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Abstract

Let T be a simple L-theory and let T− be a reduct of T to a
sublanguage L− of L. For variables x, we call an ∅-invariant set Γ(x)
in C a universal transducer if for every formula φ−(x, y) ∈ L− and
every a,

φ−(x, a) L−-forks over ∅ iff Γ(x) ∧ φ−(x, a) L-forks over ∅.

We show that there is a greatest universal transducer Γ̃x (for any
x) and it is type-definable. In particular, the forking topology on
Sy(T ) refines the forking topology on Sy(T

−) for all y. Moreover, we
describe the set of universal transducers in terms of certain topology
on the Stone space and show that Γ̃x is the unique universal transducer
that is L−-type-definable with parameters. If T− is a theory with the
wnfcp (the weak nfcp) and T is the theory of its lovely pairs of models
we show that Γ̃x = (x = x) and give a more precise description of
the set of universal transducers for the special case where T− has the
nfcp.

1 Introduction

The forking topology for simple theories, introduced in [S], is a generalization
of topologies introduced by Hrushovski [H0] and Pillay [P]. It is the minimal
topology on Sx(A) such that all the relations ΓF (x) defined by ΓF (x) =
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∃y(F (x, y) ∧
y ⌣| x

A
) are closed for any type-definable relation F (x, y)

over A.
Originally, a version of this topology has been introduced (around 1984)

by Hrushovski [H0] for the (unpublished) proof of superstability of count-
able unidimensional stable theories; in the proof, an unbounded set of finite
rank is constructed that is open in the forking topology. In [P], where su-
persimplicity of any countable unidimensional wnfcp hypersimple theory (i.e.
a simple theory that eliminates hyperimaginaries) is established, the topol-
ogy has been modified to work for theories with the weak non finite cover
property (wnfcp), an analogue of the non finite cover property (nfcp) for
simple theories. In [S] we modified the topology defined in [P] and proved
general theorems for simple theories related to unidimensional theories. The
forking topology turned out to be quite a powerful tool and had several ap-
plications: finite length analysis of any type analyzable in a forking open set
provided that the forking topologies are closed under projections (e.g. T has
wnfcp) [S], supersimplicity of countable (and large class of uncountable) uni-
dimensional hypersimple theories [S1,S2] and a generalization of Buechler’s
dichotomy for D-rank 1 types to simple theories [S3].

In this paper, we fix a simple L-theory T and a reduct T− of T to a
sublanguage L− and present a way in which the forking topology of T− can
be recovered from the forking topology of T ; it is done through the notion of
a universal transducer that is defined in the abstract in a restrictive form (a
more general setting is presented in the paper). Moreover, we characterize the
set of universal transducers via a new topology, we call theNFI-topology (see
Definition 2.15). Our observation that the forking-topology of a simple theory
refines the forking-topology of any reduct is, in way, a substitute for the fact
that forking-independence in a simple theory does not, in general, strengthen
forking-independence in a reduct. Our hope is to find more relationships
between forking-independence in a simple theory and forking-independence in
a reduct; moreover, we expect to find more connections between sets related
to the forking topology (e.g sets defined by the NFI-topology) and sets that
are both L-type-definable over ∅ and L−-type definable with parameters.
In particular, we expect that the NFI-topology could be proved to be L−-
invariant over parameters for any simple theory (Lemma 2.20(2) confirms this
for stable theories). The following is a special case of our main theorems.

Theorem 1.1 Given variables x, there is a greatest (with respect to inclu-
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sion) ∅-invariant subset of Cx that is a universal transducer. Denote this
subset by Γ̃x. Then, Γ̃x is L- type-definable and it is the unique univer-
sal transducer that is L−-type definable with parameters. If T is stable, we
have the following characterization of the set of universal transducers: an
∅-invariant set Γ(x) in C is a universal transducer iff Γ(x) is a dense subset
of Γ̃x in the relative topology on Γ̃x generated by the family of L-formulas
φ(x) over ∅ that are L−-definable with parameters.

In particular, the reduct map from Sy(T ) to Sy(T
−) (for any variables

y) is continuous with respect to the forking topologies on the Stone spaces.
Lastly, we get a more precise information in the special case of lovely-pairs:
we look at the case where the reduct theory (T− in our general setting) is
an arbitrary theory with the wnfcp, denoted by T (in a language L), and
at the expansion of it TP (T in our general setting) defined as the theory of
its lovely pairs of models (in the language LP = L ∪ {P}). The result we
obtained for TP and the reduct T is the following.

Proposition 1.2 For any variables x, Γ̃x = (x = x), namely the greatest
universal transducer in the variables x is (x = x). If T is in addition stable
(equivalently T has nfcp), then an LP–invariant set over ∅ is a universal
transducer iff it intersect every non-empty L-definable set over ∅.

We assume basic knowledge of simple theories as in [K],[KP],[HKP]. A
good textbook on simple theories is [W]. In this paper, unless otherwise
stated, T will denote a complete first-order simple theory in an arbitrary
language L and we work in a λ-big model C of T (i.e. a model with the prop-
erty that any expansion of it by less than λ constants is splendid) for some
large λ. We call C the monster model. Note that any λ-big model (of any
theory) is λ-saturated and λ-strongly homogeneous and that λ-bigness is pre-
served under reducts (by Robinson consistency theorem). We use standard
notations. For a small subset A ⊆ C, TA will denote the theory of (C, A) (C
expanded by constants for each a ∈ A). Partial types are usually identified
with the set of their solutions in the monster model. For an invariant set of
a fixed sort (or finitely many) we write (e.g.) U(x) where x is a finite tuple
of variables suitable for these sorts. For variables x, Cx denotes the set of
tuples from C whose sort is the sort of x. An invariant set of possibly some
distinct sorts will be denoted by (e.g.) U (with no variables added). If U is
a set we denote by U<ω the set of all finite sequences of elements in U . For
a partial type p over a model, Cl(p) denotes the set of formulas φ(x, y) ∈ L
that are represented in p.
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2 Transducers

In this section we introduce the notion of a universal F -transducer for an ∅-
invariant set F and prove generalizations of the results stated in the abstract
for a simple theory and a reduct. First, recall the definition of the forking
topology.

Definition 2.1 [S, Definition 2.1] Let A ⊆ C and let x be a finite tuple of
variables. A set U ⊆ Sx(A) is said to be a basic forking-open set over A if
there exists φ(x, y) ∈ L(A) such that

U = {p ∈ Sx(A)| φ(a, y) forks over A for all a |= p}.

We identify subsets of Sx(A) with A-invariant sets. Note that the family of
basic forking-open sets over A is closed under finite intersections, thus form
a basis for a unique topology on Sx(A) which we call the forking-topology or
the forking-topology.

Remark 2.2 Note that the forking-topology on Sx(A) refines the Stone-
topology (for every x and A) and that

{a ∈ Cx|a 6∈ acl(A)}(= {a ∈ Cx|x = a forks over A})

is a forking-open subset of Sx(A).

We fix now the notations for the rest of this section. T− will denote a
reduct of T to some sublanguage L− of L, i.e. T− is the set of L−-sentences
in T . We will assume for simplicity of notation that L− and L have the same
set of sorts (the general case is very similar and discussed in Remark 2.26).
Let C− = C|L−. As mentioned in the introduction, we know that both C and
C− are highly saturated and highly strongly-homogeneous. Cheq will denote
the set of hyperimaginaries of small length (< λ) of C and Cheq− will denote
the set of hyperimaginaries of small length of C−. We use ⌣| to denote
independence in C, and ⌣|

− to denote independence in C−. For a small set
A ⊆ Cheq, BDD(A) denotes the set of countable (length) hyperimaginaries
in Cheq that are in the bounded closure of A in the sense of C. For an ∅-
invariant set F in C (or for a small set F ), we denote by bdd(F ) (dclheq(F ))
the set of all countable hyperimaginaries in Cheq− that are in the bounded
(definable) closure in the sense of C− of some small subset of F . For a small
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set A ⊆ Ceq, ACLeq(A) denotes the set of imaginaries in Ceq that are in the
algebraic closure of A in the sense of C. For a small set A ⊆ Ceq− = (C−)eq,
acleq(A) denotes the set of imaginaries in Ceq− that are in the algebraic clo-
sure of A in the sense of C−. For a small set X ⊆ Cheq, let X− = X ∩ Cheq−.

Let Γ(x) be a B-invariant set in C and let A be any small set. We say

Γ(x) L-doesn’t fork over A if for some c |= Γ(x),
c ⌣| B
A

.

From now on F will denote an arbitrary ∅-invariant set in C.

Definition 2.3 Let Γ(x) be an ∅-invariant set in C.
1) We say that Γ(x) is an upper universal F -transducer if for every ā ∈ F<ω

and φ−(x, ȳ) ∈ L−, if Γ(x) ∧ φ−(x, ā) L-doesn’t fork over ∅, then φ−(x, ā)
L−-doesn’t fork over ∅.
2) We say that Γ(x) is a lower universal F -transducer if for every ā ∈ F<ω

and φ−(x, ȳ) ∈ L−, if φ−(x, ā) L−-doesn’t fork over ∅, then Γ(x) ∧ φ−(x, ā)
L-doesn’t fork over ∅.
3) We say that Γ(x) is a universal F -transducer if Γ(x) is both an upper
universal F -transducer and a lower universal F -transducer.
Whenever F is omitted in 1)-3), it means F = C.

Example 2.4 Let T− be the theory of an infinite set with no structure and
let T be an expansion of T− by some small set of constants C ⊆ C−. Note
that, if x is a single variable, then the type Γ(x) = {x 6= c | c ∈ C} is the
unique universal transducer in the variable x.

Remark 2.5 Note that the existence of a type-definable universal trans-
ducer in any variables implies that the forking-topology of T on Sy(T ) refines
the forking-topology of T− on Sy(T

−) for every y, that is, the reduct map
from Sy(T ) to Sy(T

−) (for any variables y) is continuous with respect to
the forking topologies on these spaces: if Γ(x) is a type-definable universal
transducer over ∅ then for every formula φ−(x, y) ∈ L−, we have:

{b| φ−(x, b) L−-forks over ∅} =
⋃

ψ(x)∈Γ(x)

{b| ψ(x) ∧ φ−(x, b) L-forks over ∅}.

Definition 2.6 For variables x, we define the following ∅-invariant sets in
C:
1)

Γ̃x,F = {b ∈ Cx| ∀ā ∈ F<ω ∃ā′ |= tpL(ā) ( b ⌣|
− ā′ )}.
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2)
Γ∗
x,F = {b ∈ Cx| ∀ā ∈ F<ω( b ⌣| ā → b ⌣|

− ā )}.

3)
Bx,F = {b ∈ Cx| b ⌣|

− bdd(F ) ∩ BDD(∅)− }.

Whenever F is omitted in 1)-3), it means F = C.

Remark 2.7 For variables x, we have

Γ̃x = {b ∈ Cx| ∀φ(y) ∈ L : [∃yφ(y) → ∃a |= φ(y) ( b ⌣|
−a )]}.

Moreover, for every modelM |= T , Γ̃x = {b ∈ Cx| ∃M ′ |= tpL(M)( b ⌣|
−M ′ )}.

Proof: Just compactness. �

Lemma 2.8 For any variables x, we have Γ̃x,F = Γ∗
x,F = Bx,F .

Proof: To show Γ̃x,F ⊆ Bx,F we observe:

Claim 2.9 Let M be a sufficiently saturated model of T . Then

bdd(F ) ∩ BDD(∅)− = bdd(FM) ∩BDD(∅)−.

Proof: Let e ∈ bdd(F )∩BDD(∅)−. Then there exists a small subset Fe ⊆ F
(in fact of size at most |T |) such that e ∈ bdd(Fe) ∩ BDD(∅)−. Since M is
sufficiently saturated, e ∈ Mheq− (if e = a/E then on tpL(a) there are at

most 2|T |
+

many E-classes). By saturation M , there exists F ′
e ⊆ M such

that tpL(F
′
e/e) = tpL(Fe/e) and so e ∈ bdd(FM). �

Now, let b ∈ Γ̃x,F . By compactness, there exists a sufficiently saturated
model M ′ of T such that b ⌣|

−FM ′

, so b ⌣|
−bdd(FM ′

) . By Claim 2.9 we
are done. To show Bx,F ⊆ Γ∗

x,F recall the following.

Fact 2.10 [HN, Theorem 2.2] Let A,C ⊆ Cheq− and let B ⊆ Cheq be bound-

edly closed in Cheq. Assume
A ⌣| C

B
. Then

A ⌣|
− C

B− . �
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Now, let b ∈ Bx,F and assume b ⌣| ā for some ā ∈ F<ω . By Fact 2.10,

b ⌣|
− ā

BDD(∅)−
(∗).

From now on work in C−. Let e− = Cb−(Lstp(ā/BDD(∅)−, b)). e− is in
the definable closure of a Morley sequence of Lstp(ā/BDD(∅)−, b), since
ā ∈ F<ω, we conclude e− ∈ bdd(F ). By (*), e− ∈ BDD(∅)− (note that
BDD(∅)− boundedly closed in Cheq−). Thus

ā ⌣|
−

BDD(∅)−,b

BDD(∅)−∩bdd(F )
.

As b ∈ Bx,F , transitivity yields b ⌣|
− ā . The inclusion Γ∗

x,F ⊆ Γ̃x,F is imme-
diate by extension. This completes the proof of Lemma 2.8. �

Proposition 2.11 For variables x, there exists a greatest (with respect to
inclusion) ∅-invariant subset of Cx that is a universal F -transducer. Denote
this subset by Γx,F . Then, Γx,F is also such greatest upper universal F -
transducer, Γx,F = Γ̃x,F = Γ∗

x,F and Γx,F is type-definable. In particular, the
forking-topology of T on Sy(T ) refines the forking-topology of T− on Sy(T

−)
for every y.

Proof: First, we show that Γ̃x,F is a universal F–transducer. Let φ−(x, ȳ) ∈
L− be arbitrary and let ā ∈ F<ω be suitable for ȳ.

Claim 2.12 If Γ̃x,F (x) ∧ φ
−(x, ā) L-doesn’t fork over ∅ , then φ−(x, ā) L−-

doesn’t fork over ∅.

Proof: If Γ̃x,F (x)∧φ
−(x, ā) L-doesn’t fork over ∅, there exists b |= Γ̃x,F (x)∧

φ−(x, ā) such that b ⌣| ā . By Lemma 2.8, b ⌣|
− ā thus φ−(x, ā) L−-doesn’t

fork over ∅.

Claim 2.13 If φ−(x, ā) L−-doesn’t fork over ∅, then Γ̃x(x) ∧ φ−(x, ā) L-
doesn’t fork over ∅, in particular Γ̃x,F (x) ∧ φ

−(x, ā) L-doesn’t fork over ∅.

Proof: Assume φ−(x, ā) L−-doesn’t fork over ∅. Let b |= φ−(x, ā) be such
that b ⌣|

− ā . Let M be a model of T . By extension in C−, we may assume
b ⌣|

−Mā . In particular, tpL−(b/Mā) L-doesn’t fork over ∅, so there exists
b∗ such that tpL−(b∗/Mā) = tpL−(b/Mā) and b∗ ⌣| Mā . By Remark 2.7,
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b∗ |= Γ̃x(x). By the choice of b∗, φ−(b∗, ā), thus Γ̃x(x) ∧ φ−(x, ā) L-doesn’t
fork over ∅. �

It remains to show:

Claim 2.14 If U = U(x) is an ∅-invariant set in C that is an upper univesal
F -transducer, then U ⊆ Γ∗

x,F . Therefore Γ̃x,F = Γ∗
x,F is the greatest (with

respect to inclusion) ∅-invariant set in C that is a subset of Cx and is a uni-
versal F -transducer (Γ̃x,F is also such greatest upper universal F -transducer).
Γ̃x,F is type-definable.

Proof: Let U(x) be as given in the claim and assume b |= U(x) and let
ā ⌣| b . For all φ−(x, ȳ) ∈ L−, if |= φ−(b, ā) then φ−(x, ā) L−-doesn’t fork
over ∅ (since U(x) is an upper universal F -transducer). Thus b ⌣|

− ā , so

b ∈ Γ∗
x,F . By Lemma 2.8, Γ̃x,F = Γ∗

x,F , so by Claims 2.12, 2.13, Γ̃x,F is
the greatest ∅-invariant set in C that is a subset of Cx and is a universal
F -transducer (as well as an upper universal F -transducer). Γ̃x,F is type-
definable as Γ̃x,F ≡

∧
i Γpi, where {pi} is the set of all complete L-types over

∅ of elements in F<ω and Γpi is the partial L-type such that a |= Γpi iff there
exists b |= pi that is L

−-independent from a over ∅. �

The last statement in Proposition 2.11 follows immediately by Remark 2.5.
This completes the proof of Proposition 2.11. �

In order to describe the set of universal F -transducers, we introduce a
new topology on the Stone space Sy(T ).

Definition 2.15 Given a finite tuple of variables y, a set U = U(y) is a basic
open set in the NFIF -topology on Sy(T ) iff there exists a type p(x) ∈ Sx(T )
with p(x) ⊢ F<ω and φ−(x, y) ∈ L− such that

U = Up,φ− = {b| p(x) ∧ φ−(x, b) L-doesn’t fork over ∅}.

In case F = C, F is omitted. “NFI” stands for “Non-forking instances”.

Remark 2.16 As with the forking topology, we identify ∅-invariant sets with
subsets of Sy(T ). Note that the intersection of two basic NFIF -open sets
is a union of basic NFIF -open open sets, so the family of basic NFIF -open
sets forms a basis for a unique topology on Sy(T ). Indeed, by extension if

8



b ∈ Up0,φ−0
∩ Up1,φ−1

for some pi, φ
−
i as in Definition 2.15 then b ∈ Uq,φ− for

some q = q(x0, x1) where q = tpL(a0, a1) for some independent ai |= pi and
φ− = φ−(x0x1, y) = φ−

0 (x0, y)∧φ
−
1 (x1, y) (clearly, Uq,φ− ⊆ Up0,φ−0

∩Up1,φ−1 and

it is a basic NFIF -open set). Note that since the type p in Definition 2.15
is a complete L-type, each basic NFIF -open set is L-type-definable. Also,
note that the NFIF -topology will not change if we allow p(x) to be a type
in infinitely many variables.

Example 2.17 Let L− = {E}, L = {E} ∪ {Pi|0 < i ≤ ω} and let T be the
theory of an L-structure M such that EM is an equivalence relation on its
universe with infinitely many infinite E-classes, with exactly one class of size
i for every 0 < i < ω and such that {PM

i |0 < i ≤ ω} are pariwise disjoint
and for every 0 < i ≤ ω and PM

i is a union of exactly i infinite E-classes.
Let T− be the reduct of T to L−. Work in a monster model CT of T . Now,
as any L−-definable set over ∅ is clearly NFI-open, we conclude that each
finite E-class is NFI-open. In addition, for every 0 < i < ω, Pi is a basic
NFI-open set, while Pω is not an NFI-open set (this will easily follow later,
see Example-revisited 2.24).

Definition 2.18 1) A set U ⊆ C is said to be (L, L−)F -definable over ∅
if U = φ−(C, ā) for some φ− ∈ L− and ā ∈ F<ω such that φ−(x, ā) is ∅-
invariant in C. If F = C we omit F .
2) A set U ⊆ C is said to be (L, L−)F -∞-definable over ∅ if U = p−(C, ā) for
some L−-partial type p− over ∅ and some tuple ā of realizations of F such
that p−(C, ā) is ∅-invariant in C. If F = C, we omit F .

Remark 2.19 By compactness, U ⊆ C is (L, L−)F -∞-definable over ∅ iff
U = p−(C, ā) for some L−-partial type p− over ∅ and tuple ā of realizations
of F and U is the solution set of an L-partial type over ∅. Likewise for
(L, L−)F -definable sets over ∅.

Lemma 2.20 1) If U is (L, L−)F -∞-definable over ∅, then U is NFIF -
closed. If U is (L, L−)F–definable over ∅, then U is a basic NFIF -open set.
2) If T is stable, then U is a basic NFIF -open set if and only if U is (L, L−)F -
definable over ∅.

Proof: 1) By the assumption, there exists an L−-partial type p−(x, ȳ) over
∅ and a tuple ā (possibly infinite) of realizations of F such that U = p−(C, ā)
is an ∅-invariant set in C. Let q = tpL(ā). Then

p−(C, ā) = {b| q(ȳ) ∧ ¬φ−(b, ȳ) L-forks over ∅ for all φ− ∈ p−} (∗).
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Indeed, let R denote the right hand side of (∗). If b ∈ p−(C, ā) and q(ȳ) ∧
¬φ−(b, ȳ) L-doesn’t fork over ∅ for some φ− ∈ p− then we get contradiction
to ∅-invariance of p−(C, ā) in C, so b ∈ R. If b 6∈ p−(C, ā), then by ∅-
invariance of p−(C, ā) in C and extension we may assume b ⌣| ā . Thus
b 6∈ R. We conclude that p−(C, ā) is the intersection of complements of
basic NFIF -open sets. Assume now U = φ−(C, ā) is (L, L−)F -definable over
∅. Then by (∗) we get immediately that U is a basic NFIF -open set (take
p−(x, ā) = {¬φ−(x, ā)}). 2) Assume now that T stable, it remains to show if
U is a basic NFIF -open set, then it is (L, L−)F -definable over ∅. Indeed, if
U = Up,φ− = {b| p(x) ∧ φ−(x, b) L-doesn’t fork over ∅}, where p(x) ∈ Sx(T )
is such that p(x) ⊢ F<ω and φ−(x, y) ∈ L−, then b ∈ U iff φ−(x, b) ∈ p̄ for
some non-forking extension p̄ ∈ S(C) of p. If p̄ is any such extension, then
there is a definition χ−(y) ∈ L−(C) of the φ−-type of p̄ that is over ACLeq(∅)
and is a finite boolean combination of formulas of the form φ−(a, y) for some
realization a of p (and thus tuple of realizations of F ) . It follows that
U =

∨
i<n χ

−
i (C) where {χ−

i (y)}i<n is the set of ∅-conjugates of χ−(y) in C.
Clearly, U is ∅-invariant in C and is an L−-formula with parameters from
F . �

Corollary 2.21 In a stable theory, a set is (L, L−)F -∞-definable over ∅ iff
it is a conjunction of (L, L−)F -definable sets over ∅ iff it is NFIF -closed.

Proof: Assume T is stable. By Lemma 2.20 (1), if U is (L, L−)F -∞-definable
over ∅ then it is NFIF -closed. By Lemma 2.20 (2) an NFIF -closed set is the
intersection of (L, L−)F -definable sets over ∅. Finally, it is immediate that
the intersection of (L, L−)F -definable sets over ∅ is (L, L

−)F -∞-definable over
∅. �

We give now a description of the set of universal F -transducers via theNFIF -
topology.

Proposition 2.22 Let Γ(y) be an ∅-invariant set in C. Then Γ(y) is a
universal F -transducer iff Γ(y) is a dense subset of Γ̃y,F in the relative NFIF -
topology on Γ̃y,F .

Proof: By Proposition 2.11, we know that Γ̃y,F is a universal F -transducer
and an ∅-invariant set Γ = Γ(y) in C is an upper universal F -transducer
if and only if Γ ⊆ Γ̃y,F . Thus it remains to show that an ∅-invariant set
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Γ ⊆ Γ̃y,F in C is a lower universal F -transducer if and only if Γ is a dense
subset of Γ̃y,F in the relative NFIF -topology on Γ̃y,F . To show this we start
with the following.

Claim 2.23 For every type p(x) ∈ Sx(T ) with p(x) ⊢ F<ω and φ−(x, y) ∈
L−, Up,φ− ∩ Γ̃y,F 6= ∅ iff φ−(a, y) L−-doesn’t fork over ∅ for a |= p.

Proof: For such p and φ−, Up,φ−∩Γ̃y,F 6= ∅ iff there exists b |= Γ̃y,F such that

p(x)∧φ−(x, b) L-doesn’t fork over ∅ iff Γ̃y,F (y)∧φ
−(a, y) L-doesn’t fork over

∅ for a |= p. Since Γ̃y,F is a universal F -transducer, the latest is equivalent
to φ−(a, y) L−-doesn’t fork over ∅ for a |= p. �

Now, let Γ(y) ⊆ Γ̃y,F . Then Γ(y) is a dense subset of Γ̃y,F in the relative
NFIF -topology on Γ̃y,F iff for every p(x) ∈ Sx(T ) with p(x) ⊢ F<ω and
φ−(x, y) ∈ L− such that Up,φ− ∩ Γ̃y,F 6= ∅ we have Up,φ− ∩Γ(y) 6= ∅. By Claim
2.23, the latest is equivalent to: for every p(x) ∈ Sx(T ) with p(x) ⊢ F<ω

and φ−(x, y) ∈ L− such that φ−(a, y) L−-doesn’t fork over ∅ for a |= p, there
exists b |= Γ such that p(x)∧φ−(x, b) L-doesn’t fork over ∅; equivalently, for
every p(x) ∈ Sx(T ) with p(x) ⊢ F<ω and φ−(x, y) ∈ L− such that φ−(a, y)
L−-doesn’t fork over ∅ for a |= p, the partial type Γ(y) ∧ φ−(a, y) L-doesn’t
fork over ∅ for a |= p; namely Γ(y) is a lower universal F -transducer. This
completes the proof of Proposition 2.22. �

Example-revisited 2.24 We go back to Example 2.17. By Lemma 2.20(2),
it follows that a set is a basic NFI-open set in one variable iff it is a finite
union of sets each of which is either Pi for 0 < i < ω or it is a finite E -class.
Now, if x is a single variable, then easily Γ̃x(x) =

∧
0<i<ω ¬(Pi(x)). Therefore,

by Proposition 2.22, Γ(x) is a universal transducer iff Γ(x) ⊆
∧

0<i<ω ¬(Pi(x))
and Γ(x) contains all the finite E-classes (= aclx(∅)=the set of a ∈ Cx that
are algebraic over ∅ in the sense of T−). We conclude that there are precisely
4 universal transducers:

Γ̃x(x) =
∧

0<i<ω

¬(Pi(x)), Γ̃x(x) ∧ (¬Pω(x)),

Γ̃x(x) ∧ (¬(Λ(x)) and Γ̃x(x) ∧ (¬Pω(x)) ∧ (¬Λ(x))(= aclx(∅)), where

Λ(x) = [
∧

0<i≤ω

¬Pi(x)] ∧ (x 6∈ aclx(∅)).
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Theorem 2.25 Assume bdd(F ) = dclheq(F ). Given variables y, Γ̃y,F is the
unique universal F -transducer subset of Cy that is (L, L−)F -∞-definable over
∅. Thus, if T is stable, Γ̃y,F is the unique universal F -transducer subset of
Cy that is a conjunction of (L, L−)F -definable sets over ∅.

Proof: First, we observe that Γ̃y,F is (L, L−)F -∞-definable over ∅. Indeed,
by Lemma 2.8,

Γ̃y,F = {b ∈ Cy| b ⌣|
− bdd(F ) ∩ BDD(∅)− }.

For every d ∈ bdd(F ) ∩ BDD(∅)−, let pd(x, f̄d) = tpL−(d/f̄d), where f̄d is
a tuple of realizations of F such that d is the unique solution in Cheq− of
tpL−(d/f̄d) (using the assumption bdd(F ) = dclheq(F )). Now,

Γ̃y,F (y) =
∧

d∈D

Λd(y),where

Λd(y) = ∃x(pd(x, f̄d) ∧ y ⌣|
−x ), D = bdd(F ) ∩BDD(∅)−.

Since each Λd(y) is L
−-type-definable with parameters in F and clearly Γ̃y,F is

∅-invariant in C, we get that it is (L, L−)F -∞-definable over ∅. Now, let Γ(y)
be any universal F -transducer that is (L, L−)F -∞-definable over ∅. Then by
Lemma 2.20(1), Γ(y) is an NFIF -closed set in Sy(T ). By Proposition 2.22,
Γ(y) is a dense subset of Γ̃y,F in the relative NFIF -topology on Γ̃y,F . It
follows that Γ(y) = Γ̃y,F . �

Remark 2.26 All proofs in this section go through easily without the as-
sumption that L and L− have the same set of sorts; one only need to restrict
the variables of F and of the (upper/lower) F -transducers to variables of L−

and replace the universe of a model of T by the universe of its restriction to
L− in Remark 2.7 and Claim 2.13.

3 The lovely pair case

Recall first the basic notions of lovely pairs. Given κ ≥ |T |+, an elementary
pair (N,M) of modelsM ⊆ N of a simple theory T is said to be κ-lovely if (i)
it has the extension property: for any A ⊆ N of cardinality < κ and finitary
p(x) ∈ S(A), some nonforking extension of p(x) over A∪M is realized in N ,
and (ii) it has the coheir property: if p as in (i) does not fork over M then

12



p(x) is realized inM . By a lovely pair (of models of T ) we mean a |T |+-lovely
pair.

Let LP be L together with a new unary predicate P . Any elementary
pair (N,M) of models of T (M ⊆ N) can be considered as an LP -structure
by takingM to be the interpretation of P . A basic property from [BPV] says
that any two lovely pairs of models of T are elementarily equivalent, as LP -
structures. So TP , the common LP -theory of lovely pairs, is complete. T has
the wnfcp if every |T |+-saturated model of TP is a lovely pair (equivalently,
for every κ ≥ |T |+, any κ-saturated model of TP is a κ-lovely pair). Every
theory with the wnfcp is in particular low (low theories is a subclass of simple
theories). By [BPV, Proposition 6.2], if T has the wnfcp then TP is simple.
Thus, this situation is a special case of our general setting in this paper,
where TP is the given theory (T in the general setting) and T is a reduct (T−

in the general setting).
So, in this section we assume T has the wnfcp and we work in a λ-big model
M = (M̄, P (M̄)) of TP for some large λ (so PM = P (M̄)). ⌣| will
denote independence in M and ⌣|

− will denote independence in M̄ =
M|L. Recall the following notation: for a ∈ Mheq−, let ac = Cb−(a/P (M̄)),
where Cb− denotes the canonical base (as a hyperimaginary element) in the
sense of T .

Proposition 3.1 1) For every finite tuple of variables x, Γ̃x = (x = x),
namely the greatest universal transducer in the variables x is (x = x).
2) P̄ (x̄) and (¬P̄ (x̄)) ∪ aclx̄(∅) are universal transducers (where P̄ (x̄) is the
conjunction

∧
i P (xi), x̄ = (xi)i).

3) If T is in addition stable (equivalently T has nfcp), then the NFI-topology
on Sy(TP ) is generated by the family of L-definable sets over ∅. Thus an ∅-
invariant set in M is a universal transducer iff it intersect every non-empty
L-definable set over ∅.

We start with an observation (for part 3). Here, our notation for algebraic
closure is compatible with the general setting of section 2, therefore for A ⊆
Mheq, ACLeq(A) denotes the set of imaginaries in the algebraic closure of
A in the sense of M and for A ⊆ Mheq− = M̄heq, acleq(A) denotes the set
of imaginaries in the algebraic closure of A in the sense of M̄ . We will use
tpL(−) and tpLP

(−) for possibly hyperimaginaries in the structures M̄ , M
respectively.

Lemma 3.2 Meq− ∩ ACLeq(∅) = acleq(∅) (note Meq− = M̄eq).

13



Proof: Otherwise, there exists a ∈ (Meq− ∩ ACLeq(∅))\acleq(∅). If a ∈
acleq(ac), then a ∈ P (M̄)eq. Since for all b ∈ P (M̄)eq we have tpL(b) ≡
tpLP

(b), our assumption that a ∈ (Meq− ∩ ACLeq(∅)) implies a ∈ acleq(∅).
So, by this a contradiction we may assume a 6∈ acleq(ac). By the extension
property there exists a sequence 〈ai| i < ω〉 of realizations of tpL(a/a

c) such

that a0 = a and for every i < ω,
ai+1 ⌣|

− {a0, ...ai} ∪ P (M̄)
ac

.

Claim 3.3 tpLP
(ai) = tpLP

(a) for every i < ω.

Proof: By the construction of 〈ai| i < ω〉, for every i < ω, φ−(x, ai) is real-
ized in P (M̄) (where x is a tuple of variables form the home sort of M̄ and
φ−(x, y) ∈ Leq) iff φ−(x, ai) L-doesn’t fork over P (M̄) iff φ−(x, ai) L-doesn’t
over ac iff φ−(x, a) L-doesn’t fork over ac iff φ−(x, a) L-doesn’t fork over
P (M̄) iff φ−(x, a) is realized in P (M̄). We conclude that Cl(tpL(a/P (M̄))) =
Cl(tpL(ai/P (M̄))) and thus tpLP

(ai) = tpLP
(a) for all i < ω (this implica-

tion is [BPV, Corollary 3.11] for real tuples but remains true for imaginary
elements). �

Now, since a 6∈ acleq(ac), we conclude that ai+1 6∈ acleq({a0, ...ai}) for all
i < ω and in particular, the ai-s are distinct, so a 6∈ ACLeq(∅), a contradic-
tion. This completes the proof of Lemma 3.2 . �

Proof of Proposition3.1. To prove 1), recall the following fact (for conve-
nience, we state it for a special case).

Fact 3.4 [BPV, Proposition 7.3]
Let B ⊆ M and a a tuple from M. Then

a ⌣| B iff [
a ⌣|

− B ∪ P (M̄)
P (M̄)

and ac ⌣|
−Bc ].

Γ∗
x = Γ̃x, so we need to show that for every finite tuples a, b from M, a ⌣| b

implies a ⌣|
−b . By Fact 3.4 it means we need to show that for every finite

tuples a, b from M, if
a ⌣|

− b ∪ P (M̄)
P (M̄)

and ac ⌣|
−bc , then a ⌣|

− b .

Indeed, as
b ⌣|

− P (M̄)
bc

, our assumption implies
b ⌣|

− aP (M̄)
bc

and in

particular
b ⌣|

− a
bc

(∗). As bc ∈ dclheq(P (M̄)),
a ⌣|

− bc

ac
. Our assump-

tion ac ⌣|
−bc , implies bc ⌣|

−aac . By (*), b ⌣|
−a .
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We prove 2). First we show P̄ (x̄)M is a universal transducer. Assume
φ−(x̄, a) L-doesn’t fork over ∅ ,where φ−(x̄, y) ∈ L. By the extension prop-
erty, there exists b̄ ∈ M such that φ−(b̄, a) and b̄ ⌣|

−aP (M̄). In particular,
tpL(b̄/aa

c) L-doesn’t fork over ∅ and in particular it doesn’t fork over P̄ (M̄).
By the coheir property, tpL(b̄/aa

c) is realized in P (M̄). Let b̄∗ ∈ P (M̄) real-
ize it. Then φ−(b̄∗, a) and b̄∗ ⌣|

−ac . By Fact 3.4, as b̄∗ ∈ P (M̄), it follows
that b̄∗ ⌣| a . Thus P̄ (x̄) ∧ φ−(x̄, a) LP -doesn’t fork over ∅. By 1), we con-
clude that P̄ (x̄) is a universal transducer.
To show that Γ(x̄) = (¬P̄ (x̄)) ∪ aclx̄(∅) is a universal transducer we assume
φ−(x̄, a) L-doesn’t fork over ∅ for φ−(x̄, y) ∈ L. If some realization of φ−(x̄, a)
is in aclx̄(∅), we are done so we may assume any realization of it is not in
aclx̄(∅). Therefore, there exists b̄∗ ∈ φ−(M, a) such that b̄∗ ⌣|

−aP (M̄)
and b∗ 6∈ acl(aP (M̄)). Let p− = tpL(b̄

∗/aP (M̄)). Let p ∈ S(TaP (M̄))
be an extension of p− that LP -doesn’t fork over ∅. Let p∗ = p|a. Then,
p∗(x̄) ⊢ (¬P̄ (x̄)) ∧ φ−(x̄, a), so we are done.
We prove 3). We need to show that for every p(x) ∈ Sx(TP ) and φ

−(x, y) ∈ L,
the set Up,φ− is L-definable over ∅. We go back to the proof of Lemma 2.20
(2): Let χ−(y) ∈ L(M) be the definition of the φ−-type of some global LP -
non-forking extension of p. Then χ−(y) is over ACLeq(∅). Let c ∈ Meq−

be the canonical parameter of χ−(y). Since c ∈ ACLeq(∅), by Lemma 3.2,
c ∈ acleq(∅). As in Lemma 2.20 (2), it follows that Up,φ− =

∨
i<n χ

−
i (C) where

{χ−
i (y)}i<n is the set of ∅-conjugates of χ−(y) in M, but since c ∈ acleq(∅)

and acleq(∅) ⊆ P (M̄)eq, {χ−
i (y)}i<n is also the set of ∅-conjugates of χ−(y)

in Meq− = M̄eq, so Up,φ− is L-definable over ∅. �

Corollary 3.5 Any (LP , L)−∞-definable set over ∅ containing P (x̄) must
be equal to x̄ = x̄.

Proof: This is an immediate corollary of Theorem 2.25 and Proposition
3.1(1),(2). �

References

[BPV] I.Ben-Yaacov, A.Pillay, E.Vassiliev, Lovely pairs of models, Annals of
Pure and Applied Logic 122 (2003), no. 1-3.

[H0] E.Hrushovski, Countable unidimensional stable theories are super-
stable, unpublished note.

15



[HN] Herwig Nubling, Reducts of Stable, CM-Trivial Theories, The Journal
of Symbolic Logic, Vol. 70, No. 4 (Dec., 2005), pp. 1025-1036

[HKP] B.Hart, B.Kim and A.Pillay, Coordinatization and canonical bases in
simple theories, Journal of Symbolic Logic, 65 (2000), pgs 293-309.

[K1] B.Kim, Forking in simple unstable theories, Journal of London Math.
Society, 57 (1998), pgs 257-267.

[KP] B.Kim and A.Pillay, Simple theories, Annals of Pure and Applied
Logic, 88, 1997 pgs 149-164.

[P] A.Pillay, On countable simple unidimensional theories, Journal of
Symbolic Logic 68 (2003), no. 4.

[S] Z.Shami, On analyzability in the forking topology for simple theories,
Annals of Pure Applied Logic 142 (2006), no. 1-3, 115–124.

[S0] Z.Shami, Coordinatization by binding groups and unidimensionality
in simple theories, Journal of Symbolic Logic 69, no. 4, 2004, pgs.
1221-1242.

[S1] Z.Shami, Countable hypersimple unidimensional theories, J. London
Math. Soc. Volume 83, Issue 2 (2011), pgs. 309-332.

[S2] Z.Shami, On uncountable hypersimple unidimensional theories, Arch.
Math. Logic 53 (2014), no. 1-2, 203-210.

[S3] A dichotomy for D-rank 1 types in simple theories. Israel J. Math.
209 (2015), no. 2, pgs 993-1012.

[W] Frank O. Wagner, Simple Theories, Academic Publishers, Dordrecht,
The Netherlands, 2000.

Ziv Shami, E-mail address: zivsh@ariel.ac.il.
Dept. of Mathematics
Ariel University
Samaria, Ariel 44873
Israel.

16


	1 Introduction
	2 Transducers
	3 The lovely pair case

