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Random zonotopes and valuations

Rolf Schneider

Abstract

We define a random zonotope in R
d, by adding finitely many random segments, which

are independently and identically distributed. For this random polytope, we determine,
under a mild assumption on the distribution, the expectations of the intrinsic volumes,
more generally, the expectations of suitable valuations. We also prove a central limit
theorem for a valuation evaluated at these random zonotopes.
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1 Introduction

In the stochastic geometry of Rd, many constructions of random polytopes start with a finite
number of independent, identically distributed random points. A common procedure is to
take their convex hull. A first task will then be to determine the expectations of some
prominent geometric functionals of the random polytope, for example, the numbers of k-
dimensional faces or the intrinsic volumes. Often only asymptotic considerations, with the
number of points or the dimension d tending to infinity, lead to explicit results. (Surveys on
random polytopes are, in chronological order, [2], [15], [20, Sect. 8.2], [16], [14], [6], [18], [3,
Sect. 1.4]). In the present note, we do not study the convex hull, but the Minkowski sum Zp

of p segments with endpoints at the origin o and at the random points. Thus, we consider
random zonotopes. (Surveys on zonotopes and on zonoids, their limits in the Hausdorff
metric, are [19] and [5].) In this case, the numbers of k-dimensional faces are not a problem,
since under weak assumptions on the distribution of the random points they are almost surely
constant. We refer to Donoho and Tanner [4, (1.6)] and the references given there, although
the formulation there is slightly different (but equivalent).

In contrast, the expectations of the intrinsic volumes of the random zonotope Zp will
strongly depend on the given distribution. The intrinsic volumes are of particular interest,
since they include the most common size measurements of convex bodies, namely volume,
surface area, and mean width (up to normalizing constants). We show in this note that
the expectations of the intrinsic volumes of Zp can be expressed via a deterministic zonoid
constructed from the distribution. In fact, the expectations of more general functionals than
the intrinsic volumes can be made explicit in this way.

To be more precise, let R
d be the d-dimensional Euclidean vector space, with scalar

product 〈· , ·〉 and induced norm ‖·‖. By Kd we denote the space of convex bodies (nonempty,
compact, convex subsets) of Rd, equipped with the Hausdorff metric. We recall, e.g. from
[17], that the intrinsic volumes V0(K), . . . , Vd(K) of a convex body K ∈ Kd can be defined
via the Steiner formula

Vd(K + ρBd) =
d∑

j=0

ρd−jκd−jVj(K).
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Here Vd denotes the volume, ρ ≥ 0 can be any real number, Bd is the unit ball in R
d, and κd

is its volume.

The intrinsic volume Vj is an element of Val, the real vector space of translation invariant,
continuous real valuations on the space Kd. Recall that ϕ : Kd → R is a valuation if
ϕ(K ∪L)+ϕ(K ∩L) = ϕ(K)+ϕ(L) whenever K,L,K ∪L ∈ Kd. (Surveys on valuations are
[11], [10], [17, Chap. 6].) By Hadwiger’s theorem, the intrinsic volumes form a basis of the
subspace of rigid motion invariant valuations. The space Val is much bigger, it has infinite
dimension. By a theorem of P. McMullen, Val =

⊕d
j=0Valj , where Valj is the subspace of

valuations that are homogeneous of degree j. For example, each function

K 7→ V (K, . . . ,K︸ ︷︷ ︸
j

, Lj+1, . . . , Ld),

where V denotes the mixed volume in R
d and Lj+1, . . . , Ld are fixed convex bodies, belongs

to Valj . The jth intrinsic volume is obtained, up to a a normalizing factor, if Lj+1, . . . , Ld

are unit balls. The elements of Valj appear in the subsequent Theorem 1 (only for j ≥ 1,
since Val0 contains only constants).

For x ∈ R
d, we denote by x the closed segment with endpoints x and o.

Let X be a random vector in R
d. Of the distribution of X, we assume that E ‖X‖ < ∞.

For p ∈ N, let X1, . . . ,Xp be i.i.d. copies of X, and define

Zp :=
1

p

(
X1 + · · ·+Xp

)
,

where the sum is Minkowski (or vector) addition.

The random set X is integrably bounded and hence has a selection expectation EX (we
refer to Molchanov [12], in particular Theorem 1.22 of Chapter 2). We denote this selection
expectation by ZX . We recall that the support function of a convex body K ∈ Kd is defined
by h(K,u) := max{〈x, u〉 : x ∈ K} for u ∈ R

d. It is known that the support function of the
selection expectation ZX is given by

h(ZX , u) = Eh(X,u) =

∫

Rd

h(x, u)PX(dx) for u ∈ R
d,

where PX denotes the distribution of X. Thus, ZX can be approximated by finite sums of
segments and hence is a zonoid. We remark that ZX occurs also as the ‘zonoid of a measure’;
see Mosler [13], in particular Theorem 2.8.

Theorem 1. Let j ∈ {1, . . . , d}, and let p ≥ j be an integer. If ϕ ∈ Valj , then

Eϕ(Zp) =
p!

pj(p− j)!
ϕ(ZX). (1)

We mention that the role of the zonoid ZX can be seen in a vague analogy to that of
Matheron’s [9] ‘Steiner compact’ (called the ‘associated zonoid’ in [20]) in the theory of
Poisson hyperplane tessellations. The common aspect is that the distribution of a random
object is governed by a measure, and this measure defines a deterministic zonoid. This zonoid
can then be used to express certain expectations defined by the random object.

We prove Theorem 1 in Section 3, after explaining in the next section the ideas of Vitale
on which it is based. Section 4 contains a central limit theorem for ϕ(Zn), as n tends to
infinity.
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2 A result of Richard A. Vitale

The following result was proved by Vitale [22].

Theorem 2. If X1, . . . ,Xd are i.i.d. copies of X, then

EVd(X1 + · · ·+Xd) = d!Vd(ZX). (2)

Vitale’s formulation is slightly different, since he considers not the volume of the sum of
d random segments (and thus of a random parallelepiped), but the absolute determinant of
a d× d matrix whose columns are i.i.d. random. The formulations are clearly equivalent.

Vitale’s result appears also as Theorem 2.10 in [13].

Vitale’s proof is an elegant combination of two strong laws of large numbers. We recall his
argument briefly, since we are going to extend it. Let X1,X2, . . . be an infinite sequence of
i.i.d. copies of X. For each n ∈ N, consider the random zonotope Zn := 1

n

(
X1 + · · ·+Xn

)
.

Since E ‖X‖ < ∞, the strong law of Artstein and Vitale [1] can be applied, which yields that,
with probability one,

Zn → EX = ZX as n → ∞, (3)

where the convergence is in the Hausdorff metric. Since Vd is continuous on convex bodies,
we get

lim
n→∞

Vd(Zn) = Vd(ZX) a.s. (4)

We have (see, e.g., [17, p. 304])

Vd(Zn) =
1

nd

∑

1≤i1<···<id≤n

Vd(X i1 + · · ·+Xid).

Here, Vd(Xi1 + · · · + X id) ≤ ‖Xi1‖ · · · ‖Xid‖, hence the random variable Vd(Zn) has finite
expectation. From Hoeffding’s strong law of large numbers for U -statistics (see, e.g., Serfling
[21, Chap. 5]) it follows that, with probability one,

(
n

d

)−1 ∑

1≤i1<···<id≤n

Vd(X i1 + · · · +Xid) → EVd(X1 + · · ·+Xd) as n → ∞,

hence

lim
n→∞

Vd(Zn) =
1

d!
EVd(X1 + · · · +Xd) a.s. (5)

From (4) and (5), Vitale’s result (2) follows. We remark that similar arguments were used in
[23].

3 An extension

Since we have given Vitale’s result a geometric formulation, we can extend it in the way
described in Theorem 1. The proof depends on a polynomiality property of the elements of
Valj , which goes back to P. McMullen.

Let j ∈ {1, . . . , d} and ϕ ∈ Valj . Then there exists a continuous symmetric mapping
φ : (Kd)j → R which is translation invariant and Minkowski additive in each variable, such
that

ϕ(λ1K1 + · · ·+ λnKn) =

j∑

r1,...,rn=0

(
j

r1 . . . rn

)
λr1
1 · · ·λrn

n φ(K1[r1], . . . ,Kn[rn]) (6)
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for all K1, . . . ,Kn ∈ Kd, all λ1, . . . , λn ≥ 0 and all n ∈ N. Here the multinomial coefficient
is, by definition, equal to 0 if r1 + · · ·+ rn 6= j. The bracket [ri] indicates that the preceding
argument is repeated ri times. We refer to [17, Thm. 6.3.6], and to the subsequent note for
references and some history.

Suppose that all Ki in (6) are segments. Consider a summand on the right-hand side
where some ri is greater than 1, say r1 ≥ 2. This summand contains an expression
φ(x1, x1, y3, . . . , yj) with x1, y3, . . . , yj ∈ R

d. For arbitrary λ1, . . . , λj ≥ 0 we have

dim (λ1x1 + λ2x1 + λ3y3 + · · ·+ λjyj) < j,

hence ϕ(λ1x1 + λ2x1 + λ3y3 + · · · + λjyj) = 0, by [17, Cor. 6.3.2] and the continuity of ϕ.
Therefore, it follows from (6) that φ(x1, x1, y3, . . . , yj) = 0. This means that for arbitrary
segments x1, . . . , xn we have

φ(x1[r1], . . . , xn[rn]) = 0

whenever r1 + · · ·+ rn = j and at least on ri is greater than one. Therefore, if (6) is applied
to segments, then on the right-hand side only the summands with ri ∈ {0, 1} can be different
from zero. It follows that for segments x1, . . . , xn, relation (6) can be simplified to

ϕ(x1 + · · ·+ xn) = j!
∑

1≤i1<···<ij≤n

φ(xi1 , . . . , xij ). (7)

Let p be an integer with j ≤ p ≤ n and consider

Ap :=
∑

1≤i1<···<ip≤n

ϕ(xi1 + · · ·+ xip).

(Only the case p ≥ j is considered, since ϕ(x1 + · · · + xp) = 0 for p < j.) By (7) (with
x1 + · · ·+ xn replaced by xi1 + · · ·+ xip) we get

Ap = j!
∑

1≤i1<···<ip≤n

∑

k1<···<kj

k1,...,kj∈{i1,...,ip}

φ(xk1 , . . . , xkj).

A given ordered j-tuple k1 < · · · < kj appears in the summation as often as one can choose
a set of p − j distinct indices from {1, . . . , n} \ {k1, . . . , kj}, that is,

(
n−j
p−j

)
times. In view of

(7) it follows that Ap =
(
n−j
p−j

)
ϕ(x1 + · · ·+ xn) and thus

ϕ(x1 + · · ·+ xn) =

(
n− j

p− j

)−1 ∑

1≤i1<···<ip≤n

ϕ(xi1 + · · · + xip). (8)

Now, as in Section 2, let X1,X2, . . . be i.i.d. copies of X and define

Zn :=
1

n
(X1 + · · ·+Xn).

Then (8) implies that

ϕ(Zn) =
1

nj

(
n− j

p− j

)−1(
n

p

)
U (p)
n (h), (9)

where

U (p)
n (h) :=

(
n

p

)−1 ∑

1≤i1<···<ip≤n

h(Xi1 , . . . ,Xip)
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is a U -statistic of order p with kernel function h : (Rd)p → R defined by

h(x1, . . . , xp) := ϕ(x1 + · · ·+ xp)

(and applied to the i.i.d. sequence X1,X2, . . . ).

Now we remark that the function φ is in each variable Minkowski additive and continuous,
hence positively homogeneous of degree 1. Therefore,

φ(X1, . . . ,Xj) = ‖X1‖ · · · ‖Xj‖φ(s1, . . . , sj)

with random segments s1, . . . , sj having endpoints at o and at unit vectors. Since φ is continu-
ous, there is a constant c, depending only on φ, such that |φ(s1, . . . , sj)| ≤ c. Since E ‖X‖ < ∞
and X1, . . . ,Xj are stochastically independent, we deduce that E |φ(X1, . . . ,Xj)| < ∞. From
(7) we now conclude that E |h(X1, . . . ,Xp)| = E |ϕ(X1 + · · ·+Xp)| < ∞.

Therefore, the strong law for U -statistics (see, e.g., Serfling [21, p. 190] or Lee [8, p. 122])
can be applied. It yields that, with probability one,

lim
n→∞

U (p)
n (h) = Eh(X1, . . . ,Xp) = Eϕ(X1 + · · ·+Xp) = pj Eϕ(Zp).

Therefore (9), together with

lim
n→∞

1

nj

(
n− j

p− j

)−1(
n

p

)
=

(p− j)!

p!
,

gives

lim
n→∞

ϕ(Zn) =
(p− j)!

p!
pj Eϕ(Zp) a.s.

By (3) and the continuity of ϕ, we have

lim
n→∞

ϕ(Zn) = ϕ(ZX) a.s. (10)

Both results together yield the value for the expectation Eϕ(Zp) as stated in Theorem 1.

4 A central limit theorem

Besides the strong law of large numbers expressed by (10), we may also state a central limit
theorem for ϕ(Zn). For this, we need to compute a variance in our present case. We consider
the kernel function h for p = j, that is, h(x1, . . . , xj) = ϕ(x1 + · · · + xj). We assume now
that E ‖X‖2 < ∞. Then we can conclude as in Section 2, using (7), that

Eh2(X1, . . . ,Xj) = E (j!φ(X1, . . . ,Xj))
2 = (j!)2E

(
‖X1‖2 · · · ‖Xj‖2φ(s1, . . . , sj)2

)

with segments s1, . . . , sj of unit length, and hence that Eh2(X1, . . . ,Xj) < ∞.

Adopting the notation of [21], we write

θ := Eh(X1, . . . ,Xj) = Eϕ(X1 + · · ·+Xj) = jj Eϕ(Zj) = j!ϕ(ZX)

and, for x1 ∈ R
d,

h1(x1) := Eh(x1,X2, . . . ,Xj) = Eϕ(x1 +X2 + · · ·+Xj),
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further h̃1 := h1 − θ and
ζ1 := E h̃21(X1).

Now we define a random zonotope by

Zn(x1) := x1 +
1

n
(X2 + · · · +Xn)

d
= x1 +

n− 1

n
Zn−1

for x1 ∈ R
d. Then by (3), with probability one,

Zn(x1) → x1 + EX = x1 + ZX as n → ∞

and hence
lim
n→∞

ϕ(Zn(x1)) = ϕ(x1 + ZX) a.s. (11)

We write (8) for p = j in the form

ϕ(x1 + · · · + xn)

=
∑

2≤i2<···<ij≤n

ϕ(x1 + xi2 + · · ·+ xij ) +
∑

2≤i1<···<ij≤n

ϕ(xi1 + · · ·+ xij).

This gives

ϕ(Zn(x1))

=
∑

2≤i2<···<ij≤n

ϕ

(
x1 +

1

n
Xi2 + · · · + 1

n
Xij

)
+

∑

2≤i1<···<ij≤n

ϕ

(
1

n
Xi1 + · · · + 1

n
Xij

)

=
1

nj−1

∑

2≤i2<···<ij≤n

ϕ
(
x1 +Xi2 + · · ·+X ij

)
+

1

nj

∑

2≤i1<···<ij≤n

ϕ
(
X i1 + · · ·+Xij

)
.

Here we have used that ϕ is homogeneous of degree j and that (7), together with the
Minkowski-linearity of φ in each argument, implies that for segments S1, . . . , Sj we have
ϕ(nS1 + S2 + · · ·+ Sj) = nϕ(S1 + · · ·+ Sj).

The result can be written as

ϕ(Zn(x1)) =
1

nj−1

(
n− 1

j − 1

)
U

(j−1)
n−1 (gx1

) +
1

nj

(
n− 1

j

)
U

(j)
n−1(h)

with gx1
(x2, . . . , xj) = ϕ(x1 + x2 + · · · + xj). Therefore, the strong law for U -statistics gives

that, with probability one,

lim
n→∞

ϕ(Zn(x1)) =
1

(j − 1)!
Eϕ(x1 +X2 + · · · +Xj) +

1

j!
Eϕ(X1 + · · ·+Xj)].

Together with (11) this yields

h1(x1) = (j − 1)! [ϕ(x1 + ZX)− ϕ(ZX)] .

The central limit theorem requires that ζ1 > 0. To achieve this, we need assumptions on
the distribution of the random vector X and on the valuation ϕ.
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Lemma 1. Let j ∈ {1, . . . , d} and ϕ ∈ Valj . Suppose that the support of the distribution
PX of X contains the origin and is not contained in a (j − 1)-dimensional linear subspace.
Suppose further that ϕ(K) 6= 0 for convex bodies K with dimK ≥ j (as it is satisfied for the
jth intrinsic volume). Then ζ1 > 0.

Proof. Since the distribution PX of X is not concentrated on a (j − 1)-dimensional linear
subspace, the zonoid ZX has dimension at least j. Assume that ζ1 = 0. Since h1 is continuous,
we then have (h1(x1)− θ)2 = 0 for all x1 in the support of PX and hence

ϕ(x1 + ZX) = (j + 1)ϕ(ZX )

for these x1. Since o is in the support of PX , this yields ϕ(ZX) = 0, a contradiction.

We can now formulate a central limit theorem.

Theorem 3. Suppose that E ‖X‖2 < ∞. Under the assumptions of Lemma 1,

√
n (ϕ(Zn)− ϕ(ZX))

d→ N (0, (j!j)2ζ1).

Proof. We have seen above that E ‖X‖2 < ∞ implies Eh2(X1, . . . ,Xj) < ∞. The assump-
tions of Lemma 1 imply that ζ1 > 0. Therefore, Hoeffding’s central limit theorem for U -
statistics (see [21, p. 192], [8, p. 76], [7, p. 128]) says that

√
n
(
U (j)
n (h) − θ

)
d→ N (0, j2ζ1).

Since

ϕ(Zn) =
1

nj

(
n

j

)
U (j)
n (h), θ = j!ϕ(ZX ),

Slutsky’s theorem (e.g., [21, Sect. 1.5.4]) gives the assertion.

Finally, we want to show how in a simple case the expectation and variance appearing in
Theorem 3 can be computed explicitly. We assume that X has a standard normal distribution
and ϕ = Vj, the jth intrinsic volume, for some j ∈ {1, . . . , d}.

Since h(x, u) + h(−x, u) = |〈x, u〉| and the distribution of X is invariant under reflection
in the origin, we get

h(ZX , u) =

∫

Rd

h(x, u)PX(dx) =
1

2
√
2π

d

∫

Rd

|〈x, u〉|e− 1

2
‖x‖2 dx.

Using polar coordinates and denoting the spherical Lebesgue measure on the unit sphere
Sd−1 by σd−1, we obtain

h(ZX , u) =
1

2
√
2π

d

∫

Sd−1

∫ ∞

0
|〈rv, u〉|e− 1

2
r2rd−1 dr σd−1(dv)

=
1

2
√
2π

d

∫

Sd−1

|〈v, u〉|σd−1(dv)

∫ ∞

0
e−

1

2
r2rd dr

=
1

2
√
2π

d
· κd−1

2
· 2d−1

2 Γ

(
d+ 1

2

)
.
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Thus, ZX is a ball with center o and radius

R =
1

4
√
2π

.

It follows from the Steiner formula for the volume (e.g., [17, (4.1)]) that

Vj(ZX) =

(
d

j

)
κd

κd−j

R
j .

To compute the function h1, given by

h1(x) = (j − 1)! [Vj(x+ ZX)− Vj(ZX)]

for x ∈ R
d, we note that ZX = RBd and

Vj(K + RBd) =

j∑

r=0

(
d− r

j − r

)
κd−r

κd−j

Vr(K)Rj−r

for convex bodies K, as can be deduced from the Steiner formula for the volume. If K = x,
we have V0(K) = 1, V1(K) = ‖x‖ and Vr(K) = 0 for r ≥ 2. This gives

h1(x) =
(d− 1)!

(d − j)!

κd−1

κd−j

R
j−1‖x‖

and
h̃1(x) = h1(x)− j!Vj(ZX) = a(‖x‖ − b)

with

a =
(d− 1)!

(d− j)!

κd−1

κd−j

R
j−1, b =

dκd

κd−1
R.

Thus,
ζ1 = a2

[
E ‖X‖2 − 2bE ‖X‖ + b2

]

with

E ‖X‖2 = d, E ‖X‖ =
d√
2π

κd

κd−1
,

which altogether yields an explicit expression for ζ1.
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