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Introduction

In Elements of a theory of human problem solving, the au-
thors argued that “an explanation of an observed behavior
of the organism is provided by a program of primitive in-
formation processes that generates this behavior” (Newell,
Shaw & Simon, 1958, p. 151). Over the past four decades the
view that human cognition can be conceptualized as compu-
tational processes operating on symbolic (and subsymbolic)
representations has grown into the modeling approach which
is one of the methodological hallmarks of cognitive science,
an Interdiscipline (Tack, 1997) that seeks to understand hu-
man cognition by linking together empirical studies, theo-
retical analyses and computational models.

Cognitive modeling fills the “theoretical vacuum” (Miller,
Galanter & Pribram, 1960, p. 11) between cognition and ob-
servable action by specifying a detailed mechanistic process
that is actually sufficient to generate the phenomena under
investigation. Cognitive simulation is thus a constructive-
synthetic activity of designing and testing generative com-
putational systems that are sufficient to perform the task
whose performance they are explaining while constrained to
fit the available empirical data on how humans perform the
same task.

The computer programs that serve as cognitive simula-
tion models may take the form of classical differential equa-
tions whose variables are numbers, or, more commonly, of
difference equations whose variables are symbol structures
constituted of words, mathematical expressions, diagrams or
pictures.

Reconstructing and predicting in precise terms the tra-
jectory of human thinking calls for temporally dense record-
ings of behavior as evidence for the hypothetical cognitive
structures and processes that are postulated in the models,
but that are not directly observable. Therefore, from its very
beginnings (see Newell & Simon, 1972, p. 885), cognitive
modeling has utilized such empirical data-gathering meth-
ods as think-aloud protocols (Ericsson & Simon, 1993) and
eye-tracking data (Just & Carpenter, 1985) that provide fine-
grained, rich streams of evidence for intermediate cognitive
states during performance.!

! This richness of information can be illustrated by comparing the data
from a typical experimental trial with the content of a thinking aloud proto-

Cognitive modeling is not an alternative to empirical
studies — a substitute for experiments — but a powerful tool
for formulating hypotheses so that they may be tested against
temporally fine-grained experimental data.

The concept of a cognitive model

Cognitive models are deep models (Moravsik, 1980, p.28)
that refer to theoretical terms — hypothetical constructs — to
explain human cognition. As such they necessarily go be-
yond what can be observed empirically, and their values of
theoretical terms must be estimated indirectly from the em-
pirical data by defining them as functions of observables (Si-
mon, 1977). The presence of theoretical terms in the models,
however, is not unique to cognitive modeling, for their pres-
ence is quite as essential to verbal psychological theories,
and for that matter, to theories throughout all the sciences.

Physical theories, for example, of subatomic material
structure were based on exceedingly indirect observations,
without directly observing elementary particles. The “track”
of a particle in a cloud chamber is not a sighting of the
particle itself, but of the droplets of water it condenses as
it (presumably) passes. Nor did Mendel, in formulating and
testing basic genetic theory, ever see a chromosome, much
less a gene.

The problem of theoretical terms may be avoided in re-
search that produces mere descriptions of the end products of
human cognition (e.g., button pushes or time latencies). Such
phenomena can be observed directly. However, if the goal is
to explain human cognition in terms of its underlying struc-
tures and processes, empirical data can constrain severely
but not identify uniquely the “correct” model — a fact that
the Moore Theorem in automata theory illuminated more
than 40 years ago (Moore, 1956), and which was known to
Hume several centuries earlier.

A cognitive simulation model (in a manner similar to
every scientific theory) maps hypothesized components and
processes of the human cognitive system S on the compo-
nents and processes of a computational model M. Formally,
this mapping can be described as a partial homomorphism

col. If an experimental trial requires a binary choice between two responses
a, b it yields exactly one bit of information. In a protocol experiment that
produces n responses per trial each having m values, nlog,(m) bits of data
constrain the model (Anderson, 1987, p.472).



from S onto M. The mapping should preserve the relations
between components, but it is a partial mapping that does
not necessarily comprise all components and relations of S.

In cognitive modeling, the mapping is generally carried
down to the level of symbolic processes. Modeling at the
neural level, at least for simulation of humans, is still a
dream for the future, not a present reality?.

The Physical Symbol Systems (PSs) Hypothesis, which
characterizes a very broad class of successful cognitive mod-
els, states that a “physical symbol system has the necessary
and sufficient means for general intelligent action” (Newell
& Simon, 1976). It claims that a PSS can be programmed
to think, and that a thinker, human or not, is a Pss?.

A symbol system describes the human cognitive machin-
ery in terms of patterns (symbol structures). It postulates a
memory for storing symbols and operators for encoding, ma-
nipulating and transforming input symbols into output sym-
bols. It provides for “branching”, so that behavior can de-
pend on what patterns are present. The human cognitive
architecture is postulated to be mappable onto a physical
symbol system. The hypothesis is tested by building such
systems and comparing their behavior with human behavior
on the same tasks.

The completely different physical devices used in com-
puters built in 1960 and 1999, respectively, (vacuum tubes
or mercury delay lines versus chips) do not prevent 1999
computers from running programs written in Fortran or Lisp
for 1960 computers. By the same token, there is no intrinsic
reason why a silicon PSS cannot model a PSS constructed
of neurons.

As all stimuli that arouse the sense organs must be trans-
lated, once they are inside the head, into signals that can be
transmitted by neurons and stored in neural tissue, the cogni-
tive modeller seeks to construct the corresponding signalling
system in the computer, using its physical structures to im-
plement symbolic mechanisms and processes that parallel
those of the human system. As the modeling is not carried
below the symbolic level (in either human or computer), the
radical difference in their hardware will not defeat the effort
if the physical symbol system hypothesis is correct.

In our models, we need to distinguish between positive
analogies (entities of S that are successfully captured by the
mapping onto components in M) and false analogies (com-
ponents of M that do not have counterparts in .S). In sta-
tistical terms, type I errors (errors of omission) result when
components of S that are relevant for the question under
study are not modeled in M; type II errors (errors of com-
mission) result when M incorporates entities that do not
have counterparts in .S. Type I errors miss relevant positive
analogies, while type II errors embody false analogies. The
central goals when evaluating cognitive models are to find
empirical support for the positive analogies and to use evi-
dence of false analogies as starting points for model revision.

2 Connectionist and neural-network models seek to carry theory down
to relatively fine perceptual structures and processes, but are still far from
modeling identifiable neurons or neuron structures, and deal with phenom-
ena at approximately the same “grain size” as symbolic models like EpAM
(Richman & Simon, 1989; Richman, Staszewski & Simon, 1995).

3 The term symbol here refers to any pattern, on any physical substrate
that can be used to denote pictures, words, diagrams, numbers, and sensory
patterns of any kind.
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Methods of evaluation

Three decades ago, Fridja (1967, p.65) pointed out (with
perhaps some exaggeration) the need for more rigorous
methods for analyzing computational theories of cogni-
tion and evaluating them empirically: “There is hardly any
methodology existing here. As much ingenuity has been in-
vested in the making of the programs, as little has been
spent on the assessment of their value. Next to high preci-
sion there always seems to be spots of rough approximations
which undercut this very precision. We are largely left to our
subjective impressions of what we consider good or bad cor-
respondence”.

Today we still need considerable improvement in our
methodologies for evaluating models, but many examples
of careful evaluation can be found already. First of all, a
running generative model provides an existence proof for
the sufficiency of its structures and mechanisms for a given
task, hence, a first strict falsification test for the model.

However, there are different degrees of sufficiency. Un-
less the tests for matching model against human behavior are
sufficiently refined, a model may be able to match behavior
closely at a temporal grain of 30 s, but be operating in a
wholly different way from human subjects at grains of 1 s,
or of 10 ms. (Of course this is equally possible for theoreti-
cal mechanisms in physics, chemistry or biology. Chemical
reactions, for example, can be modeled at a wide range of
temporal grains, nowadays down to nanoseconds.)

When evaluating the empirical adequacy of computa-
tional models we compare the observable trace of subjects’
behaviors when performing a task with the performance or
trajectory of a model. Depending on the richness of the data
available we must use criteria at different levels of resolution
for the comparison (Wallach, 1998):

— Product correspondence: Similarity of the final perfor-
mances (such as success in solving a problem or classes
of problems) on a specified scale.

— Correspondence of intermediate steps toward problem
solution (problem solving strategies, verbal statements,
eye movements).

— Temporal correspondence: Latencies of S and M that
fall into a comparable range, so that the temporal trajec-
tories have a similar profile (Pylyshyn, 1984).

— Error correspondence: Comparability of the numbers
and kinds of errors, on some specified scale.

— Correspondence of context dependency: Comparability in
sensitivity to degradation by interfering contextual fac-
tors.

— Learning correspondence: Comparability in rate of im-
provement of performance with practice in the same
learning environments.

These criteria are not mutually independent but can be com-
bined for convergent validation of a model in the sense of
Garner, Hake and Eriksen (1956). Of course, the question
as to what qualifies as a good approximation has only prag-
matic answers.

None of these questions is in any way unique to cogni-
tive modeling; they arise with all deep models that contain
theoretical terms, and which hence provide only indirect ev-
idence for these unobservable entities. The procedures for
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dealing with the problem are the same in all sciences: what
we seek is a high level of goodness of fit relative to the
number of degrees of freedom that are available for estimat-
ing free parameters. The fewer degrees of freedom, and the
better the fit, the more reason we have for taking the model
seriously until a better one comes along, or new evidence
(possibly based on new methods of observation) undermines
it.

To whatever extent and in whatever degree a model does
not fit precisely, the specific pattern of deviation from the
empirical data provides a powerful means to guide model
revision. On the other hand, to the extent that the model
matches the available empirical data, a useful next step is
to test the model on related phenomena in order to explore
the generality of the postulated mechanisms (Richman et al.,
1995).

By altering the model in various respects, we can inves-
tigate the effects of experimental manipulations, and thereby
derive empirical predictions for empirical studies. A compu-
tational model can thus give rise to new theoretically mo-
tivated experiments, and to reexamination of existing ex-
perimental data — further examples of the complementary
relation between cognitive modeling and empirical studies*.

There is a great need for more extensive and system-
atic comparison of alternative cognitive models capable of
performing the same tasks. Such comparison should not be
aimed at selecting “winners”. Rather it should aim to ex-
plicate the central structures and mechanisms of alternative
models, find functional identities among components, and
compare their power to explain wide ranges of phenomena:
“This involves laying bare the theory’s principles and their
entailments, showing how each .... in the context of its in-
teractions with the others, increases empirical coverage, re-
duces tailorability, or improves the adequacy of the theory
in some other way. With such developments, the theorist
provides explanations of why the particular principles were
chosen” (VanLehn, Brown & Greeno, 1984, 240f).

Comparison of alternative theories allows a discussion
of underlying processes and mechanisms, for no matter how
difficult it is to discover what is going on from moment to
moment inside the mind of a human subject, there is no
similar difficulty in finding out what is going on inside the
computer program that is simulating the human performance.
Its mechanisms can be ascertained by examining the code
of the program, and its performance by tracing the program.
The superiority of fit to the human data of one program
relative to another can then be attributed with some accuracy
to differences in their mechanisms and organization.

Analysis of the principles underlying a model is a pow-
erful complement to empirical evaluation when judging its
scientific contributions and relations to alternative models. It
also includes sensitivity analysis to assess the contributions
of model components to overall performance (Richman &
Simon, 1989)°. Carpenter and Just (1999) have coined the

4 It is generally argued that a model is especially strongly supported if
effects that were predicted in experimental model manipulations are con-
firmed in subsequent empirical investigations (Kieras, 1985). For a more
symmetric view of the relation between experiment and theory, see Simon
(1955).

5 For a functional decomposition of connectionist models see Schneider
(1988).

term cognitive lesioning for an analysis of how withdrawing
particular structures or resources affects the performance of
a computational model.

If two models propose different sets of mechanisms, both
sufficient to perform a task, comparative analysis may de-
termine which mechanisms have better theoretical and em-
pirical support.

Models in discovery

In considering the role of modeling in cognitive science, we
should not limit ourselves to questions of theory verifica-
tion. At least as important to a science as verification is the
discovery of new phenomena and new theories to explain
them.

An old recipe for rabbit stew begins with the instruc-
tion, “First catch a rabbit”. In the same way, before we can
explain phenomena, we must observe them, and before we
can test a theory, we must create it. Both finding new phe-
nomena and designing new theories are inductive activities
involving exploratory problem solving. Attempting to model
a phenomenon can suggest the need for novel mechanisms,
and the incorporation of such mechanisms in the model can
then suggest new empirical explorations to seek evidence of
their presence in the human behavior that is being modeled.

De Groot (1946) and his students drew upon Selz’s the-
ories of problem solving to explain the phenomena of expert
chess memory they had observed, and then invented a new
experimental design (memory for random arrangements of
pieces) to test predictions of the theory. The initial version of
Feigenbaum’s EPAM model of perception and memory was
tested by searching the psychological literature of the first
half of the 20th century for experimental phenomena that
could verify or contradict the model’s predictions (Feigen-
baum, 1961).

Awareness is increasing today of the fruitfulness and
significance of exploratory research, of both empirical and
model-building varieties. Hence, any balanced account of
methodology must give major attention to the constant in-
terplay of observation and modeling in the discovery pro-
cess, and cannot restrict itself to verification. Experiments
may be undertaken in order to discover new phenomena as
profitably as to test hypotheses. Models may be designed to
explore the range of mechanisms needed to produce phe-
nomena, even in the absence of current evidence that such
mechanisms exist.

Perspectives of cognitive modeling

Cognitive modeling provides a powerful approach to devel-
oping complex and rigorously precise models of cognition
with strong theoretical foundations. Cognitive modeling has
greatly advanced our understanding of the mind and its sym-
bolic processes, and has raised the bar of what we qualify
as an exacting scientific explanation.

One of the main advantages that cognitive modeling of-
fers is the potential for truly integrated approaches to cogni-
tion. Anderson, Bothell, Lebiere, and Matessa (1998) present
an example for this unifying force with an ACT-R model
(Anderson & Lebiere, 1998) that accounts for a large range
of phenomena in the list-learning paradigm. This work is one



valuable illustration of the scope and practicality of Newell’s
plea (1973) for a broad computational theory that can tie
together and relate disparate bodies of data with precise hy-
potheses about underlying structures and mechanisms.

Ohlsson (1988) emphasizes that cognitive modeling en-
forces comprehensive models that view human beings as
complete agents: “There cannot be a theory of problem solv-
ing, or of memory, or of perception, because such a theory
cannot be tested against data: only complete systems, which
have the entire range of capabilities (albeit, perhaps in sim-
plified form), and which show explicitly the interactions be-
tween them, can be meaningfully compared against data”
(Ohlsson, 1988, p. 12).

One might demur that this claim is somewhat extreme
in that, as in the other sciences, particular sets of phenom-
ena can usually be isolated to a degree that permits them
to be studied in at least temporary isolation from others®.
However, the drive towards completeness can reveal gaps in
our understanding of the mind and thereby reveal the need
for well-directed empirical studies, and new instruments and
observational methods for conducting them. However far
short we are today of having “unified theories of cogni-
tion” (Newell, 1990) in any comprehensive sense, the past
20 years have nevertheless produced half a dozen cognitive
models that can claim to unify important subcontinents of
the entire cognitive world.

The objection against cognitive modeling heard most of-
ten is that it involves many parameters and thus many de-
grees of freedom in constructing a model. Of course alterna-
tive approaches to the study of the mind face the same prob-
lem, simply concealing it by lower standards of precision. In
the final event, the complexity of an empirical theory must
be determined by the complexity of the phenomena it seeks
to explain. Molecular genetics does not have the simplicity
of classical mechanics.

Cognitive modeling typically uses rich and dense streams
of empirical data to constrain and test models. Our confi-
dence in a model can grow with the increase in the ratio of
the number of data points explained to the number of de-
grees of freedom in the model (cf. Simon, 1998). Cognitive
architectures severely restrict their degrees of freedom when
they apply the same core set of justified constructs across an
entire range of phenomena, a fundamentally important goal
of the drive toward unified theories.

Computational models of cognition have accomplished a
major advance in our understanding of the mind over the past
four decades. This special issue of Kognitionswissenschaft
presents four papers on cognitive modeling that sample the
scope and variety of modeling approaches in the field. It is
our hope that the exciting work reported in them will help
to pave the way for an even much wider attention to and
application of the cognitive modeling methodology.

References

Anderson, J.R. (1987). Methodologies for the study of human knowledge.
Behavioral and Brain Sciences, 10, 467-505.

Anderson, J.R. & Lebiere, C. (1998). The atomic components of thought.
Mahwah, NJ: Erlbaum.

6 See Simon (1997) on nearly-decomposable systems.

H.A. Simon, D. Wallach: Cognitive modeling in perspective

Anderson, J.R., Bothell, D., Lebiere, C. & Matessa, M. (1998). An inte-
grated theory of list memory. Journal of Memory and Language, 38,
341-380.

Carpenter, P.A. & Just, M.A. (1999). Computational modeling of high-
level cognition versus hypothesis testing. In: R.J. Sternberg (ed.), The
nature of cognition (pp.245-294). Cambridge, MA: MIT Press.

De Groot, A.D. (1946). Het Denken van den Schaker. Amsterdam, Neth:
North Holland Publishing Company.

Ericsson, K.A. & Simon, H.A. (1993). Protocol analysis (2nd edn). Cam-
bridge, MA: MIT Press.

Feigenbaum, E. (1961). The simulation of verbal learning behavior. Pro-
ceedings of the Western Joint Computer Conference, 19, 121-132.
Fridja, N.H. (1967). Problems of computer simulation. Behavioral Science,

12, 59-67.

Garner, W.R., Hake, H.W. & Eriksen, C.W. (1956). Operationism and the
concept of perception. Psychological Review, 63, 149-159.

Just, M.A. & Carpenter, P.A. (1985). Cognitive coordinate systems: ac-
counts of mental rotation and individual differences in spatial ability.
Psychological Review, 92, 137-172.

Kieras, D. (1985). The why, when, and how of cognitive simulation: a
tutorial. Behavior Research Methods, Instruments & Computers, 17 (2),
279-285.

Miller, G.A., Galanter, E. & Pribram, K.H. (1960). Plans and the structure
of behavior. New York: Holt, Rinehart & Winston.

Moore, E.F. (1956). Gedanken-experiments on sequential machines. In:
C.E. Shannon & J. McCarthy (eds.), Automata studies (pp.129-153).
Princeton, NJ: Princeton University Press.

Moravsik, J.M. (1980). Chomsky’s radical break with modern tradition.
Behavioral and Brain Sciences, 3, 28-29.

Newell, A. (1973). You can’t play twenty question with nature and win
(pp-283-310). In: W.C. Chase (ed.). Visual information processing.
New York: Academic.

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard
University Press.

Newell, A. & Simon, H.A. (1972). Human problem solving. Englewood
Cliffs, NJ: Prentice-Hall.

Newell, A. & Simon, H.A. (1976). Computer science as empirical inquiry:
Symbols and search. Communications of the ACM, 19 (3), 113-126.

Newell, A., Shaw, J.C. & Simon, H.A. (1958). Elements of a theory of
human problem solving. Psychological Review, 65, 151-166.

Ohlsson, S. (1988). Computer simulation and its impact on educational
research and practice. International Journal of Educational Research,
12, 5-34.

Pylyshyn, Z. (1984). Computation and cognition. Cambridge, MA: Bradford
Books.

Richman, H.B. & Simon, H.A. (1989). Context effects in letter perception:
comparison of two theories. Psychological Review, 96, 417-432.
Richman, H.B., Staszewski, J.J. & Simon, H.A. (1995). Simulation of expert

memory using EPAM Iv. Psychological Review, 102, 305-330.

Schneider, W. (1988). Sensitivity analysis in connectionist modeling. Be-
havior Research Methods, Instruments & Computers, 20 (2), 282-288.

Simon, H.A. (1955). Prediction and hindsight as confirmatory evidence.
Philosophy of Science, 22, 227-230.

Simon, H.A. (1977) Identifiability and the status of theoretical terms. In:
R.E. Butts & J. Hintikka (eds.), Basic problems in methodology and
linguistics. Dordrecht, Neth: D. Reidel Publishing Company.

Simon, H.A. (1996). The Sciences of the Artificial (3rd edn). Cambridge,
MA: MIT Press.

Simon, H.A. (1998). What is an “explanation” of behavior? In: P. Thagard
(ed.). Mind Readings (pp. 1-28). Cambridge, MA: MIT Press.

Tack, W.H. (1997). Kognitionswissenschaft: Eine Interdisziplin. Kognition-
swissenschaft, 6, 2-8.

VanLehn, K., Brown, J.S. & Greeno, J. (1984). Competitive argumentation
in computational theories of cognition. In: W. Kintsch, J.R. Miller and
P.G. Polson (eds.), Methods and tactics in cognitive science (pp.235-
262). Hillsdale, NJ: Erlbaum.

Wallach, D. (1998). Komplexe Regelungsprozesse. Wiesbaden: DUV.





