva’l , pr@h )LZ(Q)

= Ape) gy - Y / vr[Vpwen - vilFds.  (3.5)
reF)’F

The bilinear form (Vpye, Vpye) L2() ON the left-hand side of (3.5) defines a scalar
product and the right-hand side of (3.5) is a linear functional in the quotient space
Pp+1(7)/Po(T). The Riesz representation Rvy, € P, 1(7) of this linear functional
in P,41(7)/Py(T) is selected by

[MoRvy, = Mgvy. 3.6)
The unique solution Rv;, € Pp41(7) to(3.5)—(3.6) defines the potential reconstruction
operator R : V, — P,y 1(T).

Gradient reconstruction. The gradient reconstruction Gv, € RT.'(T) of v, =
(v7, vr) € V), satisfies, for all discrete test functions ¢y, € RTI;,W(T ), that

(Gup, ¢h)L2(Q) = —(vr, dinw¢h)L2(Q) + Z / vildn - vi]Fds. 3.7
reF 'l

In other words, Guy, is the Riesz representation of the linear functional on the right-
hand side of (3.7) in the Hilbert space RTI,J,W(T ) endowed with the L? scalar product.
Since Vpw Pp41(7) C RTY(T), (3.7) implies the L? orthogonality Gv, — Rv, L
Vpw Pp41(T). The following lemma recalls the commutativity of G and R [1, 31-33].
The Galerkin projection G is defined in (1.12).

Lemma 3.1 (Commutativity) Any v € V satisfies Glv = llgrVv and RIv = Gv. O
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3.4 Discrete eigenvalue problem

Given positive constants 0 < o < 1 and0 < B < oo, recall aj, and by, from (1.6)—(1.7).
Notice, for any uy, vj, € V), that

an(up, vp) = (1 — @)Gup + @l ,Gup, Gop) 2y + Bhs Sun, Svn) 2y (3.8)
The discrete problem seeks a discrete eigenpair (A, up) € Ry x V;,\{0} such that
an(up, vy) = Apby(uy, vp) for all v, € Vj,. 3.9)

Lemma 3.2 (Discrete norm) The bilinear form ay, : Vi x Vi, — Ris a scalar product
in Vy,. The induced norm || e ||, := aj (e, 0)1/2 = || o || is equivalent to the discrete
norm || e |5, from (3.4).

Proof The equivalence || e ||,.n = |lvy||5 for all v, € Vj is proven in [19, Lemma 3.5]
for the stabilization B(Vpy Suy,, prSvh)Lz(Q) instead of ﬁ(h}zSuh, Svn)r2(@) in the
definition (1.6) of aj. Since the two stabilizations are locally equivalent, this leads to
the assertion. O

The discrete eigenvalue problem (3.9) gives rise to the symmetric generalized algebraic
eigenvalue problem

AT ATF\ (XT) _ Brr 0\ (xT

(A]-‘T Arr) \er =\ 0 0)\xz) (3.10)
The application of the Schur complement as in [19, Section 3.3] leads to the
algebraic eigenvalue problem (A77 — AT;:A;_-IfA FT)XT = M B77x7. Hence,
(3.10) provides N := dim P, 1(7) = |T|(1’+’1+”) positive discrete eigenvalues

0 < A1) < Ap(2) < -+ < Ap(N) < 00; all other eigenvalues Aj(j) := oo for
Jj > N are infinity.

4 Lower eigenvalue bounds

This section establishes the sufficient conditions on the parameters «, 8 in (1.4) such
that the HHO method from (3.9) provides direct GLB. Let X (resp. A;) denote the j-th
continuous (resp. discrete) eigenvalue of (1.5) (resp. (3.9)) for fixed j € N. Recall
0<a<1,0< B < oo, and the constant o, from (2.1).

Theorem 4.1 (GLB) If 05 max{g, h2, min{A, A}} < a, then Ay < A.

Remark 4.2 (GLB for j > N) The number j € N in the theorem can be larger than
the dimension N. Then @ < ojAh2,,, follows. In other words A(N + 1) > ao{zh;lix
is an a priori bound for the exact eigenvalue A(N + 1) for free.
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Proof of Theorem 4.1 The proof applies the key arguments from [19, Theorem 4.1], but
then reflects a different stabilization. This enables a different sufficient condition in
the theorem with a more appropriate precise arrangement of the constants. (In fact, G
in (1.3)=(2.1) is replaced by IT 1 in [19], whence Cj > in this paper is not larger than
Cy.1 in [19] and « from [19] is bounded by o> from (2.1).) Besides those differences,
the first steps in the proof are very analogous and adopted for brevity.

Observe carefully that, in the beginning, crzzhfnax min{\;,, A} < a does not imme-
diately imply that 0 < A;, < oo is finite.
Step 1: Reduction to hrznaxogk < 1. If hrznaxozzk > 1, then hrznaxagkh <a <1<
h2,,x0# A, whence Ay, is finite and A; < A. The remaining parts of this proof therefore
assume 12, 071 < 1.
Step 2: The first j exact and pairwise orthonormal eigenfunctions ¢y, ..., ¢; € V
of (1.5) satisfy that 11,1191, ..., I, 1¢; € Ppy1(T) are linear independent. The
proof follows the lines of Step 2 in the proof of [19, Theorem 4.1] (with § := 02hmax)-

Step 3: There exists ¢ € span{¢i, ..., ¢} with ||¢|l2q) = 1, ||V¢||22(Q) < A, and

0 <l — (1= T, )¢l ) < an(ig. 19). @.1)

The proof follows the lines of Step 3 in the proof of [19, Theorem 4.1] and con-
siders the min-max principle for the algebraic eigenvalue problem (3.10) with the
J-dimensional subspace spanned by I¢1, ..., 1¢; € Vj. Itis the linear independence
of 1161, ..., p11¢; € Ppyi(7) that guarantees j < N = dim P,41(7) and
that the algebraic eigenvalue problem (3.10) has at least j finite eigenvalues; whence
An = Ap(j) < oo. The bound of Aj; in the min-max principle by some maximizer
vy, := I¢ of the Rayleigh quotient in span{l¢y, ..., I¢;} C Vj, is rewritten as

Anbn (19, 1¢) < ap(I¢, Ip) < oo

for ¢ € span{¢i, ..., ¢;} with [|¢];2q) = 1 and ||V¢||iz(9) < A. It follows from
Step 2 that by (I, 1¢) = [T, 11117, (g > 0 cannot vanish.

This and the Pythagoras theorem ||n,,+1¢||iz(m =1—|1- np+1)¢||iz(m >0
(recall 1 = ||¢>||i2 (Q)) conclude the proof of (4.1).

Step 4: First lower bound for . — Aj, under the assumption ,8022 <a.
The commutativity Gl¢p = IrTV¢ fromLemma3.1.aand (1—a)Gup+aIl,Guy =
(I —o)(1 = I1,)Gup, + I1,Guy, for uy, = I¢ prove that a; (Ig, I¢) in (3.8) is equal to

(1=l = M) MRTVSI 2 ) + T TRV 2 o) + BlIAT SIGl72 ) (42)
The identity [|(1 — I1,) TRVl 2(q) = ITIrr(1 — T1) V|l 2 (g follows from the

inclusion P,(7; R") C RT}"(7) and I, TIrr V¢ = 1, V¢ = TrrIl,¢. This, (4.2),
and ”HRT(I — HP)V¢||L2(Q) < ”(1 — Hp)v¢||L2(Q) from (31) lead to

an(1¢,19) < T, VI3 g + (1 = )1 = VI o) + BlIAT SIPN 72 g
4.3)
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2

The Pythagoras theorem and |V || 2@

< A prove

TVl <4 — (1 =TI Vel7s - 4.4)

Recall SI¢p = Iy 116 —RI¢p = 1,1 1¢—G¢ from Lemma 3.1.b. The piecewise mesh-
size function 7 does not interfere with the projection I, and so the Pythagoras
theorem reads

7' S1172 ) = Ih7 (1 = GIPl7aq) = Ih7 (1 =Tyl o, (45)
The combination of (4.1) with (4.3)—(4.5) results in

— hall (1= T s )17 g + (1 = TV o
+Bllhz (1 =Tyl 72, — Bz (1 = Gl ) < A — b

This, the stability estimate (2.1), and A}, < h7' in € imply

max

(B/Max = M) 11 = M) 172 g
+ (@ = BoDI (1 =T VlIT2 g < &= . 4.6)

Recall [[(1=Tp41)l17> ) = 11 =Gl 72, < 03hamu (1 =T1,) VI, o from

the best approximation property of IT,,; and (2.1) as well as o — ,3022 > 0 from
the assumptions. Consequently, the left-hand side of (4.6) is greater than or equal to

2 .
||(1 - HP+1)¢||L2(Q) times

(B/h2ax — 2h 4 (@ — Bod) [ (03 h20)) = 0oy 2hl — A

In conclusion, 0 < [[(1 = TT,41)@ll;2(q) < 1 (from the end of Step 3) and
@0y 2hndy = (1= Ty D)l 2a ) < A — A @.7)

Step 5: Finish of the proof. After the reduction to hrznaxozz)\ < 1, the above Steps 2—4
of the proof have utilized ﬂ022 < «, but they carefully avoided any assumption on A and
A, although it is supposed that o7h2,, min{A;, A} < . In case that o7h2 Ay < a,
the assertion 0 < A — X;, follows immediately from (4.7). In the remaining case

o%hﬁmxk < «, the pre-factor in the left-hand side of (4.7) has the lower bound A — A, <

oo, Zh;lﬁx — Ap. Therefore (4.7) implies

O =20 =Tyl 72 ) < & = A

Recall that 0 < [[(1 — I 4+ 1)@ll12(q) < 1 from Step 4 to see that the last displayed
estimate is impossible unless 0 < A — Aj,. O
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5 A priori error analysis

The Babuska-Osborn theory [4] for the spectral approximation of compact selfadjoint
operators leads to a priori convergence rates for the approximation of A and of u
in the energy norm [12, 19]. This section establishes the quasi-best approximation
estimate (1.9) for a simple eigenvalue A, that eventually allows for the absorption of
higher-order terms in the a posteriori error analysis of Sect. 6.

Throughout the remaining parts of this paper, suppose that § < oz/c722 with o7
from (2.1). Let A := A(j) be a simple eigenvalue of (1.5) with the corresponding
eigenfunction u := u(j) € V.Let (Ap, up) := (Ap(j), up(j)) denote the j-th discrete
eigenpair of (3.9) with up = (ur,ur) € Vp, lullp2i) = 1 = lurli2gq), and
(u, ug) L2Q) > 0. Recall that 0 < s < 1 denotes the minimum of the index of elliptic
regularity and one.

Theorem 5.1 (A priori) If hiax is sufficiently small, then (1.9) holds. The constant C
exclusively depends on p, n, Q, and the shape regularity of T.

The following lemmas precede the proof of Theorem 5.1. The first one recalls the
enriching operator from [38] and adds the estimate (5.1). Recall the induced discrete
norm || e |45 := ap (e, ¢)!/2 from Lemma 3.2.

Lemma 5.2 (Enriching operator) There exists a linear bounded operator J : Vj — V
that is a right-inverse of I, i.e., v, = IJvp, = (Il 1Jvp, l'[’;_-Jvh)for all v, € Vy, and
stable in the sense that |VJup| 12(q) < IVllvalla.n with ||J]| < 1. Any v € V satisfies

V(v —JIv)|l 2 <Cs  min Vw0 — vp+ D)l 2()- (5.1
Vpt1€Pp+1(T)

The constants ||J|| and Cy solely depend on p, n, and the shape regularity of T.

Proof The construction of the enriching operator J : V;, — V in spirit of [53] involves
standard averaging and bubble-function techniques from [54] and is explained in [38,
Section 4.3] for a related HHO method without the proof of (5.1). Notice that J from
[38] (called stabilized bubble smoother Ey therein) only satisfies Jv, —vzr L P,_1(7)
for any given v, = (v, vr) € V). However, a straight-forward modification of [38,
Eq. (4.16)] (in the notation of [38], Bxvaq € Pp41(K) should be defined by equation
(4.16) therein for all g € P,41(K)) immediately provides a right-inverse J of I. The
arguments from [38, Propositions 4.5 and 4.7] apply and lead to the stability of J with
respect to the equivalent discrete norm || e ||, &~ || e ||4,, from Lemma 3.2.

It remains to prove (5.1) which is well-known for the Crouzeix-Raviart finite ele-
ment method with an appropriate interpolation I and the conforming companion J
from [21, Proposition 2.3] for n = 2 and from [24, Section 5.8] for n = 3. Given
any v, € Vp, let Avy, € SgH(T) =P, (T)N HOl (£2) denote the nodal average
of Ruy, cf. [38, Eq. (4.24)]. With [38, Eq. (4.18)] and with the above modification in
[38, Eq. (4.16)], the bubble smoother B : L*(Q) x L*(JF) — H{ () from [38,
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Proposition 4.6] satisfies, for (vaq, vy) € L2() x L2(U F), the stability estimate

IVB@A, v2) 720y S 107 Tpivplliaigy + D Y hp TGzl
TeT FeF(T)
(5.2)

with the L? projection H’; onto P, (F) for all faces F' € F. A triangle inequality,
the stability of H’; on a face F, and a discrete trace inequality show ||1'I’;(vp -

—-1,2
Avllp2gry < I F = RO 2r) + b2 IR = Avyll 2 for all F e
F(T)and T € 7. This, a triangle inequality for J := A + B(1 — A), (5.2), and the
second inequality on [38, p. 2180] result in

IVpw(Ron = Jun)l32igy S D b ITRAIF 72
FeF

+lh v = RoG 2+ Y Y, hp TG = (RuID 725
TeT FeF(T)
(5.3)

Given v € V, the stability of the L? projections IT p+1 and 1'[? from (3.1) prove
1Tyt (@ = Ry < llv = RIvl 2y and [T 0 = RADID 2y < o —
(RI)|7llp2(F) forall T € 7T and F € F(T). Given an interior side F =T, N T_ €
F () for Ty € T, the triangle inequality shows

||[RIU]F||L2(F) = [[RIv — U]F”LZ(F) < — RIU)|T+||L2(F) + [[(v — RIv)|r_ ||L2(F)-

For boundary sides F' € F(3€2), it holds [[[RIv]Fll 2r)y = llv — RIv|l 2(f). The
choice v, := Iv in (5.3), the aforementioned inequalities, the trace inequality, and
the piecewise application of the Poincaré inequality imply || Vpw (RIv —JIv) [ 12(q) S
[ Vpw(v — RIv) || 12(g)- This, the triangle inequality

IV =)l 2@ < IVpw(v — RIV) I 12(q) + [Vpw(RIv — JIv) [ 12(q).

and the L? orthogonality Vpw (v — RIv) L Vpy Ppy1(7) conclude the proof of (5.1).
O

The second lemma proves quasi-best approximation estimates for a source problem.

Lemma 5.3 (Best-approximation) Given f € L*(Q), letii € V solve —Ali = f in
Q. The solution iy, = (U7, ur) € Vy to

an(y, vy) = (f, V)2 Jorallvy = (vr,vF) € V) 54
and the data oscillation osc(f,T) := |h7(1 — Hpt0) fllp2 ) satisfy

Cs'i —tnllan < min [V — vps)ll 20y +05e(f.T)  (5.5)
Up+1€Pp+1(T)
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with the constant Cs := max{||J|| + (¢/(1 — &) + BCH)'/2, |I7IICp}.

Proof Throughout this proof, abbreviate ¢, := It — uj, € Vj. Since 1, ju — U =
I1 pHJZh € P,41(7) by Lemma 5.2, the discrete problem (5.4) shows

an(in, en) = (f, Mpr1Jen) 12(q)- (5.6)

The commutativity [TrrVv = Glv for v € V from Lemma 3.1 enters this proof in
two ways. First, it verifies I1,Glu = I1, Vi with v := u so that (3.8) reads

an(i, &) = (Vi — a(1 — T1) Vi, Gep) 12(q) + Bh7 ST, Sep) 2. (5.7)

Second, for v := J&), the resulting L? orthogonality VJe), — Ge), L RTf;W (7) to the
piecewise Raviart-Thomas functions RTE,),W (7)) provides

(Vi, Gen)2q) = —((1 = TIRD) Vid, VIep) 12(q) + (Vid, VIey) [2(q)-
Since & € V solves —Al = f in £, this and (5.6)—(5.7) verify

InlZ, = (f (1= TpeD)Ien) 12y — (1 — TIRDVE, VIE,) 12
—a((1 = ) Vi, Ge) 121y + Bhy ST, S 12 (5.8)

The choice ¢ := ¥ in (4.5) implies |7 SIH| ;2(q) < lh7' (@ — G| 12, With the
Galerkin projection G from (1.12). Hence, the Poincaré inequality shows

7 STl 2 () < CplIVpw(@ = GiD 2. (5.9)
A Cauchy and a piecewise application of the Poincaré inequality reveal
(f. (1= My )I2) 120 < Crose(f, TIVIh] 12 (qy- (5.10)
The combination of (5.8)—(5.10) with a Cauchy inequality provides

12117, < (Cpose(f, T) + (1 = TrD) Vil 120y ) I VIeh I 2
+all(1 =) Vil 2 Genll L2(q)
+BCp ||pr(ﬁ - Gu) ||L2(Q) ||h§—1 Sep ||L2(gz)~

This, (3.2)—(3.3), the stability || Ve, L2y < Il 1€ |l 4. from Lemma 5.2, a Cauchy
inequality, and (1 —e)[|G2h |17 g, + Bllh7' Seh |72 g, < 12417, from (1.6) conclude
the proof. O

The final lemma links (3.9) to (5.4). Recall the simple eigenpair (A, u) of (1.5) and
the associated discrete eigenpair (A, up) of (3.9) with up, = (u7,ur) € V, and
(u, MT)LZ(Q) > 0.
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Lemma 5.4 (Upper bound for |[u — u7 || 12(q)) If hmax is sufficiently small, then uy =
(U, ur) € Vy from Lemma 5.3 with f := \u satisfies

lu —urll2) < Collu — Tl 20

with the constant Cg = v/2(1 + maxge(1,.. . N)\(j} 1A/ (A (k) — A)]) < oo.

Proof This follows as in [21, Lem. 2.4] with straight-forward modifications and is
hence omitted. O

Proof of Theorem 5.1 The proof of (1.9) is split into three steps.

Step 1 provides the L? error estimate

lu —url2@) < Crohy, min __ ||[Vpw (@ — vpr D)l 2@)- (5.11)
L*(Q2) max Opi1€Ppi1 (T) pw P L=(2)

Recall u, = (', ur) € Vj, from Lemma 5.3 with f := Au. Lemma 5.4, a triangle
inequality, and (2.1) with [|(1 — TTp4Dull2q) < (1 — G)ullp2(q) lead to

llu — MT”LZ(Q) < Ceoz|lhr (1 — np)vu”Lz(Q) + Coll T ptqu — ﬁT”LZ(Qy (5.12)

Convergence rates for the error || IT,41u — w7 || 12(e in HHO methods for a source
problem are established in [31, 32, 38]. This proof follows [21, 38] and utilizes the
operator J : V; — V from Lemma 5.2. Abbreviate ¢j, = (e, ¢r) :=Iu —ujy € V,,
andlet z € V solve —Az =e7 in Q, i.e., z € V satisfies

(VZ, V'U)LZ(Q) = (E”]’, U)LZ(Q) forallv e V. (513)
Let z¢ € Sé (7) := P;(7T) NV denote the Scott-Zhang interpolation [50] of z and
observe that (1 —I1,)Vz¢ = 0 vanishes. Lemma 3.1 implies SIz¢ = 0 and therefore,
the identity aj (Iz¢, up) = (Vzc, Guy) follows from (3.8) with Glz¢ = Vz¢. Lemma
3.1 and IT = 1 verify TIgrVIIu = Glu = TryVu and MrrVJIu, = Guy. This,
Vzc € Py(T; R") C RT},"(T), and the symmetry of aj, show
(Vze, VIen) 12y = (Vze, Vu — Giip) 12y = a(u, z¢) — an(iip, 1zc) = 0 (5.14)
with a(u, zc) = Au, zc)12(Q) = an (ity, Iz¢) from (1.5) and (5.4) in the last step.

Hence, (5.13)—(5.14), a Cauchy inequality, and ||VJEh||Lz(Q) < |Jllenllq.n from
Lemma 5.2 confirm

(T, Jen) 2@ = (V@ —z¢), VIen) 12g) < TV = 2Ol 2@ €k llan- (5.15)

The stability estimate (2.1) proves osc(iu, 7) < A02||h%-(l — ) Vul 12(q)- This,
Lemma 5.3, and (3.3) provide

I llan < Cs(1 4+ 202k ) | Vow (4 — Gu) 12 (- (5.16)
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The elliptic regularity theory establishes z € V N H!*(Q) for 0 < s < 1 on the
polyhedral Lipschitz domain €2 and the approximation property of the Scott-Zhang
interpolation z¢ [50] provides the constants C7, Cg depending exclusively on the
domain €2 such that

1 —s ~
Cy a1V (z — 2ol < Nzl gy < Csllerllz2()-

Since I1,41J€, = e7 = 1,4 1u — 7, the combination of (5.15)—(5.16) verifies
ITTp1u — ﬁT”iz(Q) = (e1, Jen)12(q) < Colpux | Vow(u — Gu)ll 2oy e [l L2

with Cg := ||J||CsC7Cs(1 + roah? ). This and (5.12) conclude the proof of (5.11)

max

with C1g := Cg(02h1~S + Cg) and Step 1.

max

Step 2 discusses the remaining term |A — Ap| + ||[Iu — uy, Hi,h on the left-hand side of
(1.9).

Abbreviate e, = Iu — u; € V). Elementary algebra with the normalization
||M||L2(Q) =1= ”u’]’”LZ(Q) reveals 2\ = )\.”M - M’]’”iz(g) + 2)\.(14, uT)LZ(Q) This

and lep |12, — A = )2, — 2an(lu, up) result in

A —xn+ llenll3 s
= Mu = urlGag) + Muly = & +20:, ur) 120 — an(u, up)).  (5.17)

Step 2.1 bounds ||Iu ”121 » — A The commutativity [TrrVu = Glu from Lemma 3.1 and
(3.8) with I, ITrrVu = 1, Vu show

IMull , = (1 — ) (MrrVu, Vi) 120y + (T, Vi, Vi) 2q) + ﬂllh}lSIuHiz(Q).
This and A = ||Vu||2L2(Q) prove

ITally )y = = Mully = 1Vul}aq, = —a((1 = T1,) Vi, Vi) 2q)

— (1= a)((1 = Mgr) Ve, Vi) 2 + Bllhg STul2,

Thus, 0 < « < 1 and (5.9) with i replaced by u imply

ITully ), — % < BIAZ STull}a g, < BCRI Vow(u — Gu)l72 g, (5.18)
Step 2.2 controls L(u, MT)LZ(Q) —ap(Iu, up).
The weak problem (1.5) and I, 1Ju, = u reveal
Mu, MT)LZ(Q) =a(u,Jup) — A((1 = Hpp1)u, Jun)r2q)- (5.19)
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Lemma 3.1 provides ITrtVIuy, = Guy, and Glu = IrrVu. This and (3.8) lead to
ap(u,up) = (1 — )rrVu + o1, Vu, Vluy) + ,B(h,}ZSIu, Sup)r2q)-
This and (5.19) show

AMu,ur) ) —anu, up) = —A((1 = HpypDu, Jup) 120y — ,B(h}ZSIu, Sun) 2
+ (1 — (X)((] — HRT)VM, vJMh)LZ(Q) + a((l — HP)VM, VJuh)LZ(Q)

Therefore, the Cauchy inequality and P,(7; R") C RTI;,W(T ; R™) imply

Au,ur)r2g) — an(u, up) < A1 — T ppDull 21— Hpp)Junllp2 )

In the following, we control the terms on the right-hand side of (5.20). The split
up =lIu — ey, ||h}1 Slul|12(q) = 0, and a Cauchy inequality provide

— (W STu, Sup) 12y < Ih7" STull 20y |7 Senll 2
< Cpt/2]|Vpw(u — Gull32 ) + Cr/@DIIhT Sen ]2 g, (5.21)

from (5.9) with & replaced by u and a Young inequality with arbitrary z > 0 in the
last step. Notice that I1,VJIu = Glu = I1,Vu by Lemma 3.1. Hence, a triangle
inequality and ||V (u — Ju)||;2(q) < CallVpw(u — Gu)ll12(q) from a combination of
(5.1) with (3.2)—(3.3) verify

(1 = T VIlull 20y < 1 = TVl gy + IV — T | 2y
< (14 C)[ Vow(tt — G) [ 2. (5.22)

This, (2.1), a triangle inequality with the split u;, = Iu — ep, and the stability
IVienllz2@) < Illllenllq,n from Lemma 5.2 provide

o5 i (1= Ty DIug | 2y < (1 = T1) VIupll 12
< I =T VIl 20y + 11 =TT Vel 20

< (14 C)II Vpw(ut = Gi)ll 20y + 191 llenllai- (5.23)
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The combination of (5.22)—(5.23) with (2.1) and a Young inequality with r > O reveal

5 s I (1= Tyl 200y (1= Ty )Tl 120

<[1- Hp)VM”]}(Q)”(l - Hp)VJuh”LZ(Q)
< (14 Ca + 11/ Vpw (u = Gu) 172 + 1IN/ @D llenllZ 5 (5:24)

Then (5. 20) —(5.21), (5.23)~(5.24) with the choice ¢ := 2(1 + ro7h2, Il + 2Cp,

and /3||hT Sey, ||L2(Q) < ||€h||2‘h from (1.6) lead to

2 ur) 2@ — an(u, up) = llenlly /4 < Cuil Vpw( — Gu)l 7o, (5.29)

with C1y := (1 + A0fhZ, ) (1 + Cs + |J]|1/2) + BCpt/2.
Step 3 finishes the proof. Theorem 4.1 guarantees A, < A for sufficiently small mesh-
sizes Npax < (a/(kazz))l/z. This, the combination of (5.17)—(5.18), and (5.25) with

the L? error estimate (5.11) from Step 1 result in

= Al + lenl2 4/2 < ACTohE + BCE + 2C10 1 Vpw (4 = Gu) 172
Thus, (5. 11) and (3.2) conclude the proof of (1.9) with C; := Z(AC]ZOhmax + ,BC% +
2C11) + C? 1o- O

Theorem 5.1 implies the following convergence rates and recovers [12, 19] for the
eigenvalues and eigenfunctions error in the H! seminorm.

Corollary 5.5 (Convergence) Ifu € VN H'T(Q) fors <t < p + 1, then

hid i — ug N2 + it (|x ~ ol 4 M — uh||ih> <l as hmax — 0.

Proof This follows immediately from Theorem 5.1, the stability (1.3), and standard
approximation properties of piecewise polynomials [11, Lemma 4.3.8]. O

The techniques of this section also apply to the HHO method of [19] and lead to the
optimal rate s + 7 for the L? error towards a simple eigenvalue therein.

6 A posteriori error analysis

The two assumptions (A1)—(A2) below concern some ¢ € H'(7; R") and lead to a
stabilization-free a posteriori error control of [|[Vu — gll12(q) in two or three space
dimensions. Let RTo(7) := RTp Y (T) N H(div) denote the lowest-order conforming
Raviart-Thomas space, set S}’ (T ):=P,(7)N H (2) for m € N, and suppose

(A1) (g, Vue) 2 = T, vo) 2 for all ve € SO (1),
(A2) (g, qrr)2(q) = 0 for all grr € RTo(7') with div grr = 0.
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Theorem 6.1 (A posteriori) Any g € H'(T;R") with (A1)~(A2) and 1 from (1.10)
with py, replaced by q satisfy

C IV = qlljag) < 0° + 1kt = |72 g (6.1)

The constant Cyy only depends on p, n, 2, and the shape regularity of T .

Proof This is an extension of [8] to eigenvalue problems. For the convenience of the
reader, the main arguments are briefly outlined below. Let ¢ € V solve —AY =
—divg € H~1(Q) so that the Pythagoras theorem allows for the split

IV =gl 72y = IV = )72 + 1YV = I3 - (6.2)

Upper bound for ||V(u — ¥)|12(q)- Abbreviate ¢ := u — ¢ € V and let oc €
Sé (T) denote the Scott-Zhang interpolation of o [50]. Then (A1), (V¥/, Vo) 2(q) =
(g, Vo) 2(q). and (1.5) lead to

IIVQIIiz(Q) = Ab(u, 0) — An(ut, 0C)12(2) — (4. V(0 — 0c))12(0)

= (Au — Aput, Q) r2(0) + AT, 0 —0C)12(0) — (4, V(@ — 0C))2(0)-
(6.3)

The last two L? scalar products on the right-hand side of (6.3) arise in the explicit
residual-based a posteriori error estimation of standard conforming FEM for the Pois-
son model problem, cf., e.g., [2, Section 2.2] or [37, Chapter 34], and are controlled
by

. 1/2
(WhT @ivpwg + 20D 2oy + D hrllla - velelae) IVl )
FeF(Q)

This, (6.3), a Cauchy inequality, and a Friedrichs inequality result in
IV @ =2y S 0° + 2t = hnur 7). (6.4)

Upper bound for |[V{r — qll;2(q)- The function ¢ = V¢ — g € L2(S; R is
divergence-free divp = 0 and orthogonal to the divergence-free Raviart-Thomas
functions grt € RTo(7") from (A2). The Helmholtz decomposition on a simply con-
nected domain € immediately implies Curl 8 = ¢ for some 8 € H'(2; R¥"3), but
in this paper, the domain €2 does not need to be simply connected. However, the extra
condition (A2) ensures the existence of some orthogonal correction ¢rt € RTo(7)
with div ¢rT = 0 such that the integrals f r; (¢ — ¢rr) - vds = 0 over the J € N con-
nectivity components I'; for j =1, ..., J of 9K vanish, cf. [8, Lemma 2] for further
details. Thus classical theorems [40] imply the existence of 8 € H'(Q; R*"~3) such
that Curl 8 = ¢ — ¢rr and [Vl 12(q) < ¢l 12(g)- Since the Scott-Zhang interpola-
tion B¢ € S§(T; R*"=3) of B satisfies Curl B¢ € RTo(7) and div Curl B¢ = 0, (A2)
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shows

IVY = q1220) = (@. Curl B + ¢rr) 120 = (6. Curl(B — B)) 2.

A piecewise integration by parts, the trace inequality, the approximation property of
the Scott-Zhang interpolation [50], and the Cauchy inequality lead to

IVY =117y S Mhrcurlglyag, + Y hrlla x veleljagy. (6.5)
FeF
The combination of (6.2) with (6.4)—(6.5) concludes the proof of (6.1). O

One key observation is that ¢ := p; := I1,Gu,, satisfies (A1)~(A2) as shown in
the proof of Theorem 6.2 below. This leads to reliable a posteriori error control for
Vu — pallz2(q)- Theorem 6.1 can also be applied to the HHO scheme of [12], where
q = VpwRuy, satisfies (A1)—(A2) for p > 1. The lowest-order case p = 0 therein
can be treated separately as in [8].

Theorem 6.2 (Reliability and efficiency) For sufficiently small mesh-sizes hmax, pn ‘=
,Guy, € Py(T;R") and n from (1.10) satisfy (1.11). The constants Ce and Cre;
exclusively depend on p, n, 2, and the shape regularity of T .

Proof The first part of the proof verifies that p;, = I1,Guy satisfies (A1)—(A2).
Proof of (Al). Any v¢ € Sé (7) satisfies Vve = Glve € Py(7) and ve = Rlve.
Thus STvec = 0 and so,

(pn, VUC)LZ(Q) = (Guy, VUC)LZ(Q) =ap(up, Ive) = Ap(ur, UC)L2(9)~

Proof of (A2). Given grt € RTo(7) C H(div, 2) with divgrr = 0, the normal
jump [grt - Vr]F vanishes on any interior side F € F(£2). Since divergence-free
functions in RT((7") are piecewise constant, the definition of G from (3.7) shows
(ph, qRT)Lz(Q) = (Guy, qRT)L2(Q) = 0 and concludes the proof of (A2).

Proof of reliability. Since g = pj, satisfies (A1)—(A2), Theorem 6.1 asserts
Cio VU = phlljaq) < 0° + I = hpur | (6.6)
12 hllp2 Q) = hUT N 2(q) '

The normalization |[u|[;2(q) = 1 = uT|12(g), clementary algebra, and the combi-
nation of the a priori estimate (1.9) with (3.2) reveal

24t = 2z |72 gy = O = 2)* + Ahnllu — w7 g
< Ci3hx | Vpw (4 = Gu) 32 (6.7)

max

with the elliptic regularity of u € V N H'™*(Q) for the parameter 0 < s < 1 and
C13 := max{|A — A4|, ALy }Cy. The inequalities (1.3) and p, € P,(7; R") prove

Cs_té”va(u - GM)”LZ(Q) <[ - Hp)VU”LZ(Q) < IVu— Ph”LZ(Q)- (6.8)
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For sufficiently small mesh-sizes hpax, C14 := C12C 13h2s Cszt , < 1 and (6.6)—(6.8)

lead to

max

IVu — < Cia(l—Crg)~! (6.9)

Ph ”LZ(Q)

Under the additional assumption hpax < (ot/ (kazz))l/ 2, the quasi-best approximation

(1.9) and (6.8)—(6.9) conclude the proof of
A = Ml + 1w = w3, + IV = pill7a gy < Cren’® (6.10)

with Crep := (1 + C1C3 ,)C12(1 — C14)™".

Proof of efficiency. The proof of n> < ||[Vu — pyl? 12
techniques from [54]. Similar arguments are employed in [29] for the Crouzeix-Raviart
FEM and, e.g.,in [2, 8, 33, 37] for the source problem. The efficiency ZFE]_— hrlllpn X
vElF ”2LZ(F) < ||Vu—px ”i%g) follows from the arguments in the proof of [8, Lemma

7] for the Poisson model problem; hence further details are omitted. The focus is
therefore on the proof of the efficiency of

utilizes bubble-function

heurl pyll7aq) + 1T WiV p + ki) 1720+ D hrllpn - velFTa 5
FeF(Q)

Given F € F(Q), let bp € S"(T) denote the face-bubble function with 0 < bp < 1
in Q and supp(br) = wr [54, Section 3.1]. Define o € S”+ "(T) such that o|p =
brlpn - vrlF € Ppyn(F), supp(0) = @F, and @ vanishes at all Lagrange points [11]
in 2\ F. Inverse estimates [54, Ineq. (3.2)] and an integration by parts prove, for any
F € F(Q), that

Ilpn - VF]F”Lz(F) (o, [pn - VF]F)LZ(F) (Vo. Ph)LZ(wF) + (o, lepwph)LZ(wF)

This, (Vu, Vo) 12,y = Au, 0)12(q), and a Cauchy inequality imply

Ilpn - VF]F||L2(F) S IVellzwpIVu = prll 2w
+llollL2@p) 1A = Apur 20y + 101 220 1diVpw PR + 20U T || 120 -

This, the inverse estimate Vo 124, < ;1||Q||Lz(wF) [11, Lemma 4.5.3], and

lol2,,., ~ hEllel2s o < kel - vEIFI2, ) [54, Ineg. (3.5)] show

helllpn - velpllpy S VU= prlifg,,,

+ Wl = dnur 7o, + hEINdVpwpr + AnueT 17, - (6.11)

Let by € P, 1(T)N Wol'OO(T) denote the volume-bubble function in 7 € 7 with
0 <br <landby =0o0naT [54,Section 3.1]. Abbreviate v, := div pp+Apur €
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Py 1(T) and define ¢ := brvp4 € S6’+"+2(T) i= Ppynt2(T) N HNT) C V.
Inverse estimates [54, Ineq. (3.1)] and an integration by parts imply

lvp+1 ||L2(T) (¢, Up+1)L2(T) —(Vo, Ph)LZ(T) + (¢, )»hMT)L2(T)~ (6.12)

Since (the extension by zero of) ¢ belongs to V, (1.5) provides (Vo, Vu) 27y =
MMu, ¢)L2(T)~ This, (6.12), and a Cauchy inequality lead to

lvp+1 ”iZ(T) SVl IVu = prll2ry + 1@l g2y 1w — Apur g2 7y

Hence (@l 2y = Ibrvp+illzzery < lvp+illp2ry from 0 < by < 1in T and the
inverse estimate |Vl 27y < h;l l@llz2¢ry [11, Lemma 4.5.3] reveal

RPNV i+ At 1oy S VU = pall3a ey + W lha = dpur 7oy (6.13)

The local estimate hr|curl pull 2y S < [|[Vu — pull 12 follows from similar argu-
ments as above and details are omitted. The combination of this with the local estimates
(6.11) and (6.13) results in 72 < ||Vu — phlle @ + |hr(Qu — )‘h“T)”Lz @
This and the control over ||[Au — Apur|2(q) in (6.7)~(6.8) lead to the efficiency
n* S IV = pall}s - o

7 Numerical examples

The section presents three numerical benchmarks for the approximation of Dirichlet
eigenvalues of the Laplacian on nonconvex domains Q C R2.

7.1 Parameter selection

For right-isosceles triangles, recall Cg; o < /2 from Example2.4and Cp = 1/ (ﬁn)
from [44]. Throughout this section, let « = 0.5 and 8 = oa/crz2 = 4.934802

with 022 = C3 Cszt2 = 1/7% = 0.101321. The computable (a posteriori) condition

02 max{p, hmaxkh(J)} < « from Theorem 4.1 leads to GLB(j) = M) < X))
Since the parameters are chosen before-hand, the condition A2, A, < 05/022 =
4.934802 may not be satisfied on a coarse mesh with large in,x and j. In this case,
GLB(j) := 0 (which is a guaranteed lower eigenvalue bound), so only GLB are
displayed in this section.

7.2 Numerical realization

The algebraic eigenvalue problem (3.10) is realized with the iterative solver eigs
from the MATLAB standard library in an extension of the data structures and short
MATLAB programs in [3, 17]; the termination and round-off errors are expected to
be very small and neglected for simplicity.
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o 0 1 32 1 0 1z 3 2 1 0 1 2
Fig. 3 Initial triangulations of the L-shaped domain in Sect. 7.3, the isospectral drum in Sect.7.4, and the
dumbbell-slit domain in Sect.7.5

—wp=0 —e—-p=1 p=2 —a+—p=3 ——p=4

Fig.4 Polynomial degrees p =0, ..., 4 in the numerical benchmarks of Sect.7

The a posteriori estimate from Theorem 6.1 motivates the refinement indicator
n?(T) from (1.10) with n?> = > 7.7 n*(T). The standard adaptive algorithm [18,
Algorithm 2.2] is modified in that, if hﬁmkh < 01/022 is not satisfied, the mesh is
uniformly refined. It runs with the initial triangulations from Fig. 3, the default bulk
parameter 6 = 0.5, and polynomial degrees p displayed in Fig. 4.

The uniform and adaptive mesh-refinements lead to convergence history plots of
the eigenvalue error A(j) — GLB(j) and the a posteriori estimate > plotted against the
number of degrees of freedom of V}, (ndof) in log-log plots below; dashed (resp. solid)

lines represent uniform (resp. adaptive) mesh-refinements.

7.3 L-shaped domain

The first example concerns the principle Dirichlet eigenvalue on the domain Q2 :=
(=1, DZ\ ([0, 1) x [0, —1)) with a re-entering corner at (0, 0) and the reference value
A(1) = 9.6397238440219410 from [9]. This leads to the suboptimal convergence rate
2/3 for A(1) — GLB(1) and n? (for all p) on uniform triangulations in Fig.5. The
adaptive mesh-refining algorithm refines towards the origin as displayed in Fig. 6 and
recovers the optimal convergence rates p + 1 for (1) — GLB(1) and 7.

7.4 Isospectral domain

The isospectral drums are pairs of non-isometric domains with identical spectrum
of the Laplace operator. This subsection considers the domain €2 shown in Fig.3b
from [41]; the reference values A(1) = 2.53794399980 and A(25) = 29.5697729132
are from [9] and [34]. Figure7 shows the suboptimal convergence rate 2/3 for
A(1) — GLB(1) and 772 for the approximation of the principle eigenvalue A (1) on uni-
formly refined triangulations. The adaptive mesh-refining algorithm refines towards
four singular corners (for p = 3) as depicted in Fig. 9 and recovers the optimal conver-
gencerates p+1for A(1)—GLB(1) and n*. Figure 8 displays the empirical convergence
rate 1 for both A(25) — GLB(25) and 72 in case p = 0, while it is the expected rate
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AL B e e L AL I
1 -

10 10t |- N
1072 S U 1
1075 F | e 1

107° - 1
1078 1 1
5 1077 [ 4
—11 |- N
10 wl vl vl vl 1. ol vl vl 10_9 by el 1. Crrvi el
10t 102 10*° 10* 105 108 107 108 102 10®° 10* 10° 10 107
ndof ndof

Fig. 5 Convergence history plot of A(1) — GLB(1) (left) and ,’2 (right) for polynomial degrees p from
Fig.4 on uniform (dashed line) and adaptive (solid line) triangulations of the L-shaped domain in Sect.7.3

1 1 af 1
o 1 of .
1} N —1| i
1 1 1 1 1 1
-1 0 1 -1 0 1

Fig.6 Adaptive triangulations of the L-shaped domain in Sect.7.3 into 1034 triangles for p = 0 (left) and
into 1138 triangles for p = 3 (right) for the approximation to A(1)

10° - 1
107" - 1
1073 [
1070 o7ty 1
107 3 1077 1
—12 | -
10 L vl vl v d el vl 10— 10 | P Ay e e
10t 102 10®  10* 10° 10 107 10t 102 10® 10* 10° 10 107
ndof ndof

Fig. 7 Convergence history plot of A(1) — GLB(1) (left) and n? (right) for polynomial degrees p from
Fig.4 on uniform (dashed line) and adaptive (solid line) triangulations of the isospectral domain in Sect. 7.4
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10" |- 8
100 -
1072 8
10-° |- |y
10-8 | . 1076 -
—11 | |
10 AT I RO RN T B AT T AR RN TITT 107° P I T R SR T B AT A T B
102 10®  10* 10> 108 102 10%  10* 10° 108
ndof ndof

Fig.8 Convergence history plot of A(25) — GLB(25) (left) and n2 (right) for polynomial degrees p from
Fig.4 on uniform (dashed line) and adaptive (solid line) triangulations of the isospectral domain in Sect. 7.4

3| 1 3 .
2| 1 2t .
1p 1t 1
N
o 1 of .
—1F % - —1F |
—2| N —2| i
-3 - -3 |
1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 -1 0 1 2 3 3 -2 -1 0 1 2 3

Fig. 9 Adaptive triangulations of the isospectral domain in Sect.7.4 into 1342 triangles for p = 0 (left)
and into 1311 triangles for p = 3 (right) for the approximation to A(1)

2/3 for p > 1 in the presence of a typical corner singularity in the eigenfunction. We
conjecture that the singular contribution to the corresponding eigenfunction in this
particular example has a very small coefficient and the reduced asymptotic conver-
gence rate 2/3 is therefore barely visible unless a very high accuracy is reached (e.g.,
absolute error in the eigenvalues much smaller than 5 x 10™%). The adaptive mesh-
refining algorithm refines towards four re-entering corners and recovers the optimal
convergence rates p + 1 for A(25) — GLB(25) and nz. There are two reasons for the
plateau observed in the convergence history plot of A(25) — GLB(25) in Fig. 8a. First,
a larger pre-asymptotic range is expected and observed for the approximation of larger
eigenvalues. Second, the condition /2, A, < « is not satisfied for the first triangula-
tions, whence GLB is set to zero. An asymptotic behaviour is observed beyond 30,000
degrees of freedom for all displayed polynomial degrees p =0, ..., 4.
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1F 11 .

o 1 o .

s SVAAVAYAYd) 1 b VAVAVAVAYA |
1 1 1 1 1 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2

Fig. 10 Adaptive triangulations of the dumbbell-slit domain in Sect. 7.5 into 1588 triangles for p = 0 (left)
and into 1505 triangles for p = 3 (right) for the approximation to A(1)

100 |- . 10! |- §
107" - 8

1073 |- 4
1078 - )

1076 |- i
1075 |- s
10_9 ~ N 1077; |
7012 bt i i i 1079 [ T M 11 |

10° 10* 10° 106 10° 10* 10° 10°
ndof ndof

Fig.11 Convergence history plot of A (1) —GLB(1) (left) and 172 (right) for polynomial degrees p from Fig. 4
on uniform (dashed line) and adaptive (solid line) triangulations of the dumbbell-slit domain in Sect. 7.5

7.5 Dumbbell-slit domain

The final example approximates the principle Dirichlet eigenvalue A (1) on the domain
Q:=(-3,2) x (—1, D\((-3, =2] x {0} U[—1, 1] x [-3/4, 1)) displayed in Fig. 3c.
This is a modification of the numerical example in [23, Section 4.2]. The reference
value A (1) = 8.367702430882 stems from an adaptive computation with the polyno-
mial degree p = 5. The adaptive algorithm refines towards the reentrant corners at
(=1, =3/4) and (-2, 0) as displayed in Fig. 10, while the triangles in the subdomain
(1, 2) x (—1, 1) remain unchanged for p > 1. Hence, there may be no reduction of the
maximal mesh-size hnm,x. Figure 11 displays suboptimal convergence rate 0.5 for the
errors A(1) — GLB(1) and 172 for p =0, ..., 4. The adaptive mesh-refining recovers
the optimal convergence rates p + 1.
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7.6 Conclusions

The computer experiments provide empirical evidence for optimal convergence rates
of the adaptive mesh-refining algorithm. The ad hoc choice « = 1/2 is robust in all
computer experiments. For § = « /022, the computable condition ozzhﬁm)nh () fa
leads to confirmed lower eigenvalue bounds and holds on triangulations into right-
isosceles triangles, whenever the maximal mesh-size hny,x satisfies )“hhrznax < an?.
In all displayed numerical benchmarks, A;, is a lower eigenvalue bound of A even
for khhﬁm > am?. The computed (but otherwise undisplayed) efficiency indices
7x107%2 < [ := A — Ah|n_2 < 4x1073 range in the numerical examples from
7 x 1072 to 4x 1073 for an asymptotic range 2x 10* < ndof < 10; the quotient /
decreases for larger polynomial degree p. The overall numerical experience provides
convincing evidence for the efficiency and reliability of the stabilization-free a poste-
riori error estimates of this paper. Higher polynomial degrees p lead to significantly

more accurate lower bounds and clearly outperform lowest-order discretizations.

Appendix: On p-robustness of constants in refined H' stability
estimates

This appendix provides details of the proof of Theorem 2.1 in the paper with focus
on the constants Cg 1, Cs2 and their dependence on the polynomial degree p € Ny
in three space dimensions.

Overview

Let [[e]l| := [V o [I;2(7) abbreviate the seminorm in the Sobolev space HY\(T) :=
H!(int(T)) and let I p denote the L? projection onto the space P,(T') of polynomials
of total degree at most p € Ny for a fixed tetrahedron T C R3. For any Sobolev
function f € H'(T),the Galerkin projection Gf € Pp1(T) is the unique polynomial
of degree at most p 4 1 with the prescribed integral mean [1oGf = Ilpf and the
orthogonality V(f — Gf) L VP, 1(T) in L>(T; R?). The constants Cy;,; and Cy2
are the best possible constants in the stability estimates

|1 =T f]| < Csuall @ =TV fll 2y, forall f € H(T), (A1)
(1= G)fll < Caall(1 =TV 2y forall f e HY(T).  (A2)

Theorem 2.1 asserts the following properties of Cy 1 and Cg .

(A) There exist positive constants 1 < Cgo < Cg1 < oo that satisfy (A.1)—(A.2).
The constants Cg 1 and Cy 2 are independent of the diameter 7 of T'.

(B) Cgi2 is p robust, i.e., Cg 2 is uniformly bounded for all p € Np.

(C) Cs1 ~ /p + Lis not p robust.

The proof of [TT,11|| < Cs,1 < Cse 2T p41ll S +/p + 1is already explained in the
paper and /p + 1 < ||T1 41| is established below in C.
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A. Proof of existence

The two assumptions (H1)—(H2) from [25, Theorem 3.1] imply the existence of the
constant Cg;; < oo in [19, Theorem 2.3]. The L? orthogonality V(1 — G)f L
VPpi1(T)implies [(1 — G) fIl < IV(A—=TTp11) fll 2(p) forall f € H'(T), whence
Cy,1 < Cg2 < 00. The best approximation property of the L? projection IT p proves
11— Hp)Vf||L2(T) < |II(1 = G) fll and, therefore, 1 < Cj ;. Notice that (A) holds
in any space dimension. O

B. Proof of p robustness of C; ,

Let N, (T) := Py(T; R) @ (P)O™(T; R?) x x) = Pp(T; R) @ {g € PIONT; RY) :
x - q(x) = Oforallx € T} denote the first-kind Nédélec finite element space
with the space P},‘(’m(T;R3) of homogenous polynomials of (total) degree p.
Since P,,(T;R3) C N,(T), the L? projection Ilx onto N, (7') satisfies ||(1 —
NV fllzy < 1A= Tp)V g2y for all f e H'(T). Hence, the existence
of a constant C(T') independent of p and diam(7) such that

Ilf = Gfll < CMIA =NV fllz2ry forall f e H'(T) (A.3)

implies (B). Given any f € H!(T), abbreviate gn := [INV f € N, (T') and observe
rrr = curlgn € RT,(T) with divrgr = 0, e.g., from [36, Lemma 15.10], [10,
Eq. (2.3.62)], or [48, Lemma 5.40]. It goes back to [28] to define a Bogovskii-type
integral operator as a pseudo-differential operator of order —1 of a Hormander class
Sy é(R") that leads to right-inverses for differential operators. In particular, there
exists a bounded linear operator R®" : H~1(T; R3) — L*(T; R?) such that Ry :=
RUlppr € N, (T) satisfies curl Ry = rrr. Since Ry — gn € N, (T) is curl-free by
design, Ry —gn = V1 is the gradient of some function ¢ € H'(T) in the tetrahedron
T. The structure of N, (7') enforces ¢ € P, 1(T) (cf. [36, Lemma 15.10] and [48,
Lemma 5.28] for the proof). Recall that VGf is the best-approximation of V f in
VP, 1(T) and deduce (from VP, 1(T) C Pp(T; R ¢ N, (1)) that it is also the
best-approximation of gy = IINV f. Hence,

ITINVS = VG Sl < llgn + V¥ il2ry = RN L2(7)- (A4)

The operator norm || R of R allows for Rl 2y < IR llrgrll, with

the norm |||e||, in the dual space H~'(T; R?) of Hé (T; R?) (endowed with the H'
seminorm [||e]])), i.€.,

llrrrllle = sup /rRT'de/|||U|”~
veH) (T; R\ (0} /T
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Recall rry = curl gn. An integration by parts and curl V f = 0 € L>(T) provide
/ rRT - vdx = / curlign — Vf) - vdx = / (1 —TIN)V f - Curl vdx
T T T

forany v € H(} (T; R?). This, a Cauchy inequality, and the estimate ||Curl v|| L2(1) <
2[l[vlll/~/3 reveal [Irerlll. < 2I1(1 = TIN)V fllz2(7)/~/3. Hence (A.4) implies

IINV £ = VGF 2y < 20RII =TIV Fll 207y /3.
This and the Pythagoras theorem result in

(L= G fIIP = 11 = TV f 177 + ITINV £ = VG727,

< L+ 4IRP/3NA = TNV F117s -

This proves (A.3) with C(T) := /1 + 4||R°1||2/3 and, therefore, (B). More details
on ||RC“r1|| and further applications can be found in [28, Section 3], [42, Section 2],
and [46, Lemma 6.4].

An alternative proof of (A.3) involves the main result of [26] and was kindly
provided by A. Ern in private communications from 03/08/2022. For v := V f €
H (curl, T') with curl v = 0, let vy, (resp. w};) denote the minimizer of [[v — vp |l 2(q)
among vy, € K = {v, € Np(T) : curlv = 0} (resp. |[v — wpll;2(q) among
wy, € Np(T)). The L? orthogonality wy — vy L K from the Euler-Lagrange equa-
tions associated with these minimization problems implies that the difference wj, — vy,
minimizes the functional ||z |27 among all z, € wy + K. Invoking the results of
[28], it is known from [26, Theorem 2] that

* * . ~ .
w; — vyl = inf Znll2ery < C(T) inf Zlly2
” h h”L 1) zh€Np(T) ” ”L 1) z€H (curl,T) ” ”L @)
curl z;=curl wj; curl z=curl wj;

with a p-robust constant C (T) > 0. Since curl(w; — v) = curlwj;, we infer |Jw} —
villL2ery < C(T)[lv — wjllL2(ry- This and a triangle inequality imply

lv = vill 2y < L+ CTNIv — will2r)-

This is (A.3) with C(T) := 1+ C(T) because wy = TNV f by designand vy = VGf
from K = VP, (T). |

C.Lower growth \/p + 1 < [IMp41 |l

While a compactness argument in [25, Theorem 3.1] leads to the existence of Cq 1,
the dependence of Cg,; on the polynomial degree p remained obscured and only an
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upper bound for p = 0 was given. The proof of Theorem 2.1 in the paper establishes

IT
Cst1 2 [Tyl := sup M'
pemrnr ol

An upper bound ||[IT,11 || < +/p + I of the growth of the H'! stability constant of
the L? projection is known from [47, Sec. 5] and [55]. The remaining parts of this
appendix therefore consider the reverse direction /p + 1 < || T1 p+1]l for a tetrahedron
and depart with a motivating classical result in 1D. For simplicity, the following
presentation applies an index shift and discusses [|I1,|| ~ ,/p for arbitrary p > 1.

Lower bound in 1D

In one space dimension, ||I1,| ~ ,/p is established, e.g., in [16, Theorem 2.4] and
[6, Remark 3.5]. Let Ly for k € Ny denote the Legendre polynomials in the reference
interval / := (—1, 1). Then L satisfies, for all k € Ny,

~ * Liy1(x) — Lg—1(x)
L = Li(t)dt = , A.5
((x) /_1 k(1) T (A5)
1
2 2
”Lk”L2(1) - 2k + 1 S z7 and ”VLk”LZ(]) - k(k + l) (A6)

with the convention L_; = 0in I, cf.,, e.g., [7, Eqns (3.11), (3.12), (5.3)]. The pairwise
L? orthogonality of Ly and (A.5)—(A.6) lead to

-, IVLp-1l72)  p(p—1)
”VHPLP”LZ(I) = 2 7~
Q2p+1) Cp+1)
2
2 _ ~ -l
Lz(l) - 2p + 1 P )

IVLpl72, = 1L,

whence [|VIT,Lpll 2y ~ /PIVLyll 2 for all p > 1. This proves /p < [IT1, |
in 1D.

A similar result holds for the L2 projection ﬁp :L2(D) > 0,(D) = P,(I)" onto
the space of tensor-product polynomials on the n-cube D := [" = (-1, +1)" [16].
For simplicity and because the arguments carry over to triangles as well, the following
proof considers simplices in n = 3 dimensions only.

Proof of \/p S T, |l for n = 3. Let p € N be arbitrary and let F : Q — T denote

the coordinate transformation

I+ =m)A —n3) 1 (I +m)d —n3) 1 >
4 o 2 T

Fm1,n,n3) :=<

fromthe cube Q := (—1, 1)3 onto the reference tetrahedron 7' := conv{(—1, —1, —1),
(1, —-1,-1),(—1,1,—1), (=1, —1, 1)} with the Jacobian Jr and detJr = (1 —
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m)(1 — 773)2/8, see, e.g., [51] and [47, Section 3] for a derivation. An integration
by substitution leads, for any f € L'(Q), to

1
/ foF ldx = §/ (1= n2) (1 = n3)* £d(n, ma, 3).- (A7)
T Q

Define ¢(12, 77%) = (1= n2)(1 = n3), Up(ni, 2, 13) == @(m2, 13)P 'L, (1), and
Up =UpoF~ e LA(T) forp > 1. The chain rule VUP = J_TVUP o F~! for the
gradient and (A.5) provides (VU,,) o F = @, n3)P"2M (1, 12)G (1) with

4 0 0 Lp(ﬁl)
My, m2):=12(1+n1) 2 0 and G(n) == [ (p—DLp(1) |-
2(L+n) (A+m) (1—n2) (p—DLpG)

A Cauchy inequality in R? proves
3 303

3
~ 2
V0,20 F = g, 37 (3 MiGr) = 39+ 32 (3 M%) G
k=1 j=1

j=1 k=1

This, the integration by substitution formula (A.7), R, := fil fil (1 —m)?P731 —
13)27~2d(n2, 13) € R, and [n;| < 1for j = 1,2,3 and (51, 72, 3) € Q show

1y~ 2 1 B

SO [I" < g/(l —m)(1 = m3)e(na. m3)* ™

0
2 2 2 27 2
X ((16 4 8(1 = n1)*)L,(1)* + 23 + 15)(p — DLy (n)*)d(ni, m2, m3)
1
=Ry f 6Lp(m)2 +(p = D*Ly()*dny

The pairwise L? orthogonality of Legendre polynomials and (A.5)—~(A.6) verify

p(p—1)? 2
Pl = DLy, = m(n pitl2a + 1Lp-1120)

_plp—1)? 2 n 2
o @p+D2\2p+3 2p-—1
12
(p—D"p 1

T 2(p—1/2(p+1/2)(p+3/2) ~ 2

for p > 1. This, (A.6), and (A.8) provide the bound 2p|||l7,,|||2 < 39R, for p > 1.
It remains to control VII pU p from below. Recall from [51] that the polynomials

@ Springer



848 C. Carstensen et al.

Vike =Vjxeo F~' € Pjypie(T) for j, k, £ € No with

i »2j+1,0 i 2j4+2k+2,0
Ve, ms) = L) (=) P 0) (1 — ) T P TH20005)

are L2(T) orthogonal and that (Jj,k,g |0 < j+k+ £ < p)forms abasis of P,(T).
The pairwise orthogonality of the Legendre polynomials, (A.5), and (A.7) imply that

~  Ype100 ~ ) ( 1 Lp+1(n1) )
U, + === 1 — )P (1 = )PP 2222222 g =0
( Pt Vike e (I =m)P (1 —mn3) il Ykt

vanishes for all k, £ € N and j < p. Consequently,
Qp+ DI,Up = —Vp-100 € Pp1(T).
This, the chain rule for partial derivatives, and (A.6)—(A.7) show

i)
11,0

2 4’R,, Lrd 2
= — —L,_ d
dx Pl 8@p+1)2 /;1 (dm ’ 1(771)> "

=L VL, |? =ip<p—1> (A.9)
(2p+1)2 p—1lp2(p) (2p+1)2 : :

The term 2p(p — 1)(2p+1)"2 > 0is monotonically increasing in p > 1 and bounded
from below by 4/25 for p > 2. Thus, (A.9) and 2p||T,|||* < 39R, provide

8 2
975

0 ~
—n,0,

~ 0 4
AT = 2y < | 2

~ 2
< T, U, ||
LX(T)

forall p > 2, whence /p < |IT1, | on the reference tetrahedron T'. This and a scaling
argument with an affine transformation concludes the proof for a general tetrahedron.
]
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