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Abstract. The memory-type control charts, such as EWMA and CUSUM, are powerful tools for 

detecting small quality changes in univariate and multivariate processes. Many papers on economic 

design of these control charts use the formula proposed by Lorenzen and Vance (1986) [Lorenzen, T. 

J., & Vance, L. C. (1986). The economic design of control charts: A unified approach. Technometrics, 

28(1), 3-10, DOI: 10.2307/1269598]. This paper shows that this formula is not correct for memory-

type control charts and its values can significantly deviate from the original values even if the ARL 

values used in this formula are accurately computed. Consequently, the use of this formula can result 

in charts that are not economically optimal. The formula is corrected for memory-type control charts, 

but unfortunately the modified formula is not a helpful tool from a computational perspective. We 

show that simulation-based optimization is a possible alternative method. 

Keywords: Statistical process control; Economic design; Memory-type control charts, EWMA 

control charts, CUSUM control charts, Bayesian control charts; Numerical optimization; Simulation 

1. Introduction 

Statistical process control (SPC) plays a vital role in improving a firm’s quality and productivity. 

Control charts are broadly-used tools of SPC for monitoring the quality of a production or service 

process. Designing a control chart means making appropriate decisions about the control chart 

parameters. The aim of economic design of a control chart is to determine the values of chart 

parameters in order to optimize an economic performance metric. The most popular metric is the 

long-run expected average cost, which were first studied by Duncan (1956) for Shewhart-type charts. 
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Since then, many papers have studied economic design for various types of quality control charts (see 

for example, Chen, and Cheng (2007), Nenes, and Tagaras (2007), Wu, and Makis (2008), Ho and 

Quinino (2012), Yeong et al. (2013), and Liu et al. (2013)). For a review of the literature the readers 

are referred to Montgomery
 
(1980), Keats et al. (1997), and Celano (2011). 

Lorenzen and Vance (1986) claimed that for any given control chart they had found a unified 

formula to compute the long-run expected average cost. They stated 

"A general process model is considered, and the hourly cost function is derived. This cost function 

simplifies when the recorded statistics are independent". (Abstract, page 3, line 2)  

"This article presents a general method for determining the economic design of control charts. The 

method applies to all control charts, regardless of the statistic used. It is only necessary to calculate the 

average run length of the statistic assuming the process is in-control and also assuming the process is 

out-of-control in some specified fashion. This is particularly easy when the statistics plotted are 

independent". (Page 4, line 27) 

This paper shows that these statements are not correct for memory-type control charts, such as 

EWMA-type, CUSUM-type, and Bayesian charts. Unfortunately, during the last three decades, 

several papers used Lorenzen and Vance’s formula to study different problems on economic design of 

memory-type control charts; see, for example, Ho and Case (1992), Montgomery et al. (1995), Torng 

et al. (1995), Simpson and Keats (1995), Linderman and Love (2000a) and (200b), Love and 

Linderman (2003),  Testik and Borror (2004), Carlos García-Díaz and Aparisi (2005), Chou et al. 

(2006), Yang and Sheu (2007), Serel and Moskowitz (2008), Lee (2010), Noorossana et al. (2014), 

Saghaei et al. (2014), Chiu (2015), Saniga et al. (2015), Ershadi et al. (2016), and Lu and Huang 

(2017). Most of these papers focused on economic design of EWMA-type control charts, and a few of 

them considered CUSUM charts. 

The remainder of the paper is organized as follows. Section 2 briefly introduces the Lorenzen-

Vance formula and develops a simulation method to accurately compute the long-run expected 

average cost for any given chart. Section 3 provides our numerical study for EWMA-type charts to 

show the incorrectness of using the formula developed by Lorenzen and Vance (1986) for memory-

type control charts. Then, Section4 modifies the Lorenzen-Vance formula for memory-type charts. 

Finally, Section 5 concludes the paper. 
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2. Lorenzen-Vance formula and simlaution method 

This section briefly introduces the general formula proposed by Lorenzen and Vance (1986), and 

describes our suggested simulation method in the following subsections. 

2.1. Problem statement and Lorenzen-Vance formula  

Consider a production process that continuously produces a product at constant rate and has two 

quality states: in-control and out-of-control. The process starts at the in-control state, under which its 

  measurable quality characteristics follow a multivariate normal distribution         . The amount 

of time that the process stays in the in-control state before making a transition to the out-of-control 

state is stochastic and follows the exponential distribution with the mean   ⁄ . After a special cause 

occurs, the process mean shifts from    to   . To control the process using a static control chart, a 

sample of size   is taken at fixed sampling intervals every   time units. Then, at the time epoch   , 

       , a statistic   
  is computed and compared with a preset control limit     , where, if 

applicable,     includes all the specific designable parameter(s) of the control chart other than   , 

 , and  . For some control charts, such as  ̅ and    charts, there may be no specific designable 

parameter, while some others, such as MEWMA charts with equal and unequal exponential weights, 

may have only one or multiple parameters. 

When the statistic of a chart exceeds the control limit, i.e.,       , the process is predicted to 

be out-of-control and a search for an assignable cause is initiated. Next, if any assignable cause exists, 

the signal is called a true alarm and a corrective action must be carried out in order to take the process 

back to the in-control quality state. Otherwise, the signal is called a false alarm and no action is done. 

A quality control cycle (or cycle, for short) begins with the in-control state and continues until the 

occurrence, detection, and complete elimination of the assignable cause. Whenever an adjustment to 

the process is successfully made and the process is returned to the in-control state, a new cycle begins. 

At the beginning of each new cycle, the control chart is initialized as in the first cycle. Hence, the 

sequence of the cycles can be considered as a renewal stochastic process. 
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In the economic design of a control chart, the aim is to design some of the parameters  ,   ,  , 

and   such that an economic performance metric is optimized. Inspired by control theory, a widely-

used objective is to minimize the long-run expected average cost defined by 

      
   

 (
∫       

 

 

 
) 

(1) 

where      denotes the instantaneous quality-control cost corresponding to the control chart specified 

by statistic   
 ,        , and control limit   . To have a well-defined problem, the above limit 

must finitely exist. The quality-control cost includes the production costs during the in-control and 

out-of-control periods, the cost of a false alarm, the cost of discovering assignable cause after a true 

alarm, the cost of repairing process after detecting an assignable cause, and the variable and fixed 

costs of sampling. 

Table 1. Notation used in formula (3)  

   
Mean vector of   process characteristics when 

process is in-control 
   Expected time to sample and chart one item 

   
Mean vector of   process characteristics when 

process is out-of-control 
   

Production cost per time unit when the process is 

in-control 

  Covariance matrix of process    
Production cost per time unit when the process is 

out-of-control 

  Process failure rate     
Cost for locating and repairing the assignable 

cause when one exists 

  Length of each sampling interval    
Cost per false alarm which includes the costs of 

searching and testing for the cause  

  Sample size   Fixed cost of sampling 

   Expected time to locate an assignable cause   Variable cost of sampling 

   Expected time to repair a detected assignable cause    
A parameter that is 1 if production continues 

during search process, and 0 otherwise 

   Expected search time for a false alarm    
A parameter that is 1 if production continues 

during repair process, and 0 otherwise 
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Let the random variables    and    denote the cost and time of a typical quality control cycle, 

respectively. As the cycles create a renewal stochastic process, the objective function   can be given 

by 

  
     

     
  

(2) 

When the control chart is not memory-type, that is, statistics   
 ,        , are independent, 

using the same method used by Duncan (1956), Ladany (1973), and Lorenzen and Vance (1986), 

based on (2) it can be shown that 
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(3) 

where 

  
    

        
   

            

         
  

and 

    {  
     |                {  

     |         

are the type-I and type-II error probabilities, which are the same for all        . The other notation 

used above is given in Table 1. Note that it can alternatively be assumed that the process stops or 

continues during searching for an assignable cause, and repairing a detected cause depending on how 

the values of the two Boolean parameters    and    are set. 

For a memory-type control chart, Lorenzen and Vance (1986) claimed that the formula (3) can be 

extended as follows: 
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(4) 

where      and      stand for the in-control and out-of-control ARLs (Average Run Lengths), 

respectively. When the statistics   
  ,        , are independent, the formula (3) can be retrieved 

from (4) by observing that      and      are equal to   ⁄  and       ⁄ , respectively. 

In Lorenzen and Vance (1986), it is suggested that the ability to compute      and      is 

enough to apply the formula (4) even if the control-chart statistics at sampling epochs are dependent. 

For this purpose, three approximate methods can be used 

(i) Using integral equations: An integral and a double-integral equation can be used to 

approximate the in-control and out-of-control ARLs, respectively (Rigdon, 1995a, b; 

Crowder, 1987). 

(ii) Using Markov chains: A multistate Markov chain approximation that is obtained by a 

discretization method can be used to approximate the ARLs (Saccucci & Lucas, 1990; 

Runger & Prabhu, 1996; Woodall, 1984). 

(iii) Using simulation: A simulation model can be used to approximate the ARLs (Lowrey et al., 

1992; Linderman & Love, 2000b). 

Because of the simplicity and generality, simulation is the most efficient method that has been used 

by almost all recent papers. The accuracy of the estimated ARLs using simulation depends on the 

number of simulation runs. As suggested by Lowrey et al. (1992), and Linderman and Love (2000b), 

performing 6,000 simulation runs provides good approximations for ARLs. 

In Section 3, it will be demonstrated that, even if the ARLs are approximated very accurately 

through carrying out a very larger number of simulation runs, the formula (4) is incorrect for memory-

type control charts. In Section 4, this formula is corrected. 
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2.2. Simulation method 

Our alternative method to accurately estimate the objective function   in (1) is to use a simulation 

model implemented in MATLAB (the simulation model is available online at the link 

https://www.dropbox.com/s/vva7yd3d8y0qqy2/SimulationCodeCostMEWMA.m?dl=0 for EWMA-

type control charts2). Using this simulation model, for   simulated cycles, the objective function   in 

(1) can be approximated by 

 ̂  
     ̂

     ̂
  

∑    
 
   

∑    
 
   

 
(5) 

where     and     represent the observed cost and time of the  th simulated cycle, respectively. Based 

on the strong law of large numbers, the estimated value  ̂ almost surely converges to   whenever the 

variances of    and    are finite. Hence, the estimated value can be accurate up to any required level 

for sufficiently large  . The accuracy level of the simulation model versus   will be discussed after 

presenting our numerical study in the next section. 

 

3. The fallacy of the Lorenzen-Vance formula 

To show that the Lorenzen-Vance formula (4) is not correct for memory-type control charts, it 

suffices to demonstrate it for a class of memory-type control charts. Here we consider EWMA and 

MEWMA control charts for which formula (4) has been extensively used by several papers under 

different settings. A similar analysis can be presented for other well-known memory-type control 

charts such as CUSUM and Bayesian charts, which is not given here for the sake of brevity. In the 

following, the EWMA-type control charts are briefly described, and then our numerical results will be 

represented based on the formula (4) and our simulation method explained in Section 2.2. 

3.1 EWMA-type control charts 

The EWMA control chart, developed by Lucas and Saccucci (1990), is one of the most commonly 

used memory-type control chart, which accumulates data from the past samples to detect small 

                                                           
2
 This code can be used freely for personal use, or educational and research activities provided that the source is 

properly cited. 

https://www.dropbox.com/s/vva7yd3d8y0qqy2/SimulationCodeCostMEWMA.m?dl=0
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process shifts. Lowry et al. (1992) extended this chart to the multivariate EWMA (MEWMA) control 

chart for detecting mean shifts in multivariate processes. During the last two decades, considerable 

attention has been devoted to the statistical and economic design of EWMA-type control charts. 

Consider the problem of monitoring   quality characteristics over time. Let the random vector 

 ̅         , denote the mean statistic of the sample taken at the time epoch   , which follows 

distribution        
      when the process is in control. Let       ,          , be the 

exponential weight (or smoothing parameter) assigned to the past observations of characteristic  , and 

define the exponentially-weighted moving-average statistic 

      ̅                ∑           ̅     

 

   

              (6) 

where     ,                 is the diagonal matrix of exponential weights, and   is the identity 

matrix. The MEWMA chart signals a potential out-of-control process as 

            
  (      

    )
  ⁄

   ,         (7) 

where      is the upper control-chart limit and where    
 is the covariance matrix of   . 

If       for all          , then some calculations are simplified as 

     ̅            ∑           ̅     

 

   

            (8) 

and 

   
 {

            

      
}    (9) 

The EWMA control chart is equivalent to the MEWMA by setting    . For the special case of 

    (     ), the MEWMA (EWMA) chart is equivalent to Hotelling’s    chart (Shewhart’s  ̅ 

chart). The quantity      depends on the mean vectors     and     and covariance matrix  . For 

   ,      depends on    only through the non-centrality parameter   defined by 

  (           
         )

  ⁄
. (10) 
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3.2. Evalution of Lorenzen-Vance formula 

As mentioned in Section 1, several papers explored the economic design of the EWMA and MEWMA 

charts using the Lorenzen-Vance formula (4). Therefore, we present our numerical study for the 

EWMA and MEWMA charts with equal exponential weights. This study compares the results 

obtained by the Lorenzen-Vance formula and our simulation method given in Section 2.2. 

 
Table 2. Data of 36 benchmark instances 

Instance            
                    

  |   0.5 0.1 50 25 100 250 0.05 2 0.01 0.5 

  |   0.5 0.1 50 25 200 500 0.5 20 0.05 0.5 

  |   0.5 0.1 500 250 100 250 0.5 20 0.01 2 

  |   0.5 0.1 500 250 200 500 0.05 2 0.05 2 

  |   0.5 1 50 25 100 250 0.5 2 0.05 2 

  |   0.5 1 50 25 200 500 0.05 20 0.01 2 

  |   0.5 1 500 250 100 250 0.05 20 0.05 0.5 

  |   0.5 1 500 250 200 500 0.5 2 0.01 0.5 

  |   5 0.1 50 25 100 250 0.05 20 0.05 2 

   |    5 0.1 50 25 200 500 0.5 2 0.01 2 

   |    5 0.1 500 250 100 250 0.5 2 0.05 0.5 

   |    5 0.1 500 250 200 500 0.05 20 0.01 0.5 

   |    5 1 50 25 100 250 0.5 20 0.01 0.5 

   |    5 1 50 25 200 500 0.05 2 0.05 0.5 

   |    5 1 500 250 100 250 0.05 2 0.01 2 

   |    5 1 500 250 200 500 0.5 20 0.05 2 

   |    0.5 0.1 50 25 10 100 0.05 4 0.01 0.5 

   |    0.5 0.1 50 25 10 100 0.05 4 0.01 2 

 

In Table 2, 18 adapted process scenarios with practical cost and process parameters are provided. 

The first 16 scenarios were based on Molnau et al. (2001), while the two others were taken from 

Montgomery et al. (1995). We created 36 instances based on these process scenarios which are 

denoted by   |   to    |   . In all instances,     
 
  

 
  . In both univariate and multivariate 
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cases,    ,      , and    √    . We also considered a univariate process with      and 

   , and a trivarite process with             and covariance matrix 

  [
   
   
   

]. 

All runs were performed on a PC with Intel Core(TM)2 Quad CPU (Q8400), 2.66 GHz and 4 GB 

RAM. The average time to perform         simulation runs for each value of   is about     

seconds. The inverse relationship between run times and the magnitudes of the parameters   and   has 

been observed in our numerical study. One can considerably improves run times by applying 

programming languages, such as C and FORTRAN, which are more efficient, but perhaps less user-

friendly than MATLAB. 

Tables 3 and 4 represent the results for univariate and multivariate cases, respectively. In these 

tables, for each scenario, a comparison is made between the average costs obtained from the 

simulation method and those computed from (4) for different values of the exponential weight  . For 

each value of  , rows S10 and S100 show the simulation-based optimization results based on   

       and           simulations run, respectively. In both Tables 4 and 5, to apply the 

Lorenzen-Vance formula, the in-control and out-of-control ARLs are determined based on 100,000 

runs, which is very large compared to 6,000 runs considered by the papers recently used this formula. 

In Tables 3 and 4, each row labeled      gives the absolute of the difference percentage between 

the cost obtained by (4) and the simulation method for           . These percentages, which 

increase up to 20%, clearly show that formula (4) is not correct. It can generally be seen that the 

difference increases as   decreases. For instances   |  ,   |  ,   |  ,    |    and,    |    the 

differences are larger, such that for        all of them are greater than 10%. 

From both Tables 3 and 4, it can be seen that the average and the maximum of absolute (relative) 

differences between estimated cost values based on          and           simulation runs 

are      and 2.1 (0.002 and 0.018). This shows that          is sufficiently large to provide 

accurate estimated results using the simulation method. 
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When    , the EWMA and MEWMA chart will be equivalent to their corresponding Shewhart-

type control charts, i.e.  ̅ , and    chart, respectively. In this case, the control charts are not memory-

type and the Lorenzen-Vance formula (4) is valid for them. Because in (4), we use estimated ARLs, 

the resulting numerical results are estimations whose errors tend to zero as   becomes very large. By 

comparison of the values obtained from (4) and our simulation method with         , it can be 

seen that they are very close with the maximum deviation of 0.35 %.  

Using the exact results obtained by the formula (3), the row           reports the relative errors 

of the values obtained by (4), which shows that the Lorenzen-Vance formula works correctly for the 

case of    . Moreover, the row           presents the relative errors of the values obtained by our 

simulation method, where the maximum error is less than 0.33 %. This observation can also be used 

to double-check the validity of the simulation method. 

3.3. Inferior economic design with Lorenzen-Vance formula  

This subsection evaluates how much using the Lorenzen-Vance formula can affect the final economic 

design. To this end, when the control limit    was fixed at √    , the economically-optimal values 

for   were obtained by using both Lorenzen-Vance formula and simulation method to estimate the 

objective function in (1). The direct search is carried out over the values                 to find 

the optimal solution. Figure 1 depicts the optimal value of   in the EWMA and MEWMA control 

chart for each one of the 36 instances given in Table 3. This figure discloses that the differences 

between the improper and proper optimal values based on Lorenzen-Vance formula and simulation 

method in all instances are significantly high, especially in instances   |   ,   |   ,   |   ,   |   , 

  |   ,    |    ,    |    ,    |    , and    |   . 

Actually, considerable additional costs can be incurred when using the improper optimal values 

determined by the Lorenzen-Vance formula instead of the proper optimal values determined by the 

simulation-based optimization method. As demonstrated in Figure 2, the additional cost percentages 

vary from 0.20% to 45.64% for the EWMA chart, and range from 0.26% to 44.55% for the MEWMA 

chart. 
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(a) EWMA,     

 

 

(b) MEWMA,     

Figure 1. Comparison between improper and proper optimal values of   based on Lorenzen-Vance 

formula and simulation method 
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(a) EWMA,     

 

(b) MEWMA,     

Figure 2. Cost increment percentage when Lorenzen-Vance formula is used instead of simulation 

method to determine optimal values of   

 

4. Modification of Lorenzen-Vance formula for memory-type control charts 

This section shows how the Lorenzen-Vance formula (4) can be modified. The key point is that for a 

memory-type chart in-control and out-of-control ARLs at different time instances are not the same 

and depend on the samples taken before. Hence, we can modify the formula (4) as follows: 
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  {
  

 
                                         

 [
    

 
] [

 

 
                         ]}  

 {
 

 
 

         

    
                     }  

 

(11) 

To obtain (11),      ⁄  and      in (4) are replaced by      and      , respectively. The 

     represents the average number of false alarms per cycle. The       is the average of     
 , 

       , defined by 

      ∑            
 

 

   

  (11) 

where    is the event that the first assignable cause occurs between the  th and      st sample 

epochs, with 

                               , 

and where     
 ,        , denotes the out-of-control ARL given that    happens. 

To use (11) in practice, we may only consider the first   terms of the summation in (12) if   is 

chosen sufficiently large. One way to determine   is to use the following criterion: 

∑        
           

    

  
, 

for some desired confidence level        . Note that as   tends to  ,     
  tends to the 

steady-state out-of-control ARL. Hence, the ignorance of     
 ,              is not 

problamaitic when   is large enough.     
 ,           and      can be approximated by 

simulation. The MATLAB simulation codes for calculating       and ANFA for EWMA-type 

control charts are respectively available online at the following links3: 

https://www.dropbox.com/s/xdqz4z4mw4m7qta/AARL1MEWMA.m?dl=0, 

https://www.dropbox.com/s/kpr3nmert92xybv/ANFAMEWMA.m?dl=0. 

                                                           
3
 These codes can be used freely for personal use, or educational and research activities provided that the source 

is properly cited. 

https://www.dropbox.com/s/xdqz4z4mw4m7qta/AARL1MEWMA.m?dl=0
https://www.dropbox.com/s/kpr3nmert92xybv/ANFAMEWMA.m?dl=0
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Figure 3.     
 ,           for an EWMA control chart with        ,       , and     

 

Figure 3 graphically displays     
 ,          for the EWMA control chart with       , 

      , and    . These values converge to 5.69, which is the steady-state out-of-control ARL for 

this example. From this figure, it can clearly be seen that     
 ,          are significantly 

different, and therefore,       used in (11) is considerably greater than the out-of-control ARL used 

in (4), denoted by      (which is identical to     
 ). 

To numerically check that the modified Lorenzen-Vance formula works correctly, we evaluate it 

on five instances             and     under the MEWMA chart with        or      . Recall 

that the Lorenzen-Vance formula gives the most significant errors for these instances. Figure 4 depicts 

the values of   obtained by the Lorenzen-Vance formula (4) (with         ), its modified version 

(11) (with          and           ), and the simulation method (with          ). It can 

be seen that the results obtained from the modified formula (11) is considerably close to the true 

values obtained by the simulation method. 
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(b)       

Figure 4. Comparison of the estimated values for the objective value   obtained by modified 

Lorenzen-Vance formula, simulation method, and Lorenzen-Vance formula for instances 

            and     under the MEWMA control chart 
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Unfortunately, the modified formula (11) cannot be a basis for an efficient computational method. 

In fact, when using this formula, for a sufficiently large   the quantities     
 ,           must be 

computed by some method such as simulation so that       can be approximated, which is very time 

consuming. 

 

5. Conclusions 

This paper shows that the classic formula proposed by Lorenzen and Vance (1986) cannot be used for 

memory-type control charts. It suggests using a simulation method where the accuracy level obtained 

by        simulation runs is satisfactory for both EWMA and MEWMA charts. Moreover, the paper 

emphasizes that the usage of the Lorenzen-Vance formula may result in very weak economic design 

of memory-type charts. Then, it modifies this formula by introducing new types of quality metrics. 

The Lorenzen-Vance formula has commonly been used by many papers for 30 years in economic 

design of memory-type charts, especially EWMA-type charts. Hence, the results reported by these 

papers require reappraisal if they are based on the numerical studies conducted by applying this 

formula. This requires further investigation in future, which can use the simulation method proposed 

in this paper. Another interesting open research area is to propose a more efficient computational 

method rather than the simulation method proposed here. 
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Table 3. Comparison of results obtained by Lorenzen-Vance formula and simulation method for EWMA chart (   ) 

     Results 
Instances  

                                                               

0.05 

    156.65 342.72 97.47 270.09 134.10 189.79 174.05 315.40 83.46 223.97 214.19 286.03 144.71 419.39 116.14 172.77 44.29 17.02 

     157.06 344.82 97.49 270.42 134.25 189.83 175.11 316.22 83.50 224.13 215.05 286.91 145.14 421.15 116.23 172.88 44.53 17.07 

     1.98% 1.75% 5.63% 10.15% 10.16% 5.70% 1.72% 1.99% 14.38% 5.00% 0.88% 2.30% 2.24% 0.94% 4.97% 13.45% 4.15% 19.40% 

0.1 

    159.51 354.72 95.21 261.77 129.91 185.19 179.95 321.04 79.60 219.42 217.93 292.39 147.89 427.42 113.89 165.35 45.98 15.68 

     160.55 354.91 95.32 261.56 129.80 185.36 180.05 323.11 79.35 219.52 217.98 294.32 148.86 427.52 113.96 164.88 46.60 15.71 

     0.77% 0.57% 3.43% 7.11% 7.10% 3.43% 0.57% 0.79% 9.92% 3.00% 0.27% 0.93% 0.90% 0.28% 3.03% 9.26% 1.58% 12.42% 

0.20 

    171.98 380.75 93.83 253.55 125.80 182.41 192.68 345.70 75.69 216.22 225.15 318.56 161.02 443.09 112.29 157.84 53.37 14.74 

     171.66 381.70 93.78 253.39 125.72 182.23 193.15 345.06 75.90 216.28 225.49 317.99 160.73 443.80 112.35 158.22 53.18 14.76 

     0.25% 0.17% 1.72% 3.94% 3.93% 1.71% 0.17% 0.25% 5.62% 1.50% 0.06% 0.31% 0.29% 0.06% 1.52% 5.22% 0.47% 6.52% 

0.40 

    190.61 421.66 93.40 251.32 124.69 181.47 212.68 382.51 74.80 215.08 236.04 360.01 181.84 466.55 111.76 156.11 64.46 14.40 

     191.10 420.71 93.29 250.91 124.49 181.22 212.20 383.49 74.80 215.20 235.58 360.88 182.28 465.61 111.81 156.10 64.75 14.44 

     0.12% 0.01% 0.61% 1.47% 1.47% 0.61% 0.01% 0.12% 2.10% 0.51% 0.00% 0.11% 0.11% 0.00% 0.51% 1.95% 0.21% 2.25% 

0.60 

    205.70 444.48 94.08 257.18 127.63 182.80 223.80 412.38 77.86 217.10 241.30 394.13 198.99 477.94 112.78 161.96 73.48 15.00 

     205.88 444.31 94.25 258.00 128.03 183.18 223.72 412.75 77.87 217.35 241.22 394.59 199.22 477.79 112.88 162.03 73.59 15.07 

     0.05% 0.08% 0.25% 0.55% 0.56% 0.25% 0.08% 0.04% 0.80% 0.24% 0.04% 0.05% 0.05% 0.04% 0.23% 0.74% 0.08% 1.02% 

0.80 

    216.04 459.69 96.90 275.75 136.90 188.61 231.21 432.87 86.23 222.71 244.71 418.34 211.16 485.30 115.53 178.15 79.68 16.65 

     216.28 459.37 96.95 276.40 137.22 188.71 231.05 433.33 86.11 223.03 244.66 418.93 211.46 485.20 115.70 177.94 79.82 16.74 

     0.07% 0.01% 0.04% 0.20% 0.20% 0.05% 0.01% 0.07% 0.19% 0.02% 0.00% 0.06% 0.06% 0.00% 0.02% 0.18% 0.11% 0.08% 

1 

    223.32 469.29 102.78 308.83 153.47 200.66 235.88 447.29 102.03 234.69 246.86 435.97 220.04 489.92 121.45 208.71 84.05 20.17 

     223.55 469.43 103.01 309.42 153.78 201.07 235.95 447.74 102.50 235.90 246.89 436.47 220.29 489.99 122.08 209.60 84.19 20.54 

     0.01% 0.01% 0.07% 0.06% 0.06% 0.08% 0.01% 0.01% 0.06% 0.09% 0.01% 0.01% 0.01% 0.01% 0.09% 0.05% 0.02% 0.30% 

        0.02% 0.11% 0.00% 0.00% 0.00% 0.00% 0.01% 0.02% 0.00% 0.00% 0.00% 0.02% 0.02% 0.01% 0.00% 0.00% 0.03% 0.00% 

         0.01% 0.10% 0.07% 0.06% 0.06% 0.08% 0.02% 0.01% 0.06% 0.09% 0.01% 0.01% 0.01% 0.01% 0.09% 0.06% 0.01% 0.30% 
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Table 4. Comparison of results obtained by Lorenzen-Vance formula and simulation method for MEWMA chart (   ) 

     Method 
Instances 

                                                               

0.05 

S10 146.30 309.85 99.52 265.35 130.35 187.64 159.02 297.40 80.12 221.76 205.43 266.31 133.74 397.29 118.67 168.00 38.30 16.63 

S100 145.72 310.59 99.70 265.68 130.64 187.47 159.31 296.30 80.08 221.92 205.65 265.48 133.29 397.95 119.06 167.77 37.95 16.70 

%Dif 3.44% 3.67% 7.80% 11.11% 10.52% 5.52% 4.02% 4.01% 14.60% 4.94% 2.38% 4.44% 3.76% 2.12% 7.22% 14.15% 8.05% 20.67% 

0.1 

    143.31 305.26 97.74 257.30 126.34 183.44 156.74 291.54 76.43 217.57 204.20 260.31 130.71 394.58 116.93 160.85 36.54 15.42 

     143.09 304.51 97.73 257.14 126.34 183.37 156.36 291.14 76.32 217.56 203.54 260.34 130.71 393.26 116.96 160.54 36.41 15.42 

     1.64% 1.75% 5.34% 8.03% 7.54% 3.41% 2.09% 2.12% 10.50% 3.03% 1.24% 2.37% 1.83% 0.95% 4.95% 10.21% 4.00% 13.76% 

0.20 

    143.12 306.61 96.35 249.15 122.31 180.49 157.39 291.12 72.63 214.38 204.66 260.62 130.87 395.61 115.41 153.46 36.42 14.49 

     143.10 307.16 96.35 248.83 122.17 180.50 157.65 291.14 72.75 214.48 204.52 260.43 130.75 395.42 115.46 153.67 36.41 14.52 

     0.58% 1.07% 3.07% 4.56% 4.24% 1.80% 1.28% 0.90% 5.94% 1.57% 0.80% 1.04% 0.69% 0.62% 2.83% 5.80% 1.48% 7.61% 

0.40 

    146.70 319.34 95.60 244.08 119.71 179.03 163.57 298.20 70.61 212.76 208.21 268.10 134.61 403.71 114.59 149.63 38.53 14.01 

     146.86 318.24 95.53 244.19 119.80 178.79 163.02 298.50 70.72 212.90 208.04 268.09 134.62 403.30 114.71 149.81 38.63 14.06 

     0.14% 0.30% 1.11% 1.77% 1.63% 0.59% 0.38% 0.27% 2.26% 0.59% 0.25% 0.35% 0.22% 0.17% 1.10% 2.22% 0.35% 2.99% 

0.60 

    151.58 333.72 95.59 245.46 120.44 178.92 170.53 307.68 71.69 213.30 212.86 277.43 139.36 414.05 114.89 151.66 41.40 14.18 

     151.76 331.73 95.82 246.37 120.90 179.39 169.58 308.06 71.66 213.31 212.10 277.76 139.52 412.37 114.91 151.61 41.51 14.18 

     0.18% 0.14% 0.45% 0.73% 0.69% 0.27% 0.17% 0.21% 0.98% 0.21% 0.06% 0.19% 0.16% 0.03% 0.39% 0.94% 0.41% 1.02% 

0.80 

    156.80 344.77 96.88 253.89 124.71 181.65 175.88 317.92 75.34 215.29 215.87 287.87 144.62 420.86 115.83 158.64 44.49 14.75 

     156.40 344.69 96.80 253.72 124.60 181.48 175.85 317.10 74.93 215.50 215.94 287.48 144.44 420.97 115.94 157.89 44.25 14.82 

     0.06% 0.07% 0.10% 0.08% 0.07% 0.09% 0.06% 0.05% 0.27% 0.05% 0.06% 0.05% 0.06% 0.07% 0.06% 0.25% 0.12% 0.21% 

1 

    161.24 357.42 98.77 269.53 132.58 185.69 182.00 326.51 81.88 220.09 219.74 297.73 149.64 429.43 118.09 171.24 47.10 16.16 

     160.65 356.02 99.00 269.21 132.42 186.05 181.34 325.39 81.83 220.30 219.22 296.37 148.94 428.28 118.25 171.13 46.76 16.22 

     0.15% 0.06% 0.02% 0.08% 0.08% 0.03% 0.07% 0.15% 0.02% 0.01% 0.05% 0.14% 0.14% 0.05% 0.00% 0.02% 0.31% 0.01% 

        0.01% 0.01% 0.00% 0.01% 0.01% 0.01% 0.01% 0.00% 0.02% 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 0.02% 0.02% 0.02% 

        0.16% 0.07% 0.02% 0.07% 0.07% 0.04% 0.07% 0.16% 0.04% 0.01% 0.05% 0.15% 0.15% 0.06% 0.00% 0.03% 0.33% 0.03% 
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