
A New Binary Arithmetic Optimization Algorithm For
Uncapacitated Facility Location Problem
Emine BAŞ (ebas@ktun.edu.tr)

Konya Technical University
Gülnur YILDIZDAN

Selcuk University

Research Article

Keywords: Binary optimization, Arithmetic optimization algorithm, Logic gate

Posted Date: September 27th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2088938/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2088938/v1
mailto:ebas@ktun.edu.tr
https://doi.org/10.21203/rs.3.rs-2088938/v1
https://creativecommons.org/licenses/by/4.0/

A New Binary Arithmetic Optimization Algorithm For

Uncapacitated Facility Location Problem

Emine BAŞ1*, Gülnur YILDIZDAN2

1 Department of Software Engineering, Faculty of Engineering and Nature Sciences, Konya Technical

University, 42075, Konya, Turkey

2Kulu Vocational School, Selcuk University, Kulu, Konya, Turkey

ebas@ktun.edu.tr, gavsar@selcuk.edu.tr

ABSTRACT- Arithmetic Optimization Algorithm (AOA) is a heuristic method developed in recent years. The
original version was developed for continuous optimization problems. Its success on different optimization
problems has not yet been tested. In this paper, the binary form of AOA (BinAOA) has been proposed. In addition,
the candidate solution production scene of BinAOA is developed with the xor logic gate and the BinAOAX method
was proposed. Both methods have been tested for success on well-known uncapacitated facility location problems
(UFLPs) in the literature. The UFL problem is a binary optimization problem whose optimum results are known.
The results of BinAOA and BinAOAX methods were compared and discussed according to best, worst, mean,
standard deviation, and gap values. The results of BinAOA and BinAOAX on UFLP are compared with binary
heuristic methods used in the literature. As a second application, the performances of BinAOA and BinAOAX
algorithms are also tested on classical benchmark functions. The binary forms of AOA, AOAX, Jaya, Tree Seed
Algorithm (TSA), and Gray Wolf Optimization (GWO) algorithms were compared in different candidate
generation scenarios. The results showed that the binary form of AOA is successful and can be preferred as an
alternative binary heuristic method.

Keywords— Binary optimization, Arithmetic optimization algorithm, Logic gate

1. Introduction

Binary optimization is a different type of discrete optimization problem. In discrete optimization problems,
decision variables are expressed with real values, in binary optimization they are expressed with {0,1}. In the
search space, each solution is positioned as binary values. Some of the real-world problems can be easily solved
by representing in the binary search space and these problems are named binary optimization problems. The

Uncapacitated Facility Location Problem (UFLP) is one of these problems. In the literature, UFLP is often solved
by heuristic algorithms (Aslan et al., 2019; Baş and Ülker, 2020a; Çınar and Kiran, 2018).
Abualigah et al. (2021) suggested a new meta-heuristic method called the Arithmetic Optimization Algorithm
(AOA) (Abualigah et al., 2021). AOA realizes its exploration and exploitation capabilities with four main
arithmetic operators. AOA has improved the ability to exploration with multiplication and division operators and
exploitation with addition and subtraction operators. Its success comes from arithmetic operators. AOA was
originally developed to solve continuous optimization problems. The success of AOA on discrete or binary
optimization problems has not yet been made in the literature. In this paper, AOA has been updated to solve binary
optimization problems in terms of structure. Binary AOA (BinAOA), which is a new binary optimization
algorithm, has been proposed in the literature. The performance of BinAOA has been tested on UFLPs, a well-
known binary optimization problem in the literature. In order to increase the success of BinAOA, logic gates,
which are frequently used in binary optimization in the literature, have been added (Aslan et al., 2019; Baş and
Ülker, 2020a; Çınar and Kiran, 2018). Logic gates are very suitable for binary optimization due to their structure.
There are three types of logic gates in the literature (and, or, and xor logic gates). Since the input and output values
of the logic gates are binary values, the candidate solution in binary optimization is successfully applied in the
production strategy. Especially because the xor logic gate output values are 50% equal to each other, the xor logic
gate is also preferred in this study. This proposed new version of BinAOA is named BinAOAX. As a second test
application, the performances of BinAOA and BinAOAX algorithms are also tested on unimodal and multimodal

mailto:ebas@ktun.edu.tr

classical benchmark functions. The binary forms of AOA, AOAX, Jaya, Tree Seed Algorithm (TSA), and Gray
Wolf Optimization (GWO) algorithms were compared in different candidate generation scenarios.
In this study, the materials and methods used in the paper are explained in Section 2, and the experimental results
of BinAOA and BinAOAX are given and discussed in Section 3. In Section 4, the results are explained.

2. Material and Method

2.1. The Arithmetic Optimization Algorithm (AOA)
Abualigah et al. (2021) suggested a new meta-heuristic method called the Arithmetic Optimization Algorithm
(AOA) (Abualigah et al., 2021). The basic structure of AOA consists of four main arithmetic operators used in
mathematics (Multiplication (M), Division (D), Subtraction (S), and Addition (A)). These arithmetic operators
formed the search mechanism of AOA in the search space. Addition and subtraction operators shaped the local
search structure in AOA, while multiplication and division operators shaped the global search structure in AOA.

AOA chooses the exploration or exploitation phase at first. For this selection, the Math Optimizer Accelerated
(MOA) function is calculated. Equation 1 shows the MOA function.
 𝑀𝑂𝐴(𝑖𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝑖𝑡𝑒𝑟 × (𝑀𝑎𝑥−𝑀𝑖𝑛𝑀𝑎𝑥_𝑖𝑡𝑒𝑟) (1)

where MOA(iter) denotes the function value at the tth iteration, and iter denotes the current iteration, and (Max_

iter) denotes the maximum number of iterations. Min and Max denote the minimum and maximum values of the
accelerated function, respectively.

2.1.1. Exploration phase

The exploration operators of AOA explore the search area randomly on several regions with Division (D) search
strategy and Multiplication (M) search strategy and find a better solution. Equation 2 shows the exploration phase.
This phase of searching (exploration search by executing D or M) is conditioned by the Math Optimizer accelerated
(MOA) function for the condition of r1 > MOA (r1 is a random number). Which of Division (D) search strategy or
the Multiplication (M) search strategy to be used is determined by the value of r2.
 𝑥𝑖,𝑗(𝑖𝑡𝑒𝑟 + 1) = {𝑏𝑒𝑠𝑡(𝑥𝑗) ÷ (𝑀𝑂𝑃 + 𝜖) × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟2 < 0.5𝑏𝑒𝑠𝑡(𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

where r2 is a random number. best(x j) is the jth position in the best-obtained solution so far. 𝜖 is a small integer
number, UBj denotes the upper bound value of the jth position and LBj denotes the lower bound value of the jth
position 𝜇 is a control parameter to adjust the search process. Math Optimizer Probability (MOP) is shown by
Equation 3.
 𝑀𝑂𝑃(𝑖𝑡𝑒𝑟) = 1 − (𝑖𝑡𝑒𝑟1/𝛼𝑀𝑎𝑥_𝑖𝑡𝑒𝑟1/𝛼) (3)

where MOP(iter) denotes the function value at the tth iteration. α is a sensitive parameter and defines the
exploitation accuracy over the iterations (Abualigah et al., 2021).

2.1.2. Exploitation phase

The exploitation operators of AOA are carried out with the Addition (A) search strategy and Subtraction (S) search
strategy. In AOA, AOA's exploitation operators search the search area in detail in several local regions. Equation
4 shows the exploitation phase. Which of the Subtraction (S) search strategy or the Addition (A) search strategy
to be used is determined by the value of r3.

 𝑥𝑖,𝑗(𝑖𝑡𝑒𝑟 + 1) = {𝑏𝑒𝑠𝑡(𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑟3 < 0.5𝑏𝑒𝑠𝑡(𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (4)

where r3 is a random number. best(x j) is the jth position in the best-obtained solution so far. 𝜖 is a small integer
number, UBj denotes the upper bound value of the jth position and LBj denotes to lower bound value of the jth
position 𝜇 is a control parameter to adjust the search process. The Pseudo-code of the AOA has been explained in
Algorithm 1.

Algorithm 1: Pseudo-code of the AOA
1: Assign parameter values (α, 𝜇, 𝑒𝑡𝑐.) of AOA and initialize.
2: Initialize the solutions’positions (n) randomly. (Solutions: i=1, ..., N)
3: while (iter < max_iter) do
4: Calculate the objective function for the given solutions
5: Find the best (best) solution
6: Update the MOA and the MOP values with Eq. (1) and Eq. (3)
7: for (i=1 to N) do

8: for (j=1 to n) do
9: Generate a random values between [0, 1] (r1, r2, and r3)
10: if r1>MOA then
11: if r2>0.5 then
12: Update the ith solution positions using Eq. (2) (Division (D) search strategy)
13: else

14: Update the ith solution positions using Eq. (2) (Multiplication (M) search strategy)
15: end if

16: else
17: if r3>0.5 then
18: Update the ith solution positions using Eq. (4) (Subtraction (S) search strategy)
19: else

20: Update the ith solution positions using Eq. (4) (Addition (A) search strategy)
21: end if

22: end if
23: end for
24: end for
25: iter=iter+1
26: end while
27: The best solution

2.2. Binary Arithmetic Optimization Algorithm (BinAOA)

The original AOA method was originally applied for continuous optimization problems. There is not yet an

application in the literature for different types of optimization problems. In this paper, the AOA algorithm has

been updated again to solve binary optimization problems. In binary optimization, the search space is expressed

in binary structures ({0,1}). Continuous values produced in continuous optimization must be converted into binary

values in binary optimization. In the most basic case, this process is performed by Equation 5. They are transfer

functions that are frequently preferred in the literature for converting continuous values to binary values. There

are various transfer functions in the literatüre (Baş and Ülker, 2020a; Baş and Ülker, 2020b). The most used

transfer functions are shown in Table 1. In this study, the success of eight different transfer functions was tested

on BinAOA and BinAOAX. Thus, both the success of BinAOA and BinAOAX and the most successful transfer

function were determined.

 x𝑖,𝑗 = {0, 𝑖𝑓 (𝑥𝑖,𝑗 < 0.5)1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 i=1, 2, …, N; j=1, 2, …, n (5)

where x𝑖,𝑗 denotes the individual position at the jth dimension of the ith population.

Table 1. S-shaped and V-shaped transfer functions (Beskirli et al., 2018).
S-Shaped V-Shaped

Name Transfer Functions Name Transfer Functions

S1 𝑇(𝑥) = 11 + 𝑒−2𝑥
 V1 𝑇(𝑥) = |𝑒𝑟𝑓 (√𝜋2 𝑥)|

S2 𝑇(𝑥) = 11 + 𝑒−𝑥
 V2 𝑇(𝑥) = |𝑡𝑎𝑛ℎ(𝑥)|

S3 𝑇(𝑥) = 11 + 𝑒(−𝑥/2) V3 𝑇(𝑥) = |(𝑥) √1 + 𝑥2⁄ |
S4 𝑇(𝑥) = 11 + 𝑒(−𝑥/3) V4 𝑇(𝑥) = |2𝜋| 𝑎𝑟𝑐 𝑡𝑎𝑛 (𝜋2 𝑥)

Logic gates were used to generate new candidates in BinAOA. The proposed new method is called BinAOAX.

Logic gates are often used in the literature to obtain binary values. It is often preferred because of the 50% same

value of the xor gate output values (Aslan et al., 2019; Baş and Ülker, 2020a; Baş and Ülker, 2020b; Çınar and
Kiran, 2018). In BinAOAX, new candidate solutions are produced according to Equation 6.

𝑥𝑛𝑒𝑤,𝑗 = {𝑥𝑖𝑗 ⊕ (𝑥𝑗𝑟 ⊕ 𝑥𝑏𝑒𝑠𝑡,𝑗) , if (𝑟𝑎𝑛𝑑𝑖𝑗 < 0.5)𝑥𝑖𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (6)

where 𝑥𝑛𝑒𝑤𝑗 is the jth dimension of the new candidate solution produced for the ith solution, 𝑥𝑖𝑗 is the jth dimension
of ith current solution, 𝑥𝑗𝑟 is the jth dimension of random neighbor solution. The Pseudo-codes of the BinAOA and
BinAOAX have been explained in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2: Pseudo-code of the BinAOA
1: Assign parameter values (α, 𝜇, 𝑒𝑡𝑐.) of BAOA and initialize.
2: Create the binary solutions using Eq. (5).
3: while (iter < max_iter) do
4: Calculate the fitness function for the UFL problem
5: Find the best (best) solution
6: Update the MOA and the MOP values with Eq. (1) and Eq. (3)
7: for (i=1 to N) do

8: for (j=1 to n) do
9: Generate a random values between [0, 1] (r1, r2, and r3)
10: if r1>MOA then
11: if r2>0.5 then
12: Update xnew using Eq. (2)
13: end if

14: else

15: if r3>0.5 then
16: Update xnew using Eq. (4)
17: end if

18: end if
19: end for
20: end for
21: Transfer function selection
22: Continuous solutions are transformed into new binary solutions (xnew) using the transfer function
23: Calculate fitness values of new candidate solutions (xnew) for the UFL problem
24: Compare the fitness values of new candidate solutions and existing solutions
25: iter=iter+1
26: end while
27: The best solution

Algorithm 3: Pseudo-code of the BinAOAX
1: Assign parameter values (α, 𝜇, 𝑒𝑡𝑐.) of BAOA and initialize.
2: Create the binary solutions using Eq. (5).
3: while (iter < max_iter) do

4: Calculate the fitness function for the UFL problem
5: Find the best (best) solution
6: Update the MOA and the MOP values with Eq. (1) and Eq. (3)
7: for (i=1 to N) do

8: for (j=1 to n) do
9: Generate a random values between [0, 1] (r1, r2, and r3)
10: if r1>MOA then
11: if r2>0.5 then
12: Update xnewx using Eq. (2)
13: end if
14: else

15: if r3>0.5 then
16: Update xnewx using Eq. (4)
17: end if

18: end if
19: end for
20: end for
21: Transfer function selection
22: Continuous solutions are transformed using the transfer function
23: Create new binary candidate solutions (xnewx) for BinAOAX using Eq. (6)
24: Calculate fitness values of new candidate solutions for the UFL problem
25: Compare the fitness values of new candidate solutions and existing solutions
26: iter=iter+1
27: end while
28: The best solution

2.3. The Uncapacitated Facility Location Problem (UFLP)

BinAOA’s performance is studied on UFL Problems. Since UFLPs are very appropriate for binary optimizations
and easily applicable for binary structures, we have preferred UFLPs as benchmark problems. In basic UFLP

formulation, UFLP includes a set of (I) potential facilities. Each facility can be open or closed. In BAOA, if the

facility is open ‘1’, and if it is closed ‘0’ values are selected. These facilities serve a set of (J) customers. The

objective function of this problem is to minimize the sum of the shipment costs between I and J and the opening

costs of the facilities (Çınar and Kiran, 2018). The mathematical structure of the UFLP is shown below. 𝑓(𝑈𝐹𝐿𝑃) = 𝑚𝑖𝑛{∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑗∈𝐽𝑖∈𝐼 + ∑ 𝑓𝑖𝑦𝑖𝑖∈𝐼 } (7)

where I = {1,2,…,k} is the set of possible facility locations, J = {1,2,…,g} is the set of customer demand points, fi
is the fixed cost of opening a facility in i∈ I, cij is the shipment cost between ith facility location and jth customer
point. The decision variable xij is the demand of customer j corresponded ith facility and yi is the binary variable:
yi = 1 if a facility is located in i ∈ I, yi = 0 otherwise.

Subject to: ∑ 𝑥𝑖𝑗𝑖∈𝐼 = 1 𝑗 ∈ 𝐽 (8) 𝑥𝑖𝑗 ≤ 𝑦𝑖, 𝑖∈𝐼,𝑗∈𝐽 (9) 𝑥𝑖𝑗 ∈ {0,1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (10) 𝑦𝑖 ∈ {0,1}, 𝑖 ∈ 𝐼 (11)

While Equation 8 provides to satisfy all demands of customers, Equation 9 ensures that a customer can be served
from a facility only if a facility is opened. Equations 10 and 11 define the decision variables in the binary structure
(Çınar and Kiran, 2018).

3. Experimental Analysis

AOA method has been updated in this paper to solve binary optimization problems. As a result, Binary AOA
(BinAOA) was proposed. BinAOA has been developed and a new candidate solution strategy has been added. The
developed BinAOA is named BinAOAX. In the new candidate solution strategy added to BinAOA, the xor logic

gate is used. New candidate solutions produced according to the xor logic gate are included in the system. BinAOA
and BinAOAX methods have been tested on UFLP, a well-known binary optimization problem in the literature.
UFLP has twelve low and high-dimensional data sets. These data sets are shown in Table 2. Twenty independent
studies were conducted for all experiments. All experiments were run on a windows 7 operating system, 4gb ram,
and 2.3Ghz processor environment. The Gap value determined how close the current result is to the optimum
result. The Gap value is calculated by Equation 12. The best shows the value of the best fitness, the worst shows
the value of the worst fitness, the mean the value shows value of the average fitness, and the std shows the standard
deviation of the fitness value.

 𝐺𝑎𝑝 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)−𝑜𝑝𝑡𝑖𝑚𝑢𝑚𝑜𝑝𝑡𝑖𝑚𝑢𝑚 × 100 (12)

Table 2. The data sets for UFL problems
Problem Name Size Optimum

Cap71 16 x 50 932615,7500
Cap72 16 x 50 977799,4000
Cap73 16 x 50 1010641,4500
Cap74 16 x 50 1034976,9800
Cap101 25 x 50 796648,4400
Cap102 25 x 50 854704,2000
Cap103 25 x 50 893782,1100
Cap104 25 x 50 928941,7500
Cap131 50 x 50 793439,5600
Cap132 50 x 50 851495,3300
Cap133 50 x 50 893076,7100
Cap134 50 x 50 928941,7500

3.1. Parameter setups for BinAOA

Different population sizes (pop={10, 20, 30, 40, 50, 60, 70, 80, 90}) have been tested in the BinAOA for transfer
function=S1 and maximum evaluation=8.00E+04. BinAOA has been tested on twelve different UFLP. Test results
are shown in Table 3. According to the results, as the population size increases, the optimum result is approached
more. BinAOA produced more successful results, especially when the population size was 80. However, increasing
the population size too much increases the time it takes for the method to work, and also prevents the success of
the method from being understood adequately. The parameter settings used in this study are shown in Table 4. µ,
α, Min, and Max parameter values were used as determined in the original paper (Abualigah et al., 2021). Thus,
fair comparisons could be made in the literature.

Table 3. Different means of the population sizes for BinAOA for S=1
ID BinAOA

 Pop=10 Pop=20 Pop=30 Pop=40 Pop=50 Pop=60 Pop=70 Pop=80 Pop=90

71 932615,8 932615,8 932615,8 932615,8 932615,8 932615,8 932615,8 932615,8 932615,8

72 977799,4 977799,4 977799,4 977799,4 977799,4 977799,4 977799,4 977799,4 977799,4

73 1010897,17 1010641,45 1010641,45 1010641,45 1010641,45 1010641,45 1010641,45 1010641,45 1010641,45

74 1039607,11 1037393,92 1035471,895 1035524,995 1035524,995 1035250,985 1035250,985 1034976,975 1034976,975

101 798834,7338 797967,0625 797298,6363 797772,9175 797791,775 797194,035 797025,8375 797025,8375 797025,8375

102 859762,23 858837,41 858765,62 857614,4075 859036,91 857498,7025 858059,02 856840,4375 856891,4175
103 907512,3375 904841,535 904910,8375 902201,86 902643,0375 903786,7475 902868,5225 899149,815 900218,2525
104 961453,7625 957387,7825 953344,2263 952503,32 950687,6363 949898,045 949328,3838 950521,7613 945358,3875

131 840855,0213 836403,28 836349,3788 834511,2913 835634,4013 833349,7275 833452,185 833043,98 834321,1313
132 943130,1038 936985,3338 935604,7263 930438,7225 927859,435 928580,5113 925765,8038 928867,73 924182,1575

133 1031529,218 1017725,224 1016103,306 1016014,518 1003908,886 1012950,283 1000362,451 1005067,814 1004087,429
134 1168812,003 1137814,88 1135041,369 1133629,371 1116165,786 1130133,69 1125929,625 1113058,54 1113751,104

Table 4. Parameter setups for BinAOA and BinAOAX

Methods Population size (N) Maximum

evaluation

µ α Min Max r1, r2, and r3

BinAOA 40 8,00E+04 0,5 5 0,2 1 [0,1]

BinAOAX 40 8,00E+04 0,5 5 0,2 1 [0,1]

3.2. The Comparisons of the BinAOA and BinAOAX on UFLPs

3.2.1. The results of BinAOA on S and V-shaped transfer functions

The performance of BinAOA has been successfully tested on eight different transfer functions. As parameter
settings, population number and maximum evaluation number were selected as 40 and 8,00E+04, respectively.
Experiment results for BinAOA are shown in Tables 5-12. The convergence graphs of the transfer functions S1,
S2, S3, S4, V1, V2, V3, and V4 for twelve different UFLP datasets are shown in Figure 1. Eight different transfer
functions are compared according to six different comparison criteria. These are the best, mean, the worst, standard
deviation (Std), gap, and CPU time.
The success of BinAOA has been thoroughly tested in four S-shaped and four V-shaped transfer functions. It has
been shown that V-shaped transfer functions give more successful results than S-shaped transfer functions.
According to the Gap and Std results, the most successful transfer functions were V1 and V2, while the most
unsuccessful transfer function was S4. V1 and V2 transfer functions reached optimum results in 7 out of 12
benchmark datasets (71, 72, 73, 74, 102, 104, and 134). According to Figure 1, V-shaped transfer functions
converged to optimum results faster than S-shaped transfer functions.

Table 5. The results of BinAOA on UFL Problems for S1.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,8 932615,75 0 0 0,1292
72 977799,4 977799,4 977799,4 0 0 0,1461
73 1010641,45 1010641,45 1010641,45 0 0 0,1152
74 1034976,975 1035524,995 1037717,075 1124,5 0,0529 0,0294
101 797582,2875 797772,9175 798535,4375 391,2 0,1412 0,0386
102 854704,2 857614,4075 860547,375 1953,7 0,3405 0,1725
103 899428,5625 902201,86 904515,0625 1813,7 0,9420 0,1828
104 949595,9375 952503,32 956310,125 2444,0 2,5364 0,2102
131 829938,425 834511,2913 843833,325 4452,06 5,1764 0,3745
132 916028,4 930438,7225 939473,125 8108,6 9,2711 0,3278
133 983923,4125 1016014,518 1029223,625 12387,3 13,7656 0,3851
134 1110162,013 1133629,371 1149222,088 13553,9 22,0345 0,3165

Table 6. The results of BinAOA on UFL Problems for S2.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,8 932615,75 0 0 0,1392
72 977799,4 977799,4 977799,4 0 0 0,1261
73 1010641,45 1010649,786 1010808,163 37,28 0,0008 0,1049
74 1034976,975 1035936,01 1037717,075 1340,90 0,0927 0,0995
101 796648,4375 798713,3969 799914,25 843,37 0,2592 0,2186
102 854704,2 859011,9656 862507,25 1955,39 0,5040 0,1943
103 897440,6125 901003,3019 906402,4875 2960,93 0,8079 0,1778
104 939030,825 949161,4175 956035,7375 5132,33 2,1766 0,2008
131 824672,3625 831100,9688 839150,6 3747,64 4,7466 0,3699
132 901434,35 920487,9031 931896,9875 7917,89 8,1025 0,3368
133 966397,675 995860,0744 1012662,4 10124,34 11,5089 0,3371
134 1047488,588 1099294,859 1134420,938 24630,64 18,3384 0,3361

Table 7. The results of BinAOA on UFL Problems for S3.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,8 932615,75 0 0 0,1477
72 977799,4 977853,245 978876,3 234,70 0,0055 0,1405
73 1010641,45 1010666,457 1010808,163 59,53 0,0025 0,1160
74 1034976,975 1035113,98 1037717,075 597,19 0,0132 0,1103
101 797657,275 800536,5506 803091,575 1267,03 0,4881 0,2322
102 854704,2 859701,9219 863064,9375 2270,49 0,5847 0,1983
103 898800,0375 902659,695 906485,525 2157,28 0,9933 0,1820
104 944168,3 950772,2194 962475,5 4331,34 2,3500 0,1473
131 822311,4375 830496,8688 836373,1875 3646,85 4,6705 0,2914
132 903529,85 915021,2556 925101,9875 5038,91 7,4605 0,3243
133 964312,3375 982250,0463 999685,4375 11059,79 9,9850 0,2909
134 1052245,363 1091590,101 1116783,088 19655,36 17,5090 0,2815

Table 8. The results of BinAOA on UFL Problems for S4.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932663,4075 933568,9 207,73 0,0051 0,1197
72 977799,4 977907,09 978876,3 323,07 0,0110 0,0986
73 1010641,45 1010658,121 1010808,163 50,01 0,0016 0,1004
74 1034976,975 1035524,995 1037717,075 1096,04 0,0529 0,1133
101 799335,1625 801212,5331 803138,8625 928,90 0,5729 0,2078
102 856767,0625 860472,1794 863642,4875 2091,03 0,6749 0,1757
103 897558,6625 902370,5788 906771,6875 2727,91 0,9609 0,1600
104 932985,325 946473,3088 956468,7625 6724,14 1,8873 0,1370
131 822176,9875 830485,3356 835913,8 3915,01 4,6690 0,3026
132 905280,9875 913476,2956 920965,825 5104,19 7,2791 0,2644
133 951846,6 983071,25 999685,4375 10520,15 10,0769 0,3136
134 1056171,138 1087346,608 1103423,063 12946,10 17,0522 0,2705

Table 9. The results of BinAOA on UFL Problems for V1.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1151
72 977799,4 977799,4 977799,4 0 0 0,0956
73 1010641,45 1010641,45 1010641,45 0 0 0,0598
74 1034976,98 1034976,98 1034976,98 0 0 0,0537
101 796648,4375 797325,5775 799144,6875 722,27 0,0850 0,1579
102 854704,2 854704,2 854704,2 0 0 0,1395
103 893782,1125 893866,9688 894801,1625 228,88 0,0095 0,1012
104 928941,75 928941,75 928941,75 0 0 0,0675
131 794299,85 796458,8144 799304,6625 1369,80 0,3805 0,1675
132 851495,325 851925,6088 855005,5625 797,27 0,0505 0,1613
133 893076,7125 893629,3175 894801,1625 569,29 0,0619 0,1320
134 928941,75 928941,75 928941,75 0 0 0,0930

Table 10. The results of BinAOA on UFL Problems for V2.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1101
72 977799,4 977799,4 977799,4 0 0 0,0861
73 1010641,45 1010641,45 1010641,45 0 0 0,0584
74 1034976,98 1034976,98 1034976,98 0 0 0,0537
101 796648,4375 797402,6925 799103,6 814,06 0,0947 0,1395
102 854704,2 854704,2 854704,2 0 0 0,1115
103 893782,1125 893951,825 895027,1875 336,75 0,0190 0,0902
104 928941,75 928941,75 928941,75 0 0 0,0738
131 794299,85 796997,2213 799155,6125 1299,95 0,4484 0,1505
132 851495,325 852073,13 854166,6375 641,64 0,0679 0,1244
133 893076,7125 893558,7775 894801,1625 589,34 0,0540 0,1047
134 928941,75 928941,75 928941,75 0 0 0,0686

Table 11. The results of BinAOA on UFL Problems for V3.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1065
72 977799,4 977799,4 977799,4 0 0 0,0906
73 1010641,45 1010641,45 1010641,45 0 0 0,0550
74 1034976,98 1034976,98 1034976,98 0 0 0,0483
101 796648,4375 798468,9313 802364,4875 1361,98 0,2285 0,1287
102 854704,2 854742,3325 855466,85 166,22 0,0045 0,1114
103 893782,1125 894246,2388 895027,1875 485,57 0,0519 0,0744
104 928941,75 928941,75 928941,75 0 0 0,0558
131 796550,9875 800196,3663 803265,8625 1926,46 0,8516 0,1610

132 851495,325 852547,0688 855054,5875 944,99 0,1235 0,1366
133 893076,7125 893766,4925 894801,1625 595,21 0,0772 0,1138
134 928941,75 928941,75 928941,75 0 0 0,0742

Table 12. The results of BinAOA on UFL Problems for V4.

ID
BinAOA

Best Mean Worst Std Gap CPU Time

71 932615,75 932884,0019 934199,1375 540,13 0,0288 0,1009
72 977799,4 977799,4 977799,4 0 0 0,0970
73 1010641,45 1010641,45 1010641,45 0 0 0,0596
74 1034976,98 1034976,98 1034976,98 0 0 0,0515
101 797508,725 800141,875 803632,0375 1599,30 0,4385 0,1332
102 854704,2 855023,2506 856004,4125 456,59 0,0373 0,1066
103 893782,1125 894382,0475 895027,1875 498,84 0,0671 0,0768
104 928941,75 928941,75 928941,75 0 0 0,0557
131 796152,15 801548,4163 805865,775 2383,77 1,0220 0,1535
132 852151,5875 854174,6388 856941,8625 1545,83 0,3147 0,1201
133 893076,7125 893771,305 894801,1625 615,68 0,0778 0,1074
134 928941,75 928941,75 928941,75 0 0 0,0810

Figure 1. The convergence graphs of the BinAOA for twelve different UFLP data sets

3.2.2. The results of BinAOAX on S and V-shaped transfer functions
The performance of BinAOAX has been successfully tested on eight different transfer functions. As parameter
settings, population number and maximum evaluation number were selected as 40 and 8,00E+04, respectively.
Experiment results for BinAOAX are shown in Tables 13-20. The convergence graphs of the transfer functions
S1, S2, S3, S4, V1, V2, V3, and V4 for twelve different UFLP data sets are shown in Figure 2. Eight different
transfer functions are compared according to six different comparison criteria. These are the best, mean, the worst,
standard deviation (Std), gap, and CPU time.
The success of BinAOAX has been thoroughly tested in four S-shaped and four V-shaped transfer functions. It
has been shown that V-shaped transfer functions give more successful results than S-shaped transfer functions.
According to the Gap and Std results, the most successful transfer functions were V1 and V2, while the most
unsuccessful transfer function was S4. V1 and V2 transfer functions reached optimum results in 12 out of 12
benchmark datasets (71, 72, 73, 74, 102, 103, 104, 131, 132, 133, and 134).

Table 13. The results of BinAOAX on UFL Problems for S1.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1486

72 977799,4 977799,4 977799,4 0 0 0,1238
73 1010641,45 1010641,45 1010641,45 0 0 0,1282
74 1034976,98 1034976,98 1034976,98 0 0 0,1073
101 796648,4375 797557,2063 799144,6875 689,62 0,1141 0,2036
102 854704,2 858518,2144 861850,7875 1995,97 0,4462 0,1647
103 893782,1125 902398,1569 908183,2375 3669,14 0,9640 0,1622
104 932007,9625 950505,7913 964093,05 8679,63 2,3214 0,1553
131 831163,1875 837227,1675 844537,2375 3639,80 5,5187 0,3855
132 914447,9125 929423,1069 941688,75 7516,95 9,1519 0,3329
133 996954,875 1014535,522 1033251,663 9542,86 13,6000 0,3092
134 1094624,388 1129905,497 1159764,825 17038,31 21,6336 0,3230

Table 14. The results of BinAOAX on UFL Problems for S2.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1324
72 977799,4 977799,4 977799,4 0 0 0,1238
73 1010641,45 1010641,45 1010641,45 0 0 0,1008
74 1034976,975 1035524,995 1037717,08 1096,04 0,0529 0,1029
101 797508,725 798812,9906 800527,34 921,47 0,2717 0,2014
102 855466,85 858818,5425 862379,04 2088,25 0,4814 0,2086
103 893782,1125 901452,3094 907101,375 3731,63 0,8582 0,1856
104 930026,55 947366,0313 957732,45 7294,99 1,9834 0,1762
131 827763,7 832685,075 839864,725 3637,02 4,9463 0,5913
132 902781,15 920465,8331 933066,575 7525,36 8,0999 0,3951
133 978194,65 999305,3419 1012022,51 9799,77 11,8947 0,4015
134 1052082,313 1100257,473 1129869,05 21471,48 18,4420 0,3967

Table 15. The results of BinAOAX on UFL Problems for S3.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1252
72 977799,4 977799,4 977799,4 0 0 0,1084
73 1010641,45 1010679,431 1011234,363 132,38 0,0038 0,0909
74 1034976,975 1035662 1037717,075 1186,50 0,0662 0,0827
101 797508,725 800159,5206 801959,25 1138,93 0,4407 0,1800
102 855466,85 859041,7181 862429,05 1872,01 0,5075 0,1575
103 894008,1375 901547,1681 907761,7625 3310,37 0,8688 0,1393
104 934650,3 946568,99 959928,775 6536,92 1,8976 0,1733
131 823145,4375 831019,51 836188,9 3693,40 4,7363 0,3779
132 900140,525 915623,57 923588,2 5713,89 7,5312 0,3557
133 978750,55 992054,8656 1008248,4 7258,62 11,0828 0,3441
134 1064072,3 1089013,726 1112509,663 12877,86 17,2316 0,3586

Table 16. The results of BinAOAX on UFL Problems for S4.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1598
72 977799,4 977853,245 978876,3 234,70 0,0055 0,1701
73 1010641,45 1010679,431 1011067,65 102,07 0,0038 0,1118
74 1034976,975 1035500,42 1038841,375 1262,84 0,0506 0,1115
101 798243,3125 800436,2031 802513,0375 1177,64 0,4755 0,2382
102 857555,1375 860375,2656 863866,325 1718,95 0,6635 0,2310
103 896993,0875 902081,9788 906301,525 2370,64 0,9286 0,1789
104 936507,5 949626,5513 959391,2625 5500,13 2,2267 0,2009
131 822501 830952,4094 836442,2875 3573,90 4,7279 0,3790
132 899483,85 914055,3513 927896,8125 7055,31 7,3471 0,3446
133 970313,2 985239,99 1001528,9 9625,60 10,3197 0,3652
134 1048731,975 1084621,239 1111667,663 15861,28 16,7588 0,4154

Table 17. The results of BinAOAX on UFL Problems for V1.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1353
72 977799,4 977799,4 977799,4 0 0 0,1030
73 1010641,45 1010641,45 1010641,45 0 0 0,0691
74 1034976,98 1034976,98 1034976,98 0 0 0,0539
101 796648,4375 796648,4375 796648,4375 0 0 0,1535
102 854704,2 854704,2 854704,2 0 0 0,1237
103 893782,11 893782,11 893782,11 0 0 0,0952
104 928941,75 928941,75 928941,75 0 0 0,0657
131 793439,56 793439,56 793439,56 0 0 0,1772
132 851495,33 851495,33 851495,33 0 0 0,1591
133 893076,71 893076,71 893076,71 0 0 0,1280
134 928941,75 928941,75 928941,75 0 0 0,0925

Table 18. The results of BinAOAX on UFL Problems for V2.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1315
72 977799,4 977799,4 977799,4 0 0 0,0926
73 1010641,45 1010641,45 1010641,45 0 0 0,0640
74 1034976,98 1034976,98 1034976,98 0 0 0,0528
101 796648,4375 796648,4375 796648,4375 0 0 0,1530
102 854704,2 854704,2 854704,2 0 0 0,1262
103 893782,11 893782,11 893782,11 0 0 0,0927
104 928941,75 928941,75 928941,75 0 0 0,0564
131 793439,56 793439,56 793439,56 0 0 0,1625
132 851495,33 851495,33 851495,33 0 0 0,1207
133 893076,71 893076,71 893076,71 0 0 0,1048
134 928941,75 928941,75 928941,75 0 0 0,0729

Table 19. The results of BinAOAX on UFL Problems for V3.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1161
72 977799,4 977799,4 977799,4 0 0 0,0967
73 1010641,45 1010641,45 1010641,45 0 0 0,0578
74 1034976,98 1034976,98 1034976,98 0 0 0,0509
101 796648,4375 798127,8688 799920,8125 781,83 0,1857 0,1402
102 854704,2 854767,5775 855971,75 276,26 0,0074 0,1196
103 893782,1125 894183,985 895027,1875 484,99 0,0450 0,0971
104 928941,75 928941,75 928941,75 0 0 0,0545
131 796255,6625 798757,4256 803759,775 1798,34 0,6702 0,1869
132 851495,325 852414,2981 855041,725 931,83 0,1079 0,1315
133 893076,7125 893625,4125 894801,1625 534,52 0,0614 0,1101
134 928941,75 928941,75 928941,75 0 0 0,0817

Table 20. The results of BinAOAX on UFL Problems for V4.

ID
BinAOAX

Best Mean Worst Std Gap CPU Time

71 932615,75 932615,75 932615,75 0 0 0,1085
72 977799,4 977864,4106 979099,6125 283,37 0,0066 0,0937
73 1010641,45 1010641,45 1010641,45 0 0 0,0597
74 1034976,98 1034976,98 1034976,98 0 0 0,0473
101 797508,725 800509,9588 803277,35 1462,78 0,4847 0,1341
102 854704,2 854983,485 855971,75 446,09 0,0327 0,1100
103 893782,1125 894240,4913 895027,1875 495,42 0,0513 0,0843
104 928941,75 928941,75 928941,75 0 0 0,0521
131 797735,5375 802427,8825 808941,2875 2747,02 1,1328 0,1460
132 851495,325 853936,7125 857627,3875 1744,50 0,2867 0,1536
133 893076,7125 893807,5994 894801,1625 548,22 0,0818 0,1146
134 928941,75 928941,75 928941,75 0 0 0,0817

Figure 2. The convergence graphs of the BinAOAX for twelve different UFLP data sets

3.2.3. The comparison of BinAOA and BinAOAX results on S and V-shaped transfer functions
The success of BinAOA and BinAOAX algorithms on twelve different UFL problems in eight different transfer
functions were compared. Comparison results are shown in Figure 3 and Figure 4. According to the comparison
results, it has been proven that BinAOAX achieves better results than BinAOA. BinAOAX converged to optimum
results faster than BinAOA. The new candidate generation method developed using the xor logic gate has increased
the success of BinAOA.
Statistical test results are shown in Table 21. The confidence interval of the Wilcoxon Signed-Rank test results of
the BinAOA and BinAOAX is 0.05 in Table 21. According to the results, BinAOA and BinAOAX produced
similar results in different transfer functions. Among the transfer functions, V-shaped transfer functions produced
better results than S-shaped transfer functions. Therefore, V1 and V2 transfer functions were preferred in literature
comparisons.

Figure 3. The convergence graphs of the BinAOA and BinAOAX for twelve different UFLP data sets (S-Shape

transfer functions)

Figure 4. The convergence graphs of the BinAOA and BinAOAX for twelve different UFLP data sets (V-Shape

transfer functions)

Table 21. The statistical test results of BinAOA with BinAOAX (S-shaped and V-shaped transfer functions).
Cap_ID S1 S2 S3 S4 V1 V2 V3 V4

p p p p p p p p

71 1 1 1 1 1 1 1 0,125
72 7,74E-06 1 1 1 1 1 1 1
73 1 1 1 0,75 1 1 1 1
74 0,21726 0,453125 0,21875 0,671875 7,74E-06 1 1 1

101 0,235116 0,97022 0,27071 0,044208 0,000488 0,000488 0,513142 0,350405
102 0,085897 0,793839 0,313463 0,708905 1 1 1 0,755859
103 0,575486 0,681322 0,501591 0,82276 0,125 0,015625 0,740723 0,470642
104 0,411465 0,370261 0,016881 0,061953 1 1 1 1
131 0,067355 0,100458 0,681322 0,851925 8,77E-05 8,79E-05 0,026318 0,247145
132 0,65415 0,881293 0,331723 0,708905 0,001953 0,000488 0,571243 0,736875
133 0,525653 0,20433 0,003592 0,765198 0,000977 0,003906 0,492676 0,886146
134 0,350656 0,97022 0,681322 0,601213 1 1 1 1

3.2.4. The comparison of BinAOA and BinAOAX results with TSA, ISS, and BinSSA
The BinAOAX and BinAOA have been compared to TSA, JayaX, ISS, and BinSSA for twelve UFL problems.
Comparison results have been obtained from various sources (Çınar and Kiran, 2018; Baş and Ülker, 2020a; Hakli
and Ortacay, 2019). All algorithms were run under similar conditions to ensure a fair comparison of results. In the
comparison process, the population size is determined as 40 and the maximum evolution as 8E+04 equally. The
comparison results are shown in Table 22.
According to the results, BinAOAX results are quite good. Like TSA, ISS, BinSSA, BinAOAX also achieved
optimum results and its rank value was 1. BinAOA, on the other hand, failed to pass TSA, ISS, BinSSA, and
BinAOAX in 7 of 12 benchmark datasets.

Table 22. The comparison results of BinAOA, BinAOAX, TSA, ISS, and BinSSA.

Cap_ID TSA ISS BinSSA BinAOA BinAOAX

Gap Rank Gap Rank Gap Rank Gap Rank Gap Rank

71 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

72 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

73 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

74 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

101 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0850 2 0,0E+00 1

102 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

103 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0095 2 0,0E+00 1

104 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

131 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,3805 2 0,0E+00 1

132 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0505 2 0,0E+00 1

133 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0619 2 0,0E+00 1

134 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

3.2.5. The comparison of BinAOA and BinAOAX results with BJA, JayaX, and JayaX-LSM
The BinAOAX and BinAOA have been compared to BJA, JayaX, and JayaX-LSM for twelve UFL problems.
Comparison results have been obtained from (Aslan et al., 2019). All algorithms were run under similar conditions
to ensure a fair comparison of results. In the comparison process, the population size is determined as 40 and the
maximum evolution as 8E+04 equally. The comparison results are shown in Table 23.
According to the results, BinAOAX results are quite good. Like JayaX, JayaX-LSM, BinAOAX also achieved
optimum results and its rank value was 1. BinAOAX has passed BJA on all benchmark datasets.

Table 23. The comparison results of BinAOA, BinAOAX, BJA, JayaX, and JayaX_LSM.

Cap_ID BJA JayaX JayaX-LSM BinAOA BinAOAX

Gap Rank Gap Rank Gap Rank Gap Rank Gap Rank

71 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

72 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

73 0,01211 2 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

74 0,04412 2 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

101 0,01800 2 0,0E+00 1 0,0E+00 1 0,0850 3 0,0E+00 1

102 0,01509 2 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

103 0,02153 3 0,0E+00 1 0,0E+00 1 0,0095 2 0,0E+00 1

104 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

131 0,14290 2 0,0E+00 1 0,0E+00 1 0,3805 3 0,0E+00 1

132 0,11215 3 0,0E+00 1 0,0E+00 1 0,0505 2 0,0E+00 1

133 0,13623 3 0,0E+00 1 0,0E+00 1 0,0619 2 0,0E+00 1

134 0,02459 2 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

3.2.6. The comparison of BinAOA and BinAOAX results with BPSO, and CPSO
The BinAOAX and BinAOA have been compared to BPSO and CPSO for twelve UFL problems. Comparison
results have been obtained from (Kashan et al., 2013; Korkmaz and Kiran, 2018). All algorithms were run under
similar conditions to ensure a fair comparison of results. In the comparison process, the population size is
determined as 40 and the maximum evolution as 8E+04 equally. The comparison results are shown in Table 24.
According to the results, BinAOAX results are quite good. BinAOAX has passed BPSO, CPSO, and BinAOA on
all benchmark datasets.

Table 24. The comparison results of BinAOA, BinAOAX, BPSO, and CPSO.

Cap_ID BPSO CPSO BinAOA BinAOAX

Gap Rank Gap Rank Gap Rank Gap Rank

71 0,0E+00 1 5,0E-02 2 0,0E+00 1 0,0E+00 1

72 0,0E+00 1 7,0E-02 2 0,0E+00 1 0,0E+00 1

73 2,42E-02 2 6,0E-02 3 0,0E+00 1 0,0E+00 1

74 8,82E-03 2 7,0E-02 3 0,0E+00 1 0,0E+00 1

101 4,32E-02 2 1,4E-01 4 0,0850 3 0,0E+00 1

102 9,89E-03 2 1,5E-01 3 0,0E+00 1 0,0E+00 1

103 4,94E-02 3 1,6E-01 4 0,0095 2 0,0E+00 1

104 4,05E-02 2 1,8E-01 3 0,0E+00 1 0,0E+00 1

131 1,71E-01 2 7,5E-01 4 0,3805 3 0,0E+00 1

132 5,83E-02 3 7,8E-01 4 0,0505 2 0,0E+00 1

133 8,29E-02 3 7,3E-01 4 0,0619 2 0,0E+00 1

134 1,95E-01 2 8,9E-01 3 0,0E+00 1 0,0E+00 1

3.2.7. The comparison of BinAOA and BinAOAX results with DisDE, and BinDE
The BinAOAX and BinAOA have been compared to DisDE and BinDE for twelve UFL problems. Comparison
results have been obtained from (Kashan et al., 2013). All algorithms were run under similar conditions to ensure

a fair comparison of results. In the comparison process, the population size is determined as 40 and the maximum
evolution as 8E+04 equally. The comparison results are shown in Table 25.
According to the results, BinAOAX results are quite good. BinAOAX has passed DisDE, BinDE, and BinAOA
on all benchmark datasets.

Table 25. The comparison results of BinAOA, BinAOAX, DisDE, and BinDE.

Cap_ID DisDE BinDE BinAOA BinAOAX

Gap Rank Gap Rank Gap Rank Gap Rank

71 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

72 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

73 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

74 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

101 7,2E-03 2 0,0E+00 1 0,0850 3 0,0E+00 1

102 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

103 8,4E-04 2 0,0E+00 1 0,0095 3 0,0E+00 1

104 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

131 0,0E+00 1 3,6E-03 2 0,3805 3 0,0E+00 1

132 0,0E+00 1 5,0E-03 2 0,0505 3 0,0E+00 1

133 1,5E-02 3 1,4E-02 2 0,0619 4 0,0E+00 1

134 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

3.2.8. The comparison of BinAOA and BinAOAX results with ABCBin, DisABC, and BinABC
The BinAOAX and BinAOA have been compared to ABCBin, DisABC, and BinABC for twelve UFL problems.
Comparison results have been obtained from (Kiran and Gunduz, 2013; Kiran, 2015). All algorithms were run
under similar conditions to ensure a fair comparison of results. In the comparison process, the population size is
determined as 40 and the maximum evolution as 8E+04 equally. The comparison results are shown in Table 26.
According to the results, BinAOAX results are quite good. BinAOAX has passed ABCBin, DisABC, BinABC, and
BinAOA on all benchmark datasets.

Table 26. The comparison results of BinAOA, BinAOAX, ABCBin, DisABC, and BinABC.

Cap_ID ABCBin DisABC BinABC BinAOA BinAOAX

Gap Rank Gap Rank Gap Rank Gap Rank Gap Rank

71 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

72 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

73 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

74 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

101 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0850 2 0,0E+00 1

102 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

103 5,1E-03 2 0,0E+00 1 0,0E+00 1 0,0095 3 0,0E+00 1

104 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

131 2,0E-01 2 6,2E-01 4 0,0E+00 1 0,3805 3 0,0E+00 1

132 2,0E-02 2 9,5E-02 4 0,0E+00 1 0,0505 3 0,0E+00 1

133 7,5E-02 4 3,1E-02 2 1,2E-01 5 0,0619 3 0,0E+00 1

134 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1 0,0E+00 1

3.3. The performances of the BinAOA and BinAOAX on the classical benchmark functions

The BinAOA and BinAOAX are also tested on eleven unimodal and multimodal benchmark functions. These
functions are shown in Table 27. With these tests, the success of both algorithms has been demonstrated again.
Also, the effect of xor gate on the performance of BinAOA has been shown. BinaAOA and BinaAOAX methods
are compared with the binary versions of Jaya (Rao, 2016; Aslan et al., 2019), Gray Wolf Optimization (GWO)
(Mirjalili et al., 2014), and Tree Seed Algorithm (TSA) (Cinar et al., 2017) algorithms, which have been recently
developed and are well-known in the literature. Parameter setups for BinAOA, BinAOAX, Jaya, GWO, and TSA
are shown in Table 28. The comparison results are shown in Table 29. All algorithms have been studied
independently 20 times. The average (Avg), standard deviation (Std), Best and Worst values of the obtained results
were calculated. Continuous values are used as decision variables in the benchmark problems in this study. Each
candidate solution's dimension is represented by 50 bits, for a total of 500 bits for each candidate solution. This

dimensional length is used to obtain the binary equivalents of the continuous values. Because each candidate
solution is made up of binary data, they must be converted to continuous values before the cost of the candidate
solutions can be determined. This converting process is as follows:
 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑉𝑎𝑙𝑢𝑒𝑖 = 𝐿𝑜𝑤𝑒𝑟𝐵𝑖 + (𝑈𝑝𝑝𝑒𝑟𝐵𝑖−𝐿𝑜𝑤𝑒𝑟𝐵𝑖)×𝐷𝑒𝑐𝑖𝑚𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑖2𝑚−1 (13)

where ContinuousValuei is the continuous value for the ith dimension of the numeric vector and DecimalValuei is
a decimal value (DecimalValue) of m-dimensional binary vector for ith dimension numeric vector. UpperBi is the
upper bound of the ith dimension and LowerBi is the lower bound of the ith dimension.

The new candidate generation scenes of the basic BinAOA, BinAOAX, Jaya, TSA, and GWO are replaced as
follows, respectively:

 𝑃𝑛𝑒𝑤𝑖,𝑗 = { 𝑃𝑖,𝑗 ⊕ 𝑃𝑟𝑎𝑛𝑑 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑖,𝑗 < 0.5)𝑃𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (for BinAOA) (14)

 𝑃𝑛𝑒𝑤𝑖,𝑗 = { 𝑃𝑏𝑒𝑠𝑡 ⊕ 𝑃𝑖,𝑗 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑖,𝑗 < 0.5)𝑃𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (for BinAOAX) (15)

 𝑃𝑛𝑒𝑤𝑖,𝑗 = { 𝑃𝑖,𝑗 ⊕ (𝑃𝑏𝑒𝑠𝑡 ⊕ 𝑃𝑤𝑜𝑟𝑠𝑡) 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑖,𝑗 < 0.5)𝑃𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (for Jaya) (16)

 𝑃𝑛𝑒𝑤𝑖,𝑗 = {𝑃𝑖,𝑗 ⊕ (𝑃𝑏𝑒𝑠𝑡 ⊕ 𝑃𝑟𝑎𝑛𝑑) 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑖,𝑗 < 0.5)𝑃𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (for TSA) (17)

 𝑃𝑛𝑒𝑤𝑖,𝑗 = {𝑃𝑎𝑙𝑝ℎ𝑎 ⊕ (𝑃𝑏𝑒𝑡𝑎 ⊕ 𝑃𝑑𝑒𝑙𝑡𝑎) 𝑖𝑓 (𝑟𝑎𝑛𝑑𝑖,𝑗 < 0.5)𝑃𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (for GWO) (18)

where 𝑃𝑛𝑒𝑤𝑖,𝑗 is the jth dimension of ith new candidate produced for ith solution, 𝑃𝑖,𝑗 is the jth dimension of ith
solution, 𝑃𝑏𝑒𝑠𝑡 is the jth dimension of the best solution obtained so far, 𝑃𝑤𝑜𝑟𝑠𝑡 is the jth dimension of the worst
solution obtained so far, and 𝑃𝑟𝑎𝑛𝑑 is the jth dimension of neighbor tree randomly selected from the population. ⊕ is xor gate. 𝑃𝑎𝑙𝑝ℎ𝑎 , 𝑃𝑏𝑒𝑡𝑎, and 𝑃𝑑𝑒𝑙𝑡𝑎 are solutions calculated according to certain fitness values in GWO.
Statistical test results are shown in Table 30. The confidence interval of the Wilcoxon Signed-Rank test results of
the BinAOA, BinAOAX, Jaya, GWO, and TSA is 0.05 in Table 30. According to the results, BinAOAX obtained
statistically significantly different results from other compared algorithms.
Based on average results, BinAOAX outperformed 9 out of 11 benchmark functions (except f1 and f8). Based on

standard deviation results, BinAOAX outperformed 7 out of 11 benchmark functions (except f1, f3, f4, and f8).

After BinAOAX, the most successful algorithms were Jaya and TSA. The results showed that xor gate improved

the performance of BinAOA.

Table 27. Unimodal and multimodal benchmark functions
Function Range fmin 𝑓1(𝑥)=∑ 𝑥𝑖2𝑛𝑖=1 [-100,100] 0 𝑓2(𝑥) = ∑ |𝑥𝑖|𝑛𝑖=1 + ∏ |𝑥𝑖|𝑛𝑖=1

[-10,10] 0

𝑓3(𝑥) = ∑ (∑ 𝑥𝐽𝑖
𝑗=1)2𝑛

𝑖=1

[-100,100] 0

𝑓4(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} [-100,100] 0
f5(𝑥)=∑ [100(𝑥𝑖+1 − 𝑥𝑖2)2 + (𝑥𝑖 − 1)2]𝑛−1𝑖=1 [-30,30] 0

f6(𝑥)=∑ ([𝑥𝑖 + 0.5])2𝑛𝑖=1 [-100,100] 0
f7(𝑥)=∑ 𝑖𝑥𝑖4𝑛𝑖=1 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1) [-1.28,1.28] 0

f8(𝑥)=∑ −𝑥𝑖𝑛𝑖=1 𝑠𝑖𝑛(√|𝑥𝑖|) [-500,500] -
418.9829×5

f9(𝑥)=∑ [𝑥𝑖2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]𝑛𝑖=1 [-5.12,5.12] 0

f10(𝑥)=−20𝑒𝑥𝑝 (−0.2√1𝑛 ∑ 𝑥𝑖2𝑛𝑖=1) − 𝑒𝑥𝑝 (1𝑛 ∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)𝑛𝑖=1) + 20 + 𝑒𝑥𝑝(1)
[-32,32] 0

𝑓11(𝑥) = 14000 ∑ 𝑥𝑖2 − ∏ 𝑐𝑜𝑠 (𝑥𝑖√𝑖)𝑛𝑖=1𝑛𝑖=1 +1 [-600,600] 0

Table 28. Parameter setups for BinAOA, BinAOAX, Jaya, GWO, and TSA.
Methods Population size

 (N)

MaxFEs Dimension (n) Bit size for each

dimension (m)

The dimension of

the candidate

solution (n×m)

BinAOA 50 n×10000 10 50 500
BinAOAX 50 n×10000 10 50 500
Jaya 50 n×10000 10 50 500
GWO 50 n×10000 10 50 500
TSA 50 n×10000 10 50 500

Table 29. BinAOA, BinAOAX, GWO, TSA, Jaya algorithms compared on dimension=10
 Jaya TSA GWO BinAOA BinAOAX

f1
 Best 3,05E+03 2,91E+03 7,24E+03 7,39E+03 3,26E+03
 Worst 6,82E+03 7,01E+03 1,63E+04 1,32E+04 7,92E+03
 Avg 5,02E+03 4,86E+03 1,24E+04 1,08E+04 5,27E+03
 Std 1,27E+03 1,22E+03 2,60E+03 1,64E+03 1,27E+03
f2
 Best 1,30E+01 1,46E+01 3,07E+01 1,55E+01 1,64E+01
 Worst 4,31E+01 3,84E+01 7,15E+02 3,78E+01 3,34E+01
 Avg 2,61E+01 2,58E+01 2,12E+02 2,92E+01 2,57E+01
 Std 6,81E+00 5,88E+00 2,11E+02 5,13E+00 4,47E+00

f3
 Best 4,30E+03 3,43E+03 4,57E+03 3,82E+03 4,95E+03
 Worst 8,90E+03 1,09E+04 1,94E+04 8,90E+03 1,03E+04
 Avg 6,98E+03 8,15E+03 1,29E+04 6,68E+03 6,07E+03

 Std 1,15E+03 1,63E+03 4,17E+03 1,29E+03 1,32E+03
f4
 Best 3,48E+01 3,65E+01 4,65E+01 3,31E+01 3,36E+01
 Worst 5,13E+01 5,41E+01 7,26E+01 5,83E+01 5,67E+01
 Avg 4,29E+01 4,57E+01 6,28E+01 4,76E+01 3,89E+01
 Std 4,97E+00 4,23E+00 6,11E+00 6,35E+00 4,87E+00
f5
 Best 5,83E+05 8,53E+05 7,91E+05 4,57E+06 4,99E+05

 Worst 7,18E+06 1,54E+07 4,15E+07 1,69E+07 8,11E+06
 Avg 2,91E+06 5,02E+06 2,22E+07 9,99E+06 2,68E+06
 Std 1,67E+06 4,19E+06 1,07E+07 3,05E+06 1,63E+06
f6
 Best 1,85E+03 2,97E+03 7,86E+03 5,84E+03 1,94E+03
 Worst 7,16E+03 7,42E+03 1,82E+04 1,30E+04 8,78E+03
 Avg 4,83E+03 4,86E+03 1,31E+04 1,00E+04 2,78E+03
 Std 1,33E+03 1,23E+03 3,00E+03 1,82E+03 1,24E+03

f7
 Best 1,51E-01 1,29E-01 1,42E+00 2,08E+00 4,17E-02
 Worst 1,74E+00 1,54E+00 1,03E+01 4,51E+00 1,84E+00
 Avg 6,18E-01 7,85E-01 6,15E+00 3,08E+00 4,60E-01
 Std 3,33E-01 3,60E-01 2,42E+00 8,10E-01 2,49E-01

f8
 Best -2,77E+03 -2,41E+03 -1,96E+03 -2,18E+03 -2,63E+03
 Worst -1,76E+03 -1,57E+03 -1,14E+03 -1,81E+03 -1,59E+03
 Avg -2,15E+03 -2,02E+03 -1,41E+03 -1,89E+03 -2,09E+03
 Std 2,74E+02 2,23E+02 2,07E+02 1,05E+02 2,63E+02
f9
 Best 3,30E+01 6,95E+01 6,95E+01 6,62E+01 5,96E+01
 Worst 9,79E+01 9,49E+01 1,29E+02 9,67E+01 1,00E+02

 Avg 8,37E+01 8,52E+01 1,11E+02 8,40E+01 8,30E+01
 Std 1,37E+01 6,13E+00 1,45E+01 7,81E+00 1,12E+01
f10
 Best 1,48E+01 1,45E+01 1,81E+01 1,69E+01 1,55E+01
 Worst 1,90E+01 1,90E+01 2,03E+01 1,95E+01 1,89E+01
 Avg 1,73E+01 1,69E+01 1,95E+01 1,85E+01 1,59E+01
 Std 1,15E+00 1,13E+00 5,82E-01 7,24E-01 7,00E-01
f11
 Best 3,10E+01 2,54E+01 6,54E+01 4,77E+01 1,74E+01
 Worst 7,50E+01 6,98E+01 1,71E+02 1,14E+02 9,48E+01
 Avg 5,31E+01 4,73E+01 1,20E+02 9,19E+01 3,55E+01
 Std 1,20E+01 1,49E+01 2,77E+01 1,92E+01 1,42E+01

Table 30. The statistical test results on BinAOA, BinAOAX, GWO, TSA, and Jaya algorithms results
f_no BinAOAX-BinAOA BinAOAX-Jaya BinAOAX-TSA BinAOAX-GWO

p p p p
f1(x) 8,86E-05 6,81E-01 2,96E-01 8,86E-05
f2(x) 3,66E-02 8,81E-01 9,11E-01 8,86E-05
f3(x) 1,91E-01 2,28E-02 2,20E-03 2,19E-04
f4(x) 3,38E-04 6,20E-02 2,54E-04 8,86E-05
f5(x) 8,86E-05 7,65E-01 5,69E-02 8,86E-05
f6(x) 8,86E-05 7,80E-04 1,40E-04 8,86E-05
f7(x) 8,86E-05 1,67E-01 2,51E-02 8,86E-05
f8(x) 8,03E-03 4,78E-01 3,32E-01 8,86E-05
f9(x) 8,23E-01 6,54E-01 5,50E-01 2,93E-04
f10(x) 8,86E-05 8,92E-04 1,69E-02 8,86E-05
f11(x) 8,86E-05 3,59E-03 2,76E-02 8,86E-05

4. Conclusion

AOA is a newly developed heuristic algorithm in recent years. AOA is recommended for continuous optimization
tasks. The success of AOA on binary optimization problems has not been tested in the literature. Binary AOA
(BinAOA) has been proposed in this study. The structure of AOA has been updated and has gained the ability to
solve binary optimization problems as well. In this study, the second version of BinAOA is proposed. A candidate
solution strategy has been added to BinAOA. Logic gates are used in this candidate solution strategy. Xor logic
gate was used between the best solution of the population and a random solution of the population. New candidate
solutions produced have increased the performance of BinAOA. The new version of this proposed BinAOA is
named BinAOAX. BinAOA and BinAOAX methods have been tested on UFL problems. UFL problems are binary
optimization problems whose optimum results are known in the literature. It is frequently used as binary
optimization test problems in the literature. When BinAOA and BinAOAX are compared with the heuristic binary
optimization algorithms (TSA, ISS, the variations of the binary Jaya, the variations of the binary PSO, the
variations of the binary DE, the variations of the binary ABC) used in the literature, BinAOA and BinAOAX can
be preferred in the solutions of binary optimization problems. As a second test application, the performance of
BinAOA and BinAOAX algorithms are also tested on unimodal and multimodal classical benchmark functions.
The binary forms of AOA, AOAX, Jaya, Tree Seed Algorithm (TSA), and Gray Wolf Optimization (GWO)
algorithms were compared in different candidate generation scenarios. BinAOAX has shown a very successful
performance.
In future studies, the success of AOA on the feature selection problem, which is a different binary optimization
problem, will be tested.

Credit authorship contribution statement
Emine BAŞ: Conceptualization, Investigation, Methodology, Software, Writing – review, original draft & editing.
Gülnur Yıldızdan: Review, original draft & editing.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Funding: This study was not funded by any institution.

Acknowledgements: The BAOA algorithm was previously presented at the 3rd HAGIA SOPHIA
INTERNATIONALCONFERENCE ON MULTIDISCIPLINARY SCIENTIFIC STUDIES conference and the
details of BAOA are given in this paper.

References

Abualigah, L., Diabat, A., Mirjalili, S., Elaziz, MA., Gandomi, A.H., 2021. The Arithmetic Optimization

Algorithm, Comput. Methods Appl. Mech. Engrg. 376 (2021) 113609.
Aslan, M., Gunduz, M., Kiran M.S., 2019. JayaX: Jaya algorithm with xor operator for binary optimization,

Applied Soft Computing Journal 82, 105576.
Baş, E., Ülker, E., 2020a. A binary social spider algorithm for uncapacitated facility location problem, Expert

Systems with Applications 161 (2020) 113618.
Baş, E., Ülker, E., 2020b. An efficient binary social spider algorithm for feature selection problem, Expert Systems

With Applications 146, 113185.
Beşkirli M., Koc I., Hakli H., Kodaz H., 2018, A new optimization algorithm for solving wind turbine placement

problem: binary artificial algae algorithm, Renew Energy 121:301–308.
Çınar, A.C., Kiran, M.S., 2018. Similarity and Logic Gate-Based Tree-Seed Algorithms for Binary Optimization,

Computers & Industrial Engineering 115, 631–646.
Çınar, A.C., Iscan, H., Kiran, M.S., 2017. Tree-Seed algorithm for large-scale binary optimization, IAIT

Conference Proceedings, The 9th International Conference on Advances in Information Technology
Volume 2017.

Hakli, H., Ortacay, Z., 2019. An improved scatter search algorithm for the uncapacitated facility location problem,
Computers & Industrial Engineering, 135, 855–867.

Kashan, M.H., Kashan, A.H., Nahavandi, N., 2013. A novel differential evolution algorithm for binary
optimization, Comput. Optim. Appl. 55 (2) 481–513.

Kiran, M.S. (2015). The continuous artificial bee colony algorithm for binary optimization, Appl. Soft Comput.
33, 15–23.

Kiran, M.S., Gunduz, M., 2013. XOR-based artificial bee colony algorithm for binary optimization, Turkish
Journal of Electrical Engineering & Computer Sciences, 21(sup. 2), 2307–2328.

Korkmaz, S., Kiran, M.S., 2018. An artificial algae algorithm with stigmergic behavior for binary optimization,
Applied Soft Computing 64, 627–640.

Mirjalili, S., Mirjalili, S.M., Lewis, A., 2014. Grey wolf optimizer, Adv. Eng. Softw. 69, 46 – 61.
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremii, S., Faris, H., Mirjalili, S.M., 2017, Salp Swarm Algorithm:

A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw. 114, 163 – 191.
Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained

optimization problems.International Journal of Industrial Engineering Computations, 7(1), 19-34.

