
Noname manuscript No.
(will be inserted by the editor)

Studying the Plasticity in Deep Convolutional Neural
Networks using Random Pruning

Deepak Mittal · Shweta Bhardwaj · Mitesh M. Khapra · Balaraman Ravindran

Received: date / Accepted: date

Abstract Recently there has been a lot of work on

pruning filters from deep convolutional neural networks

(CNNs) with the intention of reducing computations.

The key idea is to rank the filters based on a cer-

tain criterion (say, l1-norm, average percentage of ze-

ros, etc) and retain only the top ranked filters. Once

the low scoring filters are pruned away the remainder

of the network is fine tuned and is shown to give per-

formance comparable to the original unpruned network.

In this work, we report experiments which suggest that

the comparable performance of the pruned network is

not due to the specific criterion chosen but due to the

inherent plasticity of deep neural networks which al-

lows them to recover from the loss of pruned filters

once the rest of the filters are fine-tuned. Specifically,

we show counter-intuitive results wherein by randomly

pruning 25-50% filters from deep CNNs we are able

to obtain the same performance as obtained by using

state-of-the-art pruning methods. We empirically vali-

date our claims by doing an exhaustive evaluation with

VGG-16 and ResNet-50. Further, we also evaluate a

real world scenario where a CNN trained on all 1000

ImageNet classes needs to be tested on only a small set

of classes at test time (say, only animals). We create

a new benchmark dataset from ImageNet to evaluate

such class specific pruning and show that even here a

random pruning strategy gives close to state-of-the-art

performance. Lastly, unlike existing approaches which

mainly focus on the task of image classification, in this

work we also report results on object detection and im-

age segmentation. We show that using a simple random

D. Mittal, S. Bhardwaj, M. M. Khapra and B. Ravindran
Department of Computer Science and Engineering
Robert Bosch Centre for Data Science and AI (RBC-DSAI)
Indian Institute of Technology Madras, Chennai, India
E-mail: {deepak, cs16s003, miteshk, ravi}@cse.iitm.ac.in

pruning strategy we can achieve significant speed up in

object detection (74% improvement in fps) while re-

taining the same accuracy as that of the original Faster

RCNN model. Similarly, we show that the performance

of a pruned Segmentation Network (SegNet) is actually

very similar to that of the original unpruned SegNet.

1 Introduction

Over the past few years, deep convolutional neural net-

works (CNNs) have been very successful in a wide range

of computer vision tasks such as image classification

[5,25,38] , object detection [10,11,28,33,34] and image

segmentation [3,29]. In general, with each passing year,

these networks are becoming deeper and deeper with a

corresponding increase in the performance [14, 19, 37].

However, this increase in performance is accompanied

by an increase in the number of parameters and compu-

tations. This makes it difficult to port these models on

embedded and mobile devices where storage, computa-

tion and power are limited. In such cases, it is crucial

to have small, computationally efficient models which

can achieve performance at par or close to large net-

works. This practical requirement has led to an increas-

ing interest in model compression where the aim is to

either (i) design efficient small networks [17, 21] or (ii)

efficiently prune weights from existing deep networks

[12, 13, 40] or (iii) efficiently prune filters from deep

convolutional networks [18, 24, 27, 31] or (iv) replace

expensive floating point weights by binary or quan-

tized weights [6,12,32,42] or (v) guide the training of a

smaller network using a larger (teacher) network [2,16].

In this work, we focus on pruning filters from deep

convolutional neural networks. The filters in the con-

volution layers typically account for fewer parameters

ar
X

iv
:1

81
2.

10
24

0v
1 

 [
cs

.L
G

] 
 2

6 
D

ec
 2

01
8



2 Deepak Mittal et al.

than the fully connected layers (the ratio is 10:90 for

VGG-16 [27]), but they account for most of the float-

ing point operations done by the model (99% for VGG-

16 [27]). Hence reducing the number of filters effec-

tively reduces the computation (and thus power) re-

quirements of the model. All existing works on filter

pruning [18,24,27,31] follow a very similar recipe. The

filters are first ranked based on a specific criterion such

as, l1-norm [27] or percentage of zeros in the filter [18].

The scoring criterion essentially determines the impor-

tance of the filter for the end task, typically image clas-

sification [25]. Only the top-m ranked filters are re-

tained and the resulting pruned network is then fine

tuned. It is observed that when pruning up to 50% of

the filters using different proposed criteria, the pruned

network almost recovers the original performance after

fine-tuning. The claim is that this recovery is due to

soundness of the criterion chosen for pruning. However,

in this work we argue that this recovery is not due the

specific pruning criterion but due to the inherent plas-

ticity of deep CNNs. Specifically, we show that even

if we prune filters randomly we can match the perfor-

mance of state-of-the-art pruning methods.

To effectively prove our point, it is crucial that we

look at factors/measures other than the final perfor-

mance of the pruned model. To do so we draw an anal-

ogy with the human brain and observe that the process

of pruning filters from a deep CNN is akin to causing

damage to certain portions of the brain. It is known that

the human brain has a high plasticity and over the time

can recover from such damages with appropriate treat-

ment [20]. In our case, the process of fine-tuning would

be akin to such post-damage (post-pruning) treatment.

If the injury damages only redundant or unimportant

portions of the brain then the recovery should be com-

pleted quickly and with minimal treatment. Similarly,

we could argue that if the pruning criteria is indeed

good and prunes away only unimportant filters then (i)

the performance of the model should not drop much (ii)

the model should be able to regain its full performance

after fine-tuning (iii) this recovery should be fast (i.e,

with fewer iterations of fine tuning) and (iv) the quan-

tum of data used for fine-tuning should be less. None of

the existing works on filter pruning do a thorough com-

parison w.r.t. these factors. We not only consider these

factors but also present counter-intuitive results which

show that a random pruning criteria is comparable to

state-of-the-art pruning methods on all these factors.

Note that we are not claiming that we can always re-

cover the full performance of the unpruned network.

For example, it should be obvious that in the degener-

ate case if 90% of the filters are pruned then it would

be almost impossible to recover. The claim being made

is that, at different pruning levels (25%, 50% or 75%)

a random pruning strategy is not much worse than of

state-of-the-art pruning strategies.

To further prove our point, we wanted to check if

such recovery from pruning is task agnostic. In other

words, in addition to showing that a network trained for

image classification (task1 ) can be pruned efficiently, we

also show that same can be done with a network trained

for object detection (task2 ). Here again, we show that

a random pruning strategy works at par with state-of-

the-art pruning methods. Stretching this idea further

and continuing the above analogy, we note that once the

brain recovers from such damages, it is desirable that in

addition to recovering its performance on the tasks that

it was good at before the injury, it should also be able to

do well on newer tasks. In our case, the corresponding

situation would be to take a network pruned and fine-

tuned for image classification (old task) and plug it into

a model for object detection (new task). Specifically, we

show that when we plug a randomly pruned and fine

tuned VGG-16 network into a Faster RCNN model we

can get the same performance on object detection as

obtained by plugging (i) the original unpruned network

or (ii) a network pruned using a state-of-the-art pruning

method. This once again hints at the inherent plasticity

of deep CNNs which allows them to recover (up to a

certain level) irrespective of the pruning strategy.

Finally, we consider the case of class specific prun-

ing which has not been studied in the literature. We

note that in many real world scenarios, it is possible

that while we have trained an image classification net-

work on a large dataset containing many classes, at test

time we may be interested in only a few classes. A case

in point, is the task of object detection using the Pas-

cal VOC dataset [9]. RCNN and its variants [10,11,34]

use as a sub-component an image classification model

trained on all the 1000 ImageNet classes. We hypoth-

esize that this is an overkill and instead create a class

specific benchmark dataset from ImageNet which con-

tains only those 52 classes which correspond to the 20

classes in Pascal VOC. Ideally, one would expect that a

network trained, pruned and fine-tuned only for these

52 classes when plugged into faster RCNN should do

better than a network trained, pruned and fine-tuned

on a random set of 52 classes (which are very differ-

ent from the classes in Pascal VOC). However, we ob-

serve that irrespective of which of these networks is

plugged into Faster RCNN the final performance after

fine-tuning is the same, once again showing the ability

to recover from unfavorable situations.

To the best of our knowledge, this is a first of its

kind work on pruning filters which:



Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning 3

1. Proposes that while assessing the performance of

a pruning method, we should consider factors such

as amount of damage (drop in performance before

fine-tuning), amount of recovery (performance after

fine-tuning), speed of recovery and quantum of data

required for recovery.

2. Performs extensive evaluation using two image clas-

sification networks (VGG-16 and ResNet) and shows

that a random pruning strategy gives comparable

performance to that of state-of-the-art pruning strate-

gies w.r.t. all the above factors.

3. Shows that such behavior is task agnostic and a

random pruning strategy works well even for the

task of object detection and image segmentation.

Specifically, we show that by randomly pruning fil-

ters from an object detection model we can get a

74% improvement in fps while maintaining almost

the same accuracy (1% drop) as the original un-

pruned network. Further, in the case of SegNet the

performance of the pruned network is actually bet-

ter than the unpruned network in some cases.

4. Shows that pruned networks can adapt with ease to

newer tasks.

5. Proposes a new benchmark for evaluating class spe-

cific pruning.

2 Related Work

In this section, we review existing work on making deep

convolutional neural networks efficient w.r.t. their mem-

ory and computation requirements while not compro-

mising much on the accuracy. These approaches can

be broadly classified into the following categories (i)

pruning unimportant weights (ii) low rank factoriza-

tion (iii) knowledge distillation (iv) designing compact

networks from scratch or (v) using binary or quantized

weights and (vi) pruning unimportant filters. Below,

we first quickly review the related work for the first five

categories listed above and then discuss approaches on

pruning filters which is the main focus of our work.

Optimal brain damage [26] and optimal brain surgery

[8] are two examples of approaches which prune the

unimportant weights in the network. A weight is con-

sidered unimportant if the output is not very sensitive

to this weight. They show that pruning such weights

leads to minimal drop in the overall performance of the

network. However, these methods are computationally

expensive as they require the computation of the Hes-

sian (second order derivative). Another approach is to

use low rank factorization of the weight tensor/matrices

to reduce the computations [7,22,23,39,41]. For exam-

ple, instead of directly multiplying a high dimensional

weight tensor W with the input tensor I, we could first

compute a low rank approximation of W = UΣV where

the dimensions of U , Σ and V are much smaller than

the dimensions of W . This essentially boils down to de-

composing the larger matrix multiplication operation

into smaller operations. Also, the low rank approxi-

mation ensures that only the important information in

the weight matrix is retained. Alternately, researchers

have also explored designing compact networks from

scratch which have fewer number of layers and/or pa-

rameters and/or computations [21]. There are also some

approaches which quantize [12] or binarize [6, 32] the

weights of a network to reduce both memory footprint

and computation time. Another line of work focuses

on transferring the knowledge from bigger trained net-

work (or ensemble of networks) to smaller (thin) net-

work [2, 16].

The main focus of our work is on pruning filters

from deep CNNs with the intention of reducing com-

putations. As mentioned earlier, while the convolution

filters do not account for a large number of parame-

ters, they account for almost all the computations that

happen in the network. Here, the idea is to rank the fil-

ters using a scoring function and then retain only the

top scoring functions. For example, in [27], the authors

have used the l1-norm of the filters to rank their impor-

tance. The argument is that filters having a lower l1-

norm will produce smaller activation values which will

contribute minimally to the output of that layer. Alter-

nately in [30], authors have proposed entropy as a mea-

sure to calculate the importance of a filter. If a filter has

high entropy than the filter is considered more informa-

tive and hence more important. On the other hand, [18]

calculate the average percentage of zeros in the corre-

sponding activation maps of filters and hypothesize that

filters having more average percentage of zeros in their

activation are less important. In [31] authors have used

Taylor series expansion that approximates the change in

cost function caused by pruning filters. Unlike [26], this

method uses information from first derivative only. An-

other work on pruning filters [24] proposes that instead

of pruning filters based on current layer’s statistics, they

should be pruned based on next layer’s statistics. Es-

sentially the idea of [24] is to look at the activation map

of layer i+1 and prune out the channel which will give

the minimum change in output on its removal and its

corresponding filter in layer i. In [15] authors have pro-

posed a similar idea to [24] but instead of removing the

filters one by one they proposed to use LASSO regres-

sion. Lastly, in [1] authors has used particle filtering to

prune out the filters.



4 Deepak Mittal et al.

3 Methodology

In this section, we first formally define the problem of

filter-pruning and give a generic algorithm for prun-

ing filters using any appropriate scoring function. We

then discuss existing scoring functions along with some

new variants that we propose.

3.1 Problem Statement

Suppose there are K convolutional layers in a CNN

and the kth layer contains nk filters. We use Fki to

denote the ith filter in the kth layer. Each such fil-

ter is a three dimensional tensor, Fki ∈ Rik×wki×hki

where ik is the number of input channels for layer k

and wki, hki are the width and height of the ith filter in

the kth layer. Our goal is to rank all the filters in layer

k, {Fk1, Fk2, ..., Fki} and then retain the top-mk filters

where mk(< nk) is a hyperparameter which indicates

the desired pruning (For example, based on available

computation resources, if we want to reduce the num-

ber of computations in this layer by half then we can

set mk = nk

2 ). Let the original output of layer k be de-

noted by Ok ∈ Rnk×wo
k×ho

k where wo
k, h

o
k are the width

and height and nk is the number of channels which is

the same as the number of filters. After pruning and

retaining only top-mk filters the size of the output will

be reduced to mk × wo
k × hok. Thus, pruning filters not

only reduces the number of computations in this layer

but also reduces the size of the input to the next layer

(which is the same as the output of this layer). The

same process of pruning can then be repeated across

all layers of the CNN. The main task here is to find the

right scoring function for ranking the filters.

3.2 A Generic Algorithm for Pruning

Algorithm 1 summarizes the generic recipe used by dif-

ferent approaches for pruning filters. As shown in the

algo 1, pruning typically starts from the outermost layer.

Once the low scoring filters from this layer are pruned,

the network is then fine-tuned and the same process

is then repeated for the layers before it. Once all the

layers are pruned and fine-tuned, the entire network is

then tuned for a few epochs.

Existing methods for pruning filters differ in the

scoring function that they use for ranking the filters.

We alternately refer to this scoring function as prun-

ing criteria as discussed in the next subsection.

Algorithm 1 Prune(CNN)

1: K ← number of layers in the network
2: Fk = {Fk1, Fk2, ..., Fkn} (filters in layer k)
3: for each layer k ∈ K . . . 1 do
4: for each filter Fki ∈ Fk1, Fk2, ..., Fkn do
5: scoreki = scoring function(Fki)
6: end for
7: F

′

k = top m filters(Fk, scorek1, ..., scorekn)

8: CNN = retain filters(CNN,F
′

k)
9: Finetune CNN for p epochs

10: end for
11: Finetune the final pruned CNN for q epochs

3.3 Pruning Criteria

We now describe various pruning criteria which are used

by existing approaches and also introduce some new

variants of existing pruning criteria. These criteria are

essentially used as scoring function() in Algorithm 1.

1. Mean Activation [31] : Most deep CNNs for image

classification use ReLU as the activation function

which results in very sparse activations (as all neg-

ative outputs are set to 0). We could compute the

mean activation of the feature map corresponding to

a filter across all images in the training data. If this

mean activation is very low (because most of the ac-

tivations are 0) then this feature map and hence the

corresponding filter is not going to contribute much

to the discriminatory power of the network (since

the filter rarely fires for any input). Hence, [31] uses

the mean activation as a scoring function for rank-

ing filters.

2. l1-Norm [27] : The authors of [27] suggest that the

l1-norm (‖F‖1) of a filter can also be used as an

indicator of the importance of the filter. The argu-

ment is that if the l1-norm of a filter is small then

on average the weights in the filter will be small

and hence produce very small activations. These

small activations will not influence the output of the

network and hence the corresponding filters can be

pruned away. One important benefit of this method

is that apart from computing the l1-norm, it does

not need any extra computation during pruning and

fine-tuning.

3. Entropy [30] : If the feature map corresponding to

a filter produces the same output for every input

(image) then this feature map and hence the corre-

sponding filters may not be very important (because

it does not play any discriminatory role). In other

words, we are interested in feature maps (and hence

filters) which are more informative or have a high

entropy. If we divide the possible range of the av-

erage output of a feature map into b bins then we

could compute the entropy of the ith feature map



Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning 5

(or filter) [30] as :

Ei = −
b∑

j=1

pij log pij

where pij is the probability that the output of the

ith feature map lies in the jth bin. This probability

can be computed as the fraction of input images for

which the average output of the feature map lies in

this bin.

4. Average Percentage of Zeros (APoZ) [18] : As men-

tioned earlier, when ReLU is used as the activation

function, the output activations are very sparse. If

most of the neurons in a feature map are zero then

this feature map is not likely to contribute much to

the output of the network. The Average Percentage

of Zeros in the output of each filter can thus be used

to compute the importance of the filter (the lesser

the better).

5. Sensitivity : We could compute the gradient of a

filter w.r.t. the loss function (i.e, cross entropy). If a

filter has a high influence on the loss function then

the value of this gradient would be high. The l1-

norm of this gradient averaged over all images can

thus be used to compute the importance of a filter.

6. Scaled Entropy : We propose a new variant of the

entropy based criteria. We observe that a filter may

have a high entropy but if all its activations are very

low (belonging to lower bins) then this filter is not

likely to contribute much to the output. We thus

propose to use a combination of entropy and mean

activation by scaling the entropy by the mean acti-

vation of the filter. This scaled-entropy of ith filter

can be computed as:

SEi = −
b∑

j=1

pij logpij ∗Meani

where Meani is the average activation of the ith

filter over all the input images.

7. Class Specific Importance : In this work, we are also

interested in a more practical scenario, where a net-

work trained for detecting all the 1000 classes from

ImageNet is required to detect only (l < 1000) of

these classes at test time (say, only animals). Intu-

itively, we should then devise a scoring function

which retains only those filters which are important

for these l classes. To do so we compute the gradi-

ent of loss function w.r.t. the filter after the training

is done. However, now instead of averaging the l1-

norm of this gradient over all images in the training

data, we compute the average over only those im-

ages in the training data which correspond to the l

classes of interest. This class-specific average is then

used to rank the filters.

8. Random Pruning : One of the main contributions

of this work is to show that even if we randomly

prune the filters from a CNN, its performance after

fine-tuning is not much worse than any of the above

approaches.

4 Experiments: Image Classification

In this section, we focus on the task of image classi-

fication using the ImageNet [35] dataset. The dataset

is split into three sets : training (1.3M images), vali-

dation (50K images), and testing (100K images with

held-out class labels). We experiment with two popular

networks, viz., VGG-16 and ResNet-50. We first train

these networks using the full ImageNet training data

and then prune them using Algorithm 1. We compare

the performance of different scoring functions as listed

in the section 3.3.

4.1 Comparison of different pruning methods on

VGG-16

VGG-16 [36] has 13 convolutional (CONV) and two

fully connected (FC) layers. The number of filters in

each CONV layer in the the standard VGG-16 net-

work [36] is {64, 64, 128, 128, 256, 256, 256, 512, 512,

512, 512, 512, 512}. We first train this network as it is

(i.e., with the standard number of filters in each layer)

using the ImageNet training data. When evaluated on

the standard ImageNet test set, this trained model gives

us a top-1 accuracy of 69.91% which is comparable to

the accuracy reported elsewhere in the literature. We

now prune this network, one layer at a time starting

from the last convolution layer. We prune away m% of

filters from each layer where we chose the value of m

to be {25, 50, 75}. We use one of the scoring functions

described in Section 3.3 to select the top m% filters. We

drop the remaining (100 - m)% filters from this layer

and then fine-tune the pruned network for 1 epoch. We

then repeat the same process for the lower layers and

use the same value of m across all layers. Once the

network is pruned till layer 1, we then fine tune the en-

tire pruned network for 12 epochs using 1/10-th of the

training data picked randomly. The only reason for not

using the entire training data is that it is quite compu-

tationally expensive. We did not see any improvement

in the performance on the validation set by fine-tuning

beyond 12 epochs. We then evaluate this pruned and

fine-tuned network on the test set. Below, we discuss



6 Deepak Mittal et al.

Heuristic 25 % 50% 75%
Random 0.650 0.569 0.415
Mean Activation 0.652 0.570 0.409
Entropy 0.641 0.549 0.405
Scaled Entropy 0.637 0.550 0.401
l1-norm 0.667 0.593 0.436
APoZ 0.647 0.564 0.422
Sensitivity 0.636 0.543 0.379

Table 1: Comparison of different filter pruning strate-

gies on VGG-16.

the performance of the final pruned and fine-tuned net-

work obtained using different pruning strategies.

Performance of pruned network after fine-tuning:

In Table 1, we report the performance of the final pruned

network after fine tuning. We observe that random prun-

ing works better than most of the other pruning meth-

ods described earlier. l1-norm is the only scoring funct-

ion which does better than random and that too by a

small margin. In fact, if we fine-tune the final trained

network using the entire training data then we observe

that there is hardly any difference between random and

l1-norm (see Table 2). This provides empirical evidence

for our claim that the amount of recovery (i.e, final

performance after fine-tuning) is not due to the sound-

ness of the pruning criteria. Even with random prun-

ing, the performance of the pruned network is compa-

rable. Of course, as the percentage of pruning increases

(i.e, as m increases) it becomes harder for the pruned

network to recover the full performance of the original

network (but the point is that it is equally hard irre-

spective of the pruning method used). Thus, w.r.t. the

amount of recovery after damage (pruning), a random

pruning strategy is as good as any other pruning strat-

egy. We further drive this point in Figure 1a where we

show that after pruning and fine tuning for every layer,

the amount of recovery after fine tuning is comparable

across different pruning strategies.

As a side note we would like to mention that we do

not include the performance of ThiNets [24] in Table 1.

This is because it uses a slightly different methodology.

In particular there are two major differences. First, in

ThiNets pruning is done only till layer 10 and not upto

layer 11 as is the case for all numbers reported in Table

1. Secondly, in ThiNets, if a CONV layer appears before

a max-pooling layer then it is fine-tuned for an extra

epoch to compensate more for the downsampling in the

max pooling layer. For a fair comparison, we followed

this exact same strategy as ThiNet but using a random

pruning criteria. In this setup, a randomly pruned net-

work was able to achieve 68% top-1 accuracy after 50%

pruning which is comparable to the performance of the

corresponding ThiNet (69%).

Heuristic 50%
Random 0.6701
Mean Activation 0.6662
Entropy 0.6635
Scaled Entropy 0.6625
l1-norm 0.6759
APoZ 0.6706
Sensitivity 0.6659

Table 2: Performance after fine-tuning with full data

Amount of initial damage caused by different

pruning strategies: One might argue that while ran-

dom pruning strategy is equivalent to other pruning

strategies w.r.t. final performance after fine tuning, it

is possible that the amount of initial damage caused by

a careful pruning strategy maybe less than than caused

by random pruning. This could be important in cases

where enough time or resources are not available for

fine-tuning after pruning. To evaluate this, we compute

the accuracy of the network just after pruning (and be-

fore fine-tuning) at each layer. Figure 1b compares this

performance for different pruning strategies. Here again

we observe that the damage caused by a random prun-

ing strategy is not worse than other pruning strategies.

The only exception is when we prune the first 4 lay-

ers in which case the damage caused by l1-norm based

pruning is less than random pruning. We hypothesize

that this is because the first 4 layers have very few fil-

ters and hence one needs to be careful while pruning for

filters from these layers. In fact, in hindsight we would

recommend not to prune any filters from these 4 layers

because the computation savings are less as compared

to drop in accuracy.

Speed of recovery and quantum of data for fine-

tuning: Another important criteria is the speed of re-

covery, i.e., the number of iterations for which the net-

work needs to be fine-tuned after pruning. It is con-

ceivable that a carefully pruned network may be able

to recover and reach its best performance faster than a

randomly pruned network. However, as shown in Fig-

ure 1c that almost all the pruning strategies (includ-

ing random) reach their peak after 2 epochs when fine-

tuned with one-tenth of the data. Even, if we increase

the quantum of data, this behavior does not change as

shown in Figure 1d (for l1-norm based pruning and ran-

dom pruning). Of course, as we increase the quantum

of data the amount of recovery increases, i.e., the peak

performance of the pruned network increases. However,

the important point is that a random strategy is no

worse than a careful pruning strategy w.r.t. speed of

recovery and quantum of data required.



Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning 7

(a) Performance after fine-tuning at each layer in VGG-16 (b) Performance drop after pruning but before fine-tuning

(c) Finetuning final pruned network with 1/10th data (d) Finetuning final pruned network with full ImageNet data

Fig. 1: Pruning and Fine-tuning VGG-16

4.2 Which layers to pre-train?

So far in all our experiments, we have re-trained all the

layers after pruning a given layer. We wanted to check

if this is indeed necessary or it possible to re-train only

a few layers. To assess this we explore various choices

as described below:

Retraining only fully connected layers: The fully

connected layers have many parameters and should per-

haps be able to adjust to any perturbations such as

pruning in the initial layers To verify this hypothesis,

we ran experiments in which we only re-trained the fully

connected layer after pruning filters from a given layer.

Specifically, we do not retrain any of the convolution

layers. In this case, the final top-1 accuracy we got is

8% as compared to 67% which we got when we retrained

both fully connected layers and convolutional layers. An

intuitive explanation for this is that the convolutional

layers which act as feature extractors are as important

as the set of fully connected layers. In particular, since

in every iteration, we are dropping more filters and not

retraining the convolutional layers the resulting feature

vector of the image at the end of last convolutional layer

is so bad that despite having a large number of param-

eters, the fully connected layers are not being able to

deal with this bad representation.

Retraining only convolutional layers: Next, for the

sake of completeness, we decided to see what happens if

we retrain only the convolution layers and not the fully

connected layers. Surprisingly, we observed that in this

case we get a top-1 accuracy of 66.23% as compared

to 67% that we get after training both convolutional

and fully connected layers. This suggests that the con-

volutional layers are able to adapt and produce a good

representation which is compatible with a fixed fully

connected layer.

Retraining only neighboring layers: Further, we

wanted to check what happens if we retrain only the

neighboring layers of the pruned connected layers. For

example, if we prune layer i then we retrain only layers

i − 1, i and i + 1. The intuition here was that after

disrupting one layer, it is enough to simply ensure that

its neighboring layers adjust to this disruption. In this

case, we get top-1 accuracy of 57.9% which is very low

as compared to the top-1 accuracy of 67% which we get

after retraining all the layers in the network. This is due

to a cascade effect wherein once layer i + 1 adjusts to

the pruning in layer i, layer i+2 also needs to adjust to

the changes in the layer i+ 1 and so on. However since

we are not retraining subsequent layers, so the overall

performance drops.



8 Deepak Mittal et al.

4.3 Training Smaller Network from Scratch

Table 2 suggests that we can prune a pre-trained net-

work to half of its original size and still get the same

performance as that obtained by the original network.

An obvious question here is that instead of training a

bigger network and then pruning it to half of its original

size is it possible to train a smaller network from scratch

whose size/architecture is the same as the final pruned

network. To verify this, we trained a smaller VGG-16

network (VGG-16/2) in which we reduced the number

of filters in all the convolutional layers by 50%. For ex-

ample the number of filters in each CONV layer in the

the standard VGG-16 network [36] is {64, 64, 128, 128,

256, 256, 256, 512, 512, 512, 512, 512, 512}. Now in

VGG-16/2 the number of filters in each CONV layer is

{32, 32, 64, 64, 128, 128, 128, 256, 256, 256, 256, 256,

256}. In other words, the architecture of VGG-16/2 is

the same as that that obtained after pruning 50% filters

from each convolution layer of VGG-16 using Algorithm

1.

Figure 2 compares the top-1 accuracy of VGG-16

(first bar) with that of VGG-16/2 (second bar) and that

obtained by pruning 50% of the filters from a trained

VGG-16 model using l1-norm criterion and then fine-

tuning the pruned network (third bar). The main ob-

servation here is that VGG-16/2, when trained from

scratch, achieves 61.90% top-1 accuracy which is very

less as compared to the accuracy achieved by the pruned

network. This is an interesting result which suggests

that it is beneficial to first train a bigger network and

then prune out filters from it instead of directly training

a smaller network from scratch.

VGG-16 VGG-16/2 - Scratch VGG-16/2 - Pruned
Different VGG-16 variants

0

20

40

60

80

100

To
p-

1 
Ac

cu
ra

cy

69.91
61.90

67.59

Fig. 2: Performance drop after pruning but before fine-

tuning

Layer Original 50% Pruning Differential
Number Pruning

1 64 32 59
2 64 32 59
3 128 64 108
4 128 64 108
5 256 128 175
6 256 128 175
7 256 128 175
8 512 256 185
9 512 256 185
10 512 256 185
11 512 256 185

Total Filters 3200 1600 1599

Table 3: Pruning filters in ratio of the number of filters

present in the original model.

4.4 Random Pruning v/s l1 norm: Some more insights

In Figure 3, we have shown the distribution of l1-norms

of filters in the 11th layer of VGG-16. For all the his-

tograms in Figure 3, x-axis is the range of l1-norm val-

ues and y-axis denotes the number of filters. Figure 3(a)

shows the distribution of the top 50% filters selected us-

ing the l1-norm criteria. As expected this distribution

is highly skewed. However, on retraining this pruned

network, this skewed distribution again moves towards

a normal distribution as shown in Figure 3(c). On the

other hand, when we randomly select 50% filters, the

l1-norms of these filters follow a normal distribution

as shown in Figure 3(b). Even after retraining, the l1-

norms of these filters are normally distributed as shown

in Figure 3(d). This behavior indicates that l1-norm is

perhaps not the best criteria as the network eventually

prefers filters such that their l1-norms are normally dis-

tributed.

4.5 Differential Pruning based on number of filters in

a layer

So far in all our experiments, we have pruned the same

percentage of filters from all the layers. However, this

is a bit unfair as the lower layers have very few filters

as compared to the upper layers. For example, layer1

has only 64 filters whereas layer10 has 512 filters. Intu-

itively, it seems that pruning out 32/64 filters is more

brutal then pruning 256/512 filters. More so because

disruptions at the lower layers are likely to cascade

through the entire network. To prove/disprove this hy-

pothesis, we ran an experiment where we prune filters

in proportion to the total number of filters in a layer.

More specifically, the first eleven layers of VGG-16 has

a total of 3200 filters of which we want to prune out

50% of the filters (i.e, prune away a total of 1600 fil-



Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning 9

(a) Distribution of the top 50% filters selected using the l1-norm (b) Distribution of the top 50% filters selected randomly.

(c) Distribution of the corresponding finetuned model in (a) (d) Distribution of the corresponding finetuned model in (b)

Fig. 3: Distribution of l1-norm values of filters in 11th layer of VGG-16. x-axis is the range of l1-norm values and

y-axis denotes the number of filters.

ters). However, now instead of pruning 50% of the filters

from each layer we prune fewer filters from layers which

have fewer filters while ensuring that the total number

of filters pruned is still 1600. In other words, the filters

are pruned in proportion to the number of filters in that

layer. In Table 3, Differential-Pruning column shows the

number of filters retained in each layer when pruning

according to the scheme described above. In particular,

note that more number of filters are pruned from higher

layers. However, the final results suggest that there is

not much improvement by using this differential prun-

ing strategy wherein the top-1 accuracy improves to

0.6758 top-1 accuracy as compared to 0.6701 earlier.

4.6 Pruning by averaging

One way of reducing the size of the network by 50% is

to take the average of consecutive filters and then drop-

ping both the filters. For example, say in layer 10 we

have 512 filters, then on taking the average of consec-

utive filters we will be left with 256 filters. We wanted

to check if this would be better than just dropping one

of the filters, because now the average at least encodes

the original information available in both the filters.

When we pruned VGG-16 (by 50%) using the strategy

and then retrained it we were able to achieve a top-1

accuracy of 0.6576 which was 0.1250 less as compared

to the case when we randomly drop 50% of the filters

instead of averaging. This suggests that averaging the

filters does more harm as the original information from

both the filters gets morphed when we take an average.

4.7 Pruning ResNet-50 using l1-Norm and Random

While the above set of experiments focused on VGG-16,

we now turn our attention to ResNet-50 [14] which gives

state-of-the-art results on ImageNet. We took a trained

ResNet-50 model which gave 74.5% top-1 accuracy on

the ImageNet test set which is again comparable to the

accuracy reported elsewhere in the literature. ResNet

contains 16 residual blocks wherein each block contains

3 layers with a skip connection from the first layer to

the third layer. The standard practice is to either prune

the first layer of each block or the first two layers of each

block. In the first case, out of the total 48 convolution

layers (16 * 3) we will end up pruning 16 and in the

second case we will end up pruning 32 layers. As be-

fore, for each pruned layer we vary the percentage of



10 Deepak Mittal et al.

pruning from 25%, 50% to 75%. Here, we only compare

the performance of l1-Norm with random pruning as

these were the top performing strategies on VGG-16.

This was just to save time and resources as given the

deep structure of ResNet it would have been very ex-

pensive to run all pruning strategies. Once again from

Table 4, we observe that random pruning performs at

par (in fact, slightly better) when compared to l1-Norm

based pruning. Note that, in this case the pruned mod-

els were trained with only one-tenth of the data. The

performance of both the methods are likely to improve

further if we were to fine-tune the pruned network on

the entire training data.

Heuristics #Layers Pruned 25 % 50% 75%
Random 16 0.722 0.683 0.617
l1-norm 16 0.714 0.677 0.610
Random 32 0.696 0.637 0.518
l1-norm 32 0.691 0.633 0.514

Table 4: Comparison of different filter pruning strate-

gies on ResNet (Top-1 accuracy of unpruned network

is 0.745)

5 Experiments: Class specific pruning

Existing work on pruning filters (or model compression,

in general) focuses on the scenario where we have a net-

work trained for detecting all the 1000 classes in Ima-

geNet and at test time it is again evaluated using data

belonging to all of these 1000 classes. However, in many

real world scenarios at test time we may be interested
in fewer classes. A case in point, is the Pascal VOC

dataset which contains only 20 classes. Intuitively, if

we are interested in only fewer classes at test time then

we should be able to prune the network to cater to only

these classes. Alternatively, we could train the original

network itself using data corresponding to these classes

only. To enable these experiments, we first create a new

benchmark from ImageNet which contains only those

52 classes which correspond to the 20 classes in Pascal

VOC. Note that the mapping of 52-20 happens because

ImageNet has more fine-grained classes. For example,

there is only one class for ‘dog’ in Pascal VOC but

ImageNet contains many sub-classes of ‘dog’ (different

breeds of dogs). We manually went over all the classes in

ImageNet and picked out the classes which correspond

to the 20 classes in Pascal VOC. In some cases, we ig-

nored ImageNet classes which were too fine-grained and

only considered those classes which were immediate hy-

ponyms of a class in Pascal VOC. We then extracted

the train, test and valid images for these classes from

Heuristics 25 % 50% 75%
Random 0.859 0.820 0.692
Mean Activation 0.866 0.816 0.698
Entropy 0.860 0.802 0.684
Scaled Entropy 0.863 0.813 0.691
l1-norm 0.867 0.823 0.729
APoZ 0.858 0.811 0.700
Important Classes 0.857 0.795 0.655
Sensitivity 0.849 0.793 0.634

Table 5: Comparison of different filter pruning strate-

gies when fine-tuned and evaluated with ImageNet-52P.

the original ImageNet dataset. We refer to this subset

of ImageNet as ImageNet-52P (where P stands for Pas-

cal VOC). We refer to the original ImageNet dataset as

ImageNet-1000. Note that the train, test and validation

splits of ImageNet-52P are subsets of the correspond-

ing splits of ImageNet-1000. In particular , the training

split of ImageNet-1000 does not overlap with the test

or validation splits of ImageNet-52P.

We first compare the performance in the following

two setups: (i) model trained on ImageNet-1000 and

evaluated on the test split of ImageNet-52P and (ii)

model trained on ImageNet-52P and evaluated on the

test split of ImageNet-52P. We observe that while in the

first setup we get a top-1 accuracy of 74%, in the sec-

ond setup we get an accuracy of 87%. This suggests that

model trained on ImageNet-1000 is clearly overloaded

with extra information about the remaining 948 classes

and hence performs poorly on the 52 classes of interest.

We should thus be able to prune the network effectively

to cater to only the 52 classes of interest. Note that in

practice it is desirable to have just one network trained

on ImageNet-1000 and then prune it for different sub-
sets of classes that we are interested in instead of train-

ing a separate network from scratch for each of these

subsets. We again compare different pruning strategies

as listed earlier except that now when fine-tuning (af-

ter each layer and at the end of all layers) we only use

ImageNet-52P. In other words, we fine-tune using only

data corresponding to the 52 classes. Once again, we

observe that there is not much difference between ran-

dom pruning and other pruning strategies. Also with

25% pruning, we are almost able to match the perfor-

mance of a network trained only on these 52 classes (i.e,

87%).

6 Experiments: Faster Object Detection

The above experiments have shown that with reason-

able levels of pruning (25-50%) and enough fine-tuning

(using entire data) the pruned network is able to recover

and almost match the performance of the unpruned net-



Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning 11

Heuristics 25 % 50% 75%
Random 0.647 0.600 0.505
Mean Activation 0.647 0.601 0.489
Entropy 0.635 0.584 0.501
Scaled Entropy 0.640 0.593 0.507
l1-norm 0.628 0.608 0.520
APoZ 0.646 0.598 0.514
Sensitivity 0.636 0.592 0.485

Table 6: Object detection results obtained by plugging-

in different pruned VGG-16 models into Faster-RCNN.

work on the original task (image classification) even

with a random pruning strategy. However, it is possible

that if such a pruned network is used for a new task, say

object detection, then a randomly pruned network may

not give the same performance as a carefully pruned

network. To check this, we perform experiments using

the Faster-RCNN model for object detection. Note that

the Faster-RCNN model uses a VGG-16 model as a

base component and then adds other components which

are specific to object detection. We experiment with

the PASCAL-VOC 2007 dataset [9] which consists of

9,963 images, containing 24,640 annotated objects. We

first plug-in a standard trained VGG-16 network into

Faster-RCNN and then train Faster-RCNN for 70K it-

erations (as is the standard practice). This model gives

a mean Average Precision (mAP) value of 0.66. The

idea is to now plug-in a pruned VGG-16 model into

faster RCNN instead of the original unpruned model

and check the performance. Table 6 again shows that

the specific choice of pruning strategy does not have

much impact on the final performance on object de-

tection. Of course, as earlier, as the level of pruning

increases the performance drops (but the drop is con-

sistent across all pruning strategies). We now report

some more interesting experiments on pruning Faster

RCNN.

Faster-RCNN Baseline 25 % 50% 75%
mAP 0.66 0.655 0.648 0.530
fps 7.5 10 13 16

Table 7: Object detection results when directly pruning

(random) a fully trained Faster-RCNN model.

6.1 Directly pruning Faster RCNN

Instead of plugging in a pruned VGG-16 model into

Faster-RCNN, we could alternatively take a trained Fas-

ter RCNN model and then prune it directly. Here again,

we use a simple random pruning strategy and observe

that the performance of the pruned model comes very

close to that of the unpruned model. In particular, with

Heuristics 25 % 50% 75%
Random 0.647 0.580 0.469
Mean Activation 0.644 0.583 0.454
Entropy 0.642 0.578 0.470
Scaled Entropy 0.645 0.580 0.443
l1-norm 0.648 0.601 0.487
APoZ 0.641 0.585 0.466
Important Classes 0.631 0.568 0.432
Sensitivity 0.637 0.576 0.435

Table 8: Object detection results obtained by plugging-

in different pruned VGG-16 models fine-tuned with

ImageNet-52P as opposed to ImageNet-1000.

50% pruning we are able to achieve a mAP of 0.648

with a 74% speedup in terms of frames per second (Ta-

ble 7).

6.2 Plugging in a VGG-16 model trained using

Image-Net-52P

Since we are only interested in the 52 classes corre-

sponding to Pascal-VOC, we wanted to check what hap-

pens if we plug-in a VGG-16 model trained, pruned and

fine-tuned only on ImageNet-52P. As shown in Table 8

we do not get much benefit of plugging in this spe-

cialized model into Faster-RCNN. In fact, in a separate

experiment we observed that even if we train a VGG-16

model on a completely random set of 52 classes (differ-

ent from the 52 classes corresponding to Pascal VOC)

and then plug in this model into Faster RCNN, even

then the final performance of the Faster RCNN model

remains the same. This is indeed surprising and further

demonstrates the ability of these networks to recover

from unfavorable situations.

Heuristics Dataset 25 % 50% 75%

Random
ImageNet-52R 0.650 0.590 0.463
ImageNet-52P 0.647 0.580 0.469
ImageNet-1000 0.647 0.602 0.505

l1-norm
ImageNet-52R 0.650 0.603 0.485
ImageNet-52P 0.648 0.600 0.487
ImageNet-1000 0.628 0.608 0.520

Table 9: Faster-RCNN using VGG pruned by select-

ing classes other than corresponding to Pascal VOC at

random.

6.3 Plugging in a VGG-16 model trained using

random set of 52 classes

In a separate experiment we observed that even if we

train a VGG-16 model on a completely random set of 52

classes referred as ImageNet-52R (different from the 52

classes corresponding to Pascal VOC) and then plug in



12 Deepak Mittal et al.

this model into Faster RCNN, even then the final per-

formance of the Faster RCNN model remains the same.

In Table 9 we have shown results of this experiment.

This is indeed surprising and further demonstrates the

ability of these networks to recover from unfavorable

situations.

7 Experiments: Image Segmentation

Lastly, we performed experiments with image segmen-

tation where the goal is to assign each pixel to one of the

given classes. We chose SegNet [3] as our base model.

SegNet has a convolutional encoder-decoder architec-

ture. The encoder consists of a set of convolutional

layers which compute a representation for the input.

The decoder again contains a set of corresponding con-

volutional layers which upsample the low dimensional

representation computed by the encoder to produce an

output which is of the same size as the original im-

age. The output from the final layer of the decoder is

then passed to a pixel-wise classification layer. Out of

the different variants of SegNet architecture, we used

SegNet-Basic (as described in [3]). which contains 8

convolutional (CONV) layers of which the first 4 act as

encoder and the last four act as decoder. The number

of filters in each CONV layer is 64. When trained this

network using the the CamVid [4] dataset and achieved

a baseline accuracy of 0.78.

We tried different experiments wherein in some ex-

periments we only pruned filters from the decoder and

in some experiments we pruned filters from both the

encoder and the decoder. The rational here is that the

effects of pruning the encoder could cascade to the de-

coder also and hence it makes sense to keep the encoder

as it is and prune only the decoder. The results of our

experiments are summarized in Table 10 where we com-

pare random pruning with l1-norm based pruning. We

observe that random pruning clearly outperforms l1-

norm based pruning when we pruning both the encoder

and the decoder. However, if we only prune the decoder,

then both random pruning and l1-norm strategy out-

perform the baseline results (full network) and random

pruning giving the best result in case of 50% pruning.

We hypothesize that this better performance is due to

the regularization effect of pruning.

8 Conclusion and Future Work

We evaluated the performance of various pruning strate-

gies based on the (i) drop in performance after pruning

(ii) amount of recovery after pruning (iii) speed of re-

covery and (iv) amount of data required. We did ex-

Pruning(%) Decoder Decoder+Encoder

Random
25 0.7894 0.7701
50 0.7948 0.7678
75 0.7899 0.5944

l1-norm
25 0.7825 0.6538
50 0.7813 0.3992
75 0.7891 0.3415

Table 10: Pruning results on SegNet-Basic architecture.

tensive evaluations with two networks (VGG-16 and

ResNet50) and presented counter-intuitive results which

show that w.r.t. all these factors a random pruning

strategy performs at par with principled pruning strate-

gies. We also showed that even when such a randomly

pruned network is used for a completely new task it

performs well. Next, we experimented with the task of

object detection and showed that by randomly pruning

filters from Faster RCNN we can get a 74% speed-up

w.r.t frames per second with only a 1% drop in the

performance. Lastly, we experimented with the task of

image segmentation and showed that when we prune fil-

ters from only the decoder layer of SegNet we get some

sort of a regularization network as a result of which the

performance of the pruned network is better than that

of the original unpruned network.

There are various possible future directions to this

work. Given random pruning of filters has worked so

well in convolutional neural networks, it is worth ex-

ploring this idea further in the case of recurrent neural

networks. Another possible line of work is to establish

theoretical grounds which explains the behavior of ran-

dom pruning better. Designing more efficient training

schedules by incorporating random pruning is another

interesting area to explore.

Acknowledgements We thank the Robert Bosch Centre
for Data Science and AI (RBC-DSAI) and Intel India for
supporting this research.

References

1. Anwar, S., Hwang, K., Sung, W.: Structured pruning of
deep convolutional neural networks. ACM Journal on
Emerging Technologies in Computing Systems (JETC)
13(3), 32 (2017)

2. Ba, J., Caruana, R.: Do deep nets really need
to be deep? In: Z. Ghahramani, M. Welling,
C. Cortes, N.D. Lawrence, K.Q. Weinberger (eds.)
Advances in Neural Information Processing Sys-
tems 27, pp. 2654–2662. Curran Associates, Inc.
(2014). URL http://papers.nips.cc/paper/

5484-do-deep-nets-really-need-to-be-deep.pdf
3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet:

A deep convolutional encoder-decoder architecture for
scene segmentation. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (2017)

http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf


Studying the Plasticity in Deep Convolutional Neural Networks using Random Pruning 13

4. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object
classes in video: A high-definition ground truth database.
Pattern Recognition Letters 30(2), 88–97 (2009)

5. Chollet, F.: Xception: Deep learning with depthwise sep-
arable convolutions. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Hon-
olulu, HI, USA, July 21-26, 2017, pp. 1800–1807 (2017).
DOI 10.1109/CVPR.2017.195. URL https://doi.org/

10.1109/CVPR.2017.195
6. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R.,

Bengio, Y.: Binarized neural networks: Training deep
neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)

7. Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al.:
Predicting parameters in deep learning. In: Advances in
Neural Information Processing Systems, pp. 2148–2156
(2013)

8. Endisch, C., Hackl, C., Schröder, D.: Optimal brain sur-
geon for general dynamic neural networks. In: J. Neves,
M.F. Santos, J.M. Machado (eds.) Progress in Artifi-
cial Intelligence, pp. 15–28. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007)

9. Everingham, M., Van Gool, L., Williams, C.K., Winn,
J., Zisserman, A.: The pascal visual object classes (voc)
challenge. International journal of computer vision 88(2),
303–338 (2010)

10. Girshick, R.: Fast R-CNN. In: Proceedings of the Inter-
national Conference on Computer Vision (ICCV) (2015)

11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich fea-
ture hierarchies for accurate object detection and seman-
tic segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
(2014)

12. Han, S., Mao, H., Dally, W.J.: Deep compression: Com-
pressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

13. Han, S., Pool, J., Tran, J., Dally, W.: Learning both
weights and connections for efficient neural network.
In: C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama,
R. Garnett (eds.) Advances in Neural Information Pro-
cessing Systems 28, pp. 1135–1143. Curran Associates,
Inc. (2015)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learn-
ing for image recognition. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–
778 (2016). DOI 10.1109/CVPR.2016.90. URL https:

//doi.org/10.1109/CVPR.2016.90
15. He, Y., Zhang, X., Sun, J.: Channel pruning for ac-

celerating very deep neural networks. arXiv preprint
arXiv:1707.06168 (2017)

16. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowl-
edge in a neural network. CoRR abs/1503.02531
(2015). URL http://arxiv.org/abs/1503.02531

17. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mo-
bilenets: Efficient convolutional neural networks for mo-
bile vision applications. CoRR abs/1704.04861 (2017).
URL http://arxiv.org/abs/1704.04861

18. Hu, H., Peng, R., Tai, Y., Tang, C.: Network trimming:
A data-driven neuron pruning approach towards effi-
cient deep architectures. CoRR abs/1607.03250 (2016).
URL http://arxiv.org/abs/1607.03250

19. Huang, G., Liu, Z., van der Maaten, L., Weinberger,
K.Q.: Densely connected convolutional networks. In:
2017 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2017, Honolulu, HI, USA, July 21-
26, 2017, pp. 2261–2269 (2017). DOI 10.1109/CVPR.
2017.243. URL https://doi.org/10.1109/CVPR.2017.

243

20. Huseyinsinoglu, B.E., Ozdincler, A.R., Krespi, Y.: Bo-
bath concept versus constraint-induced movement ther-
apy to improve arm functional recovery in stroke pa-
tients: a randomized controlled trial. Clinical rehabili-
tation 26(8), 705–715 (2012)

21. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K.,
Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accu-
racy with 50x fewer parameters and¡ 0.5mb model size.
arXiv preprint arXiv:1602.07360 (2016)

22. Ioannou, Y., Robertson, D., Shotton, J., Cipolla, R., Cri-
minisi, A.: Training cnns with low-rank filters for efficient
image classification. arXiv preprint arXiv:1511.06744
(2015)

23. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up
convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866 (2014)

24. Jian-Hao Luo, J.W., Lin, W.: ThiNet: A Filter Level
Pruning Method for Deep Neural Network Compression.
In: International Conference on Computer Vision (ICCV)
(2017)

25. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Ima-
genet classification with deep convolutional neural
networks. In: F. Pereira, C.J.C. Burges, L. Bottou,
K.Q. Weinberger (eds.) Advances in Neural Information
Processing Systems 25, pp. 1097–1105. Curran Asso-
ciates, Inc. (2012). URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf

26. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain dam-
age. In: D.S. Touretzky (ed.) Advances in Neural In-
formation Processing Systems 2, pp. 598–605. Morgan-
Kaufmann (1990). URL http://papers.nips.cc/paper/

250-optimal-brain-damage.pdf

27. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.:
Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710 (2016)

28. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.Y., Berg, A.C.: Ssd: Single shot multibox detector.
In: European conference on computer vision, pp. 21–37.
Springer (2016)

29. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional
networks for semantic segmentation. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition, pp. 3431–3440 (2015)

30. Luo, J.H., Wu, J.: An entropy-based pruning method for
cnn compression. arXiv preprint arXiv:1706.05791 (2017)

31. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.:
Pruning convolutional neural networks for resource effi-
cient inference. arXiv preprint arXiv:1611.06440 (2016)

32. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.:
Xnor-net: Imagenet classification using binary convolu-
tional neural networks. In: European Conference on Com-
puter Vision, pp. 525–542. Springer (2016)

33. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.:
You only look once: Unified, real-time object detection.
In: 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pp. 779–788 (2016). DOI 10.1109/
CVPR.2016.91. URL https://doi.org/10.1109/CVPR.

2016.91

34. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN:
Towards real-time object detection with region proposal

https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1607.03250
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91


14 Deepak Mittal et al.

networks. In: Advances in Neural Information Processing
Systems (NIPS) (2015)

35. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV) 115(3), 211–252 (2015). DOI
10.1007/s11263-015-0816-y

36. Simonyan, K., Zisserman, A.: Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014)

37. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway
networks. CoRR abs/1505.00387 (2015). URL http:

//arxiv.org/abs/1505.00387

38. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.:
Going deeper with convolutions. In: Computer Vision
and Pattern Recognition (CVPR) (2015). URL http:

//arxiv.org/abs/1409.4842

39. Tai, C., Xiao, T., Zhang, Y., Wang, X., et al.: Convo-
lutional neural networks with low-rank regularization.
arXiv preprint arXiv:1511.06067 (2015)

40. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning
structured sparsity in deep neural networks. In: Advances
in Neural Information Processing Systems, pp. 2074–2082
(2016)

41. Zhang, X., Zou, J., Ming, X., He, K., Sun, J.: Efficient
and accurate approximations of nonlinear convolutional
networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1984–
1992 (2015)

42. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incre-
mental network quantization: Towards lossless cnns with
low-precision weights. arXiv preprint arXiv:1702.03044
(2017)

http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments: Image Classification
	5 Experiments: Class specific pruning
	6 Experiments: Faster Object Detection
	7 Experiments: Image Segmentation
	8 Conclusion and Future Work

