
ar
X

iv
:1

90
8.

10
40

5v
1

 [
cs

.L
O

]
 2

7
A

ug
 2

01
9

Extending Description Logic EL++ with Linear Constraints on the

Probability of Axioms∗

Marcelo Finger†

Department of Computer Science

University of São Paulo, Brazil.

mfinger@ime.usp.br

Abstract

One of the main reasons to employ a description logic such as EL or EL++ is the fact that it has
efficient, polynomial-time algorithmic properties such as deciding consistency and inferring subsumption.
However, simply by adding negation of concepts to it, we obtain the expressivity of description logics
whose decision procedure is ExpTime-complete. Similar complexity explosion occurs if we add proba-
bility assignments on concepts. To lower the resulting complexity, we instead concentrate on assigning
probabilities to Axioms (GCIs). We show that the consistency detection problem for such a probabilistic
description logic is NP-complete, and present a linear algebraic deterministic algorithm to solve it, using
the column generation technique. We also examine and provide algorithms for the probabilistic extension
problem, which consists of inferring the minimum and maximum probabilities for a new axiom, given a
consistent probabilistic knowledge base.

An earlier version of this work has appeared as (Finger 2019). Here we detail the column generation
method and present a detailed example.

1 Introduction

The logic EL
++ is one of the most expressive description logics in which the complexity of inferential

reasoning is tractable (Baader, Brandt, and Lutz 2005a). A direct consequence of this expressivity is that,
by adding extra features to this language, its complexity easily grows exponentially. By inferential complexity
we mean the complexity of decision problems such as consistency detection, finding a model that satisfies a
set of constraints, or Axiom subsumption. All such problems are tractable in EL

++.
In this work we are interested in adding probabilistic reasoning capabilities to EL

++; however, depend-
ing on how those reasoning capabilities are added to the language, the inferential complexity can explode
beyond exponential time. As shown in Section 3.1, by extending EL

++ with probabilistic constraints over
concepts, inferential reasoning becomes ExpTime-hard. Such an approach was employed in many times in the
literature, either by enhancing expressive description logics such as ALC (Heinsohn 1994; Lukasiewicz 2008;
Gutiérrez-Basulto, Jung, Lutz, and Schröder 2011; Jung, Gutiérrez-Basulto, Lutz, and Schröder 2011), or by
adding probabilistic capabilities to the family of EL -like logics (Lutz and Schröder 2010; Gutiérrez-Basulto, Jung, Lutz, and Schröder 2017).

In this work, we study a different way of extending description logics with probabilistic reasoning capa-
bilities, namely by applying probabilities to GCI Axioms. One of our goals is to reduce the complexity of
probabilistic reasoning in description logics. Another goal is to deal with the modelling situation in which a
GCI Axiom is not always true, but one can assign (subjectively) a probability to its validity. Consider the
following example describing one such situation.

∗This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) –
Finance Code 001.

†Partly supported by Fapesp projects 2015/21880-4 and 2014/12236-1 and CNPq grant PQ 303609/2018-4.

1

http://arxiv.org/abs/1908.10405v1
mfinger@ime.usp.br

Example 1 Consider the following medical situation, in which a patient may have symptoms which are
caused buy a disease. However, some diseases cause only very nonspecific symptoms, such as high fever, skin
rash and joint pain, which may also be caused by several other diseases. Dengue is one such desease with
mostly nonspecific symptoms. Dengue is a mosquito-borne viral disease and more than half of the world
population lives at risk of contracting it. Among its symptoms are high fever, joint pains and skin eruptions
(rash). These symptoms are common but not all patients present all symptoms. Such an uncertain situation
allows for probabilistic modelling.

In a certain hospital, joint pains are caused by dengue in 20% of the cases; in the remaining 80% of
the cases, there is a patient whose symptoms include joint pains whose cause is not attributable to dengue.
Also, a patient having high fever has some probability having dengue, which increases 5% if the patient also
has a rash. If those probabilistic constraints are satisfiable, one can also ask the minimum and maximum
probability that a given patient is a suspect of suffering from dengue. ✷

By adding probability constraints to axioms, we hope to model such a situation. Furthermore we will show
that the inferential complexity in this case remains “only” NP-complete. In fact, our approach extends some
previous results which considered adding probabilistic capabilities only to ABox statements (Finger, Wassermann, and Cozman 2011).
By using EL

++ as the underlying formalism, ABox statements can be formulated as a particular case of
GCI Axioms, so the approach here has that of (Finger, Wassermann, and Cozman 2011) as a particular case,
but with inferential reasoning remaining in the same complexity class.

The rest of the paper proceeds as follows. Section 2 presents the formal EL
++-framework and Section 3

introduces probabilities over axioms, and define the probabilistic satisfiability and probabilistic extension
problems. Section 4 presents an algorithm for probabilistic satisfiability that combines EL

++-solving with
linear algebraic methods, such as column generation. Finally, Section 5 presents an algorithm for the
probabilistic extension problem, and then we present our conclusions in Section 6.

2 Preliminaries

We concentrate on the description language EL
++ without concrete domains (Baader, Brandt, and Lutz 2005a).

We start with a signature consisting of a triple of countable sets N = 〈NC,NR,NI〉 where NC is a set of concept
names, NR is a set of role names and NI is a set of individual names. The basic concept description are
recursively defined as follows:

• ⊤, ⊥ and concept names in NC are (simple) concept descriptions;

• if C,D are concept descriptions, C ⊓D is a (conjunctive) concept description;

• if C is a concept description and r ∈ NR, ∃r.C is an (existential) concept description;

• if a ∈ NI, {a} is a (nominal) concept description;

If C,D are concept descriptions an axiom, also called a general concept inclusion (GCI), is an expression
of the form C ⊑ D. If r, r1, . . . , rk ∈ NR then r1 ◦ · · · ◦ rk ⊑ r is a role inclusion (RI). A finite set of axioms
is called a TBox and a finite set of axioms and RIs is called a constraint box (CBox).

A concept assertion is an expression of the form C(a), where a ∈ NI and C is a concept description; a
role assertion is an expression of the form r(a, b), where a, b ∈ NI and r ∈ NR. A finite set of concept and
role assertions forms an assertion box (ABox).

Semantically, we consider an interpretation I = 〈∆I , ·I〉. The domain ∆I is a non-empty set of individ-
uals and the interpretation function ·I maps each concept name A ∈ NC to a subset AI ⊆ ∆I , each role
name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I and each individual name a ∈ NI to an individual aI ∈ ∆I .
The extension of ·I to arbitrary concept descriptions is inductively defined as follows.

• ⊤I = ∆I , ⊥I = ∅;

• (C ⊓D)I = CI ∩DI ;

2

• (∃r.C)I = {x ∈ ∆I |∃y ∈ CI , 〈x, y〉 ∈ rI};

• ({a})I = {aI}.

The interpretation I satisfies an axiom C ⊑ D if CI ⊆ DI (represented as I |= C ⊑ D); the RI
r1 ◦ · · · ◦ rk ⊑ r is satisfied by I (represented as I |= r1 ◦ · · · ◦ rk ⊑ r) if rI1 ◦ · · · ◦ rIk ⊆ rI . A model I satisfies
the assertion C(a) (represented as I |= C(a)) if aI ∈ CI and satisfies the assertion r(a, b) (represented as
I |= r(a, b)) if 〈aI , bI〉 ∈ rI . Given a CBox C, we write I |= C if I |= C ⊑ D for every axiom C ⊑ D ∈ C and
I |= r1 ◦ · · · ◦ rk ⊑ r for every role inclusion in C . Similarly, given an ABox A, we write I |= A if I satisfies
all its assertions.

Given a CBox C, we say that it logically entails an axiom C ⊑ D, represented as C |= C ⊑ D, if for every
interpretation I |= C we have that I |= C ⊑ D.

Note that in EL
++ there is no need for an explicit ABox, for we have that I |= C(a) iff I |= {a} ⊑ C;

and I |= r(a, b) iff I |= {a} ⊑ ∃r.{b}.
Given a CBox, one of the important problems for EL

++ is to determine its consistency, namely the
existence of a common model which jointly validates all expressions in the CBox. There is a polynomial
algorithm which decides EL

++-consistency (Baader, Brandt, and Lutz 2005b).
This decision process can be used to provide a PTIME classification of an EL CBox. Given a CBox C,

the set BCC of basic concepts descriptions for C is given by

BCC = {⊤,⊥} ∪
{

C ∈ NC|C used in C
}

∪
{

{ai}|ai ∈ NI used in C
}

.

Example 2 Consider a CBox representing the situation described in Example 1; this modelling is adapted
from (Finger, Wassermann, and Cozman 2011).

The following TBox T0 describes basic
knowledge on deseases:
High-fever ⊑ Symptom
Joint-pain ⊑ Symptom
Rash ⊑ Symptom
Dengue ⊑ Disease
Symptom ⊑ ∃hasCause.Disease
Patient ⊑ ∃suspectOf.Disease
Patient ⊑ ∃hasSymptom.Symptom
∃hasSymptom.(∃hasCause.Dengue)⊑

∃suspectOf.Dengue

And the following ABox presents John’s symptoms.
Patient(john) [≡ {john} ⊑ Patient]
High-fever(s1) [≡ {s1} ⊑ High-fever]
hasSymptom(john, s1) [≡ {john} ⊑ ∃hasSymptom.{s1}]
Joint-pain(s2) [≡ {s2} ⊑ Joint-pain]
hasSymptom(john, s2) [≡ {john} ⊑ ∃hasSymptom.{s2}]

Note that the uncertain information on dengue and its symptoms is not represented by the CBox above. ✷

3 Extending EL
++ with Probabilistic Constraints

One of the main reasons to employ a description logic such as EL
++ is the fact that it has polynomial-time

algorithmic properties such as deciding and inferring subsumption. However, it is well known that simply by
adding negation of concepts to EL

++, we obtain the expressivity of description logic ALC whose decision
procedure is ExpTime-complete (Baader, Horrocks, Lutz, and Sattler 2017). This complexity blow up can
also be expected when adding probabilistic constraints.

3.1 Why Not Assign Probability to Concepts?

When we are dealing with probabilistic constraints on description logic, one of the first ideas is to apply
conditional or unconditional probability constraints to concepts. In fact, such an approach was employed in
several enhancements of description logics with probabilistic reasoning capabilities, e.g. as (Heinsohn 1994;
Lukasiewicz 2008; Lutz and Schröder 2010; Gutiérrez-Basulto, Jung, Lutz, and Schröder 2017).

However, one can see how such an approach would lead to problems if applied to EL
++. For each concept

C one can define an associated concept C̄ subject to the following constraints:

3

P (C) + P (C̄) = 1

P (C ⊓ C̄) = 0

Without going into the (non-trivial) semantic details of concept probabilities, it is intuitively clear that
those statements force C̄ to be the negation of C. In fact, the first statement expresses that C and C̄

are complementary and the second statement expresses that they are disjoint; together they mean that
interpretation of C and C̄ form a partition of the domain, and thus C̄ is the negation of C. As a consequence,
the expressivity provided by probabilities over concepts adds to EL

++ the expressivity of ALC , and as a
consequence the complexity of deciding axiom subsumption becomes ExpTime-hard. Detailed complexity
analysis can be found in (Gutiérrez-Basulto, Jung, Lutz, and Schröder 2017).

To lower the resulting complexity, we refrain from assigning probabilities to concepts and instead con-
centrate on assigning probabilities to axioms.

3.2 Probability Constraints over Axioms

Assume there is a finite number of interpretations, I1, . . . , Im; let P be a mapping that attributes to each
Ii a positive value P (Ii) ≥ 0 such that

∑m

i=1 P (Ii) = 1.
Then given an axiom C ⊑ D, its probability is given by:

P (C ⊑ D) =
∑

Ii|=C⊑D

P (Ii) . (1)

Note that this definition contemplates the probability of ABox elements; for example the probability P (C(a)) =
P ({a} ⊑ C).

Given axioms C1 ⊑ D1, . . . , Cℓ ⊑ Dℓ and rational numbers b1, . . . , bℓ; q, a probabilistic constraint consist
of the linear combination:

b1 · P (C1 ⊑ D1) + · · · bℓ · P (Cℓ ⊑ Dℓ) ⊲⊳ q , (2)

where ⊲⊳ ∈ {≤,≥,=}. A PBox is a set of probabilistic constraints. A probabilistic knowledge base is a pair
〈C,P〉, where C is a CBox and P a PBox. Note that the axioms occurring in the PBox need not occur in
the CBox, and in general they do not occur in it.

The intuition behind the probability of a GCI can perhaps be better understood if seen by its complement.
So the probability of an axiom C ⊑ D is p if the probability of its failure is 1− p, that is, the probability of
finding a model I in which there exists an individual a that is in concept C but not in concept D, I |= C(a)
and I 6|= D(a). Under this point of view, P (C ⊑ D) = p if there is a probability p of finding a model in
which either no individual instantiates concept C or all individual instances of concept C are also individual
instances of concept D. This has as a consequence the following, somewhat unintuitive behavior: if C is a
“rare” concept in the sense that most models have no instances of C, then the probability P (C ⊑ D) tends
to be quite high for any D, for it has as lower bound the probability of a model not having any instances of
C.

Note that this intuitive view also covers ABox statements, which can be expressed as axioms of the
form {a} ⊑ C and {a} ⊑ ∃r.{b}. But in these cases, all models always satisfy the nominal {a}, so e.g.
P ({a} ⊑ C) = p simply means that the probability of finding a model in which a is an instance of concept
C is p.

3.3 Probabilistic Satisfaction and Extension Problems

A probabilistic knowledge base 〈C,P〉 is satisfied by interpretations I1, . . . , Im if there exists a probability
distribution P over the interpretations such that

4

• if P (Ii) > 0 then Ii |= C;

• all probabilistic constraints in P hold.

This means that an interpretation can have a positive probability mass only if it satisfies CBox C, and the
composition of all those interpretations must verify the probability of constraints in P . A knowledge base is
satisfiable if there exists a set of interpretations and a probability distribution over them that satisfy it.

Definition 1 The probabilistic satisfiability problem for the logic EL
++ consists of, given a probabilistic

knowledge base 〈C,P〉, decide if it is satisfiable. ✷

Definition 2 The probabilistic extension problem for the logic EL
++ consists of, given a satisfiable proba-

bilistic knowledge base 〈C,P〉 and an axiom C ⊑ D, find the minimum and maximum values of P (C ⊑ D)
that are satisfiable with 〈C,P〉. ✷

Example 3 We create a probabilistic knowledge base by extending the CBox presented in Example 2 with
the uncertain information described in Example 1.

Dengue symptoms are nonspecific, so in some cases the high fever is actually caused by dengue, repre-
sented by Ax1 := High-fever ⊑ ∃hasCause.Dengue, and in some other cases we may have a combination of
high fever and rash being caused by dengue, represented by Ax2 := High-fever ⊓ Rash ⊑ ∃hasCause.Dengue.
And the fact that joint pains are caused by dengue is represented by Ax3 := Joint-pain ⊑ ∃hasCause.Dengue.
None of the axioms Ax1, Ax2 or Ax3 is always the case, but there is a probability that dengue is, in fact, the
cause. The following probabilistic statements represents uncertain knowledge on the relationship between
dengue and its symptoms, as observed in a hospital.

P (Ax2) − P (Ax1) = 0.05 The probability of dengue being the cause is 5% higher when both
high fever and rash are symptoms, over just having high fever;

P (Ax3) = 0.2 20% of cases of joint pain are caused by dengue.

We want to know if this probabilistic database is consistent and, in case it is, we want to find upper and
lower bounds for the probability that John is a suspect of having dengue, plb ≤ P (∃suspectOf.Dengue(john))
≤ pub. ✷

In order to provide algorithms that tackle both the decision and the extension problems, we provide a
linear algebra formulation of those problems.

3.4 A Linear Algebraic View of Probabilistic Satisfaction and Extension Prob-

lems

Initially, let us consider only restricted probabilistic constraints of the form P (Ci ⊑ Di) = pi. Consider a
restricted probabilistic knowledge base 〈C,P〉 in which the number of probabilistic constraints is |P| = k.
Let p be a vector of size k of probabilistic constraint values. Consider a finite number of interpretations,
I1, . . . , Im, and let us build a k ×m matrix A of {0, 1} elements aij such that

aij = 1 iff Ij |= Ci ⊑ Di

Note that column Aj contains the evaluations by interpretation Ij of the axioms submitted to probabilistic
constraints. Given a CBox C and sequence of n axioms C1 ⊑ D1, . . . , Cn ⊑ Dn, a {0, 1}-vector u of size n
represents a C-satisfiable interpretation I if I |= C, and ci = 1 iff I |= Ci ⊑ Di for 1 ≤ i ≤ n. The idea is to
assign positive probability mass pij > 0 only if Aj represents a C-satisfiable interpretation.

Let π be a vector of sizem representing a probability distribution. Consider the following set of constraints
associated to 〈C,P〉, expressing the fact that π is a probability distribution that respects the constraints given
by matrix A:

5

A · π = p
m
∑

j=1

πj = 1 (3)

π ≥ 0

The fact that constraints (3) actually represent satisfiability is given by the following.

Lemma 1 A probabilistic knowledge base 〈C,P〉 with restricted probabilistic constraints is satisfiable iff there
is a vector π that satisfies its associated constraints (3). ✷

When the probabilistic knowledge base is satisfiable, the number m of interpretations associated to the
columns of matrix A may be exponentially large with respect to the number k of constraints in P . However,
Carathéodory’s Theorem (Eckhoff 1993) guarantees that if there is a solution to (3) then there is also a small
solution, namely one with at most k + 1 positive values.

Lemma 2 If constraints (3) have a solution then there exists a solution π with at most k + 1 values such
that πj > 0. ✷

Now instead of considering only a restricted form of probability constraints, let us consider constraints
of the form (2) as defined in Section 3, namely

bi1 · P (C1 ⊑ D1) + · · ·+ biℓ · P (Cℓ ⊑ Dℓ) ⊲⊳ qi ,

where bij , qi ∈ Q, ⊲⊳ ∈ {≤,≥,=} and i = 1, . . . k.
We assume there are at most ℓ axioms mentioned in P , such that bi,j = 0 if P (Cj ⊑ Dj) does not occur

at constraint i. Consider a matrix Bk×ℓ and a vector x of size ℓ. We now have the following set of associated
constraints to the probabilistic knowledge base 〈C,P〉, extending (3):

B · x = q

A · π = x (4)
m
∑

j=1

πj = 1

x, π ≥ 0

As before, A’s columnns are {0, 1}-representations of the validity of the axioms occurring in P under
the interpretation Ij . Constraints (4) are solvable if there are vectors x and π that verify all conditions.
Analogously, the solvability of constraints (4) characterize the satisfiability of probabilistic knowledge bases
with unrestricted constraints.

Lemma 3 A probabilistic knowledge base 〈C,P〉 is satisfiable if and only if its associated set of constraints
(4) are solvable. ✷

Example 4 Consider four interpretations for the knowledge base described in Example 3. Interpretation
I1 satisfies CBox C of Example 2 and also axioms Ax1, Ax2, Ax3. Interpretation I2 satisfies C and axioms
Ax2, Ax3 but not Ax1. Interpretation I3 satisfies C and only axiom Ax3. Interpretation I4 satisfies only C
but none of the axioms. We then consider a probability distribution π, such that π(I1) = 5%, π(I2) = 5%,
π(I3) = 10%, π(I4) = 80%. The following shows that all probabislistic restrictions are satisfied.

6

Ax1

Ax2

Ax3

1









1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1









·









0.05
0.05
0.10
0.80









=









0.05
0.10
0.20
1.00









So P (Ax2)− P (Ax1) = 0.05 and P (Ax3) = 0.2. ✷

When constraints (4) are solvable, vector x has size ℓ = O(k), but vector π can be exponentially large in
k. By a simple linear algebraic trick, constraints of the form (4) can he presented in the following form:

C · πx = d (5)

πx ≥ 0

In fact, it suffices to make:

C =





0 B

A −Iℓ
1 0



 ; d =





q

0
1



 ; πx =

[

π

x

]

where Iℓ is the identity matrix, and 1 is a row of |π| 1’s. When we say that the column Cj represents a
C-satisfiable interpretation, we actually mean that the part of Cj that corresponds to some column Aj that
represents a C-satisfiable interpretation, its k-initial positions are 0 and its last element is 1. Note that C
has k + ℓ+ 1 rows and |π|+ ℓ columns. Again, Carathéodory’s Theorem guarantees small solutions.

Lemma 4 If constraints (4) have a solution then there exists a solution πx with at most k + ℓ + 1 values
such that πx

j > 0. ✷

We now show that probabilistic satisfiability is NP-hard.

Lemma 5 The satisfiability problem for probabilistic knowledge bases is NP-hard. ✷

Proof We reduce SAT to probabilistic satisfiability over EL
++; unlike PSAT1, it does not suffice to set

all probabilities to 1, as EL
++ is decidable in polynomial time. Instead, we show how to represent 3-

SAT clauses (i.e. disjunction of three literals) as a set of probabilistic axioms, basically probabilistic ABox
statements. For that, consider a set of propositional variables x1, . . . , xn upon which the set Γ of clauses of
the SAT problem are built. On the probabilistic knowledge base side, consider a single individual a and 2n
basic concepts X1, . . . , Xn and X1, . . . , Xn, subject to the following 2n restrictions:

P (a ⊑ Xi) + P (a ⊑ Xi) = 1 (6)

P (a ⊑ Xi ⊓Xi) = 0

The idea is to represent the propositional atomic information xi by the axiom a ⊑ Xi, its negation by
a ⊑ Xi, and the fact that a clause yi ∨ . . . ∨ ym holds is represented by the probabilistic statement

P (a ⊑ Y i ⊓ . . . ⊓ Y m) = 0. (7)

Given Γ, we build a probabilistic knowledge base 〈∅,P〉 by the representation (7) of the clauses in Γ plus
2n assertions of the form (6). We claim that Γ is satisfiable iff 〈∅,P〉 is. In fact, suppose Γ is satisfiable by
valuation v, make a EL

++ model I such that I |= a ⊑ Xi iff v(xi) = 1 and assign probability 1 to I; clearly
〈∅,P〉 is satisfiable. Now suppose 〈∅,P〉 is satisfiable, so there exists an EL

++ model I which is assigned
probability strictly bigger than 0. Construct a valuation v such that v(xi) = 1 iff I |= a ⊑ Xi. Clearly
v(Γ) = 1, otherwise there is a clause yi ∨ . . . ∨ ym in Γ such that v(yi ∨ . . . ∨ ym) = 0 and thus I |= a ⊑ Y i

for i = 1, . . . ,m; then P (a ⊑ Y i ⊓ . . . ⊓ Y m) ≥ P (I) > 0, contradicting (7). �

1PSAT, or Probabilistic SATisfiability, consists of determining the satisfiability of a set of probabilistic assertions on classical
propositional formulas (Finger and Bona 2011; Finger and De Bona 2015; Bona, Cozman, and Finger 2014).

7

Theorem 1 The satisfiability problem for probabilistic knowledge bases is NP-complete.

Proof Lemma 4 provides a small witness for every problem, such that by guessing that witness we can
show in polynomial time that the constraints are solvable; so the problem is in NP. Lemma 5 provides
NP-hardness. �

4 Column Generation Algorithm for Probabilistic Knowledge Base

Satisfiability

An algorithm for deciding probabilistic knowledge base satisfiability has to provide a means to find a solution
for restrictions (4) if one exists; otherwise determine no solution is possible. Furthermore, we will assume
that the constraints are presented in format (3).

We now provide a method similar to PSAT-solving to decide the satisfiability of probabilistic knowledge
base 〈C,P〉. We construct a vector c of costs whose size is the same as size of πx such that cj ∈ {0, 1},
cj = 1 if column Cj satisfies the following condition: either the first k positions are not 0, or the next ℓ
cells representing Aj correspond to an interpretation that does not satisfy the CBox C, or the last position
of Cj is not 1; if Cj is one of the last ℓ columns, or its first k elements are 0 and the next ℓ elements are a
representation of an interpretation Aj that is C-satisfiable and its last element is 1, then cj = 0. Then we
generate the following optimization problem associated to (3).

min c′ · πx

subject to C · πx = d

πx ≥ 0
(8)

Lemma 6 Given a probabilistic knowledge base 〈C,P〉 and its associated linear algebraic restrictions (4),
〈C,P〉 is satisfiable if, and only if, minimization problem (8) has a minimum such that c′π = 0. ✷

Condition c′π = 0 means that only the columns of Aj corresponding to C-satisfiable interpretations can
be attributed probability πj > 0, which immediately leads to solution of (8). Minimization problem (8)
can be solved by an adaptation of the simplex method with column generation such that the columns of C
corresponding to columns of A are generated on the fly. The simplex method is a stepwise method which
at each step considers a basis consisting of k + ℓ + 1 columns of matrix C and computes its associated
cost (Bertsimas and Tsitsiklis 1997). The processing proceeds by finding a column of C outside the basis,
creating a new basis by substituting one of the basis columns by this new column such that the associated
cost never increases. To guarantee the cost never increases, the new column Cj to be inserted in the basis
has to obey a restriction called reduced cost given by c̃j = cj − cBa

Ba
−1Cj ≤ 0, where cj is the cost of

column Cj , Ba is the basis and cBa
is the cost associated to the basis. Note that in our case, we are only

inserting columns that represent C-satisfiable interpretations, so that we only insert columns of matrix C
and their associated cost cj = 0. Therefore, every new column Cj to be inserted in the basis has to obey
the inequality

cBa
Ba

−1Cj ≥ 0. (9)

Note that the first k positions in Cj are 0 and the last one is always 1.
A column Cj representing a C-satisfying interpretation may or may not satisfy condition (9). We call an

interpretation that does satisfy (9) as cost reducing interpretation. Our strategy for column generation is
given by finding cost reducing interpretations for a given basis.

Lemma 7 There exists an algorithm that decides the existence of cost reducing interpretations whose com-
plexity is in NP. ✷

8

Proof Since we are dealing with a CBox in EL
++, the existence of satisfying interpretations is polynomial-

time and thus in NP, we can guess one such equilibrium and in polynomial time both verify it is a C-satisfying
interpretation and that is satisfies (9). �

We can actually build a deterministic algorithm for Lemma 7 by reducing it to a SAT problem. In
fact, computing EL

++ satisfiability can be encoded in a 3-SAT formula ϕ; the condition (9) can also be
encoded by a 3-SAT formula ψ in linear time, e.g. by Warners algorithm (Warners 1998), such that the SAT
problem consisting of deciding ϕ ∪ ψ is satisfiable if, and only if, there exists a cost reducing interpretation.
Furthermore its valuation provides the desired column Cj , after prefixing it with k 0’s and appending a 1
at its end. This SAT-based algorithm we call the EL

++-Column Generation Method. In practice, column
generation tries first to output one of the last ℓ columns in C; if the insertion of one such column causes
det(Ba) = 0 or πx 6≥ 0, or if all the last ℓ C-columns are in the basis, the properEL

++-Column Generation
Method is invoked.

Algorithm 4.1 PKBSAT-CG: a probabilistic knowledge base solver via Column Generation

Input: A probabilistic knowledge base 〈C,P〉 and its associated set of restrictions in format (3).
Output: No, if 〈C,P〉 is unsatisfiable. Or a solution 〈Ba, π

x〉 that minimizes (8).

1: B
(0)
a := Ik+ℓ+1;

2: s := 0, πx(s) = (B
(0)
a)−1 · d and c(s) = [1 · · · 1]′;

3: while c(s)′ · πx(s) 6= 0 do

4: y(s) = GenerateColumn(B
(s)
a , C, c(s));

5: if Column generation failed then

6: return No; {probabilistic knowledge base is unsatisfiable}
7: else

8: B
(s+1)
a = merge(B

(s)
a , y(s));

9: s++, recompute πx(s) := (B
(s−1)
a)−1 · d; c(s) the costs of B

(s)
a columns;

10: end if

11: end while

12: return 〈B
(s)
a , πx(s)〉; {probabilistic knowledge base is satisfiable}

Algorithm 4.1 presents the top level probabilistic knowledge base decision procedure. Lines 1–2 present
the initialization of the algorithm. We assume the vector p is in descending order. At the initial step we

make B(0) = UK+1, this forces π
(0)
K+1 = pK+1 ≥ 0, π

(0)
j = pj − pj+1 ≥ 0, 1 ≤ j ≤ K; and c(0) = [c1 · · · cK+1]

′,

where cj = 0 if column j in B(0) is an interpretation; otherwise cj = 1. Thus the initial state s = 0 is a
feasible solution.

Algorithm 4.1 main loop covers lines 3–11 which contains the column generation strategy at beginning
of the loop (line 4). If column generation fails the process ends with failure in line 6; the correctness of
unsatisfiability by failure is guaranteed by Lemma 6. Otherwise a column is removed and the generated
column is inserted in a process we called merge at line ??. The loop ends successfully when the objective
function (total cost) c(s)′ · πx(s) reaches zero and the algorithm outputs a probability distribution πx and
the set of interpretations columns in Ba, at line 12.

The procedure merge is part of the simplex method which guarantees that given a column y and a
feasible solution 〈Ba, π

x〉 there always exists a column j in Ba such that if Ba[j := y] is obtained from Ba

by replacing column j with y, then there is π̃x ≥ 0 such that 〈Ba[j := y], π̃x〉 is a feasible solution.

4.1 Column Generation Procedure

Column generation is based on the cost reduction condition (9), which we repeat here:

cBa
Ba

−1Cj ≥ 0. (10)

9

Recall that matrix C is of the form

C =





0 B

A −Iℓ
1 0





So, column generation first tries to insert a cost decreasing column from the last ℓ columns in C; this
involves verifying if condition (10) holds for any of the ℓ rightmost columns, which are known from the start
and do not need to be generated. If one such column is found, it is returned.

If no such column is found, however, EL
++-Column Generation Method described next is invoked. As

the number of columns of matrix A is potentially exponentially large and thus not stored. Note that the
first k positions in a generated column Cj are all 0 and the last entry is always 1; the remaining ℓ positions
are a column of matrix A representing an EL

++-interpretation I; those positions are 0-1 values, where 1
represents I |= Ci ⊑ Di and 0 representing the existence of some domain element b such that I |= Ci(b)
but I 6|=⊑ Di(b), 1 ≤ i ≤ ℓ. Thus the elements of a generated cj are all 0-1, and we identify them with
valuations of a satisfying assignment of a SAT formula Γ obtained as follows:

1. Γ1 is obtained by translating the inequality (10) into a set of clauses; this can be done, for instance,
using the procedure described by (Warners 1998).

2. Γ2 is a rendering of the EL
++-decision procedure as a SAT formula for the EL

++-satisfiability bt some
interpretation I of the given set of axioms on which linear conditions are imposed, C1 ⊑ D1, . . . , Cℓ ⊑
Dℓ.

Formulas Γ1 and Γ2 share variables indicating whether I |= Ci ⊑ Di, 1 ≤ i ≤ ℓ. We take Γ = Γ1 ∪ Γ2, and
send it to a SAT solver. If Γ is satisfiable, we obtain from the satisfying valuation a column that is cosat
reducing, due to nΓ1 and that represents an EL

++-model, due to Γ2.
As the constraints of the sumplex method are thus respected, and it is an always terminating procedure,

we have the following result.

Theorem 2 Algorithm 4.1 decides probabilistic knowledge base satisfiability using column generation. ✷

A detailed example is provided illustrated the procedure details.

Example 5 We now show a step-by-step solution of the satisfiability of the dengue example using Algo-

rithm 4.1 and column generation procedure as above. At each step s we are going to show the basis B
(s)
a ,

the basis cost vector c(s), the partial solution π(s), the current cost = c(s)′ ·π(s) and the generated column y.
The columns generated correspond to EL

++-models that have to satisfy the restrictions

Ax1 |=EL ++ Ax2 (11)

Each row of the basis corresponds to some restriction. Initially, the basis is the identity matrix, the basis
cost vector is all 1’s, idicating that all columns do not correspond to any model satisfying (11).

c(0)′ =
[

1 1 1 1 1 1
]

cost = 1.25

B
(0)
a = P1

P2

Ax1
Ax2
Ax3

1

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















·

















0.05
0.20
0
0
0
1

















=

















0.05
0.20
0
0
0
1

















As described above, column generation first tries to insert a cost decreasing column from the last ℓ
columns in C, which are known a priory. In our case we have the following B-equalities and the corresponding

10

columns:

P (Ax2)− P (Ax1) = 0.05

P (Ax3) = 0.20

C =





0 B

A −Iℓ
1 0









B

−Iℓ
0



 =

















−1
0

−1
0
0
0

1
0
0

−1
0
0

0
1
0
0

−1
0

















where each corresponds to axioms Ax1, Ax2 and Ax3, respectively. It occurs that those columns satisfy the
column reduction inequality (10), and are inserted in the basis in the order Ax3, Ax2, Ax3; also note that
the rightmost column does correspond to a model satisfying restriction (11), so after 4 column generation
steps we have the following state:

c(4)′ =
[

0 0 0 1 1 0
]

cost = 1.25

B
(4)
a = P1

P2

Ax1
Ax2
Ax3

1

















1 0 −1 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 0 0 0 1

















·

















0.05
0.20
0

0.05
0.20
1

















=

















0.05
0.20
0
0
0
1

















Note that the inserted columns now correspont to positions of basis cost vector with value 0. The choice
of which columns leave the basis is performed by the merge procedure, which is a linear algebraic method
that ensures that π ≥ 0. Note that total cost has not decreased so far, which is always a possibility as
condition (10) only ensures that the coat is non-increasing. As all the rightmost B-columns have already
been inserted in the basis, we have to proceed to a proper column generation process in which restriction (11)
needs to be respected as well as the following inequality:

c′Ba
B−1

a Cj = [1 1 − 1 1 1 0] · [0 0 Ax1 Ax2 Ax3 1]
′
= −Ax1 +Ax2 +Ax2 ≥ 0

We transform the inequality above to a SAT formula, together with a transformation of restriction (11) into
another SAT formula, and submit to a SAT solver that generates a satisfying valuation indicating that there
is an EL

++-model that satisfies axioms 2 and 3 but not axiom 1, thus generating the column [0 0 0 1 1 1]′

which the merge procedures inserts as the fourth column, thus generating the state:

c(5)′ =
[

0 0 0 0 1 0
]

cost = 0.15

B
(5)
a = P1

P2

Ax1
Ax2
Ax3

1

















1 0 −1 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0

−1 0 0 1 0 0
0 −1 0 1 1 0
0 0 0 1 0 1

















·

















0.05
0.20
0

0.05
0.15
0.95

















=

















0.05
0.20
0
0
0
1

















Note that the total cost has decreased for the first time. The merge process chooses a column to leave the
basis so as to guarantee that the partial solution π ≥ 0, but it does not ensure that the leaving column is
one with non-zero cost. In fact, it is a coincidence that in this example all columns that left the basis had
non-zero cost; on he other hand, it is by construction that all entering columns have zero cost.

Finally, we proceed with column generation. As before, we obtain the inequality

11

c′Ba
B−1

a Cj = Ax1 −Ax2 +Ax2 ≥ 0

which together with restriction (10) allows for a model in which the three axioms in focus are all true; as
before, such a state is obtained by submitting a SAT-encoded formula to a SAT solver. We obtain the sixth
step in the column generation process:

c(6)′ =
[

0 0 0 0 0 0
]

cost = 0

B
(6)
a = P1

P2

Ax1
Ax2
Ax3

1

















1 0 −1 0 0 0
0 1 0 0 0 0
0 0 −1 0 1 0

−1 0 0 1 1 0
0 −1 0 1 1 0
0 0 0 1 1 1

















·

















0.20
0.20
0.15
0.05
0.15
0.80

















=

















0.05
0.20
0
0
0
1

















As the total cost has reached 0, we know the problem is satisfiable. The last three columns, whose last
element is one, correspond to three EL

++-models on which a probability distribution was obtained, given
by the corresponding elements of π(6), 0.05, 0.15, 0.80. The initial three columns correspond to the B-columns
and, in the order presented correpond to axioms 2, 3 and 1 and from π(6) we can read their probabilities:
0.20, 0.20 and 0.15; note that the initial equations are all respected and the example is finished. ✷

5 Algorithm for the Probabilistic Extension Problem

We now analyse the problem of probabilistic knowledge base extension. Given a satisfiable knowledge base,
our aim is to find the maximum and minimum probabilistic constraints for some axiom C ⊑ D maintaining
satisfiability. Given a precision ε = 2−k, the algorithm works by making a binary search through the binary
representation of the possible constraints to C ⊑ D, solving a probabilistic knowledge base satisfiability
problem in each step.

Algorithm 5.1 presents a procedure to solve the maximum extension problem. We invoke PKBSAT-CG(〈C,P〉)
several times in the process. Obtaining the minimum extension is easily adaptable from Algorithm 5.1.

Algorithm 5.1 PKBEx-BS: a solver for probabilistic knowledge base extension via Binary Search

Input: A satisfiable probabilistic knowledge base 〈C,P〉, an axiom C ⊑ D, and a precision ε > 0.
Output: Maximum P (C ⊑ D) value with precision ε.

1: k := ⌈| log ε|⌉;
2: j := 1, vmin := 0, vmax := 1;
3: if PKBSAT-CG(C,P ∪ {P (C ⊑ D) = 1}) = Yes then
4: vmin := 1;
5: else

6: while j ≤ k do

7: vmax = vmin + 1
2j ;

8: if PKBSAT-CG(C,P ∪ {P (C ⊑ D) ≥ vmax}) = Yes then
9: vmin := vmax;

10: end if

11: j++;
12: end while

13: end if

14: return vmin;

Suppose the goal is to find the maximum possible value for constraining C ⊑ D. Iteration 1 solves
PKBSAT for P (C ⊑ D) = 1; if it is satisfiable, P (C ⊑ D) = 1, else P (C ⊑ D) = 0 with precision 20=1,

12

and it can be refined by solving PKBSAT for P (C ⊑ D) = 0.5; if it is satisfiable, P (C ⊑ D) = 0.5, else
P (C ⊑ D) = 0, both cases with precision 2−1 = 0.5. One more iteration gives precision 2−2 = 0.25, and
it consists of solving PKBSAT for P (C ⊑ D) = 0.75 in case the former iteration was satisfiable, otherwise
P (C ⊑ D) = 0.25. The proceeds until the desired precision is reached, which takes | log 2−k| + 1 = k + 1
iterations.

Theorem 3 Given a precision ε > 0, probabilistic knowledge base extension can be obtained with O(| log ε|)
iterations of probabilistic knowledge base satisfiability. ✷

Example 6 If we continue he previous examples, by applying Algorithm 5.1, we obtain that

0.20 ≤ P (∃suspectOf.Dengue(john)) ≤ 0.95.

that is, the probability of John having Dengue lies between twenty percent and ninety five percent. Such a
high spread means that knowing lower and upper bounds for probability is not really informative. ✷

It is important to note that this binary search is not the only way to solve the extension problem. A
modification of the column generation procedure is also possible, in which a distinct optimization objective
function is used, and in which only models satisfying ∃suspectOf.Dengue(john) are generated, could also be
used. We omit the details here.

6 Conclusions and Further Work

In this paper we have extended the logic EL
++ with probabilistic reasoning capabilities over GCI axioms,

without causing an exponentially-hard complexity blow up in reasoning tasks. We have provided deter-
ministic algorithms based on logic and linear algebra for the problems of probabilistic satisfiability and
probabilistic extension, and we have demonstrated that the decision problems are NP-complete.

In the future, we plan to explore more informative probabilistic measures, such as probabilities under
minimum entropy distributions and the dealing of conditional probabilities, instead of only focusing on
probabilities of ⊑-axioms, as was done here. We also plan to study fragments of the logics presented here in
the search for tractable fragments of probabilistic description logics.

References

Baader, F., S. Brandt, and C. Lutz (2005a). Pushing the EL envelope. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence, IJCAI’05, San Francisco, CA, USA, pp. 364–369.
Morgan Kaufmann Publishers Inc.

Baader, F., S. Brandt, and C. Lutz (2005b). Pushing the EL envelope. Technical Re-
port LTCS-Report LTCS-05-01, Institute for Theoretical Computer Science. See
http://lat.inf.tudresden.de/research/reports.html.

Baader, F., I. Horrocks, C. Lutz, and U. Sattler (2017). An Introduction to Description Logic. Cambridge
University Press.

Bertsimas, D. and J. N. Tsitsiklis (1997). Introduction to linear optimization. Athena Scientific.

Bona, G. D., F. G. Cozman, and M. Finger (2014). Towards classifying propositional probabilistic logics.
Journal of Applied Logic 12 (3), 349–368. Special Issue on Combining Probability and Logic to Solve
Philosophical Problems.

Eckhoff, J. (1993). Helly, Radon, and Carathéodory type theorems. In P. M. Gruber and J. M. Wills
(Eds.), Handbook of Convex Geometry, pp. 389–448. Elsevier Science Publishers.

13

Finger, M. (2019). Extending EL++ with linear constraints on the probability of axioms. In C. Lutz,
U. Sattler, C. Tinelli, A. Turhan, and F. Wolter (Eds.), Description Logic, Theory Combination, and
All That - Essays Dedicated to Franz Baader on the Occasion of His 60th Birthday, Volume 11560 of
Lecture Notes in Computer Science, pp. 286–300. Springer.

Finger, M. and G. D. Bona (2011). Probabilistic satisfiability: Logic-based algorithms and phase transition.
In T. Walsh (Ed.), Internatioinal Joint Congerence on Artificial Intelligence (IJCAI), pp. 528–533.
IJCAI/AAAI Press.

Finger, M. and G. De Bona (2015). Probabilistic satisfiability: algorithms with the presence and absence
of a phase transition. Annals of Mathematics and Artificial Intelligence 75 (3), 351–379.

Finger, M., R. Wassermann, and F. G. Cozman (2011). Satisfiability in EL with sets of probabilistic
ABoxes. See Rosati, Rudolph, and Zakharyaschev (2011).

Gutiérrez-Basulto, V., J. C. Jung, C. Lutz, and L. Schröder (2011). A closer look at the probabilistic
description logic prob-el. In W. Burgard and D. Roth (Eds.), AAAI. AAAI Press.

Gutiérrez-Basulto, V., J. C. Jung, C. Lutz, and L. Schröder (2017). Probabilistic description logics for
subjective uncertainty. J. Artif. Intell. Res. (JAIR) 58, 1–66.

Heinsohn, J. (1994). Probabilistic description logics. In Proceedings of the Tenth International Confer-
ence on Uncertainty in Artificial Intelligence, UAI’94, San Francisco, CA, USA, pp. 311–318. Morgan
Kaufmann Publishers Inc.

Jung, J. C., V. Gutiérrez-Basulto, C. Lutz, and L. Schröder (2011). The complexity of probabilistic el.
See Rosati, Rudolph, and Zakharyaschev (2011).

Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial Intelligence 172 (6), 852 –
883.

Lutz, C. and L. Schröder (2010). Probabilistic description logics for subjective uncertainty. In KR 2010,
12th International Conference of Knowledge Representation and Reasoning. AAAI Press.

Rosati, R., S. Rudolph, and M. Zakharyaschev (Eds.) (2011). Proceedings of the 24th International Work-
shop on Description Logics (DL 2011), Barcelona, Spain, July 13-16, 2011, Volume 745 of CEUR
Workshop Proceedings. CEUR-WS.org.

Warners, J. P. (1998). A linear-time transformation of linear inequalities into conjunctive normal form.
Inf. Process. Lett. 68 (2), 63–69.

14

	1 Introduction
	2 Preliminaries
	3 Extending EL++ with Probabilistic Constraints
	3.1 Why Not Assign Probability to Concepts?
	3.2 Probability Constraints over Axioms
	3.3 Probabilistic Satisfaction and Extension Problems
	3.4 A Linear Algebraic View of Probabilistic Satisfaction and Extension Problems

	4 Column Generation Algorithm for Probabilistic Knowledge Base Satisfiability
	4.1 Column Generation Procedure

	5 Algorithm for the Probabilistic Extension Problem
	6 Conclusions and Further Work

