
Computational Metadata Generation Methods for
Biological Specimen Image Collections
Kevin Karnani ( kevinkarnani@gmail.com)

Drexel University https://orcid.org/0000-0002-3108-7941
Joel Pepper

Drexel University https://orcid.org/0000-0002-1601-8729
Yasin Bakis

Tulane University
Xiaojun Wang

Tulane University
Henry Bart

Tulane University
David Breen

Drexel University
Jane Greenberg

Drexel University

Research Article

Keywords: bioinformatics, metadata, image analysis, applied machine learning, contrast enhancement

Posted Date: April 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1506561/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1506561/v1
mailto:kevinkarnani@gmail.com
https://orcid.org/0000-0002-3108-7941
https://orcid.org/0000-0002-1601-8729
https://doi.org/10.21203/rs.3.rs-1506561/v1
https://creativecommons.org/licenses/by/4.0/

Computational Metadata Generation

Methods for Biological Specimen Image

Collections

Kevin Karnani1, Joel Pepper1, Yasin Bakiş2, Xiaojun

Wang2, Henry Bart Jr.2, David E. Breen1 and

Jane Greenberg3

1Computer Science Department, Drexel University,
Philadelphia, PA, USA.

2Biodiversity Research Institute, Tulane University, New Orleans,
LA, USA.

3Information Science Department, Drexel University,
Philadelphia, PA, USA.

Contributing authors: kevinkarnani@gmail.com;
jcp353@drexel.edu; ybakis@tulane.edu; xwang48@tulane.edu;
hbartjr@tulane.edu; david@cs.drexel.edu; jg3243@drexel.edu;

Abstract

Metadata is a key data source for researchers seeking to apply machine
learning (ML) to the vast collections of digitized biological specimens
that can be found online. Unfortunately, the available metadata is often
sparse and, at times, erroneous. This paper extends previous research
with the Illinois Natural History Survey (INHS) collection (7,244 speci-
men images) using computational approaches to analyze image quality,
and then automatically generate 22 metadata properties representing
the image quality and morphological features of the specimens. In the
research reported here, we demonstrate the extension of our initial
work to University of Wisconsin Zoological Museum (UWZM) collec-
tion (4,155 specimen images). Further, we enhance our computational
methods in four ways: 1) augmenting the training set, 2) applying
contrast enhancement, 3) upscaling small objects, and 4) refining of
our processing logic. Together these new methods improved our over-
all error rates from 4.6% to 1.1%. These enhancements also allowed

1

2 Computational Metadata Generation Methods

us to compute an additional set of 17 image-based metadata proper-
ties. The new metadata properties provide supplemental features and
information that may also be used to analyze and classify the fish spec-
imens. Examples of these new features include convex area, eccentricity,
perimeter, skew, etc. The newly refined process further outperforms
humans in terms of time and labor cost, as well as accuracy, pro-
viding a novel solution for leveraging digitized specimens with ML.
This research demonstrates the ability of computational methods to
enhance the digital library services associated with the tens of thou-
sands of digitized specimens stored in open-access repositories world-wide
by generating accurate and valuable metadata for those repositories.

Keywords: bioinformatics, metadata, image analysis, applied machine
learning, contrast enhancement

1 Introduction

Advances in computing, imaging, and cyberinfrastructure, along with the
growth digital libraries and repositories, have allowed many natural history
institutions to digitize their image specimen collections [1]. The National Sci-
ence Foundation’s Advancing Digitization of Biodiversity Collections (ADBC)
program is one exemplary program supporting the digitization and curation of
hundreds of thousands of biological specimens [2]. Digital collections provide
researchers, educators, students, and the general public with the capacity to
study biological specimens on a scale that was previously unattainable. In addi-
tion, the availability of digitized specimen images allows for the application of
machine learning (ML), which should lead to new scientific discoveries.

Although there is increased interest in applying ML to digitized specimen
images, researchers have found that the potential scientific advances are, unfor-
tunately, hindered by poor image quality [3]. Poor quality images (e.g. with low
contrast, inadequate lighting, out-of-focus or cluttered visual arrangements)
are unsuitable for automated image analysis by ML algorithms and lead to
inferior computational results. Image quality problems associated with digi-
tized specimens are further compounded by poor quality metadata or even the
lack of pertinent metadata. Many natural history collections use the Darwin
Core (DwC) metadata standard, which includes a core set of 19 descriptive
properties [4]. Metadata for digital images is frequently created manually by
technical staff or students and subject to human error. Additionally, although
richer metadata extensions exist and curators may provide more extensive
morphological metadata, it is too costly to acquire manually.

Despite existing image quality and metadata limitations, the extensive
availability of digitized specimen collections still offers new opportunities
for scientific study. These challenges have motivated members of Drexel
University’s Metadata Research Center together with Tulane University’s Bio-
diversity Research Institute to explore computational approaches for analyzing

Computational Metadata Generation Methods 3

fish image quality and extracting specimen metadata. A key impetus has
been engagement of both teams in the NSF Biology Guided Neural Networks
(BGNN) project, which is developing a novel class of artificial neural net-
works that aims to exploit machine readable, predictive knowledge associated
with specimen images, phylogenies, and anatomical ontologies. Initial research
successfully demonstrated computational approaches for creating image qual-
ity metadata [5]; and, further, that by combining ML and image informatics,
researchers automatically determine image quality and metadata, such as
fish quantity, location and orientation, and image scaling based on ruler
identification and measurement [6].

The research reported on in this paper extends the methods reported on
in [6], with the aim to increase the accuracy and scope of the generated meta-
data. Another key goal is to demonstrate that our approach is extensible to
other specimen image collections, beyond the Illinois Natural History Survey
(INHS) collection analyzed in our first study. Previously, object detection was
performed with five detection classes (fish, fish eyes, rulers, and the twos and
threes found on rulers) from 7,244 INHS images. We have augmented this
dataset to include 4,155 images from the University of Wisconsin Zoological
Museum Collection (UWZM) [7]. Additionally, we have trimmed the INHS
dataset to 7,013 after adding some images to the training set as well as exclud-
ing certain images, resulting in a test set of 11,168 images. Figure 1 presents
a typical image used in our study from each collection.

The enhancement of our computational methods has produced improved
automatic metadata generation results. These enhancements include augmen-
tation of the training set, applying contrast enhancement, upscaling small
objects and refinement of our processing logic. Together these new methods
improved our overall error rates from 4.6% to 1.1%. Procedures for comput-
ing additional image-based metadata properties have also been implemented.
These new properties provide supplemental features and information that may
also be used to analyze and classify the fish specimens. Examples of these new
features include convex_area, eccentricity, perimeter, skew, etc.

The rest of the paper is organized as the following. Section 2 describes
relevant previous work in metadata for image specimen collections, metadata
generation and fish image analysis. Section 3 outlines the goals and objec-
tives of our research. Section 4 describes in detail our computational methods.
Section 5 includes the results of our computational experiments on two fish
image collections, with Section 6 providing a discussion of our results. Section
7 concludes with comments on possible future extensions for the current work.

2 Related Work

2.1 Metadata Standards and Approaches for Natural

History Digital Image Specimen Collections

Metadata used in digital image specimen collections supports resource descrip-
tion access. The Darwin Core (DwC) [8] and the Audubon Core [9] are two

4 Computational Metadata Generation Methods

Fig. 1 A typical INHS image (left) and a typical UWZM image (right).

of the most popular metadata standards applied to digital specimen images.
Curators often use content value standards, such as taxonomies, geographic
codes, and other ontologies, when working with the descriptive metadata stan-
dard. Although these standards are digitally accessible, the metadata creation
task is still primarily a manual, labor-intensive task and prone to human error.
Moreover, image quality metadata is generally absent. These limitations have
become increasingly prevalent as researchers seek to automatically leverage
metadata and digitize specimen images for scientific research, which is an aim
of the BGNN initiative. The biodiversity community has acknowledged this
challenge and advocated for data fitness standards [10]. This point is also
emphasized by Wieczorek et al. [11] in their report on the variety of DwC
metadata extensions needed to meet growing community concerns and require-
ments, including data quality and fitness. This point is addressed in detail
by Leipzig et al. [5], drawing from Tulane University’s manual curation of 22
metadata properties that characterize digitized specimen image quality, and
further motivates the research reported in this paper.

2.2 Automatic Metadata Generation

Automatic metadata generation advances covering both descriptive and tech-
nical metadata are relevant to the research presented in this paper. Automatic
metadata generation of descriptive bibliographic data has been a research focus
for close to twenty years [12–15]. Researchers have applied support vector
machine (SVM) approaches [16] and associated networks to address sparse and
incomplete metadata [17], and various successes are integrated into day-to-day
workflows. Heidorn, et al. [18] demonstrated the use of optical character recog-
nition (OCR) to extract specimen information from the original typed and
often hand-annotated labels that are digitized along with herbarium collection
holdings. The extracted information was encoded in the DwC metadata associ-
ated with the specimen’s digitized rendering. There has also been some success
with extracting descriptive cartographic information from maps [19]. While
descriptive metadata covers taxon, geographic location, and other important
aspects, and may even record the image format; extensive use of automatic

Computational Metadata Generation Methods 5

processes are still limited. More significantly, descriptive metadata does not
sufficiently addressed data quality.

2.3 Fish Image Analysis

Image analysis has been utilized to examine and process images of fish for
well over two decades [20, 21]. It is an important application of technology
for marine science, in the study of aquatic species, habitats and ecosystems,
and for the seafood industry, in the development of automated fish sorting
and grading systems, as well as fisheries management. Many of these computa-
tional analyses focus on the recognition and classification of the fish present in
an image. The computational methods employed for fish image analysis have
followed the general trends in the AI field. Hu et al. [22] presented a method
of classifying species of fish based on color and texture features and a multi-
class support vector machine (MSVM) [23]. Li and Hong [24] computed eleven
shape and color features from fish images and derived a linear model that
could discriminate between four different fishes. Rodrigues et al. [25] explored
several combinations of feature extractions, input classifiers and clustering
algorithms to produce a method that could distinguish between 10 different
types of fish with 92% accuracy. Hernández-Serna and Jiménez-Segura [26]
perform image preprocessing and extract geometric features which are fed into
an artificial neural network (ANN) to predict the species of fish and other
biological specimens with an accuracy around 90%.

Salman et al. [27] employed a deep Convolution Neural Networks (CNN)
[28] together with classification based on K-Nearest Neighbor and Support Vec-
tor Machines trained on the features extracted by the CNN. They achieved 90%
accuracy when identifying 15 different fish species in challenging underwater
digital images. Utilizing texture, anchor points, and statistical measurements,
Alsmadi et al. [29] implemented fish classification through a meta-heuristic
algorithm known as the Memetic Algorithm. They were able to classify 24
fish families with 90% accuracy. Iqbal et al. [30] used a modified AlexNet [31]
model to classify six different fish species with 90% accuracy. Yu et al. [32] seg-
ment fish images and measure fish morphological features using Mask R-CNN.
Petrellis [33] employs image processing and deep learning to calculate a small
set of geometric features from in-the-wild images of fish. Hao et al. [34] provide
an excellent review of fish measurement efforts that utilize machine vision.

While our work is motivated by and builds upon previous work, our work
stands apart in that it generates a wider range of geometric and image fea-
tures than previous methods, in order to enrich the metadata for fish image
collections. Most previous work examined and analyzed images of fish in the
wild. Working with the structured images of museum collections allows us to
compute a wider variety of metadata with higher accuracy.

6 Computational Metadata Generation Methods

3 Goals and Objectives

Digitized specimens accessible in open-access repositories provide a rich, exten-
sive data source for ML and scientific discovery. These resources, however,
remain largely untapped due to image quality issues and metadata limita-
tions. Initially, the overall goal of our work addressed this need through the
development of a computational alternative to the current manual metadata
generation process, which is prohibitively costly both in terms of labor and
time [6]. The specific aims of our extended objective are to:

• Demonstrate the generality of our previous work. This is accomplished
through the augmentation of the training and testing sets from solely INHS
images to a combination of images from the INHS and UWZM specimen
image repositories.

• Optimize the previous property calculations to shorten computation times.
• Apply various techniques to improve accuracy and reduce error rates.
• Compute additional geometric properties from the specimens in order
expand the features available for downstream analysis.

4 Methods

Our initial process for metadata generation can be divided into three steps:
object detection with Facebook’s Detectron2 [35] ML library (referred to as
detectron), image processing at the pixel level, and calculations on the results
of the previous steps to determine higher level metadata properties. We have
extended the computational process with optimizations in metadata gener-
ation by replacing self-implemented code with more library calls, as well as
further modularization that supports GPU parallelization. Along with addi-
tional geometric computations and error reduction techniques, our current
metadata generation process has been expanded to:

• Apply contrast enhancement and equalization on the training and test sets.
• Train a model and perform object detection with Facebook’s Detectron2
ML library (referred to as detectron).

• Select fish of highest confidence in case of multiple fish detection.
• Upscale and rerun if fish is detected without an eye.
• Adjust fish mask with pixel-level image processing.
• Compute specific geometric and statistical computations with skimage and
scipy.

• Calculations on the results of the previous steps to determine higher level
metadata properties.

4.1 Refined Fish Collection Criteria

Our automated metadata generation methods were developed for a specific
subset of images from both the INHS and UWZM Fish Collections. Our
algorithms are based on assumptions about the content and structure of the

Computational Metadata Generation Methods 7

specimen images. Criteria were specified that define the properties of accept-
able images for analysis. The images used in our study were evaluated to ensure
that they meet these requirements. The criteria used to select the study images
are:

• Must contain a fish (no eels, seashells, butterflies, seahorses, snakes, etc).
• Must contain only one of each class (except eyes).
• Specimen body must lie in-plane in a side view.
• Ruler must be consistent and one of two types.
• Fish must not be obscured by another object.
• Whole body of fish must be present (no heads, tails, or standalone features).
• Fish body must not be folded or have extreme curvature.

Applying these criteria, 216 images from the previous subset of 7,244 INHS
images were removed from the testing set. Additionally, 15 images were moved
from the test set and added to the training set, resulting in a testing subset of
7,013 images. Also to note, while the original UWZM collection contains 4,602
images, after removing 79 images for the training set, 368 images were filtered
out based on the criteria, yielding a testing subset of 4,155 images.

4.2 Detectron

A prerequisite task to performing metadata property generation is finding the
specimens (and other relevant objects) within the collection images. Object
detection has been a broadly active field of study in recent years, and has
resulted in a number of well-tested, purpose-built architectures. We elected to
use Facebook AI Research’s (FAIR) detectron tool [35] (specifically its imple-
mentation of the Mask R-CNN architecture) for object detection in our work,
given its many flexible and robust capabilities. Most importantly, following
a review of the literature and available tools, we determined that there were
no other machine learning packages that returned pixel-by-pixel masks over
detected objects in a comparable fashion.

detectron is built on pytorch [36] and provides a relatively straightfor-
ward method for training on COCO [37] format datasets. It is able to handle
any number of object classes, and can classify an arbitrary number of objects
within a given image. We chose detectron for its relative ease of use compared
to lower level libraries, and its implementation of powerful architectures devel-
oped by FAIR. We use it to identify five object classes: fish, fish eyes, rulers,
and the numbers two and three on rulers, as shown in Figure 2. Objects with
a 30% confidence score or higher are maintained for analysis.

Table 1 lists the number of instances for each class used in our aggre-
gate training dataset. Table 2 and Table 3 show the training set contributions
from the INHS and UWZM datasets respectively. 500 rulers used in our pre-
vious study were removed from the INHS dataset due to an oversight. These
500 rulers were originally a part of the J.F. Bell Museum of Natural History
(JFBM) [38] dataset, and hence, were not relevant to our current objective.

8 Computational Metadata Generation Methods

Fig. 2 Initial object detection on a specimen image using Detectron2 [35].

Table 1 Training Dataset

Class Number of Instances

Fish 391
Ruler 1095
Eye 550
Two 194
Three 194

Table 2 INHS Training Dataset

Class Number of Instances

Fish 312
Ruler 1016
Eye 471
Two 115
Three 115

Table 3 UWZM Training Dataset

Class Number of Instances

Fish 79
Ruler 79
Eye 79
Two 79
Three 79

All of the training data was labeled by hand using makesense.ai [39] on
images from the INHS [40] and UWZM [7] Fish Collections. Using detectron’s
default training scheme, the model was trained for 15,000 epochs. Testing has
shown that this default number of epochs provides optimal object detection
results. All instance types were included in a single object detection model,
in other words, the model is akin to a one-vs-all detector, with all five classes
being detected by the same model.

Computational Metadata Generation Methods 9

Fig. 3 A catfish where the eye is not easily detected (left) and a catfish with an eye that
does not look like a normal eye (right).

4.3 Error Reduction Techniques

Four enhancements were implemented and applied to the combined datasets
in order to reduce the error rates that we experienced in our initial study.
These enhancements include augmenting the training set, applying contrast
enhancement, selection of the highest confidence fish, and image (up)scaling.

4.3.1 Augmented Training Set

Initially, we had 64 examples of each class from the UWZM collection in the
training set. One issue that we encountered was the lack of catfish (notorus
genus) in the training set, which led to a high count of undetected eyes in the
testing set. Visually it is difficult even for humans to determine the location
of catfish eyes given that they are either very close to the color of the skin
or do not look like normal fish eyes. Thus, 15 catfish images from each image
dataset were added to the training set. Figure 3 presents examples of images
in which the catfish eyes are difficult to detect.

4.3.2 Contrast Enhancement

It is apparent that there are differences in lighting, saturation, and contrast
within and across specimen image collections. This causes the detection model
to miss the ruler, scale, fish, or eye in images that are either too washed out
or too dark, errors which have been seen in other object detection applica-
tions [41]. After investigating various image processing techniques to equalize
the color, we found that current research in our area utilizes Contrast Limited
Adaptive Histogram Equalization (CLAHE) [42, 43]. We applied this tech-
nique to all our images using the Python image processing library OpenCV [44].
CLAHE is frequently used in applications like underwater photography, traffic
control, astronomy, and medical imaging [45, 46].

The drawback of standard Histogram Equalization is that the equalization
of the contrast is performed on a global level, which is not ideal given pos-
sible varying contrast ranges in an image. Adaptive Histogram Equalization
addresses this issue by computing several histograms, each corresponding to a
distinct section of the image, and uses them to redistribute the lightness values

10 Computational Metadata Generation Methods

Fig. 4 A fish image before contrast enhancement (left) and after enhancement (right).

of the image. This also, however, has issues in that it may oversharpen contrast
values that are already high, as well as yield noise in relatively homogeneous
regions of an image. CLAHE, though, does not sharpen values higher than a
given contrast threshold, thereby eliminating the issues of oversharpening and
noise [42].

CLAHE should not be applied to RGB (red, blue, green) images. Applying
CLAHE in color spaces like RGB and CMYK (cyan, magenta, yellow, key) will
yield a different color distribution for each color channel. Instead of applying
CLAHE separately to the R, G, B channels of a color image, a better approach
applies the algorithm only to the luminance channel of a color image, which
also prevents unwanted hue and saturation change. This, however, requires
the source image to be converted to a different color space, e.g. HSV (hue,
saturation, value) or CIELab (lightness, red/green, blue/yellow) first. Contrast
enhancement in 3-D color spaces that makes use of luminance does not produce
noisier images, unlike when processing in more common color spaces, ensuring
color uniformity [47, 48]. We have utilized the CIELab space, since visual
testing showed that the fish, rulers, and eyes were further pronounced than in
HSV space. Detectron also yielded slightly better eye detection rates through
contrast enhancement in CIELab space than in HSV space. Figure 4 shows a
pre-enhanced image and the result after contrast enhancement.

4.3.3 Picking Fish of Highest Confidence

One of the issues with the previous metadata results was the detection of
multiple fish in a single image, which was categorized as an error in our prior
work. This “error” could occur with overlapping detection boxes over the same
fish or through the erroneous detection of another random object in the image.
We inspected the cases where multiple fish were detected. In all cases, the
fish bounding box with the highest confidence value was the one that best
covered the fish specimen present in the image. Additionally, there were never
instances in which the fish bounding box of highest confidence was not actually
a fish [6]. Since our study image collection only contains images with single
specimen, when detectron returns more than one detected fish, we select the
fish of highest confidence value, thus eliminating the previous multiple fish

Computational Metadata Generation Methods 11

Fig. 5 An image in which the same fish was detected in two separate instances. The bound-
ing box of highest confidence (green, 83%) provides the expected result.

error. Figure 5 shows an example in which fish were detected multiple times.
The bounding box with the highest confidence score provides the expected
result.

4.3.4 Image Scaling

The images in which an eye was not detected made up the majority of the
erroneous cases. This led to a decision to rerun the model on images where
a fish was detected, but the eye was not. It was hypothesized that the eyes
were too small to be detected in these cases. To address these errors, the fish
bounding box was cropped into a separate image, which was then upscaled by
a factor of 4x, and the model was rerun on the scaled image. This helped to
detect more eyes once they were scaled to a larger size.

If the eye is not detected even in the scaled image, it is counted as a
missed eye. In the event an eye is detected on the scaled fish, however, the
eye coordinate within the unscaled image needs to be returned. This requires
taking the top left corner of the bounding box and adding the scaled down eye
coordinate, as described in Equation 1:







xeye original = xfish top left + b
xeye scaled

4
c

yeye original = yfish top left + b
yeye scaled

4
c

(1)

The most basic method for pixel interpolation during upscaling is the
Nearest Neighbor algorithm, where the output pixel value is set to the near-
est pixel’s value [49]. Linear Interpolation estimates the appropriate intensity
pixel values by finding the distance-weighted average of the four nearest pix-
els around the output pixel [50]. Bicubic Interpolation determines the pixel
value from the weighted average of the 16 closest neighboring pixels utilizing
a third-degree interpolant function [51].

12 Computational Metadata Generation Methods

Fig. 6 Lanczos4 (left), Bicubic (middle), and Linear (right) interpolations.

Nearest Neighbor Interpolation was initially attempted with little effect on
finding missing eyes. Linear Interpolation yielded significantly better results,
while Bicubic Interpolation yielded the best results. Further research uncov-
ered that there are more complex methods like Lanczos4 [52] Interpolation
and even Deep Learning models like EDSR (Enhanced Deep Super-Resolution
Networks) [53]. Testing demonstrated that Bicubic Interpolation yields slightly
better accuracy than Lanczos4 and EDSR, although Lanczos4 and EDSR pro-
vided slightly better masking. Figure 6 presents the different scaling procedures
on an image in which the fish was detected, but the eye initially was not.

4.4 Pixel Analysis

The masks and bounding boxes produced by detectron are generally quite
good, although they almost never completely or tightly enclose the detected
objects. The mask may include additional background as part of the fish,
or the bounding box may clip away part(s) of the specimen. To solve these
shortcomings, we utilize pixel analysis methods commonly found in image
informatics to produce more accurate object masks and bounding boxes [6].

4.4.1 Threshold Adjustment

The first calculation in the pixel analysis process determines the cutoff inten-
sity between what constitutes the foreground (i.e. the fish) and background of
the image. Initially, the calculation is based on the bounding box and mask
generated by detectron. Specimen images are read in as gray scale, and pixels
in the image are treated as unsigned integers between 0 and 255. Otsu thresh-
olding [54], a technique that maximizes the variance between the foreground
and background intensities, is used to compute an initial cutoff value between
foreground and background. While the Otsu value occasionally generates an
accurate mask as is, usually the contrast between foreground and background
is low and much of the lighter parts of the fish (such as its tail fin) are marked
as background.

To overcome this improper segmentation, the threshold value should be
either adjusted up or down, depending on whether the background is lighter or
darker than the fish. For our current dataset, the background is always lighter
(i.e. closer to 255), so the threshold value needs to be scaled up to include more
of the foreground image. For optimal results the scaling should be dependent
on the contrast between the background and foreground, which can be affected
by the level of pigmentation of the fish.

Computational Metadata Generation Methods 13

We found that an improved threshold value can be computed as the halfway
point between the Otsu threshold value and the mean of the background inten-
sities. This adjusted threshold value usually produced an acceptable balance
between capturing most of the fish’s fins, without also masking parts of the
background [6].

4.4.2 Consolidating the Foreground

While thresholding has the potential to generate better masks than a neural
network (when provided an initial approximate bounding box), it also intro-
duces considerable noise. Single or small groups of errant pixels can be marked
as foreground depending on the consistency of the background, and interior
pixels of the fish (especially around the fins) can be marked as background. To
be useful for generating an accurate bounding box and for subsequent compu-
tational analysis, the mask must consist of one single “blob” over the fish, i.e.
containing no holes, and no other pixels disconnected from this blob can be
marked as foreground.

To accomplish this, we apply an iterative process of flood filling from all the
foreground pixels in the image until a blob is generated that is large enough
to constitute the fish. This leads to another metaparameter, but using greater
than 10% of the current bounding box has masked the specimen in all observed
cases. Once the fish’s blob is found, internal noise then needs to be removed.
This is done by flood filling from each of the corners of the bounding box, where
the specimen is not present (all four corners in the overwhelming majority
of cases), then taking the inverse of the result. The fish mask is excluded
from these corner flood fills, so this process removes all noise from both the
background and foreground of the image, leaving only a single mask over the
fish itself [6].

4.4.3 Adjusting the Bounding Box

With a more accurate mask generated, it is then necessary to check whether the
bounding box needs to be expanded or shrunk along any of its edges. Expan-
sion is done first, by checking whether any edge intersects with any of the
foreground mask pixels. If one does, the edge is expanded out by 1 pixel. If any
edges are expanded, the whole process of masking and expansion is repeated
to account for any changes in average intensities. Once no edges contain fore-
ground pixels, the bounding box is then shrunk. Each edge is contracted by
one pixel until it contains one or more foreground pixels. Once the shrinkage
step is accomplished, the final mask and bounding box have been generated [6].

4.4.4 Fallback

The pixel analysis process occasionally fails, e.g. when flood-filling does not
produce a large enough blob or the bounding box adjustment does not termi-
nate. This can occur if certain flood fill operations behave unexpectedly, or if
the image is too washed out or otherwise atypical for the thresholding process

14 Computational Metadata Generation Methods

to work correctly. In the event this happens, the original mask and bounding
box generated by detectron is used for metadata generation [6].

4.5 Metadata Generation

Table 4 lists the metadata properties that were generated in our previous
work. These include properties that are produced by detectron and the
methods described above: has_fish, fish_count, has_ruler, ruler_bbox,
background.{mean,std}, foreground.{mean,std}, bbox, score, and
has_eye. The methods to compute derived metadata properties are described
below. The new properties that we are now able to generate are listed in
Table 5.

Table 4 Original Metadata Properties (* indicates derived properties)

Property Association Type Explanation

has fish Overall Image Boolean Whether a fish was found in the image.
fish count Overall Image Integer The quantity of fish present.
has ruler Overall Image Boolean Whether a ruler was found in the image.
ruler bbox Overall Image 4 Tuple The bounding box of the ruler (if found).

scale* Overall Image Float The scale of the image in pixels

cm
.

bbox Per Fish 4 Tuple The top left and bottom right coordinates of
the bounding box for a fish.

background.mean Per Fish Float The mean intensity of the background within
a given fish’s bounding box.

background.std Per Fish Float The standard deviation of the background
within a given fish’s bounding box.

foreground.mean Per Fish Float The mean intensity of the foreground within
a given fish’s bounding box.

foreground.std Per Fish Float The standard deviation of the foreground
within a given fish’s bounding box.

contrast* Per Fish Float The contrast between foreground and back-
ground intensities within a given fish’s bound-
ing box.

centroid Per Fish 4 Tuple The centroid of a given fish’s bitmask.
primary axis* Per Fish 2D Vector The unit length primary axis (eigenvector) for

the bitmask of a given fish.
clock value* Per Fish Integer Fish’s primary axis converted into an integer

“clock value” between 1 and 12.
oriented length* Per Fish Float The length of the fish bounding box in cen-

timeters.
mask Per Fish 2D Matrix The bitmask of a fish in 0’s and 1’s.

pixel analysis failed Per Fish Boolean Whether the pixel analysis process failed for
a given fish. If true, detectron’s mask and
bounding box were used for metadata genera-
tion.

score Per Fish Float The percent confidence score output by detec-

tron for a given fish.
has eye Per Fish Boolean Whether an eye was found for a given fish.

eye center Per Fish 2 Tuple The centroid of a fish’s eye.
side* Per Fish String The side (i.e. ’left’ or ’right’) of the fish that

is facing the camera (dependent on finding its
eye).

Computational Metadata Generation Methods 15

Table 5 Additional Metadata Properties

Property Association Type Explanation

area Per Fish Float Area of fish in cm2.
cont length Per Fish Float The longest contiguous length of the fish in

centimeters.
cont width Per Fish Float The longest contiguous width of the fish in

centimeters.
convex area Per Fish Float Area of convex hull image (smallest convex

polygon that encloses the fish) in cm2.
eccentricity Per Fish Float Ratio of the focal distance over the major axis

length of the ellipse that has the same second-
moments as the fish.

extent Per Fish Float Ratio of pixels of fish to pixels in the total
bounding box. Computed as area

rows∗cols

feret diameter max Per Fish Float The longest distance between points around
the fish’s convex hull contour.

major axis length Per Fish Float The length of the major axis of the ellipse
that has the same normalized second central
moments as the fish.

mask.encoding Per Fish String The 8-way Freeman Encoding of the outline of
the fish.

mask.start coord Per Fish 2D Vector The starting coordinate of the Freeman
encoded mask.

minor axis length Per Fish Float The length of the minor axis of the ellipse
that has the same normalized second central
moments as the fish.

oriented width Per Fish Float The width of the fish bounding box in cen-
timeters.

perimeter Per Fish Float The approximation of the contour in centime-
ters as a line through the centers of border
pixels using 8-connectivity.

solidity Per Fish Float The ratio of pixels in the fish to pixels of the
convex hull image.

stddev Per Fish Float The standard deviation of the mask pixel
coordinate distribution.

skew Per Fish 2D Vector The measure of asymmetry of the frequency-
distribution curve of mask pixel coordinates.

kurtosis Per Fish 2D Vector The sharpness of the peaks of the frequency-
distribution curve of mask pixel coordinates.

4.5.1 Contrast

The contrast between the intensities of the foreground and background pixels
is computed as background.mean - foreground.mean [6].

4.5.2 Centroid and Eye center

Centroids are provided for the masks and bounding boxes that are generated
by detectron, and since we do not recalculate the mask of fish eyes we can use
that value directly for eye_center. Since we recalculate the mask of the fish,
its centroid must be recalculated as well. This can be done through Equation 2:

(x̄, ȳ) = (round(
M10

M00

), round(
M01

M00

)), (2)

16 Computational Metadata Generation Methods

where M00 is the pixel area of the fish’s blob, M10 is the sum of all the x values
of blob pixels, and M01 is the sum of all the y values of blob pixels [6].

4.5.3 Side

Determining which side of the fish is visible is predicated on finding its eye.
If an eye is found, the sign of the x component of the vector from the centroid
of the fish to the centroid of the eye specifies which side is up: negative for left
and positive for right. This assumes the fish was photographed vertically (i.e.
dorsal fin on top), which is essentially always the case for all image collections
our group has worked on [6].

4.5.4 Primary axis and Clock value

The primary_axis of a fish can be calculated by taking the covariance of
its blob in x and y, which yields its principle eigenvector. The eigenvector
can be directly assigned to the property. If an eye is present, we ensure that
primary_axis points in the direction of the eye relative to the fish’s centroid.

Our team encoded this information as a “clock value” between 1 and 12
when manually recording it. To convert principal_axis to clock_value, the
sign of x and y on the principal axis are used to determine which Cartesian
quadrant the fish angles into relative to its centroid. Depending on the quad-
rant, we dot product the principal axis with either [�1, 0], [0,�1], [1, 0] or
[0, 1], which correspond to 9, 6, 3 and “0” o’clock respectively. The resulting
radian value is then converted to a polar displacement in clock value space,
and added to the comparative clock value used in the dot product. This gives
the fish’s clock value from 0 to 11.9. Before recording clock_value in the out-
put, the value is rounded to the nearest integer, with a 0 final result replaced
with 12 [6].

4.5.5 Scale and Length

The fish length of INHS images, measured in pixels

inch
, can be calculated by mea-

suring the distance in pixels between the digits 2 and 3 (a 1 inch separation)
found on the ruler by detectron. Converting this to pixels

cm
gives the scale

metadata property as reported in the output. The UWZM images, in contrast,
use a metric ruler in centimeters, and as such, the distance between the digits
“2” and “3” is directly measured in pixels

cm
.

For the fish length property, it is necessary to determine the furthest
points from the centroid of the fish in each direction along its major axis.
Since fish are normally measured in a straight line from their snout down the
middle of their trunk, every pixel of the fish blob is projected onto the fish’s
major axis (as a line through its centroid). The projection is done through
numpy [55] by performing PCA, or Principle Component Analysis. The first
step of this process includes: finding all mask pixels, computing the covariance
matrix, computing the eigenvalues and eigenvectors of the matrix, and then
computing the angle of rotation from the X axis. The second part includes

Computational Metadata Generation Methods 17

applying the negative rotation to the mask pixel coordinates, which aligns the
fish’s major axis with the X axis, and then computing the difference between
the highest and lowest x values. Dividing this distance by scale gives the fish
length in centimeters [6]. A similar process is done for the fish width as well,
where the difference between highest and lowest y values are computed from
the transformed pixels.

4.5.6 Contiguous Distances

Two additional computed properties are cont_length and cont_width. These
are computed by using the transformed mask pixels from above, but with slight
modifications. Through numpy, we examine the counts of the x and y values
of the pixels. The indices of the x and y values with the highest counts are
identified. This process identifies the x and y values with the longest contiguous
strips parallel to the major and minor axes. The length and width calculations
are computed as the difference between the max and min of the x and y values
respectively within these bins.

4.5.7 Region Properties

One of the goals of the updated metadata generation process is to provide
additional geometric properties based on the morphology of the fish. Fea-
tures like perimeter, area, and eccentricity were immediately deemed
most useful to the BGNN project use case, whereas further research is needed
to determine other meaningful geometric properties. The Python machine
learning library skimage [56] contains the measure package, which computes
various geometric properties of the image. We made use of one of the pro-
vided functions, regionprops, which provides the aforementioned properties
as well as: feret_diameter_max, major_axis_length, minor_axis_length,
solidity, and convex_area. Other properties, like euler_number and
perimeter_crofton are offered in this function, but were deemed unnecessary
for our work.

4.5.8 Statistical Properties of the Mask Coordinates

The statistical distribution properties of the mask pixel coordinates can
be calculated through Python statistical computing library scipy [57]. The
stddev, skew, and kurtosis were calculated on the coordinate distribution
and recorded in the metadata. These values can be used as distinguishing
features of a fish’s shape.

4.5.9 Mask Encoding

Another feature which may be useful for studying the morphology of fish is
the outline of the specimen. A concise and efficient method for capturing the
outlining boundary of an object is Freeman Chain Encoding [58]. In general,
a chain code is a lossless compression algorithm for monochrome images that

18 Computational Metadata Generation Methods

separately encodes the boundary of each connected component—or “blob”—
in an image. For each such region, a point on the boundary is selected and
its coordinates are noted. The encoder then moves along the boundary of
the region and, at each step stores a symbol representing the direction of the
movement. This procedure continues until the encoder returns to the starting
position, at which point the blob has been completely encircled. By storing
the encoding and the start coordinate, it is easy to recreate the mask by
reverse encoding the sequence, then flood filling the mask. The encoding of the
outline should serve as a signature that supports morphological comparisons
between fish specimens, as well as providing a compressed representation of
the specimen’s mask.

5 Results

The computational enhancements described in subsection 4.3 produced a
reduction in the overall error rate from 4.6% to 1.1%. Here, an error is defined
as the inability to detect a fish, a fish eye, ruler or the numbers ’2’ and ’3’,
which are used to compute image scale, within a specimen image. Whereas
the INHS metadata generation process took 3.5 hours to run on 7,244 images,
our GPU optimizations have helped reduce this to 2 hours on 7,013 images.
The metadata generation process on the UWZM set of 4,013 images takes
2.5 hours. The difference in computation time is reasonable, since the UWZM
images have higher resolution by an order of magnitude compared to the INHS
images.

To demonstrate the effects of our error reduction techniques, we have run
the original INHS-only model on the refined INHS dataset and compared the
results of various enhancement combinations in Table 7. Additionally, we have
computed results for the various enhancement combinations included in the
newly trained INHS + UWZM model, which is applied to the combined INHS
and UWZM testing set, as well as on the individual INHS and UWZM testing
sets. The results from these studies are presented in Table 8 through Table 10.

5.1 Fish Detection

As prescribed by our collection criteria, images in the INHS and UWZM test-
ing datasets contain exactly one fish. In the case of no enhancements, except
training set augmentation, 11,125 out of 11,168 images had exactly one fish
detected, a 99.6% correct rate. In 42 of the images, multiple fish were found.
The one fish that was not detected was an extremely small fish from the INHS
collection. This type of specimen is currently missing from the training set.
In the multiple fish cases, 1 of the 42 contained tags that overlapped the fish
and were themselves labeled as a second fish. Of the remaining 41, detectron
erroneously labeled the fish as two or more separate fish objects, or labeled
a subsection of the fish multiple times. Fish that were “over-detected” were
generally quite large and/or dissimilar from the fish found in the training set.
Applying the rule that selects the fish object of highest confidence produces no

Computational Metadata Generation Methods 19

Fig. 7 The INHS image where the fish is never detected (left) and the UWZM image where
the fish is not detected after contrast enhancement (right).

images with multiple fish. Examining the 42 multiple-fish cases showed that
this approach always produced the correct result, with 11,167 out of 11,168
images having exactly one fish detected, a 99.9% correct rate. After applying
contrast enhancement a second small fish, in the UWZM collection, was not
detected, with 11,166 out of 11,168 images having exactly one fish detected,
a 99.9% correct rate. Figure 7 shows the two images in which fish were not
detected. These results are summarized in Table 8, Columns 3 and 5.

5.2 Ruler Detection

When no enhancements are employed detectron is able to detect rulers in all
of the test images. Applying contrast enhancement produces one image where
the ruler is not found. Still this produces a 99.9% correct rate. When contrast
enhancement was not employed and the ruler was found, there were 28 cases
where the numbers “2” and/or “3” on the ruler were not detected. Therefore, a
scale calculation could not be performed, producing a 99.7% success rate for the
scale computation. Applying contrast enhancement improves the calculation,
with 17 images for which the numbers were not detected and the scale could
not be computed. As seen in Tables 9 and 10, Columns 6 and 7, these errors
all come from the INHS dataset. This is understandable, since the images in
the UWZM dataset are extremely consistent, whereas the overall INHS image
quality can vary significantly.

Images where one of these objects were not detected generally had some
form of coloration issue. They were either washed out, very dark or yellow
in hue. Some of the rulers for which “2” and/or “3” were not detected were
particularly scratched and damaged. Many of the rulers where both numerals
were missed were particularly small within the image, which again may be
solvable through expanding the training dataset to more collections than just
INHS and UWZM and/or adding more 2’s and 3’s to the training data.

20 Computational Metadata Generation Methods

Fig. 8 The mask and outline of a fish, which are generated through pixel analysis and
Freeman Encoding respectively.

Fig. 9 The masks generated for INHS FISH 9552 (left), INHS FISH 80975 (middle), and
INHS FISH 026311 (right).

5.3 Eye Detection

In the case of no enhancements (besides training set augmentation), detectron
was unable to find a fish eye in 273 of the images, a 2.4% error rate. Apply-
ing upscaling to the fish images produced a significant improvement with 206
images having no detected eyes, a 1.8% error rate. Applying contrast enhance-
ment showed yet another major improvement with 112 missing eyes, giving
an error rate of 1.0%. Contrast enhancement was meant to help all categories
of errors, but ended up helping missing eyes the most. Upon investigation,
the undetected eyes were generally extremely dark, small, or looked nothing
like those found in the training set. These cases usually included catfish and
extremely small fish, along with various fish where the eyes are effectively
unrecognizable.

5.4 Mask Generation and Encoding

Fish bounding boxes were calculated for all images in which a fish was found.
Manual investigation demonstrated that due to the thresholding process in
grayscale space, in many cases, near translucent and light hue fins and tails
were excluded. Masks and bounding boxes contain the head and trunk of the
fish in nearly all cases, but further refinement of our algorithms will be needed
to ensure that light fins and tails are masked consistently and accurately. The
masks were then encoded and stored in the metadata along with the starting
coordinate used in the encoding process. Figure 8 presents the mask (white
pixels), as well as the encoded outline of the fish (blue pixels) from Figure 4.

Computational Metadata Generation Methods 21

5.5 Scale and Length

Image scale and fish lengths were calculated for 11, 148 of the images. For
the remaining 20 images, either the fish, the “2” and/or the “3” on the ruler
were not detected. Image scale (pixels

cm
) and fish length were measured, using

ImageJ [59]. Scale calculations using the “2” and “3” method are nearly iden-
tical to those calculated by hand between the tick marks on the ruler. When
the tail of the fish is accurately masked and the specimen is fairly straight,
the length calculation is highly accurate as well. Thus, the primary means of
lowering the error of the length calculation is to improve tail masking accuracy.

5.6 Region and Statistical Properties

Region and statistical properties were computed from the masks for the three
specimen images in Figure 9. The property values are listed in Table 6 and
demonstrate that they provide distinguishing features based on the shape of
the fish specimens.

Table 6 Metadata Property Comparisons

Property INHS FISH 9552 INHS FISH 80975 INHS FISH 026311

area 23.5 10.3 4.03
cont length 9.60 10.7 2.14
cont width 4.08 1.06 1.88
convex area 27.5 15.5 5.05
eccentricity 0.90 0.99 0.91

extent 0.55 0.47 0.51
feret diameter max 9.65 15.2 4.03

perimeter 58.7 40.1 15.0
solidity 0.85 0.66 0.79
stddev [165.6, 69.6] [247.9, 17.9] [52.9, 29.2]
skew [0.19, -0.15] [0.13, 0.07] [0.22, -0.03]

kurtosis [-0.66, -0.72] [-0.94, -0.82] [-0.68, -1.10]

22 Computational Metadata Generation Methods

Table 7 INHS Model Applied to the INHS Dataset, 100k epochs

Enhancements Total No Fish No Eye Multiple Fish No Ruler No Scale

C,U,S 175 (2.5%) 14 (0.19%) 153 (2.2%) 0 (0%) 0 (0%) 25 (0.35%)
U,S 266 (3.8%) 7 (0.09%) 212 (3.0%) 0 (0%) 2 (0.02%) 57 (0.81%)
None 320 (4.6%) 7 (0.09%) 240 (3.4%) 26 (0.37%) 2 (0.02%) 57 (0.81%)

n = 7,013

C - Contrast Enhancement

U - Upscaling

S - Fish Selection

Table 8 INHS + UWZM Model Applied to the INHS and UWZM Datasets, 15k epochs

Enhancements Total No Fish No Eye Multiple Fish No Ruler No Scale

A,C,U,S 124 (1.1%) 2 (0.02%) 112 (1.0%) 0 (0%) 1 (0.01%) 17 (0.15%)
A,C,S 198 (1.8%) 2 (0.02%) 182 (1.6%) 0 (0%) 1 (0.01%) 17 (0.15%)
A,U,S 229 (2.1%) 0 (0.01%) 205 (1.8%) 0 (0%) 0 (0%) 28 (0.25%)
A,S 300 (2.7%) 0 (0.01%) 273 (2.4%) 0 (0%) 0 (0%) 28 (0.25%)
A 338 (3.0%) 0 (0.01%) 273 (2.4%) 42 (0.37%) 0 (0%) 28 (0.25%)

n = 11,168

A - Augmenting Training Set

Table 9 INHS + UWZM Model Applied to the INHS Dataset, 15k epochs

Enhancements Total No Fish No Eye Multiple Fish No Ruler No Scale

A,C,U,S 96 (1.4%) 1 (0.01%) 84 (1.2%) 0 (0%) 1 (0.01%) 17 (0.24%)
A,U,S 198 (2.8%) 1 (0.01%) 174 (2.5%) 0 (0%) 0 (0%) 28 (0.39%)
A 240 (3.4%) 1 (0.01%) 205 (2.9%) 11 (0.15%) 0 (0%) 28 (0.39%)

n = 7,013

Table 10 INHS + UWZM Model Applied to the UWZM Dataset, 15k epochs

Enhancements Total No Fish No Eye Multiple Fish No Ruler No Scale

A,C,U,S 28 (0.67%) 1 (0.02%) 28 (0.67%) 0 (0%) 0 (0%) 0 (0%)
A,U,S 31 (0.74%) 0 (0%) 31 (0.74%) 0 (0%) 0 (0%) 0 (0%)
A 98 (2.4%) 0 (0%) 68 (1.6%) 31 (0.74%) 0 (0%) 0 (0%)

n = 4,155

6 Discussion

Where our previous work presented a proof of concept in advanced image anal-
ysis for automatic metadata generation, our current results demonstrate the
extensibility of our approaches. By extending our work to a different dataset,
we demonstrate that our model can be generalized as long as various image
and specimen quality criteria are adhered to. By doing so, our methods have
performed with high accuracy with minimal additions of unseen data to the

Computational Metadata Generation Methods 23

training set. There has also been great success with applying various error
reduction techniques that include image scaling, an augmented training set,
selection of fish with the highest confidence score, and contrast enhancement.
By augmenting the training set and performing contrast enhancement, the
error rates on each class generally decreased. By performing image scaling on
the cropped fish where an eye was initially missing, the number of missing
eyes dropped significantly. By performing fish selection, given the nature of
the images where multiple fish were detected, the best fish mask was always
selected, eliminating the multiple fish error.

While we have seen some individual error rates increase after applying con-
trast enhancement, the overall effect is a lower error rate for the aggregate of
all errors. Surprisingly, applying image scaling to the rulers had no effect on
improving the number of missing “two”s and “three”s , indicating a need for
more training data. Additional training epochs will not improve these errors,
since we found that training beyond 15,000 epochs yielded worse results. This
is known as the exploding gradient problem, a common problem in deep
learning that has been evident since the advent of gradient-based parameter
learning [60]. Our current results are more than acceptable and demonstrate
an augmented proof of concept that offers a path forward for using object
detection technology, enhanced by image informatics techniques, to improve
and enrich the metadata needed for advanced specimen image analysis. Over-
all, our work should advance scientific discovery that is based on analysis of
biological specimen image collections.

Our investigation has thus far focused on fish as the specimen of study. Fish
are vertebrate animals (phylum Chordata), with over 34, 000 known unique
species [61], with many more likely undiscovered. Species names are merely
labels, and the discovery of species variation depends on both genotype and
phenotype information. The ability to computationally analyze thousands of
images of a single fish species, from different habitats and time periods, can
lead to new discoveries that are impossible to pursue with manual methods.
Digital library researchers have been concerned with computationally extract-
ing image features, using content-based image retrieval methods. The work by
Toress [62], while over 15 years old, demonstrates the challenges and opportu-
nities to automatically generating useful metadata. Efforts to integrate such
automatic metadata generation methods into digital library workflows and
architectures still seem limited. This is likely due to the diversity of image
shapes, sizes and the inconsistent configurations of specimens, labels, rulers,
etc. within them. Object detection as explored in our research, working with
an established architecture, is applicable to the larger world of biodiversity,
well beyond fish, to include other fauna and flora, art and artefacts, and other
digitized objects made accessible for scientific and scholarly research. Follow-
ing object detection, one can apply pixel analysis and informatics methods to
compute many more higher order properties from the initial segmentations.

24 Computational Metadata Generation Methods

7 Conclusion

In this paper we extended a previously described automatic metadata gen-
eration approach. Using ML and image informatics algorithms, along with a
number of image processing methods, our approach is able to locate, mask
and analyze specimens (currently limited to fish) in collection images with a
high degree of accuracy. Additional geometric measurements on the specimens
are now computed, while also improving the overall error rates, as well as the
runtime through GPU parallelization. Testing this approach on 7,013 images
from the INHS dataset and 4,155 images from the UWZM dataset, we see
major success with only 1.1% of the 11,186 images yielding at least one error.
Through further refinement and generalization beyond the INHS and UWZM
images, as well as more species than just fish, we aim to create a tool that can
be distributed to specimen image collection curators to correct the metadata
sparsity that motivated this work.

7.1 Future Work

The most pressing next step is to refine the pixel analysis thresholding process
in order to improve the accuracy of the specimen masks. The current process
performs thresholding on a single color channel (intensity). Some of the light-
est tails appear yellow in hue to the human eye and easily distinguishable,
but when compressed to a single intensity value they are almost identical in
value to the grayish background. Given what we have learned with contrast
equalization, using CIELab space could be ideal for mask adjustment. Another
possible approach to solving this problem is to threshold and mask on subsets
of the bounding box, as to ensure that very dark trunk pixels do not affect the
thresholding of lighter regions.

Our longer term goal is to create a generalized process that works on classes
of specimen images. For the BGNN project we are beginning with fish images,
but we are designing the metadata generation system so that it can eventu-
ally operate on other species, if appropriately trained. The first step, which
has been accomplished, was to achieve greater generality by augmenting the
training set from INHS to UWZM. Another requirement will be to general-
ize the ruler reading process beyond the reading of digits on the ruler, which
will likely involve an automated method of reading ruler ticks instead of dig-
its. Lastly, the model training setup should be modified from using the default
parameters to one that is further optimized. As a result of the aforementioned
factors, training beyond 15,000 epochs has yielded exploding gradients, thus
producing poorer results. A suggested improvement is to experiment with the
learning rate, with more complex solutions involving the use of a learning rate
scheduler or optimization algorithms like RMSProp and ADAM.

Overall, the research reported in this paper will improve our BGNN work-
flow, and at the same time demonstrates an innovative approach that should
greatly enhance digital library services for the tens of thousands of digitized
specimens in a spectrum of image collections.

Computational Metadata Generation Methods 25

Acknowledgments. We thank the full BGNN team for support,Chris A.
Taylor, Curator of Fishes and Crustaceans at the Illinois Natural History Sur-
vey (INHS), and John Lyons, Curator of Fish at the University of Wisconsin
Zoological Museum (UWZM). INHS and UWZM are two of six fish collections
participating in the Great Lakes Invasives Network (GLIN).

Funding. Research supported by NSF OAC Office of Advanced Cyberin-
frastructure (OAC) #1940233 and #1940322.

Competing Interests. The authors have declared that no competing
interests exist.

Code and Data Availability. Raw data for INHS is available here. Raw
data for UWZM is available here. Reproducible code is available here.

References

[1] Beaman, R.S., Cellinese, N.: Mass digitization of scientific collections: New
opportunities to transform the use of biological specimens and underwrite
biodiversity science. ZooKeys (209), 7 (2012)

[2] Page, L.M., MacFadden, B.J., Fortes, J.A., Soltis, P.S., Riccardi, G.: Dig-
itization of biodiversity collections reveals biggest data on biodiversity.
BioScience 65(9), 841–842 (2015)

[3] Tibbetts, J.H.: The frontiers of artificial intelligence. BioScience 68(1),
5–10 (2018)

[4] Darwin Core Quick Reference Guide. https://dwc.tdwg.org/terms/

[5] Leipzig, J., Bakis, Y., Wang, X., Elhamod, M., Diamond, K., Dahdul,
W., Karpatne, A., Maga, M., Mabee, P., Bart, H.L., Greenberg, J.: Bio-
diversity image quality metadata augments convolutional neural network
classification of fish species. In: Garoufallou, E., Ovalle-Perandones, M.-
A. (eds.) Metadata and Semantic Research, pp. 3–12. Springer, Cham
(2021)

[6] Pepper, J., Greenberg, J., Bakiş, Y., Wang, X., Bart, H., Breen, D.: Auto-
matic metadata generation for fish specimen image collections. In: 2021
ACM/IEEE Joint Conference on Digital Libraries (JCDL), pp. 31–40
(2021). https://doi.org/10.1109/JCDL52503.2021.00015

[7] University of Wisconsin Zoological Museum: Fishes Collection. https://
uwzm.integrativebiology.wisc.edu/fishes-collection/ (2022)

[8] Darwin Core Maintenance Group: List of Darwin Core terms. http://rs.
tdwg.org/dwc/doc/list/ (2020)

26 Computational Metadata Generation Methods

[9] GBIF/TDWG Multimedia Resources Task Group: Audubon Core Multi-
media Resources Metadata Schema. http://www.tdwg.org/standards/638
(2013)

[10] Chapman, A., Belbin, L., Zermoglio, P., Wieczorek, J., Morris, P.,
Nicholls, M., Rees, E.R., Veiga, A., Thompson, A., Saraiva, A., et al.:
Developing standards for improved data quality and for selecting fit for
use biodiversity data. Biodiversity Information Science and Standards 4,
50889 (2020)

[11] Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni,
R., Robertson, T., Vieglais, D.: Darwin core: an evolving community-
developed biodiversity data standard. PloS one 7(1), 29715 (2012)

[12] Liddy, E.D., Allen, E., Harwell, S., Corieri, S., Yilmazel, O., Ozgencil,
N.E., Diekema, A., McCracken, N., Silverstein, J., Sutton, S.: Automatic
metadata generation & evaluation. In: Proc. ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 401–402 (2002)

[13] Greenberg, J.: Metadata extraction and harvesting: A comparison of
two automatic metadata generation applications. Journal of Internet
Cataloging 6(4), 59–82 (2004)

[14] Cardinaels, K., Meire, M., Duval, E.: Automating metadata generation:
the simple indexing interface. In: Proc. International Conference on World
Wide Web, pp. 548–556 (2005)

[15] Paynter, G.W.: Developing practical automatic metadata assignment
and evaluation tools for internet resources. In: Proceedings of the 5th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’05), pp.
291–300 (2005). IEEE

[16] Han, H., Giles, C.L., Manavoglu, E., Zha, H., Zhang, Z., Fox, E.A.: Auto-
matic document metadata extraction using support vector machines. In:
Proc. Joint Conference on Digital Libraries, pp. 37–48 (2003). IEEE

[17] Rodriguez, M.A., Bollen, J., Sompel, H.V.D.: Automatic metadata gen-
eration using associative networks. ACM Transactions on Information
Systems 27(2), 1–20 (2009)

[18] Heidorn, P.B., Wei, Q.: Automatic metadata extraction from museum
specimen labels. In: International Conference on Dublin Core and Meta-
data Applications, pp. 57–68 (2008)

[19] Manso, M., Nogueras-Iso, J., Bernabe, M., Zarazaga-Soria, F.: Automatic
metadata extraction from geographic information. In: 7th Conference on
Geographic Information Science (AGILE 2004), Heraklion, Greece, pp.

Computational Metadata Generation Methods 27

379–385 (2004)

[20] Zion, B., Shklyar, A., Karplus, I.: In-vivo fish sorting by computer vision.
Aquacultural Engineering 22, 165–179 (2000)

[21] Saberioon, M., Gholizadeh, A., Ćısař, P., Pautsina, A., Urban, J.: Appli-
cation of machine vision systems in aquaculture with emphasis on fish:
state-of-the-art and key issues. Reviews in Aquaculture 9, 369–387 (2017)

[22] Hu, J., Li, D., Duan, Q., Han, Y., Chen, G., Si, X.: Fish species classi-
fication by color, texture and multi-class support vector machine using
computer vision. Computers and Electronics in Agriculture 88, 133–140
(2012)

[23] Vapnik, V.N.: An overview of statistical learning theory. IEEE Transac-
tions on Neural Networks 10(5), 988–999 (1999)

[24] Li, L., Hong, J.: Identification of fish species based on image processing
and statistical analysis research. In: Proc. IEEE International Conference
on Mechatronics and Automation, pp. 1155–1160 (2014)

[25] Rodrigues, M.T.A., Freitas, M.H.G., Pádua, F.L.C., Gomes, R.M., Car-
rano, E.G.: Evaluating cluster detection algorithms and feature extraction
techniques in automatic classification of fish species. Pattern Analysis and
Applications 18(4), 783–797 (2015)

[26] Hernández-Serna, A., Jiménez-Segura, L.F.: Automatic identification of
species with neural networks. PeerJ 2:e563 (2014)

[27] Salman, A., Jalal, A., Shafait, F., Mian, A., Shortis, M., Seager, J.W.,
Harvey, E.: Fish species classification in unconstrained underwater envi-
ronments based on deep learning. Limnology and Oceanography-Methods
14, 570–585 (2016)

[28] LeCun, Y., F.J. Huang, Bottou, L.: Learning methods for generic object
recognition with invariance to pose and lighting. In: Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition, vol. 2, pp. 104–2
(2004)

[29] Alsmadi, M., Tayfour, M., Alkhasawneh, R., Badawi, U., Almarashdeh,
I., Haddad, F.: Robust features extraction for general fish classification.
International Journal of Electrical and Computer Engineering 9, 5192
(2019)

[30] Iqbal, M.A., Wang, Z., Ali, Z., Riaz, S.: Automatic fish species clas-
sification using deep convolutional neural networks. Wireless Personal
Communications 116, 1043–1053 (2021)

28 Computational Metadata Generation Methods

[31] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Proc. 25th International Confer-
ence on Neural Information Processing Systems - Volume 1, pp. 1097–1105
(2012)

[32] Yu, C., Fan, X., Hu, Z., Xia, X., Zhao, Y., Li, R., Bai, Y.: Segmentation
and measurement scheme for fish morphological features based on mask
r-cnn. Information Processing in Agriculture 7(4), 523–534 (2020)

[33] Petrellis, N.: Measurement of fish morphological features through image
processing and deep learning techniques. Applied Sciences 11, 4416
(2021)

[34] Hao, M., Yu, H., Li, D.: The measurement of fish size by machine vision
- a review. In: Proc. 9th International Conference on Computer and
Computing Technologies in Agriculture, pp. 15–32 (2015)

[35] Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., Girshick, R.: Detectron2. https:
//github.com/facebookresearch/detectron2 (2019)

[36] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style,
high-performance deep learning library. In: Wallach, H., Larochelle,
H., Beygelzimer, A., d' Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., ??? (2019). http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[37] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In:
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision
– ECCV 2014, pp. 740–755. Springer, Cham (2014). https://doi.org/10.
48550/arXiv.1405.0312

[38] J. F. Bell Museum of Natural History: Fishes Collection. https://www.
bellmuseum.umn.edu/fishes/ (2022)

[39] Skalski, P.: Make Sense. https://github.com/SkalskiP/make-sense/
(2019)

[40] Illinois Natural History Survey: INHS Fish Collection. https://fish.inhs.
illinois.edu/ (2022)

[41] Cai, T., Zhu, F., Hao, Y., Fan, X.: Performance evaluation of image

Computational Metadata Generation Methods 29

enhancement methods for objects detection and recognition. In: Proceed-
ings of the SPIE: Image Processing and Analysis, vol. 9675. SPIE, ???
(2015)

[42] Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A.,
Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adap-
tive histogram equalization and its variations. Computer Vision, Graphics,
and Image Processing 39(3), 355–368 (1987). https://doi.org/10.1016/
S0734-189X(87)80186-X

[43] Manju, R.A., Koshy, G., Simon, P.: Improved method for enhancing dark
images based on clahe and morphological reconstruction. Procedia Com-
puter Science 165, 391–398 (2019). https://doi.org/10.1016/j.procs.2020.
01.033. 2nd International Conference on Recent Trends in Advanced Com-
puting ICRTAC -DISRUP - TIV INNOVATION , 2019 November 11-12,
2019

[44] Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000)

[45] Singh, R., Biswas, M.: Adaptive histogram equalization based fusion tech-
nique for hazy underwater image enhancement. In: 2016 IEEE Interna-
tional Conference on Computational Intelligence and Computing Research
(ICCIC), pp. 1–5 (2016). https://doi.org/10.1109/ICCIC.2016.7919711

[46] Lucas, J., Calef, B., Knox, K.: Image enhancement for astronomical
scenes. In: Tescher, A.G. (ed.) Applications of Digital Image Process-
ing XXXVI, vol. 8856, pp. 12–19. SPIE, ??? (2013). https://doi.org/10.
1117/12.2025191. International Society for Optics and Photonics. https:
//doi.org/10.1117/12.2025191

[47] Yu, H., Inoue, K., Hara, K., Urahama, K.: Saturation improvement in
hue-preserving color image enhancement without gamut problem. ICT
Express 4(3), 134–137 (2018). https://doi.org/10.1016/j.icte.2017.07.003

[48] Trahanias, P.E., Venetsanopoulos, A.N.: Color image enhancement
through 3-d histogram equalization. In: Proceedings., 11th IAPR Interna-
tional Conference on Pattern Recognition. Vol. III. Conference C: Image,
Speech and Signal Analysis,, pp. 545–548 (1992). https://doi.org/10.
1109/ICPR.1992.202045

[49] Reddy, K.S., Reddy, D.K.R.L.: Enlargement of image based upon inter-
polation techniques. International Journal of Advanced Research in
Computer and Communication Engineering 2(12), 4631 (2013)

[50] Vidya, M.S., Shastry, A.H., Mallya, Y.: 4 - automated detection of
intracranial hemorrhage in noncontrast head computed tomography.

30 Computational Metadata Generation Methods

In: Koundal, D., Gupta, S. (eds.) Advances in Computational Tech-
niques for Biomedical Image Analysis, pp. 71–98. Academic Press,
??? (2020). https://doi.org/10.1016/B978-0-12-820024-7.00004-9. https:
//www.sciencedirect.com/science/article/pii/B9780128200247000049

[51] Keys, R.: Cubic convolution interpolation for digital image processing.
IEEE Transactions on Acoustics, Speech, and Signal Processing 29(6),
1153–1160 (1981). https://doi.org/10.1109/TASSP.1981.1163711

[52] Turkowski, K.: Filters for common resampling tasks. Graphics gems, 147–
165 (1990). https://doi.org/10.1.1.116.7898

[53] Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual
networks for single image super-resolution. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

[54] Otsu, N.: A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)

[55] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A.,
del Ŕıo, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.:
Array programming with NumPy. Nature 585(7825), 357–362 (2020).
https://doi.org/10.1038/s41586-020-2649-2

[56] van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J.D., Yager, N., Gouillart, E., Yu, T., the scikit-image contrib-
utors: scikit-image: image processing in Python. PeerJ 2, 453 (2014).
https://doi.org/10.7717/peerj.453

[57] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nel-
son, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng,
Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro,
A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-0686-2

[58] Freeman, H.: On the encoding of arbitrary geometric configurations. IRE
Transactions on Electronic Computers EC-10(2), 260–268 (1961). https:
//doi.org/10.1109/TEC.1961.5219197

[59] Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ:

Computational Metadata Generation Methods 31

25 years of image analysis. Nature Methods 9(7), 671–675 (2012)

[60] Hochreiter, S.: Untersuchungen zu dynamischen neuronalen netzen.
Diploma, Technische Universität München 91(1) (1991)

[61] Team, F.: FishBase. https://www.fishbase.de/search.php (Last update:
2/2020)

[62] Torres, R.d.S., Medeiros, C.B., Gonçcalves, M.A., Fox, E.A.: A digi-
tal library framework for biodiversity information systems. International
Journal on Digital Libraries 6(1), 3–17 (2006)

This is pdfTeX, Version 3.14159265-2.6-1.40.21 (TeX Live 2020/W32TeX)

(preloaded format=pdflatex 2020.5.12) 30 MAR 2022 13:12

entering extended mode

 restricted \write18 enabled.

 %&-line parsing enabled.

**sn-sample-bib.tex

(./sn-sample-bib.tex

LaTeX2e <2020-02-02> patch level 5

L3 programming layer <2020-05-05>

! LaTeX Error: Environment thebibliography undefined.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.1 \begin{thebibliography}

 {9}

Your command was ignored.

Type I <command> <return> to replace it with another command,

or <return> to continue without it.

! LaTeX Error: Missing \begin{document}.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.1 \begin{thebibliography}{9

 }

You're in trouble here. Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

Missing character: There is no 9 in font nullfont!

Overfull \hbox (20.0pt too wide) in paragraph at lines 1--2

[]

 []

! LaTeX Error: Lonely \item--perhaps a missing list environment.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.3 \bibitem{bib1}

 I.~Podlubny, Fractional Differential Equations,

Academie ...

Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

! Undefined control sequence.

<argument> \@listctr

l.3 \bibitem{bib1}

 I.~Podlubny, Fractional Differential Equations,

Academie ...

The control sequence at the end of the top line

of your error message was never \def'ed. If you have

misspelled it (e.g., `\hobx'), type `I' and the correct

spelling (e.g., `I\hbox'). Otherwise just continue,

and I'll forget about whatever was undefined.

! You can't use `\relax' after \the.

<recently read> \c@

l.3 \bibitem{bib1}

 I.~Podlubny, Fractional Differential Equations,

Academie ...

I'm forgetting what you said and using zero instead.

\bibcite{bib1}{0}

Missing character: There is no I in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no F in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no D in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no E in font nullfont!

Missing character: There is no q in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no A in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no N in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no w in font nullfont!

Missing character: There is no Y in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no k in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no . in font nullfont!

! LaTeX Error: Lonely \item--perhaps a missing list environment.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.5 \bibitem{bib2}

R. Hilfer, Application of Fractional Calculus in

Physics,...

Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

! Undefined control sequence.

<argument> \@listctr

l.5 \bibitem{bib2}

R. Hilfer, Application of Fractional Calculus in

Physics,...

The control sequence at the end of the top line

of your error message was never \def'ed. If you have

misspelled it (e.g., `\hobx'), type `I' and the correct

spelling (e.g., `I\hbox'). Otherwise just continue,

and I'll forget about whatever was undefined.

! You can't use `\relax' after \the.

<recently read> \c@

l.5 \bibitem{bib2}

R. Hilfer, Application of Fractional Calculus in

Physics,...

I'm forgetting what you said and using zero instead.

\bibcite{bib2}{0}

Missing character: There is no R in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no H in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no A in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no F in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no C in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no W in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no S in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no g in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no S in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no g in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no 2 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no . in font nullfont!

! LaTeX Error: Lonely \item--perhaps a missing list environment.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.7 \bibitem{bib3}

A. Nagih, G. Plateau, Fractional problems: overview of

ap...

Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

! Undefined control sequence.

<argument> \@listctr

l.7 \bibitem{bib3}

A. Nagih, G. Plateau, Fractional problems: overview of

ap...

The control sequence at the end of the top line

of your error message was never \def'ed. If you have

misspelled it (e.g., `\hobx'), type `I' and the correct

spelling (e.g., `I\hbox'). Otherwise just continue,

and I'll forget about whatever was undefined.

! You can't use `\relax' after \the.

<recently read> \c@

l.7 \bibitem{bib3}

A. Nagih, G. Plateau, Fractional problems: overview of

ap...

I'm forgetting what you said and using zero instead.

\bibcite{bib3}{0}

Missing character: There is no A in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no N in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no g in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no G in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no F in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no : in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no w in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no R in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no R in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no O in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no O in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no N in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no w in font nullfont!

Missing character: There is no Y in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no k in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no . in font nullfont!

! LaTeX Error: Lonely \item--perhaps a missing list environment.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.9 \bibitem{bib4}

 J. P. Richard, Time-delay system: an overview of some

rec...

Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

! Undefined control sequence.

<argument> \@listctr

l.9 \bibitem{bib4}

 J. P. Richard, Time-delay system: an overview of some

rec...

The control sequence at the end of the top line

of your error message was never \def'ed. If you have

misspelled it (e.g., `\hobx'), type `I' and the correct

spelling (e.g., `I\hbox'). Otherwise just continue,

and I'll forget about whatever was undefined.

! You can't use `\relax' after \the.

<recently read> \c@

l.9 \bibitem{bib4}

 J. P. Richard, Time-delay system: an overview of some

rec...

I'm forgetting what you said and using zero instead.

\bibcite{bib4}{0}

Missing character: There is no J in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no R in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no T in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no : in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no w in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no A in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no 3 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no (in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no) in font nullfont!

Missing character: There is no (in font nullfont!

Missing character: There is no 2 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 3 in font nullfont!

Missing character: There is no) in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 6 in font nullfont!

Missing character: There is no 6 in font nullfont!

Missing character: There is no 7 in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 6 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no 4 in font nullfont!

Missing character: There is no . in font nullfont!

! LaTeX Error: Lonely \item--perhaps a missing list environment.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.11 \bibitem{bib5}

H. Ye, J. Gao, Y. Ding, A generalized Gronwall

inequalit...

Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

! Undefined control sequence.

<argument> \@listctr

l.11 \bibitem{bib5}

H. Ye, J. Gao, Y. Ding, A generalized Gronwall

inequalit...

The control sequence at the end of the top line

of your error message was never \def'ed. If you have

misspelled it (e.g., `\hobx'), type `I' and the correct

spelling (e.g., `I\hbox'). Otherwise just continue,

and I'll forget about whatever was undefined.

! You can't use `\relax' after \the.

<recently read> \c@

l.11 \bibitem{bib5}

H. Ye, J. Gao, Y. Ding, A generalized Gronwall

inequalit...

I'm forgetting what you said and using zero instead.

\bibcite{bib5}{0}

Missing character: There is no H in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no Y in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no J in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no G in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no Y in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no D in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no g in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no A in font nullfont!

Missing character: There is no g in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no z in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no G in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no w in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no q in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no q in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no J in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no M in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no A in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no A in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no 3 in font nullfont!

Missing character: There is no 2 in font nullfont!

Missing character: There is no 8 in font nullfont!

Missing character: There is no (in font nullfont!

Missing character: There is no 2 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 7 in font nullfont!

Missing character: There is no) in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 7 in font nullfont!

Missing character: There is no 5 in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 8 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no . in font nullfont!

! LaTeX Error: Lonely \item--perhaps a missing list environment.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.13 \bibitem{bib6}

M. Lazarevic, Stability and stabilization of

fractional ...

Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

! Undefined control sequence.

<argument> \@listctr

l.13 \bibitem{bib6}

 M. Lazarevic, Stability and stabilization of

fractional ...

The control sequence at the end of the top line

of your error message was never \def'ed. If you have

misspelled it (e.g., `\hobx'), type `I' and the correct

spelling (e.g., `I\hbox'). Otherwise just continue,

and I'll forget about whatever was undefined.

! You can't use `\relax' after \the.

<recently read> \c@

l.13 \bibitem{bib6}

 M. Lazarevic, Stability and stabilization of

fractional ...

I'm forgetting what you said and using zero instead.

\bibcite{bib6}{0}

Missing character: There is no M in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no L in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no z in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no S in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no z in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no S in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no T in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no R in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no w in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no 6 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no (in font nullfont!

Missing character: There is no 2 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no) in font nullfont!

Missing character: There is no 3 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no 4 in font nullfont!

Missing character: There is no 5 in font nullfont!

Missing character: There is no . in font nullfont!

! LaTeX Error: Lonely \item--perhaps a missing list environment.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.15 \bibitem{bib7}

 Y. Li, Y. Q. Chen, I. Podlubny, Stability of

fractional-...

Try typing <return> to proceed.

If that doesn't work, type X <return> to quit.

! Undefined control sequence.

<argument> \@listctr

l.15 \bibitem{bib7}

 Y. Li, Y. Q. Chen, I. Podlubny, Stability of

fractional-...

The control sequence at the end of the top line

of your error message was never \def'ed. If you have

misspelled it (e.g., `\hobx'), type `I' and the correct

spelling (e.g., `I\hbox'). Otherwise just continue,

and I'll forget about whatever was undefined.

! You can't use `\relax' after \the.

<recently read> \c@

l.15 \bibitem{bib7}

Y. Li, Y. Q. Chen, I. Podlubny, Stability of

fractional-...

I'm forgetting what you said and using zero instead.

\bibcite{bib7}{0}

Missing character: There is no Y in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no L in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no Y in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no Q in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no C in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no I in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no P in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no S in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no : in font nullfont!

Missing character: There is no L in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no u in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no v in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no c in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no g in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no n in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no z in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no d in font nullfont!

Missing character: There is no M in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no g in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no L in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no f in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no e in font nullfont!

Missing character: There is no r in font nullfont!

Missing character: There is no s in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no b in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no i in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no y in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no C in font nullfont!

Missing character: There is no o in font nullfont!

Missing character: There is no m in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no M in font nullfont!

Missing character: There is no a in font nullfont!

Missing character: There is no t in font nullfont!

Missing character: There is no h in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no A in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no p in font nullfont!

Missing character: There is no l in font nullfont!

Missing character: There is no . in font nullfont!

Missing character: There is no , in font nullfont!

Missing character: There is no 5 in font nullfont!

Missing character: There is no 9 in font nullfont!

Missing character: There is no (in font nullfont!

Missing character: There is no 2 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no) in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 8 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 0 in font nullfont!

Missing character: There is no - in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no 8 in font nullfont!

Missing character: There is no 2 in font nullfont!

Missing character: There is no 1 in font nullfont!

Missing character: There is no . in font nullfont!

! LaTeX Error: \begin{document} ended by \end{thebibliography}.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

 ...

l.18 \end{thebibliography}

Your command was ignored.

Type I <command> <return> to replace it with another command,

or <return> to continue without it.

)

! Emergency stop.

<*> sn-sample-bib.tex

*** (job aborted, no legal \end found)

Here is how much of TeX's memory you used:

 18 strings out of 480681

 433 string characters out of 5908536

 237875 words of memory out of 5000000

 15941 multiletter control sequences out of 15000+600000

 532338 words of font info for 24 fonts, out of 8000000 for 9000

 1141 hyphenation exceptions out of 8191

 12i,1n,15p,231b,38s stack positions out of

5000i,500n,10000p,200000b,80000s

! ==> Fatal error occurred, no output PDF file produced!

