
WEB-BASED ENVIRONMENT FOR
DIGITAL ELECTRONICS TEST TOOLS

Eero Ivask, Jaan Raik, Raimund Ubar, Andre Schneider*
Tallinn Technical University, ESTONIA, {ieero|jaan|raiub}@pld.ttu.ee

*Fraunhofer Inst. for Integr. Circuits, GERMANY, Andre.Schneider@eas.iis.fhg.de

This paper describes a concept and implementation of the web-based
environment for providing access over the Internet to existing stand-alone
digital electronics test tools. On the user side only ordinary web browser is
sufficient. The environment is built according to the client-server three-tier
concept using HTML, Java applets/servlets and MySQL as database backend
for user tracking and management tasks. In this paper we discuss integration
of two software systems into web-based environment. The paper presents the
workflows that can be executed over the Internet and gives the experimental
results for estimating the efficiency of the hierarchical ATPG.

1. INTRODUCTION

Assuring the quality of modern System-on-Chip (SoC) technology is unthinkable
without the use of efficient test methods. In addition to traditional logic level tools
for built-in self-test, fault simulation, test generation and optimization, high-level
and hierarchical test applications are required. However, not all the needed test tools
may be available for a designer and installing a new one would be as an additional
overhead.

The Internet opens a new dimension, and offers new chances using tools from
different sources. The topic of this paper is web-based integration of tools and
execution of programs over the Internet for testing digital circuits. For that purpose,
a novel and efficient hierarchical ATPG tool called DECIDER was successfully
integrated into new web-based environment to implement virtual laboratory for
digital test. By this moment, no commercial systems for hierarchical test pattern
generation are available on the market. An interesting feature of DECIDER is that
its VHDL design interface allows to convert VHDL descriptions into decision
diagram models, which provides a more general representation for digital hardware
and can be used for fast simulation and test pattern generation (Ubar, 1998).

In addition, a set of diagnostic tools for the logic level test was made available
over the Internet. The system is called Turbo Tester and it includes a powerful EDIF
interface, which allows using the tools in cooperation with most of the available
commercial EDA systems.

46

436 VIRTUAL ENTERPRISES AND COLLABORATIVE NETWORKS

The rest of the paper is organized as follows: The general concept is specified in
Section 2. The implementation details are given in section 3. The test generation
systems integrated are presented in Section 4, and experimental results obtained by
use of the new environment are shown in Section 5 and conclusions are given in 6.

2. GENERAL CONCEPT

A virtual environment to support the research and teaching of digital system testing
is described below. User will be able to use test tools remotely over the Internet.
System is based on an open architecture that allows easily add new tools later.

System core for remote tool usage has client-server concept similar to
MOSCITO (Schneider, 2002) (MOSCITO). There is one master server, several
application servers and arbitrary number of clients (see Figure 1). Master server
holds the information about application servers, which provide service. On
application server so called agents can be invoked. Agents encapsulate actual test
tools (executables). User first accesses the master server and gets a list of services
available. After selecting appropriate service, user is automatically re-directed to
application server, and then the work with the actual tool can start. The big
difference from MOSCITO is HTTP protocol based communication and use of Java
applets and servlets. Also user tracking is unique. There is no need to install tools on
the user’s local computer. Therefore, user’s effort for installation, configuration and
maintenance of software will be drastically reduced. The system is implemented in
Java and can therefore run on different computing platforms. Actual work tools must
run on their native platform of course.

Figure 1 – General concept

Each tool will be wrapped into Java agent. Encapsulation of entire tools
guarantees a uniform interface to the framework. There will be no need to reprogram
existing tools. Only requirement for tool encapsulation is that tool is able to run
from command line (in ‘text mode’). All tool-specific details are stored in a
description file. This allows automatically display appropriate tool configuration
dialogs for end user.

Several tools can be started simultaneously. One servlet will serve many client
applets in parallel. There is task queue management. Results reside initially on the

Web-based environment for digital electronics test tools 437

server computer where servlet is running. Each user has its own server-side
workspace. In the database there is user’s workspace folder name where results for
certain task id can be found. It is possible to query on results, make statistics.
Subsequently, general concept is elaborated in much greater detail.

3. IMPLEMENTATION

The environment for remote use of Test tools is built according to the client-server
three-tier concept using HTML pages, Java applets/servlets and MySQL as database
backend for user tracking and management tasks. General solution in details is given
in Figure 2. Tomcat is the servlet container that is used in the official Reference
Implementation for the Java Servlet and JavaServer Pages technologies. Tomcat and
servlets running on it play important role while gaining access to intranet resources
on application servers and MySql database (platform independent open source DB).

Figure 2 – Implementation details

3.1 Usage scenario

Below is described simplified scenario for end user (see Figure 2), we assume here
that user has account already:

1. User logs in with login name and password. Information is sent to servlet
which accesses database and verifies user. If user exists, then servlet sends
confirmation message back to applet. Login screen is dismissed;

2. Applet displays tool’s parameters dialog;

438 VIRTUAL ENTERPRISES AND COLLABORATIVE NETWORKS

3. Tool’s parameters are sent to servlet which launches appropriate program
and makes a new entry to tracker database “Tasks” table;

4. Client applet will be notified about successful start or failure;
5. Client can/must time-to-time check status of his task(s). An e-mail could be

sent to client when task is ready;
6. When status of the task is “completed” then user can see the results on his

applet, can save them onto his computer.

3.2 Tool encapsulation

In order to integrate different tools, it is necessary to implement additional software
layer. Each tool has to be wrapped into Java agent, which allows to adapt the input
data to the embedded tool, convert the tool-specific data, simulation results (log
files, test vectors, etc), map the control information to the embedded tool, transfer
and convert status information (warning and error messages) to be submitted to the
user.

Technically simplest way is to encapsulate tool as an entire program. Tool has to
be able to run as a batch job. Integration of commercial tools is then also possible.
Also embedding of a library (e.g. C, C++ routines) via the Java Native Interface
(JNI) could be thinkable and also direct integration of Java-classes and applications
(especially for Java software).

3.3 Communication

General communication is based on HTTP protocol. The tools on different
computers and on different computing platforms (UNIX, Linux, Windows) can
easily change data as serialized Java objects (datagrams). To minimize the
implementation effort for parsers, translators and converters XML mark up language
is used for configuration files and transmitted data. HTTP protocol allows us also
easy firewall traversal as we can use default web server port and Java servlet
extensions on web servers as sort of proxies in order to reach intranet resources.
There is no need for opening extra ports in the firewall as it is the case in TCP/IP
based communication.

3.4 User tracing

User management module is described in this section. Without proper user
management anybody in the Internet could possibly use valuable computer
resources. Better practice would be to allow registered users access the resources.
User tracking system allows us to monitor and control the usage of services. It may
allow also billing the business customers. Main goal here was to provide sufficient
set of basic functions to allow support user registration, tracking and management.
User tracking is database based. Tool execution and data base access over Internet is
carried out via Java servlet technology. Below the implementation specifics are
given.

As we know, web-based http communication is stateless. This means that we
have to keep track about all necessary information. As work tools tend to run long,
then normal user’s http session is not valid for such time period and result data is

Web-based environment for digital electronics test tools 439

lost. We want to provide a possibility for user to come back online later to check his
results. Therefore we need to identify (track) users and save all their relevant data.
Using so called “cookies” could be one solution, but database approach offers many
advantages like powerful SQL query mechanism, speed, reliability, consistency of
data and ease of use.

User tracing module has open architecture, general API (application
programming interface). With slight modifications it is also usable for any similar
web-based system, where user tracking is needed. It has 3 layers: presentation layer
(user tier), business logic tier (data base queries, etc.), physical database (MySQL-
platform independent open source DB).

First two layers are implemented in Java programming language. User is
accessing database via presentation layer, not directly. This makes architecture open.
User tier consists several functions to run business layer queries. For example, we
could have different user interfaces for different applications. Then if database
structure or business logic changes, we don’t have to change our user interfaces.
More over- it is easy to introduce user tracking facility to new applications. It is
much easier to invoke appropriate function (command), than construct a new query
every time a new application needs one.

3.5 User interface

Graphical User interface (GUI) is based on collection of Java applets, which can be
integrated into HTML page when needed (e-learning solutions). GUI applet reads
the layout properties (field names, default values, etc) from initialization file. It
would be easy for non-qualified Java programmer to introduce new tools into web-
based environment by modifying initialization fail only. Features of GUI are
following:

Reading in problem description including data from project file;
Selecting a service (tool) from the set of available services;
Buttons to start and stop the tools;
A console window collects all messages from the running tools;
The visualization of all results (test vectors, statistic information);
Downloading results: user clicks appropriate button which displays html
page containing appropriate link;

4. TEST GENERATION SYSTEMS

Below the toolsets integrated into proposed web environment are presented.

4.1 Hierarchical ATPG DECIDER

DECIDER (Raik, 2000) uses a top-down approach, with a novel method of
combining random and deterministic techniques. Tests are generated for each
Functional Unit (FU) of the system separately.

First, a high-level symbolic test frame (test plan) for testing the given FU is
created by implementing deterministic search. The search is guided by the testability
measures calculated by a testability analyzer. As the result of the search process, a

440 VIRTUAL ENTERPRISES AND COLLABORATIVE NETWORKS

symbolic path (a test frame) for propagating faults through the network of
components is activated and corresponding constraints are extracted. The test frame
will adopt the role of a filter between the random TPG and the FU under test.

Figure 3 – Hierarchical ATPG workflow

If the filter does not allow finding a random test with 100% fault coverage for
the component under test, another test frame will be chosen or generated in addition
to the previously created ones. In such a way, the following main parts in the ATPG
are used alternatively: deterministic high-level test frame generator, random low-
level test generator, high-level simulator for transporting random patterns to the
component under test and low-level fault simulator for estimating the quality of
random patterns.

The general structure of the hierarchical ATPG system is shown in Figure 3. In
addition to the test pattern generator it contains tools for testability analysis and test
set compaction. Design interfaces from VHDL and EDIF are available (not shown in
the figure).

4.2 Logic-Level ATPG System Turbo Tester

The Turbo Tester (TT, shortly) Automatic Test Pattern Generator software
(Turbo Tester) developed in Tallinn Technical University consists of a set of tools
(see Figure 4) for solving different test related tasks at the gate-level. The test
generation and fault simulation tools of TT are used also by hierarchical ATPG
described in section 4.1.
All the TT tools operate on the model of Structurally Synthesized Binary Decision
Diagrams i.e. SSBDD (Ubar, 1998). The tools run on the structural logic level. Two
possibilities are available - gate-level and macro-level. In the latter, the gate network
is transformed into macro network where each macro represents a tree-like sub-

Web-based environment for digital electronics test tools 441

Figure 4 – Turbo Tester workflow

network. Using the macro-level helps to reduce the complexity of the model and to
improve the performance of tools. The fault model in the Turbo Tester is the
traditional stuck-at model. However, the fault simulator and test generator can be
run also in the defect-oriented mode, where defects in the library components can be
taken into account. In this case, additional input information about defects in the
form of defect tables for the library components is needed.

5. EXPERIMENTS

Table 1 shows the comparison of the hierarchical ATPG and state-of-the-art tools
GATEST (Rudnick, 1994) and HITEC (Niermann, 1991) on six examples. As the
experiments showed, the ATPG integrated to new web environment is considerably
faster than other tools, obtaining higher fault coverage for the larger designs in the
benchmark set. The experiments were run on a 366 MHz SUN UltraSPARC 60
server with 512 MB RAM under SOLARIS 2.8 operating system. Actual stuck-at
fault coverage of the test patterns generated by all the three tools were measured by
the fault simulator of Turbo Tester.

442 VIRTUAL ENTERPRISES AND COLLABORATIVE NETWORKS

6. CONCLUSIONS

We have presented the solution for web based remote use of standalone command
line programs. Although this solution was particularly implemented for digital
electronics test tools, we believe that current solution in general works for other
domains with different standalone programs as well. Although, special attention is
probably needed for interoperability of the single tools when subsequent execution
of the tools is needed. Here, tool interaction is simpler since they belong to one
family and they naturally have common representation format.

The web environment was built using the client-server three-tier concept. There
was one master server, several application servers, and arbitrary number of clients.
For users just ordinary web browser is sufficient. HTML pages and Java applets
were used for user GUI. Java servlets were proposed to execute programs on
application servers and open source database MySQL as database backend for user
tracking and simultaneous access management. Database connection library was
designed reusability in mind. Proposed Java servlets are multithreaded and there
exists database connection pool to speed up simultaneous access. There is also task
queue management. Firewall traversal should not be problem usually for proposed
system.

7. ACNOWLEDGEMENTS

The research has been partly funded by European projects REASON (IST-2000-
30193), Evikings II (IST-2001-37592) and ESF grants G5637, G4300, G5649 and
by mobility grant of Estonian Information Technology Foundation EITSA.

8. REFERENCES

MOSCITO. http://www.eas.iis.fhg.de/solutions/moscito
Niermann TM, Patel J. “HITEC: A test generation package for sequential circuits”, Proc. European

Conf. Design Automation (EDAC), pp.214-218,1991
Raik J, Ubar R. “Fast Test Pattern Generation for Sequential Circuits Using Decision Diagram

Representations.”, JETTA, KluwerAcademicPublishers. Vol. 16, No. 3, pp. 213-226, June, 2000
Rudnick EM, Patel J, Greenstein GS. T.M.Niermann: Sequential Circuit Test Generation in a Genetic

Algorithm framework. DAC., pp. 698-704, 1994
Schneider A et. al. Internet-based Collaborative Test Generation with MOSCITO. Proc. of DATE’02,

Paris, France, March 4-8, 2002, pp.221-226.
Turbo Tester. http://www.pld.ttu.ee/tt
Ubar R. Multi-Valued Simulation of Digital Circuits with Structurally Synthesized BDDs. OPA N.V.

Gordon & Breach Publ, Multiple Valued Logic, Vol.4, pp. 141-157, 1998

1.
2.

3.

4.

5.

6.
7.

