
ORIGINAL ARTICLE

Enhanced prairie dog optimization with Levy flight and dynamic
opposition-based learning for global optimization and engineering
design problems

Saptadeep Biswas1 • Azharuddin Shaikh1 • Absalom El-Shamir Ezugwu2 • Japie Greeff3 • Seyedali Mirjalili4 •

Uttam Kumar Bera1 • Laith Abualigah5,6,7,8,9,10,11,12

Received: 20 July 2023 / Accepted: 21 February 2024 / Published online: 30 March 2024
� The Author(s) 2024

Abstract
This study proposes a new prairie dog optimization algorithm version called EPDO. This new version aims to address the

issues of premature convergence and slow convergence that were observed in the original PDO algorithm. To improve

performance, several modifications are introduced in EPDO. First, a dynamic opposite learning strategy is employed to

increase the diversity of the population and prevent premature convergence. This strategy helps the algorithm avoid falling

into local optima and promotes global optimization. Additionally, the Lévy dynamic random walk technique is utilized in

EPDO. This modified Lévy flight with random walk reduces the algorithm’s running time for the test function’s ideal

value, accelerating its convergence. The proposed approach is evaluated using 33 benchmark problems from CEC 2017

and compared against seven other comparative techniques: GWO, MFO, ALO, WOA, DA, SCA, and RSA. Numerical

results demonstrate that EPDO produces good outcomes and performs well in solving benchmark problems. To further

validate the results and assess reliability, the authors employ average rank tests, the measurement of alternatives, and

ranking according to the compromise solution (MARCOS) method, as well as a convergence report of EPDO and other

algorithms. Furthermore, the effectiveness of the EPDO algorithm is demonstrated by applying it to five design problems.

The results indicate that EPDO achieves impressive outcomes and proves its capability to address practical issues. The

algorithm performs well in solving benchmark and practical design problems, as supported by the numerical results and

validation methods used in the study.

Keywords Enhanced prairie dog optimization � Lévy distribution � Dynamic opposition-based learning � Global
optimization � Engineering design problem � MARCOS MCDM method � Benchmark problems

1 Introduction

Optimization issues in the real world are difficult. Due to

the growing number of variables, dimensions, time com-

plexity, space complexity, etc., they are becoming

increasingly complex. To deal with such challenging

optimization problems, one of the best choices is to use

meta-heuristics algorithm (MA) [32]. This is due to the

stochastic nature of MA, which allows them the ability to

show less probability of stagnation in local optimums and

provide high exploratory capability [28]. MA is less

expensive and more efficient with respect to other tradi-

tional optimization algorithms. MA have derivation-free

mechanisms in exploring search spaces to find the optimum

solution [30]. Multiple solutions or population-based MA

are better because they are capable of effective exploration

of the search space of the optimization problem [20].

Nowadays, MAs are applied to figure out various tech-

nical issues like design and structural optimization prob-

lems. Usually, these algorithms initialize their runs with a

set of randomly generated solutions and continue the pro-

cedure of evaluating the objective functions until the global

optimum is obtained [14]. Broadly speaking, MAs are

divided into two categories, viz. meta-heuristics with single

solution (MSS) and population-based meta-heuristics

(PBM) [17]. In MSS methods [such as simulated annealing

(SA) [21], tabu search (TS) [13], variable neighbourhood

search (VNS) [31]] a single search agent will perform theExtended author information available on the last page of the article

123

Neural Computing and Applications (2024) 36:11137–11170
https://doi.org/10.1007/s00521-024-09648-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-2203-4549
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-09648-4&amp;domain=pdf
https://doi.org/10.1007/s00521-024-09648-4


search operations, and on the contrary, a group of search

agents is involved in PBM algorithms. In PBM optimiza-

tion algorithms, each of the solution’s positions is updated

using single and social information. Furthermore, search

space can be checked using many solutions as quickly as

possible. Therefore, PMB’s outcomes are exhibited best

than MSS. In the literature, PBM is classified into five

types. They are evolutionary algorithm (EA), swarm

intelligence (SI), physics-based algorithm, human-based

algorithm and math-based algorithm, respectively, [8]. The

categorization of meta-heuristic algorithms is shown in

Fig. 1. Nature-inspired meta-heuristics are categorized into

five classes evolutionary algorithm, swarm intelligence,

physical and chemical-based algorithm, human-based

algorithm and math-based algorithm, respectively [1, 27].

Introducing new advanced MA is to get the optimal

value of complicated optimization problems as quickly as

possible and achieve a robust optimization process

[43, 48]. For every optimization problem, a specific opti-

mal solution exists called global optimal [33]. At the same

time, all the solutions obtained from optimization algo-

rithms are not necessarily globally optimal. However, they

are acceptable if their solutions get incredibly near to the

overall best solution. These unique solutions are called

quasi-optimal solutions [5, 6]. Using this idea, we can

conclude that an optimization algorithm is better than

others in optimizing a particular problem based on the

quasi-optimal solution, which is closer to global [7]. This is

a new direction of research for developing new optimiza-

tion algorithms. That question is whether there is still a

need for new optimization algorithms to be introduced in

light of the numerous MAs published in our scientific lit-

erature. As stated by the No Free Lunch theorem [46], no

single optimization algorithm can find globally optimal

solutions to all existing optimization problems. This

explains the fact that MA can solve a set of optimization

problems but not another set of optimization problems.

Therefore, no optimization algorithm can solve all existing

optimization problems. This is another reason for devel-

oping novel optimization algorithms to solve optimization

issues considering acceptable quasi-optimal solutions.

Every year thousands of nature-inspired optimization

algorithms (NIOA) are coming into the state of the art of

NIOA. So to give them a chance to survive, improving

their efficiency and robustness is necessary.

The prairie dog optimization algorithm (PDO) [11] is a

new natural-inspired population-based meta-heuristic

algorithm. PDO is first introduced by Ezugwu et al. in

2022. In PDO, prairie dog movements of four types are

considered to execute the exploration and exploitation

process of optimization. The foraging and burrow-building

actions of prairie dogs are utilized for exploring the

Fig. 1 Classification of meta-heuristics

11138 Neural Computing and Applications (2024) 36:11137–11170

123



decision variables in the search space. The exploitation

process is executed through the transmission sign of the

language of prairie dogs. It has the advantages of the most

efficient Lévy flight random walk for producing the new

position of prairie dogs, a unique updating process with

special attributes like digging strength and predator effect,

effective division of labours etc. Based on the results of the

original PDO experiment and assessments of alternative

algorithms, some issues have been raised. Premature con-

vergence frequently affects the PDO algorithm. Its run-

time is long due to the cumulative sum in a random walk.

There is an imbalance between exploration and exploita-

tion processes. It faces challenges due to the lack of

diversity in its population. It needs modifications for

enhancement of the overall performance of the algorithm.

So we have proposed an improved design of PDO in this

current thesis.

The opposition-based learning (OBL) strategy was first

introduced by Tizhoosh [44].

It is a powerful learning strategy which can enhance the

potential of the searching power of the MA or other opti-

mization algorithms [23]. The OBL strategy’s concept is

illustrated in Fig. 2. In literature, many algorithms have

been improved in terms of overall performance by using

the concept of OBL [10, 18, 34]. OBL is used to increase

the MAs’ accuracy and convergence rate. Generally, MAs

initialize the starting population randomly or on the basis

of search domain knowledge. But when this type of

knowledge is missing, The ideal solution cannot be reached

by MAs. In this situation, OBL can help to overcome this

problem by searching opposite direction to the recent

solution in the solution search space. It strengthens the

exploitation space. There are many different formulations

of OBL in the literature. Types of OBL are type-I oppo-

sition, type-I quasi-opposition, type-I super-opposition,

type-II opposition, generalized OBL, quasi-reflection OBL,

centre-based sampling, and OBL using current optimum

[37]. The majority of OBL-based optimization approaches

described in the literature aim at a potential opposite point

using deterministic methods. To improve the exploitation

process, it might not be enough. In paper [47], the author

presented a dynamic opposite learning (DOL)-based ver-

sion of the TLBO algorithm whose performance was

improved than the original algorithm in terms of conver-

gence rate, solution quality and balance between explo-

ration and exploitation. Later the authors of these papers

[3, 9, 38] also utilized the concept of DOL for enhancing

the performance of MAs like AO, MFO algorithm, WOA

etc. In our current study, we have introduced a version of

the DOL strategy which enhances the diversity in the

population of our proposed algorithm (E-PDO) and reduces

the chances of falling into a locally optimal solution.

The novelty and contribution of this work is the

improvement of the new optimization method PDO. An

improved design of PDO is proposed with a modified

random flight path and a dynamic opposite learning strat-

egy. Various steps of the proposed refinement of PDO are

described and modelled mathematically. A set of 33

objective functions, including uni-modal and multi-modal,

was used to test the effectiveness of the proposed enhanced

PDO. Furthermore, the performance of PDO is compared

with known optimization algorithms: GWO [30], MFO

[25], ALO [26], WOA [29], DA [27], SCA [28], RSA [1].

Fig. 2 Determining the optimal

estimates x and x0 for a one-

dimensional function with

initial boundary [P1, Q1] using
the concept of OBL strategy

where T is iteration count

Neural Computing and Applications (2024) 36:11137–11170 11139

123



The contributions of the present study are summarized as

follows:

• A modified Lévy flight is proposed to perform a random

search for the improved version of the standard PDO

algorithm.

• The existing PDO algorithm incorporates a DOL

strategy. The DOL strategy serves two key functions:

effective population initialization and another efficient

generation jump. This will help improve the ability to

diversify and enhance the new PDO version, the E-PDO

algorithm.

• The performance of the proposed enhanced PDO

algorithm is calculated by examining a set of 33

benchmark functions consisting of uni-modal, multi-

modal, uni-modal fixed-dimensional and multi-modal

fixed-dimensional. Also, the proposed E-PDO algo-

rithm was employed to solve two engineering design

problems.

• A statistical mean rank test method and the novel

statistical multi-criteria analysis method MARCOS are

used to evaluate how well the suggested method

performed.

1.1 Paper structure

The rest of the paper is structured as follows. An inspiring

synopsis of the original PDO is presented in Sect. 2. A

complete mathematical implementation is also discussed in

Sect. 2. Section 3 describes the Lévy flight concept and

DOL strategy, including a mathematical template. The

proposed E-PDO algorithm is explained in Sect. 4. The

experimental setup is presented in Sect. 5. Additionally,

Sect. 5 includes test work, results, and discussion. Sec-

tion 5 also presents a statistical analysis of the outcomes of

the experiment and the use of E-PDO to solve constrained

optimization issues is demonstrated in Sect. 5.6. Section 6

provides conclusions on the current work.

2 Prairie dog optimization algorithm

Prairie dogs are ground squirrels [Fig. 3]. Prairie dogs are

unique in their foraging and communication abilities. The

prairie dog optimization (PDO) algorithm is based pri-

marily on foraging movements, burrowing activities,

communication skills, and predator prevention activities of

the same coterie members of prairie dogs [11].

2.1 Algorithm assumptions

The assumptions of the prairie dog optimization (PDO)

algorithm can be summarized as follows:

• The algorithm assumes that all prairie dogs within a

colony are identical regarding their capabilities and

behaviours. This assumption allows for a standardized

approach to modelling the optimization process.

• Foraging for food and building burrows are the main

activities of prairie dogs. These actions are essential for

their survival and are mimicked in the optimization

algorithm.

• Prairie dogs build their burrows around food sources.

This relationship is incorporated into the algorithm,

where the solution space exploration is initiated based

on the location of the food source.

• Different coteries (subgroups) have their boundary

limits within a prairie dog colony. Each coterie is

responsible for foraging and burrowing activities within

its designated boundary. This helps distribute the

optimization process and promotes exploration within

different regions.

• The algorithm considers the importance of the latest

Burrow position in enhancing coterie operations. This

implies that the previous actions and experiences of the

prairie dogs influence their future exploration and

exploitation strategies.

• Prairie dogs communicate using distinct sounds that

convey specific information. These sounds can relate to

various scenarios, such as food availability and predator

threats. The ability to communicate plays a crucial role

in the prairie dogs’ survival and adaptation to predators.

• Prairie dogs exhibit different responses to various

predators. For example, they may hide in response to

a message indicating the presence of a predator within

the range of hawks while continuing to observe from

their burrows in other situations. This adaptability to

different methods of predation is incorporated into the

algorithm.
Fig. 3 Burrow entrance of a colony of prairie dogs

11140 Neural Computing and Applications (2024) 36:11137–11170

123



• Specific sounds emitted by prairie dogs trigger move-

ment and response patterns within different coteries.

These cycles of movement and response contribute to

the exploration and exploitation phases of the PDO

algorithm.

By incorporating these assumptions from the behaviour and

characteristics of prairie dogs, the PDO algorithm attempts

to mimic their foraging and burrowing behaviour to solve

optimization problems.

2.2 Implementations of basic PDO

The initialization, fitness function evaluation, exploration,

and exploitation of the fundamental PDO algorithm are all

covered in this section’s mathematical formulation. Prairie

dog populations are search agents, and prairie dog locations

are possible solutions to the algorithm. Even in the case of

PDO, random initialization is considered like other PBM

algorithms. All necessary indexes and parameters are

specified in Table 1.

2.2.1 Initialization

Suppose N is a prairie dog of a coterie. Each Prairie Dog

belongs to M coterie. The search space is filled with

N prairie dogs at random within the specified boundary [

LB UB ] in this stage, where LB signifies the least value of

the boundary of the associated variable of the test problem,

and UB signifies the highest value of the boundary.

The positions of all coteries within the colony are rep-

resented by a coterie matrix (C) in Eq. (1):

C ¼

C1;1 C1;2 � � � C1;d

C2;1 C2;2 � � � C2;d

..

. ..
.

Ci;j
..
.

CM�1;1 CM�1;2 � � � CM�1;d

CM;1 CM;2 � � � CM;d

2
66666664

3
77777775

ð1Þ

Ci;j signifies the ith coterie of jth dimension within the

colony.

The locations of all the prairie dogs in a coterie are

provided by the Prairie matrix (P) in the Eq. (2):

P ¼

P1;1 P1;2 � � � P1;d

P2;1 P2;2 � � � P2;d

..

. ..
.

Pi;j
..
.

PN�1;1 PN�1;2 � � � PN�1;d

PN;1 PN;2 � � � PN;d

2
66666664

3
77777775

ð2Þ

Pi;j signifies the ith prairie dog at jth location in a coterie.

Equations (3) and (4) are used to assign each coterie and

prairie dog location.

Ci;j ¼randð0; 1Þ � ðUBj � LBjÞ
þ LBj i ¼ 1; 2; � � � ;N; j ¼ 1; 2; � � � ;M;

ð3Þ

Pi;j ¼randð0; 1Þ � ðubj � lbjÞ
þ lbj i ¼ 1; 2; � � � ;N; j ¼ 1; 2; � � � ;M;

ð4Þ

where N �M, ubj ¼ UBj

M and lbj ¼ LBj

M and using a uniform

distribution, the value of rand(0,1) falls between 0 and 1.

2.2.2 Evaluation function assessment

The Evaluation function values for each prairie dog loca-

tion in a coterie are enumerated by providing the optimal

Table 1 Nomenclature for proposed algorithm E-PDO

Symbols Name Symbols Name

M or D Number of coteries (problem dimension) N Number of prairie dogs (number of variables)

P Position or location of Prairie Dogs i Index of starting position of Prairie Dogs

j Index of target position of Prairie Dogs rand Random numbers from uniform distribution

randn Random numbers from normal distribution randi Random integers from uniform distribution

t or iter Index for iterations T Maximum number of iterations

ECBest Effect of the current obtained best solution Ds Coterie’s digging strength

Pe Predator effect LF L�evy distribution (random walk based on L�evy distribution)

Bool - 1 or 1, according to odd or even current iteration CP Collective impact of the colony’s Prairie Dogs

RP Position of the randomly chosen solution s Individual prairie dog (P) position difference

� Food source quality �A Food source alarm

b Power law index w Weight factor of step length of L�evy flight

x Weight factor for DOL generation jumping

Neural Computing and Applications (2024) 36:11137–11170 11141

123



solution to the fitness function (fit(P)) in the (5) equation.

At each iteration, fitness values are calculated for all prairie

dog locations and stored as (n � 1) matrix:

fitðPÞ ¼

fit1ð P1;1 P1;2 � � � P1;d½ �Þ
fit2ð P2;1 P2;2 � � � P2;d½ �Þ

..

.

fitNð PN;1 PN;2 � � � PN;d½ �Þ

2
66664

3
77775

ð5Þ

Each evaluation function’s fitness value based on the

optimal location of the prairie dog reflects the food source

quality, its ability to make new burrows, and its successful

response to predators.

2.2.3 Exploration

In PDO, The location of the prairie dog is a probable

decision, and the best decision at each stage is considered

the best forager as well as the best response to a predator

alert. Exploration and use of the PDO algorithm are

accomplished through four strategies. These four strategies

are applied in four iteration steps. Two strategies for

exploration are applied in between 0\t\ T
4
and T

4
\t\ T

2

and other two for exploitation are used in between
T
2
\t\ 3T

4
and 3T

4
\t\T .

Burrow building is important for prairie dogs to protect

themselves from environmental threats and predators.

When their food source runs out, they start looking for new

food sources and build new burrows around them. The

initial step in the exploration phase is the movement of

coterie members from the ward in search of new food

sources. The random walk can mimic the behaviour of a

prairie dog. This movement with long jumps ensures the

effectiveness of the search for food sources. When a food

source is found, it makes a unique sound to alert other

members. Then they access food source quality, select the

best foraging, and build new burrows based on food source

quality. The position of the search update is given by the

(6) equation during the algorithm’s search phase.

Pnew
ðiþ1;jþ1Þ ¼ PBest

ð1;jÞ � ECBest
ði;jÞ � �A� CPði;jÞ � LF 8 t \

T

4

ð6Þ

The formula (7) yields the random collective impact of all

colony’s prairie dogs as CP.

CPði;jÞ ¼ rand �
PBest
ði;jÞ � Pðrandið½1 N�Þ;jÞ

PBest
ði;jÞ þ �

ð7Þ

ECBest measures the effectiveness of the currently obtained

optimal solution, as shown in the formula (8).

ECBest
ði;jÞ ¼ PBest

ði;jÞ � sþ
Pði;jÞ � meanðPðN;MÞÞ

PBest
ði;jÞ � ðUBj � LBjÞ þ �

 !
ð8Þ

A second strategy is to evaluate the quality of previous

food sources as well as the intensity of digging. The dig-

ging strength is intended to decrease with further iterations,

and new burrows are built on top of it. This circumstance

aids in limiting the potential number of burrows that can

form. The formula (9) provides the location update for

building burrow.

Pnew
ðiþ1;jþ1Þ ¼ PBest

ð1;jÞ � RP� Ds� LF 8 T

4
� t\

T

2
ð9Þ

The coterie’s digging intensity is denoted by the variable

Ds, which varies on the quality of the food supply and has

random values as defined by the Eq. (10).

Digging strength; Ds ¼ 1:5� randn� 1� t

T

� �2t
T�Bool

ð10Þ

2.2.4 Exploitation

Prairie dogs are capable of producing special types of

sounds for, unlike situations. They can able to differentiate

those special sounds for varying from the quality of food

sources to the dangers of predators. Each prairie dog has an

equal response ability to take care of these scenarios. Their

communication signals assist them to handle predator-in-

duced fear and also help them to fulfil their nutritional

requirements. Once the signal reports that the food source

is of good quality and safe, it converges on that signal

source to meet nutritional requirements. And when a

communication signal identifies a predator, prairie dogs

hide in the way of predators while other dogs watch from

their burrows.

Two specific behaviours, food alarm and anti-predation

alarm cause prairie dogs to converge on specific places

(promising if PDO is implemented), and further searches

(exploitation) are conducted to find a better or near-optimal

solution. The purpose of the exploit mechanism used in

PDO is to focus the search on promising areas identified

during the exploration phase. This phase is implemented

according to the following equations

Pnew
ðiþ1;jþ1Þ ¼ Pð1;jÞBest � ECBest

ði;jÞ � �� CPði;jÞ � rand

8 T

2
� t \

3T

4

ð11Þ

Pnew
ðiþ1;jþ1Þ ¼ PBest

ð1;jÞ � Pe� rand 8 3T

4
� t \T ð12Þ

Where predator effect (Pe) is defined as

11142 Neural Computing and Applications (2024) 36:11137–11170

123



Pe ¼ 1:5�
�
1� t

T

�2t
T�Bool ð13Þ

The PDO algorithm benefits from the most effective Lévy

flight random walk for generating the new position of

prairie dogs, a particular updating process with distinctive

characteristics like digging intensity and predator effect,

and an efficient division of labour. There are some con-

cerns based on original PDO experiment findings and

comparisons to other algorithms. It is true to say that the

PDO algorithm frequently experiences premature conver-

gence. The cumulative sum of a random walk causes its

lengthy run-time. The processes of exploration and

exploitation are not balanced. Its population is not diverse,

which presents problems. Therefore, those challenges have

been a focus of our recent research.

3 Foundational framework for advancing
prairie dog optimization (PDO) algorithm

3.1 Concepts of Lévy flight

A path consisting of a succession of randomly chosen steps

in a mathematical space like integers is referred to as a

random walk. This mathematical concept is also known as

a stochastic process or random process. This is the common

basis for the perturbations of the solution [51]. It is the

movement of a particle, which can jump to a neighbouring

node in the search space, starting at 0 and taking þ1 or �1

steps with a given probability each time it moves. Using a

normal distribution with a mean of zero and a variance of

one, we can calculate the step size Si of the random walk.

Si �
1ffiffiffiffiffiffi
2p

p e�
x2

2 ð14Þ

The current solution is represented here by x and � is used

to denote the drawing of random numbers according to the

distribution. Equation 15 gives the total of successive

random walking steps (RWn).

RWn ¼
Xn
i¼1

Si ¼ S1 þ S2 þ � � � þ Sn ð15Þ

This is the same as given in the following Eq. (16).

RWn ¼ RWn�1 þ Sn ð16Þ

The new state or transition phase depends only on the

existing state (RWn�1) and transition phase (Sn). This ran-

dom walk is also called the Brownian motion or diffusion

process. The search performance of the nature-inspired

optimization algorithm (NIOA) depends on a probability

distribution of the forager’s flight lengths that can only find

target sites in the search space [50].

Random walks provide more randomness in both

NIOA’s exploration and exploitation processes. The pow-

erful model for characterizing non-directed animal motion

was established on the conception of Brownian motion for

several years [15, 19, 45]. In this configuration, the flight

path of an animal in space is assumed to consist of a series

of different random directional motion steps produced from

a Gaussian distribution [36]. The Lévy flight model is also

used to analyse animal movements. Shlesinger et al. [40]

first suggested that the movement styles of some organisms

could exhibit Lévy flight characteristics. To be precise,

these ought to be motion styles of the Lévy Walk. This is

because it is a continuous movement (usually of constant

speed) rather than individual jumps. Lévy flight involves

linear motion in random directions.

Lévy flights are capable of efficient resource searches

randomly in uncertain environments [50]. According to

simple power law LðxÞ� jxj�1�b
where 0\b� 2 is an

index. It is possible to express the Lévy probability dis-

tribution as

Lðx; l; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð2 � pÞ

p

ðx� lÞ3=2
e�

c
2ðx�lÞ; x[ l ð17Þ

where l[ 0 head the location of the search path and c is

scale factor.

The following is a definition of the Lévy probability

function’s special case:

Lðx; l; cÞ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð2 � pÞ

p

ðxÞ3=2
; x ! 1 ð18Þ

For the more general case of exponential b we can define

the Lévy distribution using the integral

LðxÞ ¼ 1

p

Z 1

0

cos ðkxÞ � e�ajkjbdk; ð0\b� 2Þ ð19Þ

where a[ 0 is scale parameter. If in Eq. (19), b ¼ 1 then it

follows a Cauchy distribution, and when b ¼ 2 Eq. (19)

obeys a normal distribution. This inverse integral can only

be evaluated for large x. We have also

LðxÞ !
abCðbÞ sinðpb

2
Þ

pjxj1þb ; x ! 1 ð20Þ

where CðbÞ = Gamma function.

According to the aim of implementation, generating

random numbers in Lévy flights includes a pair of steps

[49]. These include choosing a random direction and cre-

ating steps using the selected Lévy distribution. The uni-

form distribution should be used to generate directions, but

step creation is quite challenging. There are so many

measures available to reach this; however, one of the most

effective and straightforward techniques for the symmetric

Neural Computing and Applications (2024) 36:11137–11170 11143

123



stable Lévy distribution is the Mantegna algorithm [24].

Symmetry signifies both positive and negative actions.

The following equation can be used to calculate the

Mantegna algorithm’s step length (S).

S ¼ u

jvj1=b ð21Þ

where u and v are taken from the continuous probability

distributions known as normal distributions.

u�Nð0; r2uÞ; v�Nð0; r2vÞ ð22Þ

where; ru ¼
C 1þ bð Þ � sinðpb

2
Þ

C 1þb
2

� �
� b� 2

b�1
2

2
4

3
5

1
b

and rv ¼ 1: ð23Þ

In a two-dimensional plane, Fig. 4 shows an illustration of

a Lévy flight. Figure 4 illustrates the divergence in motion,

which is the most crucial aspect of Lévy flight. In some

circumstances, it may considerably improve the search

algorithm’s efficiency.

3.2 Concepts of dynamic opposite learning
strategy (DOL)

3.2.1 Opposition-based learning (OBL)

To improve the search power of algorithms, the OBL

(opposition-based learning) strategy is one of the best

options for efficient learning. The optimization process of

meta-heuristics is improved by this feature, which speeds

up convergence. The conceptual idea of two strategies,

namely the opposite number and opposite point, is identi-

fied in the following way.

Opposite number. Let X be in the interval [a, b]

(X 2 ½a; b�). Then, the opposite number XO can be defined

as eq. (24)

XO ¼ aþ b� X ð24Þ

where the search region’s bottom and higher bounds are

a and b, respectively.

Opposite point. Practically, in the application field, X can

be a point of a multi-dimensional problem. Let X is a point

in D-dimension, Xj; � � � ;XD 2 ½aj; bj�. A multidimensional

opposite point is characterized as

XO
j ¼ aj þ bj � Xj ð25Þ

3.2.2 Dynamic opposite learning strategy (DOL)

Considering opposite numbers, the OBL strategy can pro-

vide a solution close to the global optimum. The search

area between the central and opposite places is expanded

using quasi-opposite-based learning (QOBL), and several

quasi-opposites are discovered. However, the quasi-re-

flection numbers are selected from the search space

between the current solution location and the average

position. In such circumstances, quasi-reflection-based

learning (QRBL) can be generated. OBL, QOBL, and

QRBL are all affected by the same issue. The search space

will converge to local optimum if there is a local optimum

between the current solution and its opposite solution. A

dynamic oppositional learning (DOL) strategy helps to

circumvent this problem. This increases the chances of

converging on a global solution. The DOL approach was

initially put forth by Xu et al. [47] for the TLBO algorithm.

Inspiration from QOBL and QRBL, there is a higher

possibility of dynamical expansion of the search space of

OBL to get the closer optimum solution. This is displayed

in the Fig. 5 where search space is in between a and b, X is

the current position number, XO is the opposite number,

and XS ¼ X þ rand � ðXO � XÞ; rand 2 ½0; 1� is the same

number as before in the new location which is symmetric.

Although using this technique increases the likelihood of

obtaining the global solution, it is certain that the search

space will tend towards the local optimal solution position

that lies between the current location and its opposite

number. In this regard, we are considering a novel concept

called DOL strategy to avoid the local optimum solutions.

For this, we need a random opposite number for corre-

sponding XO. The random opposite number is defined as

XRO ¼ rand � XO; rand 2 ½0; 1� ð26Þ

XO is replaced by XRO, which broadens the search area and

converts the symmetric search area into an asymmetric
Fig. 4 A trajectory of Lévy flight in a two-dimensional plane

11144 Neural Computing and Applications (2024) 36:11137–11170

123



search area. This is shown in Figs. 6 and 7. This helps

create a dynamic search space where the algorithm can

avoid reaching a local optimum.

3.3 Mathematical templates for DOL

The DOL strategy can be implemented using the following

mathematical model.

Dynamic opposite number The following definition 27

applies to the dynamic opposite number ðXDOÞ.

XDO ¼ X þ x � rand � ðXRO � XÞ ð27Þ

Where a and b denote the lower and upper boundaries of

the value of X, and X is a real number, X 2 ½a; b�. rand has

the value (0, 1) at random. x is the weighting factor.

Dynamic opposite point Taking into account the D-di-

mensional space ðX1;X2; � � � ;XDÞ with Xj; � � � ;XD 2 ½aj; bj�,
the dynamic opposite point is defined by Eq. 28, where the

lower and upper limits of the current search space,

respectively, are aj and bj.

XDO
j ¼ Xj þ x � rand � ðXRO

j � XÞ ð28Þ

DOL-based optimization In D-dimensional space, consider

the points ðX1;X2; � � � ;XDÞ and Xj; � � � ;XD 2 ½aj; bj�, where
the lower and upper boundaries of the variable Xj are,

respectively, aj and bj. The dynamic opposite point XDO ¼
ðXDO

1 ;XDO
2 ; � � � ;XDO

D Þ is determined by Eq. (28) and the

update is performed by updating X according to Eq. (28).

This step validates XDO value. XDO is acceptable if com-

pared to X, XDO has a better fitness value. Otherwise,

X value remains the same.

4 Proposed E-PDO

Exploration and exploitation are the two main phenomena

of any optimization algorithm. Exploration is a broader

search space perspective that gives the algorithm control

Fig. 5 The symmetric space of

DOL strategy

Fig. 6 The asymmetric space of DOL strategy

Fig. 7 The asymmetric space of DOL strategy

Neural Computing and Applications (2024) 36:11137–11170 11145

123



over the entire search space during a search operation.

Conversely, exploitation means finding solutions in the

local search space. Another important aspect is the stability

between the above two operations. Any optimization cal-

culation algorithm should follow these three aspects. PDO

is a novel population-based metaheuristic algorithm. It is

easy to see that the PDO algorithm undergoes premature

convergence. That is, it has a higher tendency to reach a

local optimum. Poor quality of population diversity and

low accuracy in generating optimal solutions. These issues

can result in a poor balance between exploration and

exploitation.

To overcome the above difficulties, we proposed an

improved PDO algorithm (called E-PDO or enhanced-

PDO) by integrating the DOL strategy. Also introduced is a

modified random walk that randomizes the locations of

prairie dogs. In the subsections below, all details of these

modifications of the proposed PDO are described. The

introduction of modified Lévy flight and DOL-based

strategies for PDO is discussed in detail in Sects. 5.1 and

5.2, respectively.

4.1 Improved random walk

Lévy flight is a highly efficient random walk for nature-

inspired optimization algorithms. For the algorithm here,

we consider a new improved version of Lévy flight to

generate new prairie dog locations in the problem search

space. The new flight is called m-Lévy (modified Lévy

flight). We have proposed the modified step length S using

the concept of the Lévy flight (in Sect. 4.1). It is given by

S ¼ w� u� ru

jvj1=b ð29Þ

where w, is weight factor and u and v are drawn from

normal distributions

u�Nð0; 1Þ; v�Nð0; 1Þ ð30Þ

where; ru ¼
C 1þ bð Þ � sinðpb

2
Þ

C 1þb
2

� �
� b� 2

b�1
2

; ð31Þ

Here, we consider the value of w = 0.001 for our proposed

e-PDO.

Figure 8 shows an illustration of m-Lévy flight in a two-

dimensional plane. The steps are made up of numerous

small steps and a few long steps because of the Lévy dis-

tribution. In some circumstances, these large steps may

greatly improve e-PDO’s search efficiency as compared to

other MAs.

4.2 DOL-based strategies for PDO

To prevent premature convergence when solving complex

real-world optimization problems, the proposed DOL-

based idea is built in PDO to speed up convergence. DOL

increases population diversity by avoiding falling into a

local optimum. For the proposed algorithm, the DOL-based

strategy is composed of two stages: initialization of the

population using DOL and generation jump with DOL.

4.2.1 Improved population initialization using DOL
strategy

We can consider P to be the initial population which is

generated randomly and PDOL to be the population gener-

ated by the DOL initial population generation strategy. For

each prairie dog i ¼ 1; 2; � � � ;N and j ¼ 1; 2; � � � ;D within

maximum iteration over all iterations, the DOL population

initialization method is defined as:

PDOL
i;j ¼ Pi;j þ r1i � r2i � UBj þ LBj � Pi;j

� �
� Pi;j

� �

ð32Þ

where the current search space’s upper and lower limits are

UBj and LBj. Rand1i, and Rand2i are random numbers.

Weight x is set to 1.

PDOL
i;j ¼ randðLBj;UBjÞ if PDOL

i;j \LBjjjPDOL
i;j [UBj

ð33Þ

PDOL
i;j must be in the range ½LBj;UBj�. In the initialization

phase, the best ones from among ðP
S
PDOLÞ are selected.

Fig. 8 A trajectory of m-Lévy flight in a two-dimensional plane

11146 Neural Computing and Applications (2024) 36:11137–11170

123



4.2.2 Improved generation jumping using DOL strategy

We can update the population using DOL Strategy taking

into account the jump rate (Jr). If the selection probability

at any iteration t is less than Jr, the DOL-generation

transition procedure can be carried out as

ðPnewÞDOLi;j ¼ ðPnewÞi;j þ x� Rand3i � ðRand4i � ðUBj

þ LBj � ðPnewÞi;jÞ � ðPnewÞjÞ
ð34Þ

Rand3i, and Rand4i are random numbers.To make the

DOL efficient, we need to check the range in the same

format as Eq. 33.

LBj ¼ minðPi;jÞ; UBj ¼ maxðPi;jÞ

In the DOL generation jumping phase, to discover the

optimum solution, we can choose the best out of

ðP
S
PDOLÞ.

Table 2 Algorithm E-PDO

Algorithm e-PDO: Pseudocode of proposed E-PDO algorithm

1. Start

2. Input: Objective function FðPÞ; P ¼ ðP1;P2; � � � ;PDÞ, Number of prairie dogs (N), number of coteries (D), individual prairie dogs difference
(s), food source alarm on the basis of food source quality (�A), Maximum number of iterations (T).

3. Generate the initial population of prairie dogs (P) using Eq. (4)

4. Initialize the OBest (old fitness value) and the CBest (New fitness value) as /

5. Update individual P according to DOL strategy using the following equation,

6. for i = 1:N N = no. of population

7. for j = 1:D D = dimension

8. PDOL
i;j ¼ Pi;j þ x � Rand1i � ðRand2i � ðUBj þ LBj� Pi;jÞ � Pi;jÞ

9. check boundaries;

10. end for

11. end for

12. Choose N best P from ðP
S
PDOLÞ;

13. while t\T þ 1 do

14. initiate bool, a stochastic parameter

15. for i = 1:N N = no. of population

16. for j = 1:D D = dimension

17. Determine each P’s fitness

18. Discover the best effective solution so far

19. Update digging Strength and predator effect using equations (10) and (13).

20. Update cumulative effect of all P using equation (7)

21. If ðt\T=4Þ, then use equation (6) (foraging activities) (Exploration)

22. Else if ðT=4� t\T=2Þ then use equation (9) (burrow building activities) (Exploration)

23. Else if ðT=2� t\3T=4Þ then use equation (11) (food alarm) (Exploitation)

24. Else use equation (12) (anti-predation alarm) (Exploitation)

25. end if

26. end for

27. According to DOL approach, update P

28. ðPnewÞDOLi;j ¼ ðPnewÞi;j þ x� Rand3i � ðRand4i � ðUBj þ LBj � ðPnewÞi;jÞ � ðPnewÞjÞ
29. check boundaries;

30. Determine each ðPnewÞ’s fitness
31. Update OBest and CBest

32. end for

33. end while

34. return Best solution

35. end

Neural Computing and Applications (2024) 36:11137–11170 11147

123



4.3 E-PDO algorithm steps

A new PDO variant called enhanced PDO (E-PDO) has

been formulated with the addition of modified random

walk, improved population initialization and generation

jumping using DOL Strategy. To visualize a specific

algorithm, the E-PDO algorithm’s steps are provided in

Algorithm E-PDO in Table 2. The complete process of the

E-PDO algorithm is included in the flow diagram in Fig. 9.

4.4 E-PDOUW

Here, we also consider E-PDO with m-Lévy flight step

length with a weight value of ðw ¼ 1Þ. We call this

E-PDOUW.

4.5 PDOL

The combination of PDO algorithm, DOL strategy and old

Lévy flight (based on Eqs. 21 to 23) is examined as PDOL.

Fig. 9 Flow diagram of the E-PDO algorithm

Table 3 Uni-modal benchmark

functions
Function Description Dimensions Range fmin

Sphere (F1) f ðxÞ ¼
Pn

i¼1 xi
2 30 [- 100, 100] 0

Schwefel 2.22 (F2) f ðxÞ ¼
Pn

i¼0 jxij þ
Qn

i¼0 jxij 30 [- 10, 10] 0

Schwefel 1.2 (F3) f ðxÞ ¼
Pd

i¼1ð
Pi

j¼1 xiÞ
2 30 [- 100, 100] 0

Schwefel 2.21 (F4) f ðxÞ ¼ maxifjxij; 1� i� ng 30 [- 100, 100] 0

Rosenbrock (F5) f ðxÞ ¼
Pn�1

i¼1 ½100ðxi2 � xiþ1Þ2 þ ð1� xiÞ2� 30 [- 30, 30] 0

Step (F6) f ðxÞ ¼
Pn

i¼1ð½xi þ 0:5�Þ2 30 [- 100, 100] 0

Quartic (F7) f ðxÞ ¼
Pn

i¼1 ixi
4 þ random½0; 1Þ 30 [- 1.28, 1.28] 0

11148 Neural Computing and Applications (2024) 36:11137–11170

123



4.6 The computational complexity of the E-PDO
algorithm

Computational complexity is an important factor to con-

sider when assessing an algorithm’s performance. The

complexity of the EPDO is determined according to the

values of the number of prairie dogs (N), the dimensions

(D) and the maximum number of iterations (T). The space

complexity of the EPDO algorithm hinges on two key

parameters: the number of prairie dogs (N) and the

dimensions of the optimization problem (D). This space

complexity measurement reflects the memory space

requirements, particularly during initialization. Conse-

quently, the expression for EPDO’s space complexity is

succinctly captured as OðN � DÞ.
The time complexity is intricately influenced by several

factors, including the population size (N), problem

dimensions (D), the number of iterations (T), and the cost

of function evaluations (C). Consequently, the time com-

plexity (O(EPDO)) can be precisely articulated as the sum

of three main components: O(Initialization), O(cost func-

tion evaluation), and O(Updating strategy). The complexity

as a whole is O(EPDO) = O(Initialization) ? T� (O(Fit-

ness evaluation of all prairie dogs) ? O(Generation

updating process of all prairie dogs with new strategies)).

Hence, the overall computational complexity of the EPDO

is

OðEPDOÞ ¼ OððN � DÞ þ ðT � N � D� 4Þ þ ðT � N
� DÞÞ

ð35Þ

According to a convergence analysis, an algorithm that is

combined with the DOL method achieves a fast conver-

gence rate compared to other conventional algorithms.

A DOL technique is used to improve the EPDO algo-

rithm’s ability to avoid local optima. The results of the

runtime study show that the EPDO, when combined with

the m-Lévy random walk and DOL approaches, can greatly

improve computational efficiency.

According to a convergence analysis, an algorithm that

is combined with the DOL method achieves a fast con-

vergence rate compared to other conventional algorithms.

A DOL technique is used to improve the e-PDO algo-

rithm’s ability to avoid local optima. The results of the

runtime study show that the E-PDO, when combined with

the m-Lévy random walk and DOL approaches, can greatly

improve computational efficiency.

5 Experimental problems, results,
and discussions

Various tests are conducted in this section to show how

well the e-PDO works and verify the accuracy of solving

the global optimization problem. We combined the simu-

lation results of the proposed e-PDO and compared the

simulation results of the original PDO with seven other

meta-heuristics, including GWO, MFO, ALO, WOA, DA,

SCA, and RSA for reference functions, including uni-

modal, multi-modal, and fixed-dimensional functions.

Table 4 Multi-modal benchmark functions

Function Description Dimensions Range fmin

Schwefel (F8) f ðxÞ ¼
Pn

i¼1ð�xi sinð
ffiffiffiffiffiffi
jxij

p
ÞÞ 30 [- 500, 500] �418:9829� n

Rastrigin (F9) f ðxÞ ¼
Pn

i¼1½xi2 � 10 cos ð2pxiÞ þ 10� 30 [- 5.12, 5.12] 0

Ackley (F10) f ðxÞ ¼ �20 exp ð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 xi

2

q
Þ 30 [- 32, 32] 0

� exp ð1n
Pn

i¼1 cos ð2pxiÞÞ þ 20þ e

Griewank (F11) f ðxÞ ¼ 1þ 1
4000

Pn
i¼1 xi

2 �
Qn

i¼1 cos ð xiffiip Þ 30 [- 600, 600] 0

Penalized (F12) f ðxÞ ¼ p
n f10 sin ðpyiÞg þ

Pn�1
i¼1 ðyi � 1Þ2 30 [- 50, 50] 0

½1þ 10 sin2 ðpyiþ1Þ þ
Pn

i¼1 uðxi; 10; 100; 4Þ�
where yi ¼ 1þ xiþ1

4
;

uðxi; a; k;mÞ ¼

�
Kðxi � aÞm; if xi [ a

0; if � a� xi 
 a
Kð�xi � aÞm if � a� xi

8<
:

Penalized 2

(F13)
f ðxÞ ¼ 0:1ðsin2 ð3px1Þ þ

Pn
i¼1 ðxi � 1Þ2 30 [- 50, 50] 0

½1þ sin2 ð3pxi þ 1Þ�ðxn � 1Þ2

f1þ sin2ð2pxnÞgÞ þ
Pn

i¼1 uðxi; 5; 100; 4Þ

Neural Computing and Applications (2024) 36:11137–11170 11149

123



5.1 Benchmark function

Thirty-three reference functions are chosen and split into

three categories: fixed-dimensional benchmark function,

multi-modal benchmark function, and uni-modal bench-

mark function [16]. These benchmark functions are used to

test the proposed e-PDO algorithm. With the exception of

setting the CEC-2017 functions’ dimension to 30, algo-

rithms are compared using identical parameter values. Uni-

modal test functions (F1 to F7) are defined in Table 3.

Multi-modal test functions (F8 to F13) are defined in

Table 4. Tables 5 and 6 provide definitions for fixed-

dimension uni-modal (F30 to F33) and multi-modal (F14 to

F29) functions.

The uni-modal functions (F1 to F7) contain only one

local optimum. The exploitation potential of optimization

methods can be assessed with the aid of uni-modal func-

tions. Consequently, a meta-heuristic method with the

highest exploitation potential is used to optimise these

functions. Selected multi-modal functions (F8 to F13) and

fixed-dimensional multi-modal functions (F14 to F29) have

many local minima associated with these functions. Due to

the fact that these functions’ solutions might occasionally

become stuck in the local optima and are impossible to

escape, they can be more challenging to solve than uni-

Table 5 Fixed-dimension multi-modal test functions

Function Description Dimensions Range fmin

Foxholes (F14) f ðxÞ ¼ fð 1
500

P25
j¼1

1

jþ
P

i¼1
2ðxi�aijÞ6

Þg�1 2 [- 65, 65] 1

Kowalik (F15) f ðxÞ ¼
P11

i¼1

�
ai � x1ðb2i þbix2Þ

b2i þbix3þx4

	2 4 [- 5, 5] 0.0003

Six Hump Camel (F16) f ðxÞ ¼ 4x21 � 2:1x41 þ 1
3
x61 þ x1x2 � 4x22 þ 4x42 2 [- 5, 5] �1.0316

Branin (F17) f ðxÞ ¼ ðx2 � 5:1
4p2 x

2
1 þ 5

p x1 � 6Þ2 2 [- 5, 5] 0.398

þ10ð1� 1
8pÞ cos x1 þ 10

Goldstein-Price (F18) f ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x21 2 [- 2, 2] 3

�14x2 þ 6x1x2 þ 3x22Þ� � ½30þ ð2x1 � 3x2 þ 1Þ2

ð18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22Þ�
Hartman 3 (F19) f ðxÞ ¼ �

P4
i¼1 ci exp

�
�
P3

i¼1 aijðxj � pijÞ2
�

3 [- 1, 2] �3.86

Hartman 6 (F20) f ðxÞ ¼ �
P4

i¼1 ci exp
�
�
P6

i¼1 aijðxj � pijÞ2
�

6 [0, 1] �0.32

Shekel 5 (F21) f ðxÞ ¼ �
P5

i¼1 ½ðX � aiÞðX � aiÞT þ ci��1 4 [0, 1] �10.1532

Shekel 7 (F22) f ðxÞ ¼ �
P7

i¼1 ½ðX � aiÞðX � aiÞT þ ci��1 4 [0, 1] �10.4028

Shekel 10 (F23) f ðxÞ ¼ �
P10

i¼1 ½ðX � aiÞðX � aiÞT þ ci��1 4 [0, 1] �10.5363

Schaffers (F24) f ðxÞ ¼ 0:5þ sin2ðx2
1
þx2

2
Þ�0:5

½1þ0:001ðx2
1
þx2

2
Þ�2

2 [- 100, 100] 0

Easom (F25) f ðxÞ ¼ � cosðx1Þ cosðx2Þexp½�ðx1 � pÞ2 � 9ðx2 � pÞ2� 2 [- 100, 100] 0

Schwefel 2.26 (F26) f ðxÞ ¼ �
Pn

i¼1 xi sin ð
ffiffiffiffiffiffi
jxij

p
Þ 30 [- 500, 500] �418.982

Bohachevsky (F27) f ðxÞ ¼ x21 þ 2x22 � 0:3 cos ð3px1Þ � 0:4 cos ð4px2Þ þ 0:7 2 [- 100, 100] 0

Bohachevsky 3 (F28) f ðxÞ ¼ x21 þ 2x22 � 0:3 cos ð3px1Þ � 0:3 2 [- 50, 50] 0

Colville (F29) f ðxÞ ¼ 100ðx1 � x22Þ
2 þ ð1� x1Þ2 þ 90ðx4 � x23Þ

2 þ ð1� x2Þ2 4 [- 10, 10] 0

þ10:1ðx2 � 1Þ2 þ ðx4 � 1Þ2 þ 19:8ðx2 � 1Þðx4 � 1Þ

Table 6 Fixed-dimension uni-

modal test functions
Function Description Dimensions Range fmin

Booth (F30) f ðxÞ ¼ ð2x1 þ x2 � 5Þ2 þ ðx1 þ 2x2 � 7Þ2 2 [- 10, 10] 0

Matyas (F31) f ðxÞ ¼ 0:26ðx21 þ x22Þ � 0:48x1x2 2 [- 10, 10] 0

Zettl (F32) f ðxÞ ¼ ðx21 þ x22 � 2x1Þ2 þ 0:25x1 2 [- 1, 5] �0.00379

Leon (F33) f ðxÞ ¼ 100ðx2 � x31Þ
2 þ ð1� x1Þ2 2 [- 1.2, 1.2] 0

11150 Neural Computing and Applications (2024) 36:11137–11170

123



modal functions. The complexity level of multi-modal

functions also increases as multiple dimensions, search

domains, and local optima values increase. Because of their

capability to discover new sites, these test the MA’s ability

to explore. The experimental outcomes are contrasted with

those of the original PDO and 7 other well-known algo-

rithms. Results are evaluated using the statistical tests

described in the next section.

5.2 Experimental setup

To ensure consistency across all validation tests, we chose

(N) = 30 for the population size, (D) = 10 for the size of the

dimensions, and (T) = 1000 for the number of iterations.

The 30 iterations of each function are rounded to two

decimal places to reduce statistical error and produce sta-

tistically significant output. Two measures are used to

evaluate the algorithm’s performance: the mean and stan-

dard deviation measures. The best, the worst, the mean, and

the standard deviation (SD) are shown as the final experi-

mental results after each method has been run separately 30

times for each function. All tests are conducted using

MATLAB R2020a on a computer running Windows 10 and

equipped with an Intel(R) Core(TM) i7-4790 CPU clocked

at 3.60GHz and 8GB of RAM. All the required parameter

values for each algorithm are listed in Table 7.

5.3 Experimental results

In Tables 8 and 9, along with e-PDO and the other seven

algorithms, the mean and standard deviation for optimised

uni-modal functions are shown. The table clearly shows

that, in comparison with other algorithms, e-PDO offered

the least values. The functions F1, F2, F3, F4, and F7 get

the optimum results when using the e-PDO algorithm. It

provides the 5th and 4th best outcomes for functions F5 and

F6, respectively. Boldface indicates all average best results.

So it stands to reason that our suggested method is a better

algorithm than others.

In the case of multi-modal (F8–F13) functions (from

Tables 10, 11), it achieves the optimum results for F8–F11

except for F12 and F13 functions. For fixed-dimension

Table 7 Algorithm control parameters

Algorithm Parameter and description Value Parameter and description Value

E-PDO N (Population Size) 30 T (Maximum Iteration) 1000

�A 0.1 � 2:2204e�16

s 0.005 b 1.5

w 0.001 x 0.001

PDO [11] N (Population Size) 30 T (Maximum Iteration) 1000

�A 0.1 � 2:2204e�16

s 0.005 b 1.5

ALO [26] Population Size 30 Maximum Iteration 1000

Initial I ratio value 1

WOA [29] Population Size 30 Maximum Iteration 1000

Parameter a Linear decreasing value from 2 to 0 Parameter a2 Linear decreasing

value from - 1 to - 2

Parameter b 1 Parameter l [- 1, 1]

Random Number (r0) [0,1]

DA [27] Population Size 30 Maximum Iteration 1000

Food attraction weight f 1

GWO [30] Population Size 30 Maximum Iteration 1000

Convergence parameter a Linear decreasing value from 2 to 0

MFO [25] Population Size 30 Maximum Iteration 1000

Convergence constant Linear decreasing value from - 1 to - 2

SCA [28] Population Size 30 Maximum Iteration 1000

Parameter a (constant) 2

RSA [1] Population Size 30 Maximum Iteration 1000

Sensitive parameter a 0.1 Sensitive parameter b 0.005

Evolutionary sense (ES) Decreasing random values between 2 and - 2

Neural Computing and Applications (2024) 36:11137–11170 11151

123



multi-modal test functions (F14–F29) (from Tables 12, 13,

14 and 15), with the exception of the F18–F19 and F21–

F23 functions, e-PDO demonstrates its superiority over

other algorithms. For fixed-dimension uni-modal test

functions (F30–F33), e-PDO gives best values for F31.

In addition to the above analysis, if we compare e-PDO

and other PDO versions on the CEC test problems from

Tables 18 and 19, it can be concluded that e-PDO achieves

better results than the original PDO algorithm. Tables 8, 9,

10, 11, 12, 13, 14, 15, 16, 17 and 18 further show that, in

terms of average and standard deviation indices, our sug-

gested e-PDO algorithm outperformed the other 7 meta-

heuristic algorithms. The outcomes showed that by com-

bining the DOL technique and the modified random walk

of prairie dogs, e-PDO might produce a better solution.

5.4 Statistical analysis of experimental results

5.4.1 Performance indicators

Various statistical tools are used in this paper, namely the

average value of the objective functions (AverageF) and the

standard deviation (SDF). Their mathematical formulations

are given as follows.

The average measure, which can be expressed by

Eq. 36, determines the average of the optimal values

resulting from the algorithm and is assessed over a number

of predefined runs.

AverageF ¼ 1

Rn

XRn

i¼1

Fi ð36Þ

Table 8 Result of uni-modal test functions (F1–F7)(Dimension = 10)

Function Global Value E-PDO E-PDOUW PDOL PDO ALO SCA

F1 0 Best 0 0 0 0 7:62� 10�10 3:37� 10�35

Worst 0 0 0 0 3:49� 10�9 1:73� 10�25

Average 0 0 0 0 2:03� 10�9 7:12� 10�27

SD 0 0 0 0 7:18� 10�10 3:16� 10�26

F2 0 Best 0 0 0 0 9:79� 10�9 2:98� 10�24

Worst 0 0 0 0 0.0035132 4:62� 10�17

Average 0 0 0 0 0.0002046 2:06� 10�18

SD 0 0 0 0 0.000701 8:61� 10�18

F3 0 Best 0 0 0 0 4:88� 10�9 3:03� 10�16

Worst 0 0 0 0 1:56� 10�6 3:71� 10�8

Average 0 0 0 0 2:85� 10�7 2:47� 10�9

SD 0 0 0 0 3:902� 10�7 8:19� 10�9

F4 0 Best 0 0 0 0 3:102� 10�6 3:04� 10�11

Worst 0 0 0 0 0.000734 3:38� 10�7

Average 0 0 0 0 8:94� 10�5 2:103� 10�8

SD 0 0 0 0 0.000158 6:39� 10�8

F5 0 Best 0.6113 8.0239 7.3773 0.0288 2:48� 10�6 6.8286

Worst 9 8.9803 8.9734 9 469.76 8.7271

Average 7.7682 8.6304 8.6011 3.7673 54.725 7.4488

SD 2.3118 0.3493 0.4536 2.7853 128.3108 0.5566

F6 0 Best 0.001705 1.0921 0.8175 0 6:11� 10�10 0.0856

Worst 0.004565 1.8552 1.8336 1:12� 10�21 2:51� 10�9 0.7659

Average 0.002923 1.5584 1.58597 3:85� 10�23 1:39� 10�9 0.3417

SD 0.000665 0.2014 0.20003 2:07� 10�22 4:99� 10�10 0.1604

F7 0 Best 1:52� 10�6 4:88� 10�7 6:0478� 10�7 1:13� 10�6 0.0017 0.000222

Worst 4:77� 10�5 0.00019 0.000108 0.000161 0.0133 0.007631

Average 1:73� 10�5 3:98� 10�5 2:4� 10�5 2:9� 10�5 0.0055 0.001461

SD 1:23� 10�5 4:22� 10�5 2:25� 10�5 3:05� 10�5 0.00291 0.001592

11152 Neural Computing and Applications (2024) 36:11137–11170

123



where Rn is the quantity of runs. The optimal result is

represented by Fi.

The standard deviation (SD) measurement is used to test

whether the algorithm under evaluation can achieve the

same best value across all runs, and to examine the con-

sistency of algorithmic output, and can be represented by

Eq. 37:

SDF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Rn � 1

XRn

i¼1

ðFi � AverageFÞ2
vuut ð37Þ

We specify the average value and standard deviation (SD)

of the e-PDO along with seven other existing MAs such as

GWO, MFO, ALO, WOA, DA, SCA and RSA for

matching. Here, we also include another two versions of

e-PDO.

5.4.2 Measurement of alternatives and ranking according
to compromise solution (MARCOS) method

More than just scanning and comparing a set of benchmark

function lists should be included in choosing the best

method. This section provides a description of the MAR-

COS approach (developed by Stevic et al. [42]). This is a

new approach to multi-criteria analysis [41]. The MAR-

COS technique is built on specifying how alternatives and

reference values relate to one another (ideal and anti-ideal

alternatives). The utility functions of the alternatives are

established based on the aforementioned relationships, and

compromise rankings with respect to ideal and anti-ideal

solutions are generated. Utility functions are used to define

the preference for decisions. Utility functions show a

choice’s position in relation to ideal and anti-ideal possi-

bilities. The optimal alternative is the one that is farthest

from the anti-ideal reference point while also being the

Table 9 Result of uni-modal test functions (F1–F7)

Function Global Value WOA DA GWO MFO RSA

F1 0 Best 8:15� 10�190 0 2:71� 10�61 1:06� 10�34 0

Worst 6:101� 10�171 152073 3:73� 10�57 1:58� 10�27 0

Average 2:06� 10�172 5073.3699 1:73� 10�58 5:49� 10�29 0

SD 0 27763.799 6:82��58 2:94� 10�28 0

F2 0 Best 3:11� 10117 0 1:06� 10�35 7:31� 10�21 0

Worst 1:92� 10�108 7.8212 2 5:99� 10�18 0

Average 2:02� 10�109 1.1079 0.1 4:504� 10�19 0

SD 5:83� 10�109 1.6984 0.4026 1:08� 10�18 0

F3 0 Best 994.226 0 9:95� 10�20 1:77� 10�13 0

Worst 19039.0914 5073.288 1:402� 10�12 4:27� 10�8 0

Average 10194.164 197.3722 4:85� 10�14 2:81� 10�9 0

SD 4805.966 921.672 2:56� 10�13 8:28� 10�9 0

F4 0 Best 0.000092 0 4:65� 10�16 1:78� 10�9 0

Worst 83.2756 4.1176 8:45� 10�14 0.000042 0

Average 27.6845 1.1733 1:77� 10�14 2:39� 10�6 0

SD 24.5755 1.0726 2:07� 10�14 8:15� 10�6 0

F5 0 Best 26.0043 7.2949 25.3101 0.34088 8:86� 10�30

Worst 27.0043 3137215 36.1552 22.1917 3:6� 10�29

Average 26.544 107877.4572 27.0835 6.92103 2:09� 10�29

SD 0.2959 572385.091 1.8729 5.1194 8:39� 10�30

F6 0 Best 0.001365 5:9223� 10�7 0.0000228 0 1.3997

Worst 0.00967 44.8047 1.2533 3:28� 10�30 2.5

Average 0.00375 3.6063 0.5489 2:26� 10�31 2.06521

SD 0.00208 9.7113 0.3366 6:17� 10�31 0.2876

F7 0 Best 0.0000446 0.0003736 0.000189 0.000475 3:189� 10�6

Worst 0.005483 0.16272 0.0035398 0.011526 0.0002119

Average 0.001232 0.01853 0.00091018 0.002612 4:89� 10�5

SD 0.001404 0.02932 0.0006709 0.00198 5:35� 10�5

Neural Computing and Applications (2024) 36:11137–11170 11153

123



most likable to the ideal. The following steps comprise the

MARCOS methodology:

Step 1. Constructing an initial decision-making matrix. In

multi-criteria models, there are n criteria and m alternatives

defined. A team of r experts should be put together to

evaluate the options in light of the criteria when making

decisions as a group. An initial group decision-making

matrix is created in the event of group decision-making by

merging expert assessment matrices.

Step 2. The formation of a lengthy initial matrix. The

original matrix is enlarged at this stage by providing the

ideal (AI) and anti-ideal (AAI) solution.

The anti-ideal solution (AAI) is the worst choice,

whereas the ideal solution (AI) is the finest alternative.

(AAI) and (AI)s are defined using equations according to

the nature of the criteria:

AAI ¼
min xij

i

if j 2 B (for maximizing problem)

max xij
i

if j 2 C (for minimizing problem)

8<
:

Table 10 Result of multi-modal test functions (F8–F13) (Dimension = 10)

Function Global Value E-PDO E-PDOUW PDOL PDO ALO SCA

F8 0 Best �7:2� 10112 �9:98� 10307 �9:54� 10307 �20124.6231 �4189.83 �2573.584

Worst �1:04� 1065 �6:42� 10306 1:00001� 10307 �1805.8916 �1925.85 �1882.2845

Average �2:6� 10111 �3:7� 10307 �4:01� 10307 �2588.5597 �2587.96 �2202.04

SD 1:3� 10112 �9:98� 10307 2:61� 10307 3315.5742 591.9149 149.52

F9 0 Best 0 0 0 0 3.9798 0

Worst 0 0 0 0 36.8134 0

Average 0 0 0 0 17.6754 0

SD 0 0 0 0 7.2211 0

F10 0 Best 8:88� 10�16 8:88� 10�16 8:88� 10�16 8:88� 10�16 0.00001 4:44� 10�15

Worst 8:88� 10�16 8:88� 10�16 8:88� 10�16 8:88� 10�16 2.5799 1:11� 10�13

Average 8:88� 10�16 8:88� 10�16 8:88� 10�16 8:88� 10�16 0.2105 1:19� 10�14

SD 4:01� 10�31 8:88� 10�16 4:01� 10�31 4:01� 10�31 0.6776 2:32� 10�14

F11 0 Best 0 0 0 0 0.071445 0

Worst 0 0 0 0 0.39623 6:66� 1016

Average 0 0 0 0 0.182341 2:297� 1015

SD 0 0 0 0 0.092088 1:24� 1016

F12 0 Best 2:1� 10�5 0.36427 0.00005612 0.000104 6:7� 10�12 0.017787

Worst 2.5254 1.9875 2.0135 18386 7.3359 0.11858

Average 0.446622 0.610027 0.7698932 613.4228 0.001099 0.074222

SD 0.571419 0.273173 0.5815198 3356.7040 1.65491 0.023585

F13 0 Best 0.000218 0.63082 0.00027928 0.030543 7:73� 10�12 0.14377

Worst 0.9989 0.84509 1 1 0.010987 0.51424

Average 0.422178 0.76349 0.7725211 0.835132 0.001099 0.280396

SD 0.455744 0.05483 0.40552581 0.262103 0.003352 0.097908

11154 Neural Computing and Applications (2024) 36:11137–11170

123



AI ¼
max xij

i

if j 2 B (for maximizing problem)

min xij
i

if j 2 C (for minimizing problem)

8<
:

where B represents a set of criteria for benefits and C

represents a set of criteria for costs.

Step 3. The extended starting matrix (X) is normalised. The

equations are used to calculate the elements of the nor-

malized matrix N ¼ ½nij�m�n.

nij ¼

xij
xai

if j 2 B (for maximizing problem)

xai
xij

if j 2 C (for minimizing problem)

8><
>:

where xij and xai are indeed the elements of the matrix

X and the ideal solution of the alternative, respectively.

Step 4. V ¼ ½vij�m�n is the weighted matrix. The weighted

matrix V is formed by multiplying the normalized matrix N

by weightage. Using the weight coefficients of the criteria

wj, the equation may be solved.

vij ¼ nij � wj

Step 5. The utility degree of alternative Ki is calculated.

The utility degrees of an alternative in regard to the anti-

ideal and ideal solutions are determined using equations

K�
i and Kþ

i .

K�
i ¼ Si

Saai

Kþ
i ¼ Si

Sai

where Si; ði ¼ 1; 2; :::;mÞ denotes the total number of

items in the weighted matrix V.

Si ¼
Xn
i¼1

vij

Step 6. Calculating the utility function of alternatives

f ðKiÞ. The utility function is the trade-off between the

observable alternative and the ideal and anti-ideal solu-

tions. The equation expresses the utility function of

alternatives.

f ðKiÞ ¼
Kþ
i þ K�

i

1þ 1�f ðKþ
i Þ

f ðKþ
i Þ

þ 1�f ðK�
i Þ

f ðK�
i Þ

where f ðK�
i Þ represents the utility function in relation to

the anti-ideal solution and f ðKþ
i Þ represents the utility

function in relation to the ideal solution. Equations are used

Table 11 Result of multi-modal

test functions (F8–F13)
Function Global Value WOA DA GWO MFO RSA

F8 0 Best �12569.486 �4068.2796 �6650.3486 �4071.3905 �2162.7606

Worst �7549.6955 �2482.911 �2306.5925 �2402.6344 �1743.3803

Average �11468.701 �3121.4874 �3572.4041 �3351.6025 �1992.8401

SD 1565.76069 453.742437 1507.4426 410.55269 99.1028426

F9 0 Best 0 0.50627 0 2.9849 0

Worst 0 40.6912 0 42.8541 0

Average 0 19.2120957 0 17.9494833 0

SD 0 12.9280178 0 11.1621627 0

F10 0 Best 8:88� 10�16 7:99� 10�15 4:44� 10�15 4:44� 10�15 8:88� 10�16

Worst 7:99� 10�15 4.1544 7:99� 10�15 4:44� 10�15 8:88� 10�16

Average 4:08� 10�15 1.33847207 4:79� 10�15 4:44� 10�15 8:88� 10�16

SD 2:53� 10�15 1.26209177 1:08� 10�15 4:01� 10�30 4:01� 10�31

F11 0 Best 0 0 0 0.051625 0

Worst 0 1.1121 0.22036 0.27545 0

Average 0 0.49096463 0.01505519 0.14882998 0

SD 0 0.31129449 0.0409164 0.07322223 0

F12 0 Best 0.00018172 0.00073046 6:3� 10�8 4:71� 10�32 0.33533

Worst 0.020475 3.0483 0.039702 0.62195 2.5621

Average 0.00148689 0.53167864 0.00363845 0.04146567 0.67915767

SD 0.00371422 0.68534156 0.00908974 0.13502161 0.40751938

F13 0 Best 0.01718 0.0001682 4:67� 10�7 1:35� 10�32 2:09� 10�32

Worst 0.47733 0.52355 0.10013 0.010987 4:83� 10�31

Average 0.20148977 0.11798804 0.01970615 0.00292987 1:46� 10�31

SD 0.13040069 0.13075897 0.04008615 0.00494169 2:02� 10�31

Neural Computing and Applications (2024) 36:11137–11170 11155

123



to calculate utility functions in relation to the ideal and

anti-ideal solutions.

f K�
i

� �
¼ Kþ

i

Kþ
i þ K�

i

f Kþ
i

� �
¼ K�

i

Kþ
i þ K�

i

Step 7. The choices are ranked. To rank the options, the

utility function’s final values are employed. The maximum

utility function value that is possible should be assigned to

an option.

5.4.3 MARCOS calculation

According to the MARCOS method, CEC test functions

are the criteria used here, all algorithms are alternatives,

and all problems(CEC test functions) are minimization

problems. As a result, these criteria are cost criteria., using

this procedure e-PDO is the best algorithm for solving CEC

test functions. Table 19 clearly shows the computational

supremacy of e-PDO.

5.5 Convergence report

To compare the convergence speed of EPDO with other

algorithms (with GWO, MFO, ALO, WOA, SCA, and RSA

Table 12 Result of fixed-dimension multi-modal test functions (F14–F21)

Function Global Value E-PDO E-PDOUW PDOL PDO ALO SCA

F14 0 Best 0.998 0.998 0.998 0.998 0.998 0.998

Worst 8.8408 0.998 12.6705 12.6705 0.998 2.9821

Average 2.0828 0.998 4.2141 3.941490 0.998 1.461689

SD 2.071605 4:52� 10�16 2.8970626 3.939739 4:52� 10�16 0.853117

F15 0 Best 0.000308 0.000528 0.00016788 0.000308 0.000307 0.000335

Worst 0.0016443 0.000991 0.0034221 0.002252 0.063291 0.001526

Average 0.000529 0.0008003 0.0007761 0.000854 0.005408 0.000943

SD 0.000248 0.0001099 0.0006627 0.000442 0.012866 0.000371

F16 0 Best �1.0316 �1.0316 �1.0316 �1.0316 �1.0316 �1.0316

Worst �1.0316 �1.0316 �1.0316 �1.0316 �1.0316 �1.0316

Average �1.0316 �1.0316 �1.0316 �1.0316 �1.0316 �1.0316

SD 6:77� 10�16 6:77� 10�16 6:77� 10�16 6:77� 10�16 6:77� 10�16 6:77� 10�16

F17 0 Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789

Worst 0.39789 0.3979 0.39789 0.39789 0.39789 0.4034

Average 0.39789 0.3978903 0.39789 0.39789 0.39789 0.398671

SD 1:69� 10�16 1:826� 10�6 1:69� 10�16 1:69� 10�16 1:69� 10�16 0.001017

F18 0 Best 3 3 3 3 3 3

Worst 3.0008 3.0019 3.0354 3 3 3

Average 3.0001 3.00022 3.00144 3 3 3

SD 0.00017019 0.00043 0.006422 0 0 0

F19 0 Best �3.8628 �3.8647 �3.869 �3.8628 �3.8628 �3.8618

Worst �3.8625 �3.8478 �3.8521 �3.8628 �3.8628 �3.851

Average �3.8627 �3.86132 �3.86192 �3.8628 �3.8628 �3.854937

SD 9:097� 10�5 0.0034764 0.002346 3:16� 10�15 3:16� 10�15 0.002447

F20 0 Best �3.3211 �3.3028 �3.3167 �3.322 �3.322 �3.1261

Worst �3.2763 �2.782 �3.124 �2.6312 �3.2031 �1.4573

Average �3.301967 �3.24605 �3.273543 �3.0528 �3.2625 �2.86243

SD 0.010324 0.109724 0.0386142 0.2224 0.0605 0.371310

F21 0 Best �5.0112 �5.0541 �5.055 �5.0552 �10.1532 �5.0552

Worst �4.4903 �5.0418 �5.0401 �5.0552 �2.6305 �5.0552

Average �4.814037 �5.0499867 �5.05037367 �5.0552 �7.2757 �5.0552

SD 0.114594 0.002946 0.0029264 1:81� 10�15 2.8021 1:81� 10�15

11156 Neural Computing and Applications (2024) 36:11137–11170

123



for a few benchmark functions), in Figs. 10 and 11, the

values of the function estimate and the objective function

are plotted on the horizontal and vertical axes, respectively,

the curve is plotted with a dimension of 10. In most cases,

EPDO has faster convergence optima compared to other

methods. This performance is particularly noteworthy in

the case of F1–F4, F7, F9–F11, F14–F20, F24–F29, and

F31–F33. It is due to the presence of DOL initialization

and generation jumping strategy as well as the m-Lévy.

This helps in increasing the exploration capability. The

special property of DOL called dynamic change, assists in

excellent exploitation. As a result, EPDO is competitive

and beats other algorithms in search accuracy, depend-

ability, convergence speed, and exceeding the local

optimum.

5.6 Applicability of EPDO for solving
engineering design problems

The effectiveness of the EPDO algorithm in resolving

engineering issues (constrained optimization problems) has

been assessed in this subsection. Five engineering issues in

total—the pressure vessel problem, the rolling element

bearing design problem, the cantilever beam design prob-

lem, the tension/compression spring design problem and

the gear train design problem have been used for this. Since

the problem above has a lot of inequality constraints, if one

of these constraints is violated, MAs use a penalty function

that gets a good value. The results obtained by EPDO are

compared with other MAs.

Table 13 Result of fixed-

dimension multi-modal test

functions (F14–F21)

Function Global Value WOA DA GWO MFO RSA

F14 0 Best 0.998 0.998 0.998 0.988 1.0124

Worst 107632 0.998 12.6705 6.9033 107632

Average 3589.81204 0.998 3.93279333 3.26519333 3591.52789

SD 19650.4323 4:52� 10�16 4.24423761 2.49696204 19650.1083

F15 0 Best 0.000308 0.00041312 0.00030749 0.00030855 0.00043333

Worst 0.40339 0.020363 0.020363 0.0016554 0.0021201

Average 0.0140329 0.00191875 0.00372748 0.0009831 0.00101859

SD 0.07353833 0.00352198 0.00757248 0.00036669 0.00037764

F16 0 Best �1.0316 �1.0316 �1.0316 �1.0316 �1.0316

Worst �1.0316 �1.0316 �1.0316 �1.0316 �1.0217

Average �1.0316 �1.0316 �1.0316 �1.0316 �1.03066

SD 6:77� 10�16 6:77� 10�16 6:77� 10�16 6:77� 10�16 0.00187425

F17 0 Best 0.39789 0.39789 0.39789 0.39789 0.39789

Worst 0.39789 0.39789 0.39789 0.39789 0.4327

Average 0.39789 0.39789 0.39789 0.39789 0.40298259

SD 1:69� 10�16 1:69� 10�16 1:69� 10�16 1:69� 10�16 0.00757068

F18 0 Best 0.3 3 3 3 3

Worst 3.0006 3 3 3 30.0105

Average 2.91004 3 3 3 3.90044667

SD 0.49295787 0 0 0 4.93140179

F19 0 Best �3.8628 �3.8628 �3.8628 �3.8628 �7.6939

Worst �3.8488 �3.8624 �3.8549 �3.8628 �3.6375

Average �3.8596167 �3.86276 �3.8614767 �3.8628 �3.9602667

SD 0.00343 0.00010372 0.00272 3:16� 10�15 0.70648447

F20 0 Best �3.322 �3.322 �3.322 �3.322 �3.0977

Worst �3.0156 �2.9529 �3.1376 �3.1376 �1.7753

Average �3.2431367 �3.2622367 �3.25783 �3.2264767 �2.7668733

SD 0.08684007 0.08572106 0.06696046 0.05606244 0.31216593

F21 0 Best - 101528 �10.1532 �10.1531 �10.1532 �5.0552

Worst �2.6305 �5.0552 �2.5531 10.1532 �5.0552

Average �7113.6972 �9.3086433 �9.14372 �5.04199 �5.0552

SD 25725.9409 1.91814072 2.34926702 4.31566475 1.8067E-15

Neural Computing and Applications (2024) 36:11137–11170 11157

123



5.6.1 Pressure vessel problem

To maintain gases or liquids at a pressure that is often

substantially greater than the atmospheric pressure, a

closed vessel known as a pressure vessel is utilised

(Fig. 12). Hemispherical heads are used to cap off a pres-

sure vessel that is cylindrical at both ends. This optimiza-

tion issue was put forth by Sandgren [39], and pressure

vessels are frequently utilised for engineering purposes.

The construction of this compressed air tank, which has

a working pressure of 3000 psi and a minimum capacity of

750 cubic ft, complied with the boiler and pressure vessel

code of the American Society of Mechanical Engineers

(ASME). The goal is to reduce the overall cost, which is

made up of the welding, material, and forming costs. The

variables are the shell thickness (Ts), head thickness (Th),

inner radius (R) and length of the part of the vessel without

the head (L). The integer multiples of 0.0625 inches are the

only ones that the thicknesses (Ts and Th) can accept. The

Table 14 Result of fixed-dimension multi-modal test functions (F22–F29)

Function Global Value E-PDO E-PDOUW PDOL PDO ALO SCA

F22 0 Best �5.0096 �5.087 �5.0875 �5.0877 �10.4029 �5.0877

Worst �4.5863 �5.0733 �5.0765 �5.0877 �1.8376 �5.0877

Average �4.858583 �5.082663 �5.082663 �5.0877 �7.8796 �5.0877

SD 0.085745 0.003007 0.0027866 9:034� 10�16 3.2253 9:03� 10�16

F23 0 Best �5.0478 �5.1281 �5.1281 �5.1285 �10.5364 �5.1285

Worst �4.6523 �5.1151 �5.1127 �5.1285 �1.6766 �5.1285

Average �4.90481 �5.12389 �5.12335 �5.1285 �8.6688 �5.1285

SD 0.092029 0.0032128 0.0034607 1:81� 10�16 3.2052 1:81� 10�15

F24 0 Best 0 0 0 0 2:22� 10�16 0

Worst 0 0 0 0 2:8� 10�14 0

Average 0 0 0 0 6:11� 10�15 0

SD 0 0 0 0 6:51� 10�15 0

F25 0 Best - 1 - 1 - 1 - 1 - 1 - 1

Worst �0.99704 �0.99679 �0.98873 �0.9515 0 �0.99856

Average �0.999839 �0.999607 �0.999194 �0.9962 �0.9667 �0.999628

SD 0.000614 0.0007555 0.002187 0.0099 0.1826 0.000336

F26 0 Best 0 0 0 0 4:29� 10�17 1:03� 10�6

Worst 0 0 0 0 4:29� 10�8 4.9855

Average 0 0 0 0 1:61� 10�9 0.5745

SD 0 0 0 0 7:81� 10�9 1.2482

F27 0 Best 0 0 0 0 3:77� 10�15 0

Worst 0 0 0 0 2:09� 10�10 0

Average 0 0 0 0 4:39� 10�11 0

SD 0 0 0 0 5:96� 10�11 0

F28 0 Best �0.6 �0.6 �0.6 �0.6 �0.6 �0.6

Worst �0.6 �0.6 �0.6 �0.6 �0.6 �0.6

Average �0.6 �0.6 �0.6 �0.6 �0.6 �0.6

SD 0 0 0 0 0 0

F29 0 Best �1021.374 �3179.2797 �3108.428 �398.2097 �401.7926 �399.3558

Worst �174.4206 �3.5709 �505.3499 �3.8059 �4.2148 �81.4242

Average �433.7878 �2154.1784 �2429.7953 �222.0092 �285.9628 �358.8803

SD 262.168 862.3215 634.3033 146.5904 172.9691 75.9272

11158 Neural Computing and Applications (2024) 36:11137–11170

123



following is how this problem is mathematically formu-

lated [22]:

Consider z~¼ ½Ts; Th;R; L�
Minimize f ðz~Þ ¼ 0:6224TsRLþ 1:7781ThR

2

þ 3:1661T2
s Lþ 19:84T2

hL

subject to

g1ðz~Þ ¼ �Ts þ 0:0193R� 0;

g2ðz~Þ ¼ �Th þ 0:00954R� 0;

g3ðz~Þ ¼ �pR2L� 4

3
pR3 þ 750� 11728� 0;

g4ðz~Þ ¼ L� 240� 0;

0� Ts; Th � 99; 0�R; L� 200

The optimal results of variables and objective function are

inserted in Table 20. EPDO achieves a better result than the

original PDO (from Table 20).

5.6.2 Rolling element bearing design problem

This problem (Fig. 13) has 10 parameters and 10 con-

straints. The primary objective of the current problem is to

maximize the load-carrying capacity of bearing [4, 35].

The mathematical formulation of the design issue with

rolling elements in bearings is follows:

Table 15 Result of fixed-dimension multi-modal test functions (F22–F29)

Function Global Value WOA DA GWO MFO RSA

F22 0 Best - 102657 �10.4029 �10.4029 �10.4029 �5.0877

Worst �2.7658 �2.7659 �10.402 �2.7519 �5.0877

Average �3430.131 �9.7949867 �10.40254 �8.1096667 �5.087

SD 18740.9638 1.88341363 0.00025134 3.34108536 9:03� 10�16

F23 0 Best �10.536 �10.5364 �10.5364 �10.5364 �5.1285

Worst �2.4217 �5.1756 �10.5353 �2.8066 �5.1285

Average �8.59425 �9.9735167 �10.535947 �9.87511 �5.1285

SD 2.82784445 1.62938851 0.00027004 2.04078634 1:81� 10�15

F24 0 Best 0 0 0 0 0

Worst 0 2:93� 10�13 0 0.009293 0

Average 0 9:82� 10�15 0 0.00124581 0

SD 0 5:35� 10�14 0 0.00239365 0

F25 0 Best - 1 - 1 - 1 - 1 - 1

Worst 0 0.99924 - 1 - 1 �0.98664

Average �0.9331677 �0.9257007 - 1 - 1 �0.997195

SD 0.25366432 0.3654357 0 0 0.00365806

F26 0 Best 3:26� 10�290 0.7869 2:57� 10�132 9:6� 10�10 0

Worst 3:46� 10�216 2057557 1:66� 10�121 6:27� 10�5 2:61� 10�191

Average 1:2� 10�217 68706.6764 5:62� 10�123 2:39� 10�6 9:02� 10�193

SD 0 375633.893 3:02� 10�122 1:14� 10�5 0

F27 0 Best 0 0 0 0 0

Worst 0 0.078808 0 0 0

Average 0 0.00386379 0 0 0

SD 0 0.01482416 0 0 0

F28 0 Best �0.6 �0.6 �0.6 �0.6 �0.6

Worst �0.6 0.6 �0.6 �0.6 �0.6

Average �0.6 �0.5599033 �0.6 �0.6 �0.6

SD 0 0.2190709 0 0 0

F29 0 Best �400.616 �401.9667 �402.1814 �402.1819 �222.851

Worst �0.0061075 �4.1113 �4.1059 �4.2138 �1:91� 10�27

Average �183.27279 �332.50502 �256.62211 �371.24806 �47.990069

SD 149.66081 123.122173 175.170332 99.9505574 60.5660998

Neural Computing and Applications (2024) 36:11137–11170 11159

123



Table 16 Result of fixed-dimension uni-modal test functions (F30–F33)

Function Global Value E-PDO E-PDOUW PDOL PDO ALO SCA

F30 0 Best 1:34� 10�7 1:47� 10�6 9:198� 10�7 1:56� 10�6 8:32� 10�15 0.000480

Worst 4:48� 10�5 0.0006344 0.002511 0.0304 1:09� 10�11 0.021048

Average 5:47� 10�6 0.00013169 0.000176 0.00308 1:29� 10�12 0.005183

SD 1:001� 10�5 0.00014095 0.000454 0.007636 2:18� 10�12 0.005090

F31 0 Best 0 0 0 0 4:19� 10�17 2:16� 10�129

Worst 0 0 0 0 1:05� 10�14 3:78� 10�62

Average 0 0 0 0 2:02� 10�15 1:26� 10�63

SD 0 0 0 0 2:47� 10�15 6:91� 10�63

F32 0 Best �0.003791 �0.0037912 �0.0037912 �0.0037912 �0.0037912 �0.0037912

Worst �0.000149 �0.0037912 �0.0037912 �0.0037912 �0.0037912 �0.0037912

Average �0.003668 �0.0037912 �0.0037912 �0.0037912 �0.0037912 �0.0037912

SD 0.000665 1:76� 10�18 1:76� 10�18 1:76� 10�18 1:76� 10�18 1:76� 10�18

F33 0 Best 4:0608� 10�7 4:22� 10�8 7:41� 10�9 0 5:09� 10�17 7:19� 10�6

Worst 3:0316� 10�5 0.000070149 0.000128 0 2:18� 10�14 0.002285

Average 1:1663� 10�5 9:77� 10�6 1:56� 10�5 0 3:89� 10�15 0.000413

SD 8:9693� 10�6 1:42� 10�5 2:69� 10�5 0 5:65� 10�15 0.000554

Table 17 Result of fixed-dimension uni-modal test functions (F30–F33)

Function Global Value WOA DA GWO MFO RSA

F30 0 Best 0.000061595 0 6:68� 10�8 8:43� 10�23 3:60� 10�6

Worst 0.41409 0.015217 6:44� 10�6 0.0012647 0.33351

Average 0.074980698 0.000889105 1:15� 10�6 9:92� 10�5 0.031177516

SD 0.101016059 0.003175672 1:21� 10�6 0.000307325 0.063240251

F31 0 Best 0 0 2:49� 10�248 1:53� 10�131 0

Worst 0 6:43� 10�6 2:61� 10�137 8.3776 0

Average 0 7:24� 10�7 8:70� 10�139 0.279253333 0

SD 0 1:70� 10�6 4:76� 10�138 1.529533499 0

F32 0 Best �0.0037912 �0.0037912 �0.0037912 �0.0037912 �0.0037912

Worst �0.0037912 �0.0037424 �0.0037912 �0.0037912 0

Average �0.0037912 �0.003789273 �0.0037912 �0.0037912 �0.002265523

SD 1:76� 10�18 8:9� 10�6 1:76� 10�18 1:76� 10�18 0.001872865

F33 0 Best 3:59� 10�8 1:42� 10�14 1:27� 10�8 5:11� 10�8 0

Worst 0.00014661 0.0039227 1:28� 10�6 0.022591 4:93� 10�32

Average 1:35� 10�5 0.000743198 2:99� 10�7 0.00562717 2:13� 10�32

SD 2:78� 10�5 0.001517491 2:7� 10�7 0.006438524 2:35� 10�32

11160 Neural Computing and Applications (2024) 36:11137–11170

123



Table 18 Ranking and average ranking

E-PDO E-PDOUW PDOL PDO ALO SCA WOA DA GWO MFO RSA

F1 1 1 1 1 10 9 6 11 7 8 1

F2 1 1 1 1 9 8 6 11 10 7 1

F3 1 1 1 1 9 7 11 10 6 8 1

F4 1 1 1 1 9 7 11 10 6 8 1

F5 5 7 6 2 10 4 8 11 9 3 1

F6 4 8 9 2 3 6 5 11 7 1 10

F7 1 4 2 3 10 8 7 11 6 9 5

F8 3 2 1 8 9 10 4 7 5 6 11

F9 1 1 1 1 9 1 1 11 1 10 1

F10 1 1 1 1 10 9 6 11 8 7 1

F11 1 1 1 1 9 11 1 10 7 8 1

F12 5 7 10 11 9 4 1 6 2 3 8

F13 8 9 10 11 2 7 6 5 4 3 1

F14 5 1 9 8 1 4 10 1 7 6 11

F15 1 3 2 4 10 5 11 8 9 6 7

F16 1 1 1 1 1 1 1 1 1 1 11

F17 1 9 1 1 1 10 1 1 1 1 11

F18 8 9 10 2 2 2 1 2 2 2 11

F19 6 9 7 2 2 11 10 5 8 2 1

F20 1 6 2 9 3 10 7 4 5 8 11

F21 11 9 8 5 4 5 1 2 3 10 5

F22 11 10 9 6 5 6 1 3 2 4 6

F23 11 9 10 6 4 6 5 2 1 3 6

F24 1 1 1 1 9 1 1 10 1 11 1

F25 3 5 6 8 9 4 10 11 1 1 7

F26 1 1 1 1 8 10 5 11 7 9 6

F27 1 1 1 1 10 1 1 11 1 1 1

F28 1 1 1 1 1 1 1 11 1 1 1

F29 3 2 1 9 7 5 10 6 8 4 11

F30 3 5 6 8 1 9 11 7 2 4 10

F31 1 1 1 1 9 8 1 10 7 11 1

F32 10 1 1 1 1 1 1 9 1 1 11

F33 6 5 8 1 3 9 7 10 4 11 2

AVG 3.6061 4.0303 3.9697 3.6364 6.0303 6.0606 5.1212 7.576 4.5455 5.3939 5.273

RANK 1 4 3 2 9 10 6 11 5 8 7

Neural Computing and Applications (2024) 36:11137–11170 11161

123



Consider ½z~� ¼ ½z1; z2; z3; z4; z5; z6; z7; z8; z9; z10�
¼ ½Dm;Db;Z; fi; fo;KDmin

;KDmax
; e; e; f�

Maximize
fz~ ¼ fcZ

2=3D1:8
b if Db � 25:4mm

fz~ ¼ 3:647fcZ
2=3D1:4

b if Db[ 25:4mm

(

subject to

g1ðz~Þ ¼
/o

2 sin�1 ðDb=DmÞ
� zþ 1
 0;

g2ðz~Þ ¼ 2Db � KDmin
ðD� dÞ
 0;

g3ðz~Þ ¼ KDmax
ðD� dÞ � 2Db 
 0;

g4ðz~Þ ¼ Dm � ð0:5� eÞðDþ dÞ
 0;

g5ðz~Þ ¼ ð0:5þ eÞðDþ dÞ � Dm 
 0;

g6ðz~Þ ¼ Dm � 0:5ðDþ dÞ
 0;

g7ðz~Þ ¼ 0:5ðD� Db � DmÞ � eDb 
 0;

g8ðz~Þ ¼ fBw � Db � 0;

g9ðz~Þ ¼ fi 
 0:515;

g10ðz~Þ ¼ fo
 0:515;

fc ¼ 37:91�
h
1þ

n
1:04�

�1� c
1� c

�1:72
�
�fið2fo � 1Þ
foð2fi � 1Þ

�0:41o10=3i�0:3

�
hc0:3ð1� cÞ1:39

ðcþ 1Þ1=3
i
�
h 2fi
2fi � 1

i0:41
;

c ¼ Db=Dm; fo ¼ ro=Db; fi ¼ ri=Db;

/o ¼ 2p� 2 cos�1

fðD� dÞ=2� 3ðT=4Þg2 þ fD=2� ðT=4Þ � Dbg2 � fd=2þ ðT=4Þg2

2fðD� dÞ=2� 3ðT=4ÞgfD=2� ðT=4Þ � Dbg
;

T ¼ D� d � 2Db; D ¼ 160; d ¼ 90; Bw ¼ 30; ri ¼ ro ¼ 11:033;

0:5ðDþ dÞ�Dm � 0:6ðDþ dÞ; 0:15ðD� dÞ�Db� 0:45ðD� dÞ;
4� Z� 50; 0:515� fi � 0:6;

0:515� fo � 0:6; 0:4�KDmin
� 0:5; 0:6�KDmax

� 0:7; 0:3� e� 0:4;

0:02� e� 0:1; 0:6� f� 0:85

The optimal results of variables and objective function are

presented in Table 21. Compared to other algorithms, the

optimal function value for this issue, 6:96� 104, which is

obtained via EPDO, can achieve greater solution accuracy.

5.6.3 Cantilever beam design problem

The cantilever beam’s free end is subject to a vertical load,

while the other side is rigidly supported. Figure 14 illus-

trates the cantilever beam design problem’s structure. The

goal is to reduce the weight of the beam, and the vertical

displacement is a constraint that shouldn’t be exceeded by

the ideal design at all. The design of the cantilever beam

problem is mathematically described as follows:

Minimize f ðzÞ ¼ 0:0624ðz1 þ z2 þ z3 þ z4 þ z5Þ
subject to:

gðzÞ ¼ 61

z31
þ 37

z32
þ 19

z33
þ 7

z34
þ 1

z35
� 1� 0

0:01� zi � 100; i ¼ 1; 2; � � � ; 5

As compared to other algorithms, the optimal function

value for this issue is 1.332 obtained from EPDO, indi-

cating that it can achieve better solution accuracy

(Table 22).

Table 19 Ranking using

MARCOS method
Algorithms Ki� Kiþ f ðKi�Þ f ðKiþÞ f ðKiÞ Rank

E-PDO 0.610285 6.713131 0.916667 0.083333 0.605696 1

E-PDOUW 0.561436 6.175794 0.916667 0.083333 0.557214 4

E-PDOL 0.609885 6.70873 0.916667 0.083333 0.605299 2

PDO 0.606688 6.673569 0.916667 0.083333 0.602127 3

ALO 0.338757 3.726323 0.916667 0.083333 0.33621 9

SCA 0.316056 3.476611 0.916667 0.083333 0.313679 10

WOA 0.479814 5.277958 0.916667 0.083333 0.476207 6

DA 0.24056 2.646164 0.916667 0.083333 0.238752 11

GWO 0.432961 4.762566 0.916667 0.083333 0.429705 7

MFO 0.369364 4.062999 0.916667 0.083333 0.366586 8

RSA 0.507212 5.579329 0.916667 0.083333 0.503398 5

Table 20 Results estimated for

pressure vessel design
Algorithms Ts Th R L Best Worst Average SD

EPDO 0.82 0.81 42.38 174.83 7303.75 9676.05 8575.09 610.37

PDO 3.49 1.14 69.95 37.01 33830.63 961258.57 415173.68 266249.23

SCA 0.8873 0.4883 44.4625 161.6696 6100.10 7676.20 6638.60 410.0589

WOA 1.1806 0.6682 55.6093 69.5988 6415.80 11584 7797.30 1078.70

MFO 0.9067 0.4482 46.9801 139.0231 5885.30 7319 6211.50 454.05

RSA 7.4493 36.6616 72.9797 121.3523 152440 118910 482780 276670

11162 Neural Computing and Applications (2024) 36:11137–11170

123



5.6.4 Tension/compression spring design problem

In engineering sciences, the design of tension/compression

springs [22] is an optimization challenge with four con-

straints to lessen the weight of these springs, whose sche-

matic construction is depicted in Fig. 15. The components

of this design problem are subject to buckling, stress, and

deflection constraints. The problem centres on identifying

the optimal values of two variables—the cross-sectional

regions of the truss bars.

The design of tension/compression springs is mathe-

matically expressed as follows:

Fig. 10 Convergence curves of EPDO and competitor algorithms for different CEC-2017 test functions

Neural Computing and Applications (2024) 36:11137–11170 11163

123



Fig. 11 Convergence curves of EPDO and competitor algorithms for different CEC-2017 test functions

11164 Neural Computing and Applications (2024) 36:11137–11170

123



Consider ½z� ¼ ½z1; z2; z3� ¼ ½d;D;P�
Minimizef ðzÞ ¼ ðz3 þ 2Þz2z21
subject to:

g1ðzÞ ¼ 1� z32z3
71785z41

� 0

g2ðzÞ ¼
4z22 � z1z2
12566ðz2z31Þ

þ 1

5108z21
� 1� 0

g3ðzÞ ¼ 1� 140:45z1
z22z3

� 0

g4ðzÞ ¼
z1 þ z2
1:5

� 1� 0

0:05� z1 � 2:00; 0:25� z2 � 1:30; 2:00� z3 � 15:00

Fig. 12 Pressure vessel design

Fig. 13 Rolling element bearing

design

Table 21 Comparative studies

estimated by various algorithms

for rolling element bearing

design

Variables EPDO PDO SCA WOA MFO RSA

Dm 125.5782 126.5857 125 125 125.7191 128.1271

Db 21.06127 19.68419 21.26432 21.27301 21.42559 19.32694

Z 11 11 11 11 11 9

fi 0.5166768 0.515533 0.515 0.515 0.515 0.527105

fo 0.596 0.58185 0.515 0.515037 0.515 0.58492

KDmin
0.4011888 0.4924716 0.44155 0.460342 0.5 0.495879

KDmax
0.6437155 0.6317101 0.7 0.7 0.7 0.632665

e 0.3041295 0.3416889 0.3 0.300022 0.3 0.313165

e 0.03119378 0.0050994 0.02 0.053931 0.02 0.024572

f 0.6097202 0.633754 0.6 0.60445 0.600403 0.60377

Best 6:96� 104 7:25� 104 �84398.9 �84459.8 �85549.2 �4:93� 104

Worst �47921.0721 5:721� 1021 �76467.6 �45196.4 �84459.8 1:84� 1029

Average �60636.45057 1:69676� 1021 �81556.6 �78770.4 �85221.7 6:12� 1027

SD 5792.457846 1:57944� 1021 2005.239 8273.617 507.3587 3:35� 1028

Neural Computing and Applications (2024) 36:11137–11170 11165

123



In order to find the best solution for the tension/compres-

sion spring design variables, the EPDO and competing

algorithms’ implementation results are provided in

Table 23. Based on these findings, EPDO has offered the

best solution to the tension/compression spring problem,

with the goal function set to 0.0126 and the design vari-

ables set to (0.0547, 0.4211, 9.1). Table 23 also displays

the statistical outcomes from optimizing this design issue

using EPDO and competitive techniques.

5.6.5 Gear train design problem

The main objective of this problem is to minimize the cost

of the gear ratio in a gear train, which includes four design

variables, namely the number of teeth of gears.

Gear ratio ¼ nA � nB
nC � nD

Figure 16 illustrates this design issue. The gearwheel’s

teeth come in four different varieties A, B, C, and D.

nA; nB; nC; and nD are used to denote the design variables.

The range [12, 60] encompasses all of them as integers.

The gear train design challenge [39] is mathematically

expressed as follows:

Consider ½nA; nB; nC; nD�

Minimize f ðnA; nB; nC; nDÞ ¼
� 1

6:931
� nA � nB
nC � nD

�2

subject to:

12� nA; nB; nC; nD � 60

Table 24 presents the statistical data on the outcomes of

numerous independent runs in comparison to the outcomes

of other algorithms. Compared to other algorithms, it

demonstrates that the suggested algorithm performs better.

5.7 Discussions

Incorporating DOL initialization and the generation-

jumping strategy significantly improves EPDO’s explo-

ration capabilities. Furthermore, utilizing the m-Lévy dis-

tribution enhances the algorithm’s adaptability and

exploration prowess. The dynamic change feature of DOL

further aids in achieving excellent exploitation. Conse-

quently, EPDO stands out as a competitive algorithm,

excelling in search accuracy, dependability, convergence

speed, and its capacity to overcome local optima. EPDO

consistently demonstrates superior performance in com-

paring results across diverse engineering design challenges,

including pressure vessel, rolling element bearing, can-

tilever beam, tension/compression spring, and gear train

problems. It exhibits lower objective function values and

improved statistical measures compared to the original

PDO and other MAs. EPDO’s innovations suit real-world

engineering optimization challenges well, delivering

accurate and efficient solutions, particularly in industries

with diverse design constraints. A notable improvement in

EPDO is its proficiency in handling engineering design

problems with numerous inequality constraints. Introduc-

ing a penalty function enables graceful adaptation to con-

straint violations, significantly expanding its applicability

Table 22 Comparative results for the cantilever beam design estimated using different algorithms

Algorithms z1 z2 z3 z4 z5 Best Worst AVG SD

EPDO 5.0275 4.9958 4.9705 3.2653 3.0869 1.332 1.5902 1.5555 6.70E-03

PDO 5.0744 5.0744 5.0744 5.0744 5.0744 1.56 1.69E?00 1.58E?00 4.22E-02

SCA 6.2214 5.3335 4.6077 3.6606 2.3422 1.3552 1.4045 1.3831 1.23E-02

WOA 6.3496 5.2788 4.6311 3.8787 2.5801 1.3543 1.556 1.4176 0.0536

MFO 6.0222 5.3082 4.5091 3.4863 2.1544 1.34 1.3412 1.3404 3.27E-04

RSA 24.0023 32.1756 24.586 28.7294 18.9943 5.1413 1.01E?01 8.02E?00 1.33E?00

Table 23 Comparative results

for the design of

tension/compression springs

Algorithms d D P Best Worst AVG SD

EPDO 0.0547 0.4211 9.1 0.0126 0.014 0.0129 1.23E-04

PDO 0.1025 0.9234 9.1667 0.0313 8.56E?19 2.10E?19 2.92E?19

SCA 0.0514 0.3483 12.5667 0.0127 0.0132 0.0131 1.47E-04

WOA 0.0582 0.5416 6.1667 0.0127 0.0178 0.0139 0.0012

MFO 0.0545 0.4387 9.9 0.0127 0.0178 0.0134 0.0011

RSA 0.1167 0.9296 9.2667 0.0303 9.69E?19 2.88E?19 3.12E?19

11166 Neural Computing and Applications (2024) 36:11137–11170

123



to intricate real-world scenarios with stringent constraints.

The practical implications of EPDO’s enhancements are

evident in industries relying on efficient engineering

design. By consistently surpassing its predecessor and

other algorithms, EPDO emerges as a reliable and robust

optimization tool for real-world scenarios emphasizing

precision and reliability.

The EPDO algorithm, while showcasing notable advan-

tages, has its limitations. Sensitivity to algorithm tuning

poses a challenge, requiring meticulous parameter config-

uration for optimal performance across diverse problem

sets. Additionally, the algorithm’s effectiveness is

contingent on the quality of initial solutions, making it

susceptible to suboptimal convergence if initialization

needs to be carefully managed. The variability in EPDO’s

performance across different optimization problems sug-

gests a degree of problem-specific sensitivity. Although it

excels in various benchmarks, its consistency and effec-

tiveness might vary for specific complex, nonlinear, or

multimodal functions. These limitations highlight the

importance of addressing tuning challenges, improving

robustness to diverse initializations, and enhancing per-

formance across a broader range of optimization scenarios

to fortify EPDO’s reliability and applicability.

Fig. 14 Structure of cantilever beam

Fig. 15 Tension/compression

spring design

Table 24 Comparative results

for the gear train design

problem

Algorithms nA nB nC nD Best Worst AVG SD

EPDO 46.7 18.8667 17.2333 46.4667 2.70E-12 4.17E-08 7.64E-09 1.24E-08

PDO 47.0667 20.2333 17.9667 43.9667 2.13E-07 2.14E-02 2.20E-03 4.30E-03

SCA 49.4667 19.6 19.8333 50.1333 2.70E-12 2.36E-09 1.02E-09 7.53E-10

WOA 46.3667 17.7667 18.2667 47.1333 2.70E-12 6.51E-09 1.20E-09 1.30E-09

MFO 50.9667 21.7 18.7333 49.9667 2.31E-11 4.47E-08 5.66E-09 9.97E-09

RSA 46.1 21.2667 21.5 49.4667 2.71E-06 4.23E-02 5.30E-03 9.90E-03

Neural Computing and Applications (2024) 36:11137–11170 11167

123



6 Conclusions and plans for the future

In this research article, we have presented the EPDO

algorithm as an enhanced variant of the PDO algorithm,

addressing its limitations and improving its performance in

the exploration and exploitation of global optimization

problems. By incorporating the DOL method and a modi-

fied Lévy flight technique, EPDO achieves better intensi-

fication and diversification capabilities, improving overall

optimization performance. To evaluate the effectiveness of

EPDO, we conducted extensive experiments using 23

CEC-2017 benchmark test problems and additional

benchmark problems. The results demonstrate that EPDO

outperforms other state-of-the-art algorithms in terms of

global optimization, showing its potential for solving

engineering optimization problems and real-world appli-

cations. We further validated the performance of EPDO

through average rank tests, MARCOS rank tests, and

convergence analysis, all of which consistently confirmed

its competitive advantage in handling shifting and rotation

problems in global optimization.

While the EPDO algorithm demonstrates notable ad-

vantages, including improved convergence speed, solution

quality, and versatility, several limitations should be

acknowledged. EPDO’s sensitivity to parameter tuning

poses challenges in achieving optimal configurations across

diverse problem domains, and its dependency on the

quality of initial solutions may lead to suboptimal perfor-

mance with careless initialization. Additionally, the algo-

rithm’s performance may exhibit variability across

different optimization problems, particularly complex,

nonlinear, or multimodal ones. Addressing these limita-

tions is crucial for further enhancing EPDO’s robustness

and applicability. Future work should focus on mitigating

parameter sensitivity, exploring advanced initialization

strategies, adapting the algorithm for specific problem

types, investigating hybridization with other techniques,

and conducting extensive real-world applications to

validate its effectiveness. The algorithm’s application in

various domains, including manufacturing, logistics,

energy systems, financial modelling, healthcare planning,

telecommunications network design, and agricultural

planning, showcases its potential for optimizing diverse

real-world scenarios. Moreover, we recommend exploring

its potential for solving specific optimization problems,

such as the travelling salesman problem, emission dispatch

problem, nonlinear inventory optimization problem [2, 12],

portfolio optimization, healthcare resource allocation

problem and image segmentation problem. Furthermore,

investigating many-objective optimization and conducting

theoretical investigations, including Markov process mod-

elling and stability analysis, can provide a stronger theo-

retical foundation for EPDO, further enhancing its

understanding and capabilities.

Funding Open access funding provided by North-West University.

Data availability Data are available from the authors upon reasonable

request.

Declarations

Conflict of interest The authors declare that there is no Conflict of

interest regarding the publication of this paper.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual

participants included in the study.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

Fig. 16 Gear Train Design

11168 Neural Computing and Applications (2024) 36:11137–11170

123



use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Abualigah L, Elaziz MA, Sumari P, Geem ZW, Gandomi AH

(2022) Reptile search algorithm (RSA): a nature-inspired meta-

heuristic optimizer. Expert Syst Appl 191:116158

2. Taleizadeh AA, Naghavi-Alhoseiny M-S, Eduardo Cárdenas-

Barrón L, Amjadian A (2023) Optimization of price, lot size and

backordered level in an EPQ inventory model with rework pro-

cess. RAIRO-Oper Res 5:803–819

3. Cao D, Xu Y, Yang Z, Dong H, Li X (2022) An enhanced whale

optimization algorithm with improved dynamic opposite learning

and adaptive inertia weight strategy. Complex Intell Syst

8:767–795

4. Chakraborty I, Kumar V, Nair SB, Tiwari R (2003) Rolling

element bearing design through genetic algorithms. Eng Optim

35(6):649–659

5. Coufal P, Hubálovský Š, Hubálovská M, Balogh Z (2021) Snow

leopard optimization algorithm: a new nature-based optimization

algorithm for solving optimization problems. Mathematics

9(21):2832

6. Dehghani M, Montazeri Z, Hubálovský Š (2021) GMBO: group

mean-based optimizer for solving various optimization problems.

Mathematics 9(11):1190

7. Dehghani M, Trojovský P (2021) Teamwork optimization algo-

rithm: a new optimization approach for function minimiza-

tion/maximization. Sensors 21(13):4567

8. Dhal KG, Ray S, Rai R, Das A (2023) Archimedes optimizer:

theory, analysis, improvements, and applications. Arch Comput

Methods Eng 30(4):2543–2578

9. Dong H, Xu Y, Li X, Yang Z, Zou C (2021) An improved antlion

optimizer with dynamic random walk and dynamic opposite

learning. Knowl-Based Syst 216:106752

10. Dong W, Kang L, Zhang W (2017) Opposition-based particle

swarm optimization with adaptive mutation strategy. Soft Com-

put 21(17):5081–5090

11. Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi

AH (2022) Prairie dog optimization algorithm. Neural Comput

Appl 34(22):20017–20065

12. Gharaei A, Amjadian A, Shavandi A, Amjadian A (2023) An

augmented Lagrangian approach with general constraints to solve

nonlinear models of the large-scale reliable inventory systems.

J Comb Optim 45(2):78

13. Glover F (1994) Tabu search for nonlinear and parametric opti-

mization (with links to genetic algorithms). Discret Appl Math

49(1–3):231–255

14. Hasançebi O, Çarbaş S, Doǧan E, Erdal F, Saka MP (2009)

Performance evaluation of metaheuristic search techniques in the

optimum design of real size pin jointed structures. Comput Struct

87(5–6):284–302

15. Sirovich IL, Marsden JE (2009) Diffusion and ecological prob-

lems: modern perspectives, vol 8. Springer, New York

16. Jamil M, Yang XS (2013) A literature survey of benchmark

functions for global optimisation problems. Int J Math Model

Numer Optim 4(2):150–194

17. Jaradat G, Ayob M, Almarashdeh I (2016) The effect of elite pool

in hybrid population-based meta-heuristics for solving combina-

torial optimization problems. Appl Soft Comput J 44:45–56

18. Kang Q, Xiong C, Zhou M, Meng L (2018) Opposition-based

hybrid strategy for particle swarm optimization in noisy envi-

ronments. IEEE Access 6:21888–21900

19. Kareiva PM, Shigesada N (1983) Analyzing insect movement as

a correlated random walk. Oecologia 56(2–3):234–238

20. Kashani AR, Camp CV, Rostamian M, Azizi K, Gandomi AH

(2022) Population-based optimization in structural engineering: a

review. Artif Intell Rev 55(1):1–108

21. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by

simulated annealing. Science 220(4598):671–680

22. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S

(2020) A test-suite of non-convex constrained optimization

problems from the real-world and some baseline results. Swarm

Evol Comput 56:100693

23. Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based

learning: a literature review. Swarm Evol Comput 39:1–23

24. Mantegna RN, Stanley HE (1994) Stochastic process with

ultraslow convergence to a gaussian: the truncated Lévy flight.

Phys Rev Lett 73(22):2946

25. Mirjalili S (2015) Moth-flame optimization algorithm: a novel

nature-inspired heuristic paradigm. Knowledge-Based Syst

89:228–249

26. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw

83:80–98

27. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic

optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput Appl 27(4):1053–1073

28. Mirjalili S (2016) SCA: a Sine Cosine algorithm for solving

optimization problems. Knowl-Based Syst 96:120–133

29. Mirjalili S, Lewis A (2016) The whale optimization algorithm.

Adv Eng Softw 95:51–67

30. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf Optimizer.

Adv Eng Softw 69:46–61

31. Mladenović N, Hansen P (1997) Variable neighborhood search.

Comput Oper Res 24(11):1097–1100

32. Osaba E, Villar-Rodriguez E, Del Ser J, Nebro AJ, Molina D,

LaTorre A, Suganthan PN, Coello Coello CA, Herrera F (2021) A

tutorial on the design, experimentation and application of meta-

heuristic algorithms to real-world optimization problems. Swarm

Evol Comput 64:100888

33. Pardalos PM, Romeijn HE, Tuy H (2000) Recent developments

and trends in global optimization. J Comput Appl Math

124(1–2):209–228

34. Rahnamayan S, Tizhoosh H, Salama M (2008) Opposition-based

differential evolution. IEEE Tran Evol Comput 12(1):64–79

35. Rajeswara Rao B, Tiwari R (2007) Optimum design of rolling

element bearings using genetic algorithms. Mech Mach Theory

42(2):233–250

36. Reynolds AM, Rhodes CJ (2009) The Lévy flight paradigm:

random search patterns and mechanisms. Ecology 90(4):877–887

37. Rojas-Morales N, Riff Rojas MC, Montero Ureta E (2017) A

survey and classification of Opposition-Based Metaheuristics.

Comput Ind Eng 110:424–435

38. Sahoo SK, Saha AK, Nama S, Masdari M (2022) An improved

moth flame optimization algorithm based on modified dynamic

opposite learning strategy. Artif Intell Rev 8:2811–2869

39. Sandgren E (1990) Nonlinear integer and discrete programming

in mechanical design optimization. J Mech Des, Trans ASME

112(2):223–229

40. Shlesinger MF, Klafter J (1986) Lévy walks versus Lévy flights.

In: Stanley HE, Ostrowsky N (eds) On growth and form: fractal

and non-fractal patterns in physics, vol 100. Springer, Dordrecht

41. Stević Ž, Brković N (2020) A novel integrated FUCOM-MAR-

COS model for evaluation of human resources in a transport

company. Logistics 4(1):4

Neural Computing and Applications (2024) 36:11137–11170 11169

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


42. Stević Ž, Pamučar D, Puška A, Chatterjee P (2020) Sustainable

supplier selection in healthcare industries using a new MCDM

method: measurement of alternatives and ranking according to

COmpromise solution (MARCOS). Comput Ind Eng 140:106231

43. Taleizadeh AA, Amjadian A, Hashemi-Petroodi SE, Moon I

(2023) Supply chain coordination based on mean-variance risk

optimisation: pricing, warranty, and full-refund decisions. Int J

Syst Sci: Oper Logist 10(1):12

44. Tizhoosh HR (2005) Opposition-based learning: a new

scheme for machine intelligence. In: Proceedings- international

conference on computational intelligence for modelling, control

and automation, CIMCA 2005 and international conference on

intelligent agents, Web Technologies and Internet

45. Turchin P (1991) Translating foraging movements in heteroge-

neous environments into the spatial distribution of foragers.

Ecology 72(4):1253–1266

46. Wolpert DH, Macready WG (1997) No free lunch theorems for

optimization. IEEE Trans Evol Comput 1(1):67–82

47. Xu Y, Yang Z, Li X, Kang H, Yang X (2020) Dynamic opposite

learning enhanced teaching-learning-based optimization. Knowl-

Based Syst 188:104966

48. Yang XS (2010) Engineering optimization: an introduction with

metaheuristic applications. Wiley, Hoboken

49. Yang XS (2012) Efficiency analysis of swarm intelligence and

randomization techniques. J Comput Theor Nanosci

9(2):189–198

50. Yang XS (2020) Nature-inspired optimization algorithms: chal-

lenges and open problems. J Comput Sci 46:101104

51. Yang X-S, He X-S (2019) Mathematical foundations of nature-

inspired algorithms. Springer, Cham

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Saptadeep Biswas1 • Azharuddin Shaikh1 • Absalom El-Shamir Ezugwu2 • Japie Greeff3 • Seyedali Mirjalili4 •

Uttam Kumar Bera1 • Laith Abualigah5,6,7,8,9,10,11,12

& Absalom El-Shamir Ezugwu

absalom.ezugwu@nwu.ac.za

& Laith Abualigah

aligah.2020@gmail.com; abu.aligah@usm.my

Saptadeep Biswas

saptadeepmath.sch@nita.ac.in

Azharuddin Shaikh

Azharuddin@gmail.com

Japie Greeff

japie.greeff@nwu.ac.za

Seyedali Mirjalili

ali.mirjalili@torrens.edu.au

Uttam Kumar Bera

uttam.math@nita.ac.in

1 Department of Mathematics, National Institute of

Technology Agartala, Agartala, Tripura, India

2 Unit for Data Science and Computing, North-West

University, 11 Hoffman Street, Potchefstroom 2520, South

Africa

3 Faculty of Natural and Agricultural Sciences, School of

Computer Science and Information Systems, North-West

University, Vanderbijlpark, South Africa

4 Centre for Artificial Intelligence Research and Optimization,

Torrens University Australia, Fortitude Valley, Brisbane,

QLD 4006, Australia

5 Artificial Intelligence and Sensing Technologies (AIST)

Research Center, University of Tabuk, Tabuk 71491, Saudi

Arabia

6 Computer Science Department, Al al-Bayt University,

Mafraq 25113, Jordan

7 Hourani Center for Applied Scientific Research, Al-Ahliyya

Amman University, Amman 19328, Jordan

8 Applied Science Research Center, Applied Science Private

University, Amman 11931, Jordan

9 Department of Electrical and Computer Engineering,

Lebanese American University, Byblos 13-5053, Lebanon

10 School of Engineering and Technology, Sunway University

Malaysia, 27500 Petaling Jaya, Malaysia

11 College of Engineering, Yuan Ze University, Taoyuan 32003,

Taiwan

12 MEU Research Unit, Middle East University, Amman 11831,

Jordan

11170 Neural Computing and Applications (2024) 36:11137–11170

123

http://orcid.org/0000-0002-2203-4549

	Enhanced prairie dog optimization with Levy flight and dynamic opposition-based learning for global optimization and engineering design problems
	Abstract
	Introduction
	Paper structure

	Prairie dog optimization algorithm
	Algorithm assumptions
	Implementations of basic PDO
	Initialization
	Evaluation function assessment
	Exploration
	Exploitation


	Foundational framework for advancing prairie dog optimization (PDO) algorithm
	Concepts of Lévy flight
	Concepts of dynamic opposite learning strategy (DOL)
	Opposition-based learning (OBL)
	Dynamic opposite learning strategy (DOL)

	Mathematical templates for DOL

	Proposed E-PDO
	Improved random walk
	DOL-based strategies for PDO
	Improved population initialization using DOL strategy
	Improved generation jumping using DOL strategy

	E-PDO algorithm steps
	E-PDOUW
	PDOL
	The computational complexity of the E-PDO algorithm

	Experimental problems, results, and discussions
	Benchmark function
	Experimental setup
	Experimental results
	Statistical analysis of experimental results
	Performance indicators
	Measurement of alternatives and ranking according to compromise solution (MARCOS) method
	MARCOS calculation

	Convergence report
	Applicability of EPDO for solving engineering design problems
	Pressure vessel problem
	Rolling element bearing design problem
	Cantilever beam design problem
	Tension/compression spring design problem
	Gear train design problem

	Discussions

	Conclusions and plans for the future
	Open Access
	References




